
Machine Learning
Systems Vijay

Janapa Reddi

Introduction to

Machine Learning Systems

Principles and Practices of Engineering Artificially Intelligent
Systems

Prof. Vijay Janapa Reddi
School of Engineering and Applied Sciences
Harvard University

With heartfelt gratitude to the community for their invaluable
contributions and steadfast support.

June 10, 2025

Table of contents

Preface i
Global Outreach . i
Why We Wrote This Book . i
Want to Help Out? . ii
What’s Next? . ii

FRONTMATTER iii

Author’s Note v

About the Book vii
Overview . vii

Purpose of the Book . vii
Context and Development . vii
What to Expect . vii

Learning Goals . viii
Key Learning Outcomes . viii
Learning Objectives . viii
AI Learning Companion . ix

How to Use This Book . ix
Book Structure . ix
Suggested Reading Paths . ix
Modular Design . ix

Transparency and Collaboration . x
Copyright and Licensing . x
Join the Community . x

Book Changelog xi

Acknowledgements xiii
Funding Agencies and Companies . xiii

Academic Support . xiii
Non-Profit and Institutional Support xiii
Corporate Support . xiv

Contributors . xiv

SocratiQ AI xvii

i

Table of contents ii

AI Learning Companion . xvii
Quick Start Guide . xvii
Button Overview .xviii
Personalize Your Learning . xix
Learning with SocratiQ . xix

Quizzes . xix
Example Learning Flow . xxi
Getting Help with Concepts . xxii

Tracking Your Progress . xxiv
Performance Dashboard . xxiv
Achievement Badges . xxv

Data Storage . xxv
Technical Requirements . xxvi
Common Issues and Troubleshooting xxvi
Providing Feedback . xxvi

MAIN xxix

Chapter 1 Introduction 1
1.1 AI Pervasiveness . 1
1.2 AI and ML Basics . 2
1.3 AI Evolution . 4

1.3.1 Symbolic AI Era . 5
1.3.2 Expert Systems Era . 5
1.3.3 Statistical Learning Era 6
1.3.4 Shallow Learning Era 7
1.3.5 Deep Learning Era . 8

1.4 ML Systems Engineering . 10
1.5 Defining ML Systems . 12
1.6 Lifecycle of ML Systems . 13
1.7 ML Systems in the Wild . 14
1.8 ML Systems Impact on Lifecycle 15

1.8.1 Emerging Trends . 16
1.8.1.1 Application-Level Innovation 16
1.8.1.2 System Architecture Evolution 16

1.9 Practical Applications . 17
1.9.1 FarmBeats: ML in Agriculture 17

1.9.1.1 Data Considerations 17
1.9.1.2 Algorithmic Considerations 18
1.9.1.3 Infrastructure Considerations 18
1.9.1.4 Future Implications 19

1.9.2 AlphaFold: Scientific ML 19
1.9.2.1 Data Considerations 20
1.9.2.2 Algorithmic Considerations 20
1.9.2.3 Infrastructure Considerations 20
1.9.2.4 Future Implications 21

1.9.3 Autonomous Vehicles and ML 21

Table of contents iii

1.9.3.1 Data Considerations 21
1.9.3.2 Algorithmic Considerations 22
1.9.3.3 Infrastructure Considerations 22
1.9.3.4 Future Implications 22

1.10 Challenges in ML Systems . 23
1.10.1 Data-Related Challenges 23
1.10.2 Model-Related Challenges 23
1.10.3 System-Related Challenges 24
1.10.4 Ethical Considerations 24

1.11 Looking Ahead . 25
1.12 Book Structure and Learning Path 25

Chapter 2 ML Systems 27
Purpose . 27
2.1 Overview . 28
2.2 Cloud-Based Machine Learning 31

2.2.1 Characteristics . 32
2.2.2 Benefits . 33
2.2.3 Challenges . 34
2.2.4 Use Cases . 36

2.3 Edge Machine Learning . 37
2.3.1 Characteristics . 37
2.3.2 Benefits . 38
2.3.3 Challenges . 38
2.3.4 Use Cases . 39

2.4 Mobile Machine Learning . 39
2.4.1 Characteristics . 40
2.4.2 Benefits . 40
2.4.3 Challenges . 40
2.4.4 Use Cases . 41

2.5 Tiny Machine Learning . 42
2.5.1 Characteristics . 42
2.5.2 Benefits . 43
2.5.3 Challenges . 43
2.5.4 Use Cases . 44

2.6 Hybrid Machine Learning . 44
2.6.1 Design Patterns . 45

2.6.1.1 Train-Serve Split 45
2.6.1.2 Hierarchical Processing 45
2.6.1.3 Progressive Deployment 46
2.6.1.4 Federated Learning 46
2.6.1.5 Collaborative Learning 46

2.6.2 Real-World Integration 46
2.7 Shared Principles . 48

2.7.1 Implementation Layer 50
2.7.2 System Principles Layer 50
2.7.3 System Considerations Layer 51
2.7.4 Principles to Practice . 52

Table of contents iv

2.8 System Comparison . 52
2.9 Deployment Decision Framework 55
2.10 Conclusion . 56
2.11 Resources . 57

Chapter 3 DL Primer 59
Purpose . 59
3.1 Overview . 60
3.2 The Evolution to Deep Learning 61

3.2.1 Rule-Based Programming 61
3.2.2 Classical Machine Learning 63
3.2.3 Neural Networks and Representation Learning 64
3.2.4 Neural System Implications 65

3.2.4.1 Computation Patterns 66
3.2.4.2 Memory Systems 66
3.2.4.3 System Scaling 66

3.3 Biological to Artificial Neurons 67
3.3.1 Biological Intelligence 67
3.3.2 Transition to Artificial Neurons 68
3.3.3 Artificial Intelligence . 69
3.3.4 Computational Translation 70
3.3.5 System Requirements 71
3.3.6 Evolution and Impact 72

3.4 Neural Network Fundamentals 74
3.4.1 Basic Architecture . 74

3.4.1.1 Neurons and Activations 74
3.4.1.2 Layers and Connections 76
3.4.1.3 Data Flow and Transformations 76

3.4.2 Weights and Biases . 77
3.4.2.1 Weight Matrices 77
3.4.2.2 Connection Patterns 78
3.4.2.3 Bias Terms . 79
3.4.2.4 Parameter Organization 79

3.4.3 Network Topology . 79
3.4.3.1 Basic Structure 79
3.4.3.2 Design Trade-offs 80
3.4.3.3 Connection Patterns 81
3.4.3.4 Parameter Considerations 82

3.5 Learning Process . 83
3.5.1 Training Overview . 83
3.5.2 Forward Propagation 84

3.5.2.1 Layer Computation 84
3.5.2.2 Mathematical Representation 85
3.5.2.3 Computational Process 86
3.5.2.4 Practical Considerations 86

3.5.3 Loss Functions . 87
3.5.3.1 Basic Concepts 88
3.5.3.2 Classification Losses 88

Table of contents v

3.5.3.3 Loss Computation 89
3.5.3.4 Training Implications 90

3.5.4 Backward Propagation 90
3.5.4.1 Gradient Flow 91
3.5.4.2 Gradient Computation 91
3.5.4.3 Implementation Aspects 92

3.5.5 Optimization Process 93
3.5.5.1 Gradient Descent Basics 93
3.5.5.2 Batch Processing 93
3.5.5.3 Training Loop 94
3.5.5.4 Practical Considerations 94

3.6 Prediction Phase . 95
3.6.1 Inference Basics . 95

3.6.1.1 Training vs Inference 95
3.6.1.2 Basic Pipeline 97

3.6.2 Pre-processing . 98
3.6.3 Inference . 99

3.6.3.1 Network Initialization 99
3.6.3.2 Forward Pass Computation 99
3.6.3.3 Resource Requirements 100
3.6.3.4 Optimization Opportunities 101

3.6.4 Post-processing . 102
3.7 Case Study: USPS Postal Service 103

3.7.1 Real-world Problem . 103
3.7.2 System Development . 103
3.7.3 Complete Pipeline . 105
3.7.4 Results and Impact . 106
3.7.5 Key Takeaways . 106

3.8 Conclusion . 107
3.9 Resources . 108

Chapter 4 DNN Architectures 109
Purpose . 109
4.1 Overview . 110
4.2 Multi-Layer Perceptrons: Dense Pattern Processing 111

4.2.1 Pattern Processing Needs 111
4.2.2 Algorithmic Structure 112
4.2.3 Computational Mapping 112
4.2.4 System Implications . 114

4.2.4.1 Memory Requirements 114
4.2.4.2 Computation Needs 114
4.2.4.3 Data Movement 114

4.3 Convolutional Neural Networks: Spatial Pattern Processing . . 115
4.3.1 Pattern Processing Needs 115
4.3.2 Algorithmic Structure 116
4.3.3 Computational Mapping 117
4.3.4 System Implications . 119

4.3.4.1 Memory Requirements 119

Table of contents vi

4.3.4.2 Computation Needs 119
4.3.4.3 Data Movement 120

4.4 Recurrent Neural Networks: Sequential Pattern Processing . . 120
4.4.1 Pattern Processing Needs 120
4.4.2 Algorithmic Structure 121
4.4.3 Computational Mapping 122
4.4.4 System Implications . 123

4.4.4.1 Memory Requirements 123
4.4.4.2 Computation Needs 124
4.4.4.3 Data Movement 124

4.5 Attention Mechanisms: Dynamic Pattern Processing 124
4.5.1 Pattern Processing Needs 125
4.5.2 Basic Attention Mechanism 125

4.5.2.1 Algorithmic Structure 125
4.5.2.2 Computational Mapping 126
4.5.2.3 System Implications 126

4.5.3 Transformers and Self-Attention 129
4.5.3.1 Algorithmic Structure 129
4.5.3.2 Computational Mapping 130
4.5.3.3 System Implications 130

4.6 Architectural Building Blocks 132
4.6.1 From Perceptron to Multi-Layer Networks 133
4.6.2 From Dense to Spatial Processing 134
4.6.3 The Evolution of Sequence Processing 134
4.6.4 Modern Architectures: Synthesis and Innovation 135

4.7 System-Level Building Blocks 136
4.7.1 Core Computational Primitives 136
4.7.2 Memory Access Primitives 138
4.7.3 Data Movement Primitives 140
4.7.4 System Design Impact 142

4.8 Conclusion . 143
4.9 Resources . 144

Chapter 5 AI Workflow 145
Purpose . 145
5.1 Overview . 146

5.1.1 Definition . 147
5.1.2 Traditional vs. AI Lifecycles 148

5.2 Lifecycle Stages . 149
5.3 Problem Definition . 151

5.3.1 Requirements and System Impact 152
5.3.2 Definition Workflow . 152
5.3.3 Scale and Distribution 152
5.3.4 Systems Thinking . 153
5.3.5 Lifecycle Implications 153

5.4 Data Collection . 154
5.4.1 Data Requirements and Impact 154
5.4.2 Data Infrastructure . 155

Table of contents vii

5.4.3 Scale and Distribution 155
5.4.4 Data Validation . 155
5.4.5 Systems Thinking . 156
5.4.6 Lifecycle Implications 157

5.5 Model Development . 157
5.5.1 Model Requirements and Impact 158
5.5.2 Development Workflow 158
5.5.3 Scale and Distribution 159
5.5.4 Systems Thinking . 159
5.5.5 Lifecycle Implications 160

5.6 Deployment . 160
5.6.1 Deployment Requirements and Impact 160
5.6.2 Deployment Workflow 161
5.6.3 Scale and Distribution 161
5.6.4 Robustness and Reliability 162
5.6.5 Systems Thinking . 162
5.6.6 Lifecycle Implications 163

5.7 Maintenance . 164
5.7.1 Monitoring Requirements and Impact 164
5.7.2 Maintenance Workflow 165
5.7.3 Scale and Distribution 165
5.7.4 Proactive Maintenance 165
5.7.5 Systems Thinking . 166
5.7.6 Lifecycle Implications 166

5.8 AI Lifecycle Roles . 167
5.8.1 Collaboration in AI . 167
5.8.2 Role Interplay . 168

5.9 Conclusion . 168
5.10 Resources . 169

Chapter 6 Data Engineering 171
Purpose . 171
6.1 Overview . 172
6.2 Problem Definition . 174

6.2.1 Keyword Spotting Example 175
6.3 Pipeline Basics . 178
6.4 Data Sources . 178

6.4.1 Existing Datasets . 178
6.4.2 Web Scraping . 180
6.4.3 Crowdsourcing . 181
6.4.4 Anonymization Techniques 184
6.4.5 Synthetic Data Creation 185
6.4.6 Continuing the KWS Example 187

6.5 Data Ingestion . 188
6.5.1 Ingestion Patterns . 188
6.5.2 ETL and ELT Comparison 189
6.5.3 Data Source Integration 190
6.5.4 Validation Techniques 190

Table of contents viii

6.5.5 Error Management . 190
6.5.6 Continuing the KWS Example 191

6.6 Data Processing . 192
6.6.1 Cleaning Techniques . 193
6.6.2 Data Quality Assessment 193
6.6.3 Transformation Techniques 193
6.6.4 Feature Engineering . 194
6.6.5 Processing Pipeline Design 194
6.6.6 Scalability Considerations 194
6.6.7 Continuing the KWS Example 195

6.7 Data Labeling . 197
6.7.1 Types of Labels . 198
6.7.2 Annotation Techniques 199
6.7.3 Label Quality Assessment 200
6.7.4 AI in Annotation . 202
6.7.5 Labeling Challenges . 203
6.7.6 Continuing the KWS Example 204

6.8 Data Storage . 206
6.8.1 Storage System Types 206
6.8.2 Storage Considerations 207
6.8.3 Performance Factors . 209
6.8.4 Storage in ML Lifecycle 210

6.8.4.1 Development Phase 210
6.8.4.2 Training Phase 210
6.8.4.3 Deployment Phase 211
6.8.4.4 Maintenance Phase 211

6.8.5 Feature Storage . 212
6.8.6 Caching Techniques . 213
6.8.7 Data Access Patterns . 214
6.8.8 Continuing the KWS Example 216

6.9 Data Governance . 216
6.10 Conclusion . 219
6.11 Resources . 219

Chapter 7 AI Frameworks 221
Purpose . 221
7.1 Overview . 222
7.2 Evolution History . 223

7.2.1 Evolution Timeline . 223
7.2.2 Early Numerical Libraries 223
7.2.3 First-Generation Frameworks 224
7.2.4 Emergence of Deep Learning Frameworks 225
7.2.5 Hardware Impact on Design 226

7.3 Fundamental Concepts . 227
7.3.1 Computational Graphs 229

7.3.1.1 Basic Concepts 229
7.3.1.2 Static Graphs 231
7.3.1.3 Dynamic Graphs 232

Table of contents ix

7.3.1.4 System Consequences 233
7.3.2 Automatic Differentiation 234

7.3.2.1 Computational Methods 235
7.3.2.2 Integration with Frameworks 243
7.3.2.3 Memory Consequences 243
7.3.2.4 System Considerations 245
7.3.2.5 Summary . 247

7.3.3 Data Structures . 248
7.3.3.1 Tensors . 249
7.3.3.2 Specialized Structures 252

7.3.4 Programming Models 254
7.3.4.1 Symbolic Programming 254
7.3.4.2 Imperative Programming 255
7.3.4.3 System Implementation Considerations 256

7.3.5 Execution Models . 257
7.3.5.1 Eager Execution 257
7.3.5.2 Graph Execution 258
7.3.5.3 Just-In-Time Compilation 259
7.3.5.4 Distributed Execution 260

7.3.6 Core Operations . 263
7.3.6.1 Hardware Abstraction Operations 263
7.3.6.2 Basic Numerical Operations 264
7.3.6.3 System-Level Operations 265

7.4 Framework Components . 266
7.4.1 APIs and Abstractions 266
7.4.2 Core Libraries . 268
7.4.3 Extensions and Plugins 269
7.4.4 Development Tools . 270

7.5 System Integration . 270
7.5.1 Hardware Integration 270
7.5.2 Software Stack . 271
7.5.3 Deployment Considerations 271
7.5.4 Workflow Orchestration 272

7.6 Major Frameworks . 272
7.6.1 TensorFlow Ecosystem 273
7.6.2 PyTorch . 274
7.6.3 JAX . 275
7.6.4 Framework Comparison 276

7.7 Framework Specialization . 276
7.7.1 Cloud-Based Frameworks 277
7.7.2 Edge-Based Frameworks 279
7.7.3 Mobile-Based Frameworks 280
7.7.4 TinyML Frameworks . 281

7.8 Framework Selection . 282
7.8.1 Model Requirements . 283
7.8.2 Software Dependencies 283
7.8.3 Hardware Constraints 284
7.8.4 Additional Selection Factors 284

Table of contents x

7.8.4.1 Performance Optimization 285
7.8.4.2 Deployment Scalability 285

7.9 Conclusion . 285
7.10 Resources . 286

Chapter 8 AI Training 287
Purpose . 287
8.1 Overview . 288
8.2 Training Systems . 289

8.2.1 System Evolution . 289
8.2.2 System Role . 291
8.2.3 Systems Thinking . 292

8.3 Mathematical Foundations . 293
8.3.1 Neural Network Computation 293

8.3.1.1 Core Operations 293
8.3.1.2 Matrix Operations 294
8.3.1.3 Activation Functions 295

8.3.2 Optimization Algorithms 301
8.3.2.1 Classical Methods 301
8.3.2.2 Advanced Optimization Algorithms 303
8.3.2.3 System Implications 304

8.3.3 Backpropagation Mechanics 306
8.3.3.1 Basic Mechanics 306
8.3.3.2 Backpropagation Mechanics 307
8.3.3.3 Memory Requirements 307
8.3.3.4 Memory-Computation Trade-offs 308

8.3.4 System Implications . 309
8.4 Pipeline Architecture . 309

8.4.1 Architectural Overview 309
8.4.1.1 Data Pipeline 310
8.4.1.2 Training Loop 310
8.4.1.3 Evaluation Pipeline 311
8.4.1.4 Component Integration 311

8.4.2 Data Pipeline . 311
8.4.2.1 Core Components 312
8.4.2.2 Preprocessing 313
8.4.2.3 System Implications 313
8.4.2.4 Data Flows . 314
8.4.2.5 Practical Architectures 315

8.4.3 Forward Pass . 315
8.4.3.1 Compute Operations 316
8.4.3.2 Memory Management 317

8.4.4 Backward Pass . 318
8.4.4.1 Compute Operations 318
8.4.4.2 Memory Operations 318
8.4.4.3 Real-World Considerations 319

8.4.5 Parameter Updates and Optimizers 319
8.4.5.1 Memory Requirements 320

Table of contents xi

8.4.5.2 Computational Load 320
8.4.5.3 Batch Size and Parameter Updates 321

8.5 Pipeline Optimizations . 322
8.5.1 Prefetching and Overlapping 322

8.5.1.1 Mechanics . 323
8.5.1.2 Benefits . 324
8.5.1.3 Use Cases . 325
8.5.1.4 Challenges and Trade-offs 326

8.5.2 Mixed-Precision Training 327
8.5.2.1 FP16 Computation 328
8.5.2.2 FP32 Accumulation 328
8.5.2.3 Loss Scaling . 329
8.5.2.4 Benefits . 329
8.5.2.5 Use Cases . 330
8.5.2.6 Challenges and Trade-offs 331

8.5.3 Gradient Accumulation and Checkpointing 332
8.5.3.1 Mechanics . 332
8.5.3.2 Benefits . 334
8.5.3.3 Use Cases . 335
8.5.3.4 Challenges and Trade-offs 336

8.5.4 Comparison . 337
8.6 Distributed Systems . 338

8.6.1 Data Parallelism . 339
8.6.1.1 Mechanics . 340
8.6.1.2 Benefits . 341
8.6.1.3 Challenges . 342

8.6.2 Model Parallelism . 343
8.6.2.1 Mechanics . 344
8.6.2.2 Benefits . 347
8.6.2.3 Challenges . 347

8.6.3 Hybrid Parallelism . 348
8.6.3.1 Mechanics . 349
8.6.3.2 Benefits . 351
8.6.3.3 Challenges . 352

8.6.4 Comparison . 353
8.7 Optimization Techniques . 354

8.7.1 Identifying Bottlenecks 354
8.7.2 System-Level Optimizations 355
8.7.3 Software-Level Optimizations 356
8.7.4 Scaling Techniques . 357

8.8 Specialized Hardware Training 357
8.8.1 GPUs . 357
8.8.2 TPUs . 359
8.8.3 FPGAs . 361
8.8.4 ASICs . 362

8.9 Conclusion . 364
8.10 Resources . 364

Table of contents xii

Chapter 9 EfÏcient AI 365
Purpose . 365
9.1 Overview . 366
9.2 AI Scaling Laws . 367

9.2.1 Fundamental Principles 367
9.2.2 Empirical Scaling Laws 369
9.2.3 Scaling Regimes . 371
9.2.4 System Design . 373
9.2.5 Scaling vs. EfÏciency . 375
9.2.6 Scaling Breakdown . 376
9.2.7 Toward EfÏcient Scaling 377

9.3 The Pillars of AI EfÏciency . 378
9.3.1 Algorithmic EfÏciency 379

9.3.1.1 Early EfÏciency 380
9.3.1.2 Deep Learning Era 380
9.3.1.3 Modern EfÏciency 381
9.3.1.4 EfÏciency in Design 381

9.3.2 Compute EfÏciency . 383
9.3.2.1 General-Purpose Computing Era 383
9.3.2.2 Accelerated Computing Era 383
9.3.2.3 Sustainable Computing Era 384
9.3.2.4 Compute EfÏciency’s Role 385

9.3.3 Data EfÏciency . 386
9.3.3.1 Data Scarcity Era 386
9.3.3.2 Big Data Era 386
9.3.3.3 Modern Data EfÏciency Era 387
9.3.3.4 Data EfÏciency’s Role 388

9.4 System EfÏciency . 388
9.4.1 Defining System EfÏciency 388
9.4.2 EfÏciency Interdependencies 389

9.4.2.1 Algorithmic EfÏciency Aids Compute and Data 389
9.4.2.2 Compute EfÏciency Supports Model and Data 391
9.4.2.3 Data EfÏciency Strengthens Model and Compute391
9.4.2.4 EfÏciency Trade-offs 392
9.4.2.5 Progression and Takeaways 393

9.4.3 Scalability and Sustainability 394
9.4.3.1 EfÏciency-Scalability Relationship 394
9.4.3.2 Scalability-Sustainability Relationship 394
9.4.3.3 Sustainability-EfÏciency Relationship 395

9.5 EfÏciency Trade-offs and Challenges 395
9.5.1 Trade-offs Source . 395

9.5.1.1 EfÏciency and Compute Requirements 395
9.5.1.2 EfÏciency and Real-Time Needs 396
9.5.1.3 EfÏciency and Model Generalization 396
9.5.1.4 Summary . 397

9.5.2 Common Trade-offs . 397
9.5.2.1 Complexity vs. Resources 397
9.5.2.2 Energy vs. Performance 398

Table of contents xiii

9.5.2.3 Data Size vs. Generalization 398
9.5.2.4 Summary . 399

9.6 Managing Trade-offs . 399
9.6.1 Contextual Prioritization 400
9.6.2 Test-Time Compute . 400
9.6.3 Co-Design . 401
9.6.4 Automation . 402
9.6.5 Summary . 403

9.7 EfÏciency-First Mindset . 403
9.7.1 End-to-End Perspective 403
9.7.2 Scenarios . 404

9.7.2.1 Prototypes vs. Production 404
9.7.2.2 Cloud Apps vs. Constrained Systems 405
9.7.2.3 Frequent Retraining vs. Stability 405

9.7.3 Summary . 405
9.8 Broader Challenges . 406

9.8.1 Optimization Limits . 406
9.8.2 Moore’s Law Case Study 407

9.8.2.1 ML Optimization Parallels 408
9.8.3 Equity Concerns . 409

9.8.3.1 Uneven Access 409
9.8.3.2 Low-Resource Challenges 409
9.8.3.3 EfÏciency for Accessibility 410
9.8.3.4 Democratization Pathways 410

9.8.4 Balancing Innovation and EfÏciency 411
9.8.4.1 Stability vs. Experimentation 411
9.8.4.2 Resource-Intensive Innovation 411
9.8.4.3 EfÏciency-Creativity Constraint 412
9.8.4.4 Striking a Balance 412

9.9 Conclusion . 412
9.10 Resources . 413

Chapter 10 Model Optimizations 415
Purpose . 415
10.1 Overview . 416
10.2 Real-World Models . 418

10.2.1 Practical Models . 418
10.2.2 Accuracy-EfÏciency Balance 419
10.2.3 Optimization System Constraints 419

10.3 Model Optimization Dimensions 420
10.3.1 Model Representation 421
10.3.2 Numerical Precision . 421
10.3.3 Architectural EfÏciency 421
10.3.4 Tripartite Framework . 422

10.4 Model Representation Optimization 423
10.4.1 Pruning . 424

10.4.1.1 Distillation Mathematics 425
10.4.1.2 Target Structures 426

Table of contents xiv

10.4.1.3 Unstructured Pruning 426
10.4.1.4 Structured Pruning 428
10.4.1.5 Dynamic Pruning 429
10.4.1.6 Pruning Trade-offs 430
10.4.1.7 Pruning Strategies 431
10.4.1.8 Lottery Ticket Hypothesis 433
10.4.1.9 Pruning Practice 435

10.4.2 Knowledge Distillation 437
10.4.2.1 Distillation Theory 438
10.4.2.2 Distillation Mathematics 438
10.4.2.3 Distillation Intuition 439
10.4.2.4 EfÏciency Gains 440
10.4.2.5 Trade-offs . 442

10.4.3 Structured Approximations 443
10.4.3.1 Low-Rank Factorization 443
10.4.3.2 Tensor Decomposition 446

10.4.4 Neural Architecture Search 451
10.4.4.1 Model EfÏciency Encoding 451
10.4.4.2 Search Space Definition 452
10.4.4.3 Search Space Exploration 452
10.4.4.4 Candidate Architecture Evaluation 453
10.4.4.5 NAS-Discovered Architecture Examples 454

10.5 Numerical Precision Optimization 455
10.5.1 EfÏciency Numerical Precision 455

10.5.1.1 Numerical Precision Energy Costs 455
10.5.1.2 Quantization Performance Gains 456
10.5.1.3 Numerical Precision Reduction Trade-offs . . . 457

10.5.2 Numeric Encoding and Storage 458
10.5.3 Numerical Precision Format Comparison 459
10.5.4 Precision Reduction Trade-offs 460
10.5.5 Precision Reduction Strategies 461

10.5.5.1 Post-Training Quantization 462
10.5.5.2 Quantization-Aware Training 471
10.5.5.3 PTQ and QAT Strategies 473
10.5.5.4 PTQ vs. QAT 474

10.5.6 Extreme Precision Reduction 475
10.5.6.1 Binarization . 475
10.5.6.2 Ternarization 475
10.5.6.3 Computation Challenges and Limitations . . . 476

10.5.7 Quantization vs. Model Representation 476
10.6 Architectural EfÏciency Optimization 478

10.6.1 Hardware-Aware Design 478
10.6.1.1 EfÏcient Design Principles 478
10.6.1.2 Scaling Optimization 479
10.6.1.3 Computation Reduction 481
10.6.1.4 Memory Optimization 482

10.6.2 Dynamic Computation and Adaptation 484
10.6.2.1 Dynamic Schemes 484

Table of contents xv

10.6.2.2 Computation Challenges and Limitations . . . 488
10.6.3 Sparsity Exploitation . 491

10.6.3.1 Sparsity Types 491
10.6.3.2 Sparsity Exploitation Techniques 492
10.6.3.3 Sparsity Hardware Support 493
10.6.3.4 Common Structured Sparsity Patterns 494
10.6.3.5 Sparsity Challenges and Limitations 497
10.6.3.6 Sparsity and Other Optimizations 498

10.7 AutoML and Model Optimization 500
10.7.1 AutoML Optimizations 501
10.7.2 Optimization Strategies 503
10.7.3 AutoML Challenges and Considerations 504

10.8 Software and Framework Support 505
10.8.1 Optimization APIs . 506
10.8.2 Hardware Optimization Libraries 508
10.8.3 Optimization Visualization 509

10.8.3.1 Quantization Visualization 509
10.8.3.2 Sparsity Visualization 510

10.9 Conclusion . 511
10.10 Resources . 512

Chapter 11 AI Acceleration 513
Purpose . 513
11.1 Overview . 514
11.2 Hardware Evolution . 515

11.2.1 Specialized Computing 516
11.2.2 Specialized Computing Expansion 517
11.2.3 Domain-Specific Architectures 518
11.2.4 ML in Computational Domains 520
11.2.5 Application-Specific Accelerators 520

11.3 AI Compute Primitives . 522
11.3.1 Vector Operations . 523

11.3.1.1 Framework-Hardware Execution 523
11.3.1.2 Sequential Scalar Execution 524
11.3.1.3 Parallel Vector Execution 525
11.3.1.4 Vector Processing History 526

11.3.2 Matrix Operations . 526
11.3.2.1 Matrix Operations in NNs 526
11.3.2.2 Matrix Computation Types in NNs 527
11.3.2.3 Matrix Operations Hardware Acceleration . . 528
11.3.2.4 Historical Foundations of Matrix Computation 528

11.3.3 Special Function Units 529
11.3.3.1 Non-Linear Functions 529
11.3.3.2 Non-Linear Functions Implementation 529
11.3.3.3 Hardware Acceleration 531
11.3.3.4 SFUs History 532

11.3.4 Compute Units and Execution Models 532
11.3.4.1 Primitive-Execution Unit Mapping 532

Table of contents xvi

11.3.4.2 SIMD to SIMT Transition 533
11.3.4.3 Tensor Cores 534
11.3.4.4 Processing Elements 535
11.3.4.5 Systolic Arrays 536
11.3.4.6 Numerics in AI Acceleration 537
11.3.4.7 Architectural Integration 539

11.4 AI Memory Systems . 540
11.4.1 AI Memory Wall . 540

11.4.1.1 Compute-Memory Imbalance 541
11.4.1.2 Memory-Intensive ML Workloads 541
11.4.1.3 Irregular Memory Access 543

11.4.2 Memory Hierarchy . 545
11.4.2.1 On-Chip Memory 546
11.4.2.2 Off-Chip Memory 546

11.4.3 Host-Accelerator Communication 547
11.4.3.1 Data Transfer Patterns 548
11.4.3.2 Data Transfer Mechanisms 548
11.4.3.3 Data Transfer Overheads 550

11.4.4 Model Memory Pressure 550
11.4.4.1 Multilayer Perceptrons 551
11.4.4.2 Convolutional Neural Networks 551
11.4.4.3 Transformer Networks 552

11.4.5 ML Accelerators Implications 552
11.5 Neural Networks Mapping . 553

11.5.1 Computation Placement 554
11.5.1.1 Computation Placement Definition 554
11.5.1.2 Computation Placement Importance 555
11.5.1.3 Effective Computation Placement 556

11.5.2 Memory Allocation . 557
11.5.2.1 Memory Allocation Definition 557
11.5.2.2 Memory Allocation Importance 558
11.5.2.3 Effective Memory Allocation 558

11.5.3 Combinatorial Complexity 559
11.5.3.1 Configuration Space Mapping 560
11.5.3.2 Computation and Execution Ordering 562
11.5.3.3 Processing Elements Parallelization 562
11.5.3.4 Memory Placement and Data Movement . . . 563
11.5.3.5 Mapping Search Space 563

11.6 Optimization Strategies . 563
11.6.1 Mapping Strategies Building Blocks 564

11.6.1.1 Data Movement Patterns 564
11.6.1.2 Memory-Aware Tensor Layouts 569
11.6.1.3 Kernel Fusion 573
11.6.1.4 Tiling for Memory EfÏciency 576

11.6.2 Mapping Strategies Application 582
11.6.2.1 Convolutional Neural Networks 583
11.6.2.2 Transformer Architectures 584
11.6.2.3 Multi-Layer Perceptrons 585

Table of contents xvii

11.6.3 Hybrid Mapping Strategies 585
11.6.3.1 Layer-Specific Mapping 586

11.6.4 Hybrid Strategies Hardware Implementations 587
11.7 Compiler Support . 588

11.7.1 ML vs Traditional Compilers 588
11.7.2 ML Compilation Pipeline 589
11.7.3 Graph Optimization . 589

11.7.3.1 Computation Graph Optimization 590
11.7.3.2 AI Compilers Implementation 591
11.7.3.3 Graph Optimization Importance 591

11.7.4 Kernel Selection . 591
11.7.4.1 Kernel Selection in AI Compilers 592
11.7.4.2 Kernel Selection Importance 593

11.7.5 Memory Planning . 594
11.7.5.1 Memory Planning in AI Compilers 594
11.7.5.2 Memory Planning Importance 595

11.7.6 Computation Scheduling 595
11.7.6.1 Computation Scheduling in AI Compilers . . . 596
11.7.6.2 Computation Scheduling Importance 597
11.7.6.3 Code Generation 597

11.7.7 Compilation-Runtime Support 598
11.8 Runtime Support . 598

11.8.1 ML vs Traditional Runtimes 599
11.8.2 Dynamic Kernel Execution 600
11.8.3 Runtime Kernel Selection 601
11.8.4 Kernel Scheduling and Utilization 602

11.9 Multi-Chip AI Acceleration . 602
11.9.0.1 Chiplet-Based Architectures 603
11.9.0.2 Multi-GPU Systems 603
11.9.0.3 TPU Pods . 604
11.9.0.4 Wafer-Scale AI 605
11.9.0.5 AI Systems Scaling Trajectory 606

11.9.1 Computation and Memory Scaling Changes 607
11.9.1.1 Multi-chip Execution Mapping 607
11.9.1.2 Distributed Access Memory Allocation 607
11.9.1.3 Data Movement Constraints 608
11.9.1.4 Compilers and Runtimes Adaptation 608

11.9.2 Execution Models Adaptation 610
11.9.2.1 Cross-Accelerator Scheduling 610
11.9.2.2 Cross-Accelerator Coordination 611
11.9.2.3 Cross-Accelerator Execution Management . . . 611
11.9.2.4 Computation Placement Adaptation 612

11.9.3 Navigating Multi-Chip AI Complexities 613
11.10 Conclusion . 613
11.11 Resources . 615

Chapter 12 Benchmarking AI 617
Purpose . 617

Table of contents xviii

12.1 Overview . 618
12.2 Historical Context . 619

12.2.1 Performance Benchmarks 619
12.2.2 Energy Benchmarks . 620
12.2.3 Domain-Specific Benchmarks 621

12.3 AI Benchmarks . 622
12.3.1 Algorithmic Benchmarks 623
12.3.2 System Benchmarks . 623
12.3.3 Data Benchmarks . 625
12.3.4 Community Consensus 626

12.4 Benchmark Components . 627
12.4.1 Problem Definition . 627
12.4.2 Standardized Datasets 628
12.4.3 Model Selection . 629
12.4.4 Evaluation Metrics . 630
12.4.5 Benchmark Harness . 631
12.4.6 System Specifications 632
12.4.7 Run Rules . 633
12.4.8 Result Interpretation . 633
12.4.9 Example Benchmark . 634

12.5 Benchmarking Granularity . 635
12.5.1 Micro Benchmarks . 636
12.5.2 Macro Benchmarks . 636
12.5.3 End-to-End Benchmarks 637
12.5.4 Trade-offs . 638

12.6 Training Benchmarks . 638
12.6.1 Motivation . 640

12.6.1.1 Importance of Training Benchmarks 640
12.6.1.2 Hardware & Software Optimization 641
12.6.1.3 Scalability & EfÏciency 641
12.6.1.4 Cost & Energy Factors 642
12.6.1.5 Fair ML Systems Comparison 642

12.6.2 Metrics . 643
12.6.2.1 Time and Throughput 643
12.6.2.2 Scalability & Parallelism 644
12.6.2.3 Resource Utilization 644
12.6.2.4 Energy EfÏciency & Cost 645
12.6.2.5 Fault Tolerance & Robustness 645
12.6.2.6 Reproducibility & Standardization 646

12.6.3 Training Performance Evaluation 646
12.6.3.1 Training Benchmark Pitfalls 648
12.6.3.2 Final Thoughts 649

12.7 Inference Benchmarks . 649
12.7.1 Motivation . 651

12.7.1.1 Importance of Inference Benchmarks 652
12.7.1.2 Hardware & Software Optimization 652
12.7.1.3 Scalability & EfÏciency 653
12.7.1.4 Cost & Energy Factors 653

Table of contents xix

12.7.1.5 Fair ML Systems Comparison 653
12.7.2 Metrics . 654

12.7.2.1 Latency & Tail Latency 654
12.7.2.2 Throughput & Batch Processing EfÏciency . . 654
12.7.2.3 Precision & Accuracy Trade-offs 655
12.7.2.4 Memory Footprint & Model Size 655
12.7.2.5 Cold-Start & Model Load Time 655
12.7.2.6 Scalability & Dynamic Workload Handling . . 656
12.7.2.7 Power Consumption & Energy EfÏciency . . . 656

12.7.3 Inference Performance Evaluation 657
12.7.3.1 Inference Systems Considerations 657
12.7.3.2 Inference Benchmark Pitfalls 658
12.7.3.3 Final Thoughts 659

12.7.4 MLPerf Inference Benchmarks 659
12.7.4.1 MLPerf Inference 659
12.7.4.2 MLPerf Mobile 660
12.7.4.3 MLPerf Client 660
12.7.4.4 MLPerf Tiny 660
12.7.4.5 Continued Expansion 660

12.8 Energy EfÏciency Measurement 661
12.8.1 Power Measurement Boundaries 661
12.8.2 Performance vs Energy EfÏciency 663
12.8.3 Standardized Power Measurement 663
12.8.4 MLPerf Power Case Study 664

12.9 Challenges & Limitations . 665
12.9.1 Environmental Conditions 666
12.9.2 Hardware Lottery . 667
12.9.3 Benchmark Engineering 668
12.9.4 Bias & Over-Optimization 668
12.9.5 Benchmark Evolution 669
12.9.6 MLPerf’s Role . 670

12.10 Beyond System Benchmarking 671
12.10.1 Model Benchmarking 671
12.10.2 Data Benchmarking . 672
12.10.3 Benchmarking Trifecta 674

12.11 Conclusion . 674
12.12 Resources . 676

Chapter 13 ML Operations 677
Purpose . 677
13.1 Overview . 678
13.2 Historical Context . 679

13.2.1 DevOps . 679
13.2.2 MLOps . 680

13.3 MLOps Key Components . 681
13.3.1 Data Infrastructure and Preparation 682

13.3.1.1 Data Management 682
13.3.1.2 Feature Stores 683

Table of contents xx

13.3.1.3 Versioning and Lineage 684
13.3.2 Continuous Pipelines and Automation 684

13.3.2.1 CI/CD Pipelines 685
13.3.2.2 Training Pipelines 686
13.3.2.3 Model Validation 687

13.3.3 Model Deployment and Serving 688
13.3.3.1 Model Deployment 689
13.3.3.2 Inference Serving 689

13.3.4 Infrastructure and Observability 691
13.3.4.1 Infrastructure Management 692
13.3.4.2 Monitoring Systems 693

13.3.5 Governance and Collaboration 694
13.3.5.1 Model Governance 694
13.3.5.2 Cross-Functional Collaboration 695

13.4 Hidden Technical Debt . 696
13.4.1 Boundary Erosion . 697
13.4.2 Correction Cascades . 697
13.4.3 Undeclared Consumers 698
13.4.4 Data Dependency Debt 699
13.4.5 Feedback Loops . 700
13.4.6 Pipeline Debt . 701
13.4.7 Configuration Debt . 702
13.4.8 Early-Stage Debt . 703
13.4.9 Real-World Examples 704

13.4.9.1 YouTube’s Recommendation System and Feed-
back Loops . 704

13.4.9.2 Zillow’s “Zestimate” and Correction Cascades 704
13.4.9.3 Tesla Autopilot and Undeclared Consumers . . 704
13.4.9.4 Facebook’s News Feed and Configuration Debt 705

13.4.10 Managing Hidden Technical Debt 705
13.4.11 Summary . 706

13.5 Roles and Responsibilities . 707
13.5.1 Roles . 707

13.5.1.1 Data Engineers 708
13.5.1.2 Data Scientists 709
13.5.1.3 ML Engineers 711
13.5.1.4 DevOps Engineers 713
13.5.1.5 Project Managers 714
13.5.1.6 Responsible AI Lead 716
13.5.1.7 Security and Privacy Engineer 718

13.5.2 Intersections and Handoffs 719
13.5.3 Evolving Roles and Specializations 721

13.6 Operational System Design . 722
13.6.1 Operational Maturity 723
13.6.2 Maturity Levels . 723
13.6.3 System Design Implications 724
13.6.4 Patterns and Anti-Patterns 725
13.6.5 Contextualizing MLOps 726

Table of contents xxi

13.6.6 Looking Ahead . 727
13.7 Case Studies . 728

13.7.1 Oura Ring Case Study 728
13.7.1.1 Context and Motivation 728
13.7.1.2 Data Acquisition and Preprocessing 729

13.7.2 Model Development and Evaluation 729
13.7.3 Deployment and Iteration 730
13.7.4 Lessons from MLOps Practice 730
13.7.5 ClinAIOps Case Study 731

13.7.5.1 Feedback Loops 732
13.7.5.2 Hypertension Case Example 735
13.7.5.3 MLOps vs. ClinAIOps Comparison 737

13.8 Conclusion . 739
13.9 Resources . 739

Chapter 14 On-Device Learning 741
Purpose . 741
14.1 Overview . 742
14.2 Deployment Drivers . 743

14.2.1 On-Device Learning Benefits 743
14.2.2 Application Domains 745
14.2.3 Training Paradigms . 746

14.3 Design Constraints . 748
14.3.1 Model Constraints . 749
14.3.2 Data Constraints . 750
14.3.3 Compute Constraints . 751

14.4 Model Adaptation . 752
14.4.1 Weight Freezing . 752
14.4.2 Residual and Low-Rank Updates 754

14.4.2.1 Adapter-Based Adaptation 755
14.4.2.2 Low-Rank Techniques 755
14.4.2.3 Edge Personalization 756
14.4.2.4 Tradeoffs . 756

14.4.3 Sparse Updates . 757
14.4.3.1 Sparse Update Design 757
14.4.3.2 Layer Selection 757
14.4.3.3 Code Fragment: Selective Layer Updating (Py-

Torch) . 758
14.4.3.4 TinyTrain Personalization 758
14.4.3.5 Tradeoffs . 758
14.4.3.6 Adaptation Strategy Comparison 759

14.5 Data EfÏciency . 760
14.5.1 Few-Shot and Streaming 760
14.5.2 Experience Replay . 762
14.5.3 Data Compression . 763
14.5.4 Tradeoffs Summary . 765

14.6 Federated Learning . 766
14.6.1 Federated Learning Motivation 767

Table of contents xxii

14.6.2 Learning Protocols . 768
14.6.2.1 Local Training 768
14.6.2.2 Protocols Overview 769
14.6.2.3 Client Scheduling 769
14.6.2.4 EfÏcient Communication 771
14.6.2.5 Federated Personalization 772
14.6.2.6 Federated Privacy 773

14.7 Practical System Design . 774
14.8 Challenges . 775

14.8.0.1 Heterogeneity 775
14.8.0.2 Data Fragmentation 777
14.8.0.3 Monitoring and Validation 778
14.8.0.4 Resource Management 779
14.8.0.5 Deployment Risks 780
14.8.0.6 Challenges Summary 781

14.9 Conclusion . 782
14.10 Resources . 783

Chapter 15 Security & Privacy 785
Purpose . 785
15.1 Overview . 786
15.2 Definitions and Distinctions . 787

15.2.1 Security Defined . 787
15.2.2 Privacy Defined . 787
15.2.3 Security versus Privacy 788
15.2.4 Interactions and Trade-offs 788

15.3 Historical Incidents . 789
15.3.1 Stuxnet . 789
15.3.2 Jeep Cherokee Hack . 790
15.3.3 Mirai Botnet . 791

15.4 Secure Design Priorities . 792
15.4.1 Device-Level Security 792
15.4.2 System-Level Isolation 792
15.4.3 Large-Scale Network Exploitation 793
15.4.4 Toward Secure Design 794

15.5 Threats to ML Models . 794
15.5.1 Model Theft . 795

15.5.1.1 Exact Model Theft 796
15.5.1.2 Approximate Model Theft 797
15.5.1.3 Case Study: Tesla IP Theft 799

15.5.2 Data Poisoning . 800
15.5.3 Adversarial Attacks . 801
15.5.4 Case Study: TrafÏc Sign Detection Model Trickery . . . 804

15.6 Threats to ML Hardware . 805
15.6.1 Hardware Bugs . 806
15.6.2 Physical Attacks . 807
15.6.3 Fault Injection Attacks 809
15.6.4 Side-Channel Attacks 811

Table of contents xxiii

15.6.5 Leaky Interfaces . 814
15.6.6 Counterfeit Hardware 815
15.6.7 Supply Chain Risks . 816
15.6.8 Case Study: The Supermicro Hardware Security Con-

troversy . 817
15.7 Defensive Strategies . 818

15.7.1 Data Privacy Techniques 818
15.7.1.1 Differential Privacy 818
15.7.1.2 Federated Learning 819
15.7.1.3 Synthetic Data Generation 820
15.7.1.4 Comparative Properties 820

15.7.2 Secure Model Design . 821
15.7.3 Secure Model Deployment 822
15.7.4 System-level Monitoring 824

15.7.4.1 Input Validation 824
15.7.4.2 Output Monitoring 825
15.7.4.3 Integrity Checks 827
15.7.4.4 Response and Rollback 828

15.7.5 Hardware-based Security 829
15.7.5.1 Trusted Execution Environments 829
15.7.5.2 Secure Boot . 832
15.7.5.3 Hardware Security Modules 834
15.7.5.4 Physical Unclonable Functions 836
15.7.5.5 Mechanisms Comparison 838

15.7.6 Toward Trustworthy Systems 839
15.8 Offensive Capabilities . 840

15.8.1 Case Study: Deep Learning for SCA 842
15.9 Conclusion . 844
15.10 Resources . 844

Chapter 16 Responsible AI 847
Purpose . 847
16.1 Overview . 848
16.2 Core Principles . 849
16.3 Princples in Practice . 850

16.3.1 Transparency and Explainability 851
16.3.2 Fairness in Machine Learning 851

16.3.2.1 Demographic Parity 852
16.3.2.2 Equalized Odds 852
16.3.2.3 Equality of Opportunity 853

16.3.3 Privacy and Data Governance 854
16.3.4 Designing for Safety and Robustness 856
16.3.5 Accountability and Governance 857

16.4 Deployment Contexts . 858
16.4.1 System Explainability 859
16.4.2 Fairness Constraints . 860
16.4.3 Privacy Architectures 861
16.4.4 Safety and Robustness 862

Table of contents xxiv

16.4.5 Governance Structures 863
16.4.6 Design Tradeoffs . 865

16.5 Technical Foundations . 866
16.5.1 Bias Detection and Mitigation 867
16.5.2 Privacy Preservation . 869
16.5.3 Machine Unlearning . 871
16.5.4 Adversarial Robustness 873
16.5.5 Explainability and Interpretability 875
16.5.6 Model Performance Monitoring 878

16.6 Sociotechnical and Ethical Systems Considerations 880
16.6.1 System Feedback Loops 880
16.6.2 Human-AI Collaboration and Oversight 881
16.6.3 Normative Pluralism and Value Conflicts 883
16.6.4 Transparency and Contestability 884
16.6.5 Institutional Embedding of Responsibility 886

16.7 Implementation Challenges . 887
16.7.1 Organizational Structures and Incentives 887
16.7.2 Data Constraints and Quality Gaps 888
16.7.3 Balancing Competing Objectives 890
16.7.4 Scalability and Maintenance 892
16.7.5 Standardization and Evaluation Gaps 893

16.8 AI Safety and Value Alignment 895
16.8.1 Autonomous Systems and Trust 897
16.8.2 AIs Economic Impact . 898
16.8.3 AI Literacy and Communication 899

16.9 Conclusion . 900
16.10 Resources . 901

Chapter 17 Sustainable AI 903
Purpose . 903
17.1 Overview . 904
17.2 Ethical Responsibility . 905

17.2.1 Long-Term Viability . 905
17.2.2 Ethical Issues . 906
17.2.3 Case Study: DeepMind’s Energy EfÏciency 908

17.3 AI Carbon Footprint . 909
17.3.1 Emissions & Consumption 910

17.3.1.1 Energy Demands in Data Centers 910
17.3.1.2 AI vs. Other Industries 911

17.3.2 Updated Analysis . 912
17.3.3 Carbon Emission Scopes 912

17.3.3.1 Scope 1 . 913
17.3.3.2 Scope 2 . 913
17.3.3.3 Scope 3 . 914

17.3.4 Training vs. Inference Impact 914
17.3.4.1 Training Energy Demands 915
17.3.4.2 Inference Energy Costs 915
17.3.4.3 Edge AI Impact 916

Table of contents xxv

17.4 Beyond Carbon . 917
17.4.1 Water Usage . 917
17.4.2 Hazardous Chemicals 919
17.4.3 Resource Depletion . 920
17.4.4 Waste Generation . 922
17.4.5 Biodiversity Impact . 923

17.5 Semiconductor Life Cycle . 924
17.5.1 Design Phase . 925
17.5.2 Manufacturing Phase 926

17.5.2.1 Fabrication Materials 927
17.5.2.2 Manufacturing Energy Consumption 927
17.5.2.3 Hazardous Waste and Water Usage in Fabs . . 927
17.5.2.4 Sustainable Initiatives 928

17.5.3 Use Phase . 928
17.5.4 Disposal Phase . 930

17.6 Mitigating Environmental Impact 932
17.6.1 Sustainable Development 933

17.6.1.1 Energy-EfÏcient Design 933
17.6.1.2 Lifecycle-Aware Systems 934
17.6.1.3 Policy and Incentives 935

17.6.2 Infrastructure Optimization 936
17.6.2.1 Green Data Centers 937
17.6.2.2 Carbon-Aware Scheduling 938
17.6.2.3 AI-Driven Thermal Optimization 940

17.6.3 Addressing Full Environmental Footprint 941
17.6.3.1 Revisiting Life Cycle Impact 942
17.6.3.2 Mitigating Supply Chain Impact 943
17.6.3.3 Reducing Water and Resource Consumption . 944
17.6.3.4 Systemic Sustainability Approaches 945

17.6.4 Case Study: Google’s Framework 946
17.7 Embedded AI and E-Waste . 947

17.7.1 E-Waste Crisis . 948
17.7.2 Disposable Electronics 950

17.7.2.1 Non-Replaceable Batteries Cost 950
17.7.2.2 Recycling Challenges 950
17.7.2.3 Need for Sustainable Design 951

17.7.3 AI Hardware Obsolescence 952
17.7.3.1 Lock-In and Proprietary Components 952
17.7.3.2 Environmental Cost 953
17.7.3.3 Extending Hardware Lifespan 953

17.8 Policy and Regulation . 954
17.8.1 Measurement and Reporting 955
17.8.2 Restriction Mechanisms 956
17.8.3 Government Incentives 957
17.8.4 Self-Regulation . 958
17.8.5 Global Impact . 960

17.9 Public Engagement . 961
17.9.1 AI Awareness . 962

Table of contents xxvi

17.9.2 Messaging and Discourse 963
17.9.3 Transparency and Trust 963
17.9.4 Engagement and Awareness 965
17.9.5 Equitable AI Access . 966

17.10 Future Challenges . 967
17.10.1 Future Directions . 967
17.10.2 Challenges . 968
17.10.3 Towards Sustainable AI 969

17.11 Conclusion . 970
17.12 Resources . 971

Chapter 18 Robust AI 973
Purpose . 973
18.1 Overview . 974
18.2 Real-World Applications . 975

18.2.1 Cloud . 976
18.2.2 Edge . 977
18.2.3 Embedded . 978

18.3 Hardware Faults . 979
18.3.1 Transient Faults . 980

18.3.1.1 Characteristics 980
18.3.1.2 Causes . 980
18.3.1.3 Mechanisms 981
18.3.1.4 Impact on ML 981

18.3.2 Permanent Faults . 983
18.3.2.1 Characteristics 983
18.3.2.2 Causes . 984
18.3.2.3 Mechanisms 984
18.3.2.4 Impact on ML 985

18.3.3 Intermittent Faults . 986
18.3.3.1 Characteristics 987
18.3.3.2 Causes . 987
18.3.3.3 Mechanisms 988
18.3.3.4 Impact on ML 988

18.3.4 Detection and Mitigation 989
18.3.4.1 Detection Techniques 989

18.3.5 Summary . 995
18.4 Model Robustness . 995

18.4.1 Adversarial Attacks . 995
18.4.1.1 Mechanisms 996
18.4.1.2 Impact on ML 999

18.4.2 Data Poisoning .1001
18.4.2.1 Characteristics1001
18.4.2.2 Mechanisms1003
18.4.2.3 Impact on ML1005
18.4.2.4 Case Study: Art Protection via Poisoning . . .1006

18.4.3 Distribution Shifts .1007
18.4.3.1 Characteristics1007

Table of contents xxvii

18.4.3.2 Mechanisms1008
18.4.3.3 Impact on ML1010
18.4.3.4 Summary of Distribution Shifts and System

Implications1011
18.4.4 Detection and Mitigation1011

18.4.4.1 Adversarial Attacks1011
18.4.4.2 Data Poisoning1013
18.4.4.3 Distribution Shifts1016

18.5 Software Faults .1018
18.5.1 Characteristics .1018
18.5.2 Mechanisms .1019
18.5.3 Impact on ML .1020
18.5.4 Detection and Mitigation1021

18.6 Tools and Frameworks .1023
18.6.1 Fault and Error Models1024
18.6.2 Hardware-Based Fault Injection1025

18.6.2.1 Methods .1026
18.6.2.2 Limitations .1027

18.6.3 Software-Based Fault Injection1028
18.6.3.1 Advantages and Trade-offs1028
18.6.3.2 Limitations .1029
18.6.3.3 Tool Types .1030
18.6.3.4 Domain-Specific Examples1031

18.6.4 Bridging Hardware-Software Gap1032
18.6.4.1 Fidelity .1033
18.6.4.2 Capturing Hardware Behavior1034

18.7 Conclusion .1035
18.8 Resources .1036

Chapter 19 AI for Good 1037
Purpose .1037
19.1 Overview .1038
19.2 Global Challenges .1039
19.3 Key AI Applications .1040

19.3.1 Agriculture .1040
19.3.2 Healthcare .1041
19.3.3 Disaster Response .1042
19.3.4 Environmental Conservation1042
19.3.5 AI’s Holistic Impact .1043

19.4 Global Development Perspective1043
19.5 Engineering Challenges .1045

19.5.1 Resource Paradox .1045
19.5.2 Data Dilemma .1046
19.5.3 Scale Challenge .1046
19.5.4 Sustainability Challenge1047

19.6 Design Patterns .1048
19.6.1 Hierarchical Processing1048

19.6.1.1 Google’s Flood Forecasting1049

Table of contents xxviii

19.6.1.2 Structure .1050
19.6.1.3 Modern Adaptations1051
19.6.1.4 System Implications1052
19.6.1.5 Limitations .1054

19.6.2 Progressive Enhancement1055
19.6.2.1 PlantVillage Nuru1055
19.6.2.2 Structure .1056
19.6.2.3 Modern Adaptations1057
19.6.2.4 System Implications1058
19.6.2.5 Limitations .1059

19.6.3 Distributed Knowledge1060
19.6.3.1 Wildlife Insights1060
19.6.3.2 Structure .1061
19.6.3.3 Modern Adaptations1062
19.6.3.4 System Implications1063
19.6.3.5 Limitations .1064

19.6.4 Adaptive Resource .1065
19.6.4.1 Case Studies1066
19.6.4.2 Structure .1067
19.6.4.3 Modern Adaptations1067
19.6.4.4 System Implications1068
19.6.4.5 Limitations .1070

19.7 Selection Framework .1070
19.7.1 Selection Dimensions1071
19.7.2 Implementation Guidance1072
19.7.3 Comparison Analysis1073

19.8 Conclusion .1074
19.9 Resources .1075

Chapter 20 Conclusion 1077
20.1 Overview .1077
20.2 ML Dataset Importance .1078
20.3 AI Framework Navigation .1078
20.4 ML Training Basics .1079
20.5 AI System EfÏciency .1079
20.6 ML Architecture Optimization1080
20.7 AI Hardware Advancements .1080
20.8 On-Device Learning .1081
20.9 ML Operation Streamlining .1082
20.10 Security and Privacy .1082
20.11 Ethical Considerations .1082
20.12 Sustainability .1083
20.13 Robustness and Resiliency .1084
20.14 Future of ML Systems .1084
20.15 AI for Good .1085
20.16 Congratulations .1086

Table of contents xxix

LABS 1087

Overview 1089
Learning Objectives .1089
Target Audience .1089
Supported Devices .1090
Lab Structure .1090
Recommended Lab Sequence .1091
Troubleshooting and Support .1091
Credits .1091

Getting Started 1093
Hardware Requirements .1093
Software Requirements .1094
Network Connectivity .1095
Conclusion .1095

Nicla Vision 1097
Pre-requisites .1097
Setup .1097
Exercises .1098

Setup 1099
Overview .1099
Hardware .1100

Two Parallel Cores .1100
Memory .1100
Sensors .1101

Arduino IDE Installation .1101
Testing the Microphone .1102
Testing the IMU .1102
Testing the ToF (Time of Flight) Sensor1103
Testing the Camera .1104

Installing the OpenMV IDE .1105
Updating the Bootloader1106
Installing the Firmware1106
Testing the Camera .1109

Connecting the Nicla Vision to Edge Impulse Studio1110
Expanding the Nicla Vision Board (optional)1112
Conclusion .1116
Resources .1116

Image Classification 1117
Overview .1117
Computer Vision .1118
Image Classification Project Goal .1119
Data Collection .1119

Table of contents xxx

Collecting Dataset with OpenMV IDE1119
Training the model with Edge Impulse Studio1121
Dataset .1122
The Impulse Design .1125

Image Pre-Processing .1127
Model Design .1128

Model Training .1129
Model Testing .1130
Deploying the model .1132

Arduino Library .1132
OpenMV .1133

Changing the Code to add labels1136
Post-Processing with LEDs1138

Image Classification (non-ofÏcial) Benchmark1141
Conclusion .1142
Resources .1142

Object Detection 1143
Overview .1143

Object Detection versus Image Classification1144
An innovative solution for Object Detection: FOMO1146

The Object Detection Project Goal .1146
Data Collection .1147

Collecting Dataset with OpenMV IDE1148
Edge Impulse Studio .1149

Setup the project .1149
Uploading the unlabeled data1149
Labeling the Dataset .1151

The Impulse Design .1152
Preprocessing all dataset .1153

Model Design, Training, and Test .1154
How FOMO works? .1154
Test model with “Live Classification”1156

Deploying the Model .1157
Conclusion .1162
Resources .1162

Keyword Spotting (KWS) 1163
Overview .1163
How does a voice assistant work? .1164
The KWS Hands-On Project .1165

The Machine Learning workflow1165
Dataset .1166

Uploading the dataset to the Edge Impulse Studio1166
Capturing additional Audio Data1167

Using the NiclaV and the Edge Impulse Studio1168
Using a smartphone and the EI Studio1169

Creating Impulse (Pre-Process / Model definition)1170

Table of contents xxxi

Impulse Design .1170
Pre-Processing (MFCC) .1171
Going under the hood .1172

Model Design and Training .1173
Going under the hood .1174

Testing .1174
Live Classification .1175

Deploy and Inference .1175
Post-processing .1176
Conclusion .1179
Resources .1180

Motion Classification and Anomaly Detection 1181
Overview .1181
IMU Installation and testing .1182

Defining the Sampling frequency:1183
The Case Study: Simulated Container Transportation1185
Data Collection .1186

Connecting the device to Edge Impulse1186
Data Collection .1188

Impulse Design .1191
Data Pre-Processing Overview1192
EI Studio Spectral Features .1194
Generating features .1194

Models Training .1196
Testing .1197
Deploy .1197

Inference .1198
Post-processing .1200

Conclusion .1200
Case Applications .1200

Industrial and Manufacturing1200
Healthcare .1201
Consumer Electronics1201
Transportation and Logistics1201
Smart Cities and Infrastructure1201
Security and Surveillance1201
Agriculture .1201
Environmental Monitoring1201

Nicla 3D case .1202
Resources .1202

XIAO ESP32S3 1203
Pre-requisites .1203
Setup .1204
Exercises .1204

Table of contents xxxii

Setup 1205
Overview .1205
Installing the XIAO ESP32S3 Sense on Arduino IDE1207
Testing the board with BLINK .1208
Connecting Sense module (Expansion Board)1209
Microphone Test .1209
Testing the Camera .1212
Testing WiFi .1212
Conclusion .1218
Resources .1218

Image Classification 1219
Overview .1219
A TinyML Image Classification Project – Fruits versus Veggies1220
Training the model with Edge Impulse Studio1221

Data Acquisition .1222
Impulse Design .1223

Pre-processing (Feature Generation)1224
Model Design .1225

Training .1225
Deployment .1227

Testing the Model (Inference) .1232
Testing with a Bigger Model .1233
Running inference on the SenseCraft-Web-Toolkit1235
Conclusion .1239
Resources .1239

Object Detection 1241
Overview .1241

Object Detection versus Image Classification1241
An Innovative Solution for Object Detection: FOMO1243

The Object Detection Project Goal .1243
Data Collection .1245

Collecting Dataset with the XIAO ESP32S31245
Edge Impulse Studio .1247

Setup the project .1247
Uploading the unlabeled data1248
Labeling the Dataset .1249
Balancing the dataset and split Train/Test1250

The Impulse Design .1251
Preprocessing all dataset .1252

Model Design, Training, and Test .1253
How FOMO works? .1253
Test model with “Live Classification”1255

Deploying the Model (Arduino IDE)1256
Background .1258
Fruits .1258
Bugs .1258

Table of contents xxxiii

Deploying the Model (SenseCraft-Web-Toolkit)1259
Conclusion .1262
Resources .1262

Keyword Spotting (KWS) 1263
Overview .1263

How does a voice assistant work?1264
The KWS Project .1265
The Machine Learning workflow1266

Dataset .1266
Capturing (ofÒine) Audio Data with the XIAO ESP32S3 Sense .1267
Save recorded sound samples (dataset) as .wav audio files to a

microSD card .1269
Capturing (ofÒine) Audio Data Apps1276

Training model with Edge Impulse Studio1276
Uploading the Data .1276
Creating Impulse (Pre-Process / Model definition)1279
Pre-Processing (MFCC) .1280
Model Design and Training .1281

Testing .1282
Deploy and Inference .1284
Postprocessing .1287
Conclusion .1288
Resources .1288

Motion Classification and Anomaly Detection 1291
Overview .1291
Installing the IMU .1292
The TinyML Motion Classification Project1298
Connecting the device to Edge Impulse1298
Data Collection .1300
Data Pre-Processing .1302
Model Design .1303
Impulse Design .1304
Generating features .1305
Training .1306
Testing .1307
Deploy .1308
Inference .1308
Conclusion .1312
Resources .1313

Grove Vision AI V2 1315
Pre-requisites .1316
Setup and No-Code Applications .1316
Exercises .1316

Table of contents xxxiv

Setup and No-Code Applications 1317
Introduction .1317

Grove Vision AI Module (V2) Overview1318
Camera Installation .1320

The SenseCraft AI Studio .1321
The SenseCraft Web-Toolkit .1321

Exploring CV AI models .1323
Object Detection .1323
Pose/Keypoint Detection .1326
Image Classification .1328

Power Consumption .1329
Exploring Other Models on SenseCraft AI Studio1330

An Image Classification Project .1330
The Goal .1332
Data Collection .1332
Training .1334
Test .1334
Deployment .1335
Saving the Model .1336

Conclusion .1336
Resources .1337

Image Classification 1339
Introduction .1340

Project Goal .1340
Data Collection .1340
Collecting Data with the SenseCraft AI Studio1341

Image Collection .1342
Uploading the dataset to the Edge Impulse Studio1343
Impulse Design and Pre-Processing1344
Pre-processing (Feature generation)1345
Model Design, Training, and Test1345
Model Deployment .1346
Deploy the model on the SenseCraft AI Studio1347
Image Classification (non-ofÏcial) Benchmark1349
Postprocessing .1350

Getting the Video Stream1350
Getting the Inference Result1356
Postprocessing with LED1356

Optional: Post-processing on external devices1359
Conclusion .1363
Resources .1364

Object Detection 1365

Raspberry Pi 1367
Pre-requisites .1367

Table of contents xxxv

Setup .1368
Exercises .1368

Setup 1369
Overview .1370

Key Features .1370
Raspberry Pi Models (covered in this book)1370
Engineering Applications .1370

Hardware Overview .1371
Raspberry Pi Zero 2W .1371
Raspberry Pi 5 .1372

Installing the Operating System .1372
The Operating System (OS) .1372
Installation .1373
Initial Configuration .1375

Remote Access .1375
SSH Access .1375
To shut down the Raspi via terminal:1376
Transfer Files between the Raspi and a computer1377

Using Secure Copy Protocol (scp):1377
Transferring files using FTP1379

Increasing SWAP Memory .1379
Installing a Camera .1381

Installing a USB WebCam .1381
Video Streaming .1384

Installing a Camera Module on the CSI port1385
Running the Raspi Desktop remotely1388
Updating and Installing Software .1391
Model-Specific Considerations .1392

Raspberry Pi Zero (Raspi-Zero)1392
Raspberry Pi 4 or 5 (Raspi-4 or Raspi-5)1392

Image Classification 1393
Overview .1393

Applications in Real-World Scenarios1394
Advantages of Running Classification on Edge Devices like

Raspberry Pi .1394
Setting Up the Environment .1395

Updating the Raspberry Pi .1395
Installing Required Libraries .1395
Setting up a Virtual Environment (Optional but Recommended)1395
Installing TensorFlow Lite .1395
Installing Additional Python Libraries1396
Creating a working directory:1396
Setting up Jupyter Notebook (Optional)1397
Verifying the Setup .1398

Making inferences with Mobilenet V21399
Define a general Image Classification function1404

Table of contents xxxvi

Testing with a model trained from scratch1406
Installing Picamera2 .1407

Image Classification Project .1409
The Goal .1409
Data Collection .1410

Key Features: .1414
Main Components: .1415
Key Functions: .1415
Usage Flow: .1415
Technical Notes: .1416
Customization Possibilities:1416
Number of samples on Dataset:1417

Training the model with Edge Impulse Studio1417
Dataset .1417

The Impulse Design .1418
Image Pre-Processing .1420
Model Design .1420
Model Training .1421
Trading off: Accuracy versus speed1422
Model Testing .1423
Deploying the model .1423

Live Image Classification .1429
Key Components: .1435
Main Features: .1435
Code Structure: .1435
Key Concepts: .1436
Usage: .1436

Conclusion: .1436
Resources .1437

Object Detection 1439
Overview .1439

Object Detection Fundamentals1441
Image Classification vs. Object Detection1441
Key Components of Object Detection1441
Challenges in Object Detection1442
Approaches to Object Detection1442
Evaluation Metrics .1442

Pre-Trained Object Detection Models Overview1442
Setting Up the TFLite Environment1443
Creating a Working Directory:1443
Inference and Post-Processing1444
EfÏcientDet .1448

Object Detection Project .1449
The Goal .1449
Raw Data Collection .1449
Labeling Data .1451

Annotate .1452

Table of contents xxxvii

Data Pre-Processing .1453
Training an SSD MobileNet Model on Edge Impulse Studio1456

Uploading the annotated data1456
The Impulse Design .1457
Preprocessing all dataset .1458
Model Design, Training, and Test1459
Deploying the model .1460
Inference and Post-Processing1461

Training a FOMO Model at Edge Impulse Studio1469
How FOMO works? .1469
Impulse Design, new Training and Testing1471
Deploying the model .1473
Inference and Post-Processing1474

Exploring a YOLO Model using Ultralitics1479
Talking about the YOLO Model1479

Key Features: .1479
Installation .1481
Testing the YOLO .1481
Export Model to NCNN format1483
Exploring YOLO with Python1484
Training YOLOv8 on a Customized Dataset1487

Critical points on the Notebook:1487
Inference with the trained model, using the Raspi1491

Object Detection on a live stream .1492
Conclusion .1496
Resources .1497

Small Language Models (SLM) 1499
Overview .1499
Setup .1500

Raspberry Pi Active Cooler .1501
Generative AI (GenAI) .1502

Large Language Models (LLMs)1502
Closed vs Open Models: .1503
Small Language Models (SLMs)1504

Ollama .1505
Installing Ollama .1506
Meta Llama 3.2 1B/3B .1507
Google Gemma 2 2B .1510
Microsoft Phi3.5 3.8B .1511
Multimodal Models .1513
Inspecting local resources .1515

Ollama Python Library .1516
Function Calling .1522

But what exactly is “function calling”?1523
Let’s create a project. .1523

1. Importing Libraries .1524
2. Defining Input and Model .1524

Table of contents xxxviii

3. Defining the Response Data Structure1525
4. Setting Up the OpenAI Client1525
5. Generating the Response .1525
6. Calculating the Distance .1526
Adding images .1527

SLMs: Optimization Techniques .1533
RAG Implementation .1534

A simple RAG project .1534
Going Further .1540

Conclusion .1541
Resources .1542

Vision-Language Models (VLM) 1543
Introduction .1543

Why Florence-2 at the Edge? .1543
Florence-2 Model Architecture1544

Technical Overview .1545
Architecture .1545
Training Dataset (FLD-5B) .1546
Key Capabilities .1546

Zero-shot Performance1546
Fine-tuned Performance1546

Practical Applications .1547
Comparing Florence-2 with other VLMs1547

Setup and Installation .1547
Environment configuration .1548
Testing the installation .1551

Importing Required Libraries1553
Determining the Device and Data Type1553
Loading the Model and Processor1554

Defining the Prompt .1554
Downloading and Loading the Image1555
Processing Inputs .1555

Generating the Output .1555
Decoding the Generated Text1556
Post-processing the Generation1556
Printing the Output .1556
Result .1557

Florence-2 Tasks .1559
Object Detection (OD) .1559
Image Captioning .1559
Detailed Captioning .1560
Visual Grounding .1560
Segmentation .1560
Dense Region Captioning .1560
OCR with Region .1560
Phrase Grounding for Specific Expressions1560
Open Vocabulary Object Detection1561

Table of contents xxxix

Exploring computer vision and vision-language tasks1561
Caption .1562
DETAILED_CAPTION .1562
MORE_DETAILED_CAPTION1563
OD - Object Detection .1564
DENSE_REGION_CAPTION1566
CAPTION_TO_PHRASE_GROUNDING1566
Cascade Tasks .1567
OPEN_VOCABULARY_DETECTION1568
Referring expression segmentation1569
Region to Segmentation .1572
Region to Texts .1573
OCR .1574

Latency Summary .1577
Fine-Tunning .1578
Conclusion .1579

Key Advantages of Florence-21579
Trade-offs .1580
Best Use Cases .1580

Future Implications .1581
Resources .1581

Shared Labs 1583

KWS Feature Engineering 1585
Overview .1585
The KWS .1586

Applications of KWS .1586
Differences from General Speech Recognition1587

Overview to Audio Signals .1587
Why Not Raw Audio? .1588

Overview to MFCCs .1589
What are MFCCs? .1589
Why are MFCCs important? .1590
Computing MFCCs .1590

Hands-On using Python .1592
Conclusion .1592

MFCCs are particularly strong for1593
Spectrograms or MFEs are often more suitable for1593

Resources .1593

DSP Spectral Features 1595
Overview .1595
Extracting Features Review .1596
A TinyML Motion Classification project1597
Data Pre-Processing .1598

Edge Impulse - Spectral Analysis Block V.2 under the hood . .1599

Table of contents xl

Time Domain Statistical features .1603
Spectral features .1606
Time-frequency domain .1609

Wavelets .1609
Wavelet Analysis .1612
Feature Extraction .1613

Conclusion .1617

APPENDIX 1619

PhD Survival Guide 1621

Career Advice 1623
On Research Careers and Productivity1623
On Reading and Learning .1623
On Time Management and Productivity1623
On Oral Presentation Advice .1624
On Writing and Communicating Science1624
Video Resources .1624

REFERENCES 1625

References 1627

Preface

Welcome to Machine Learning Systems, your gateway to the fast-paced world
of machine learning (ML) systems. This book is an extension of the CS249r
course at Harvard University, taught by Prof. Vijay Janapa Reddi, and is the
result of a collaborative effort involving students, professionals, and the broader
community of AI practitioners.

We’ve created this open-source book to demystify the process of building
efÏcient and scalable ML systems. Our goal is to provide a comprehensive
guide that covers the principles, practices, and challenges of developing robust
ML pipelines for deployment. This isn’t a static textbook—it’s a living, evolving
resource designed to keep pace with advancements in the field.

“If you want to go fast, go alone. If you want to go far, go together.”
– African Proverb

As a living and breathing resource, this book is a continual work in progress,
reflecting the ever-evolving nature of machine learning systems. Advancements
in the ML landscape drive our commitment to keeping this resource updated
with the latest insights, techniques, and best practices. We warmly invite you
to join us on this journey by contributing your expertise, feedback, and ideas.

Global Outreach

Thank you to all our readers and visitors. Your engagement with the material
keeps us motivated.

Why We Wrote This Book

While there are plenty of resources that focus on the algorithmic side of machine
learning, resources on the systems side of things are few and far between. This
gap inspired us to create this book—a resource dedicated to the principles and
practices of building efÏcient and scalable ML systems.

Our vision for this book and its broader mission is deeply rooted in the
transformative potential of AI and the need to make AI education globally
accessible to all. To learn more about the inspiration behind this project and
the values driving its creation, we encourage you to read the Author’s Note.

i

https://sites.google.com/g.harvard.edu/cs249-tinyml-2023
contents/frontmatter/foreword.qmd

Want to Help Out? ii

Want to Help Out?
This is a collaborative project, and your input matters! If you’d like to contribute,
check out our contribution guidelines. Feedback, corrections, and new ideas
are welcome. Simply file a GitHub issue.

What’s Next?
If you’re ready to dive deeper into the book’s structure, learning objectives, and
practical use, visit the About the Book section for more details.

https://github.com/harvard-edge/cs249r_book/blob/dev/contribute.md
https://github.com/harvard-edge/cs249r_book/issues

FRONTMATTER

iii

Author’s Note

AI is bound to transform the world in profound ways, much like computers and
the Internet revolutionized every aspect of society in the 20th century. From
systems that generate creative content to those driving breakthroughs in drug
discovery, AI is ushering in a new era—one that promises to be even more
transformative in its scope and impact. But how do we make it accessible to
everyone?

With its transformative power comes an equally great responsibility for those
who access it or work with it. Just as we expect companies to wield their
influence ethically, those of us in academia bear a parallel responsibility: to
share our knowledge openly, so it benefits everyone—not just a select few. This
conviction inspired the creation of this book—an open-source resource aimed
at making AI education, particularly in AI engineering, and systems, inclusive,
and accessible to everyone from all walks of life.

My passion for creating, curating, and editing this content has been deeply
influenced by landmark textbooks that have profoundly shaped both my aca-
demic and personal journey. Whether I studied them cover to cover or drew
insights from key passages, these resources fundamentally shaped the way
I think. I reflect on the books that guided my path: works by Turing Award
winners such as David Patterson and John Hennessy—pioneers in computer
architecture and system design—and foundational research papers by luminar-
ies like Yann LeCun, Geoffrey Hinton, and Yoshua Bengio. In some small part,
my hope is that this book will inspire students to chart their own unique paths.

I am optimistic about what lies ahead for AI. It has the potential to solve global
challenges and unlock creativity in ways we have yet to imagine. To achieve this,
however, we must train the next generation of AI engineers and practitioners—
those who can transform novel AI algorithms into working systems that enable
real-world application. This book is a step toward curating the material needed
to build the next generation of AI engineers who will transform today’s visions
into tomorrow’s reality.

This book is a work in progress, but knowing that even one learner benefits
from its content motivates me to continually refine and expand it. To that end, if
there’s one thing I ask of readers, it’s this: please show your support by starring
the GitHub repository here. Your star � reflects your belief in this mission—not
just to me, but to the growing global community of learners, educators, and
practitioners. This small act is more than symbolic—it amplifies the importance
of making AI education accessible.

v

https://github.com/harvard-edge/cs249r_book

Author’s Note vi

I am a student of my own writing, and every chapter of this book has taught
me something new—thanks to the numerous people who have played, and
continue to play, an important role in shaping this work. Professors, students,
practitioners, and researchers contributed by offering suggestions, sharing ex-
pertise, identifying errors, and proposing improvements. Every interaction,
whether a detailed critique or a simple correction from a GitHub contributor,
has been a lesson in itself. These contributions have not only refined the material
but also deepened my understanding of how knowledge grows through col-
laboration. This book is, therefore, not solely my work; it is a shared endeavor,
reflecting the collective spirit of those dedicated to sharing their knowledge
and effort.

This book is dedicated to the loving memory of my father. His passion for
education, endless curiosity, generosity in sharing knowledge, and unwavering
commitment to quality challenge me daily to strive for excellence in all I do. In
his honor, I extend this dedication to teachers and mentors everywhere, whose
efforts and guidance transform lives every day. Your selfless contributions
remind me to persevere.

Last but certainly not least, this work would not be possible without the
unwavering support of my wonderful wife and children. Their love, patience,
and encouragement form the foundation that enables me to pursue my passion
and bring this work to life. For this, and so much more, I am deeply grateful.

— Prof. Vijay Janapa Reddi

About the Book

Overview

Purpose of the Book
Welcome to this collaborative textbook. It originated as part of the CS249r:
Tiny Machine Learning course that Prof. Vijay Janapa Reddi teaches at Harvard
University.

The goal of this book is to provide a resource for educators and learners
seeking to understand the principles and practices of machine learning systems.
This book is continually updated to incorporate the latest insights and effective
teaching strategies with the intent that it remains a valuable resource in this
fast-evolving field. So please check back often!

Context and Development
The book originated as a collaborative effort with contributions from students,
researchers, and practitioners. While maintaining its academic rigor and real-
world applicability, it continues to evolve through regular updates and careful
curation to reflect the latest developments in machine learning systems.

What to Expect
This textbook explores the foundational principles, practical workflows, and
critical challenges of building and deploying machine learning systems. Starting
with foundational concepts, it progresses through engineering principles,
examines operational considerations for deploying AI systems, and concludes
by reflecting on the societal and technological implications of machine learning.

vii

Learning Goals viii

Learning Goals

Key Learning Outcomes
This book is structured with Bloom’s Taxonomy in mind, which defines six
levels of learning, ranging from foundational knowledge to advanced creative
thinking:

Figure 0.1: Bloom’s Taxonomy (2021
edition).

1. Remembering: Recalling basic facts and concepts.
2. Understanding: Explaining ideas or processes.
3. Applying: Using knowledge in new situations.
4. Analyzing: Breaking down information into components.
5. Evaluating: Making judgments based on criteria and standards.
6. Creating: Producing original work or solutions.

Learning Objectives
This book supports readers in:

1. Understanding Fundamentals: Explain the foundational principles of
machine learning, including theoretical underpinnings and practical ap-
plications.

2. Analyzing System Components: Evaluate the critical components of AI
systems and their roles within various architectures.

3. Designing Workflows: Outline workflows for developing machine learn-
ing systems, from data collection to deployment.

4. Optimizing Models: Apply methods to enhance performance, such as
hyperparameter tuning and regularization.

5. Evaluating Ethical Implications: Analyze societal impacts and address
potential biases in AI systems.

https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

About the Book ix

6. Exploring Applications: Investigate real-world use cases across diverse
domains.

7. Considering Deployment Challenges: Address security, scalability, and
maintainability in real-world systems.

8. Envisioning Future Trends: Reflect on emerging challenges and tech-
nologies in machine learning.

AI Learning Companion
Throughout this resource, you’ll find SocratiQ—an AI learning assistant de-
signed to enhance your learning experience. Inspired by the Socratic method
of teaching, SocratiQ combines interactive quizzes, personalized assistance,
and real-time feedback to help you reinforce your understanding and create
new connections. As part of our experiment with Generative AI technologies,
SocratiQ encourages critical thinking and active engagement with the material.

SocratiQ is still a work in progress, and we welcome your feedback to make
it better. For more details about how SocratiQ works and how to get the most
out of it, visit the AI Learning Companion page.

How to Use This Book
Book Structure
The book is organized into four main parts, each building on the previous one:

1. The Essentials (Chapters 1-4) Core principles, components, and architec-
tures that underpin machine learning systems.

2. Engineering Principles (Chapters 5-13) Covers workflows, data engi-
neering, optimization strategies, and operational challenges in system
design.

3. AI Best Practice (Chapters 14-18) Focuses on key considerations for de-
ploying AI systems in real-world environments, including security, pri-
vacy, robustness, and sustainability.

4. Closing Perspectives (Chapter 19-20) Synthesizes key lessons and ex-
plores emerging trends shaping the future of ML systems.

Suggested Reading Paths
• Beginners: Start with The Essentials to build a strong conceptual base

before progressing to other parts.
• Practitioners: Focus on Engineering Principles and AI in Practice for hands-

on, real-world insights.
• Researchers: Dive into AI in Practice and Closing Perspectives to explore

advanced topics and societal implications.

Modular Design
The book is modular, allowing readers to explore chapters independently or
sequentially. Each chapter includes supplementary resources:

../socratiq/socratiq.qmd

Transparency and Collaboration x

• Slides summarizing key concepts.
• Videos providing in-depth explanations.
• Exercises reinforcing understanding.
• Labs offering practical, hands-on experience.

While several of these resources are still a work in progress, we believe it’s
better to share valuable insights and tools as they become available rather than
wait for everything to be perfect. After all, progress is far more important than
perfection, and your feedback will help us improve and refine this resource
over time.

Additionally, we try to reuse and build upon the incredible work created by
amazing experts in the field, rather than reinventing everything from scratch.
This philosophy reflects the fundamental essence of community-driven learning:
collaboration, sharing knowledge, and collectively advancing our understand-
ing.

Transparency and Collaboration
This book is a community-driven project, with content generated collaboratively
by numerous contributors over time. The content creation process may have
involved various editing tools, including generative AI technology. As the main
author, editor, and curator, Prof. Vijay Janapa Reddi maintains human oversight
to ensure the content is accurate and relevant.

However, no one is perfect, and inaccuracies may still exist. Your feedback
is highly valued, and we encourage you to provide corrections or suggestions.
This collaborative approach is crucial for maintaining high-quality information
and making it globally accessible.

Copyright and Licensing
This book is open-source and developed collaboratively through GitHub. Un-
less otherwise stated, this work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Contributors retain copyright over their individual contributions, dedicated
to the public domain or released under the same open license as the original
project. For more information on authorship and contributions, visit the GitHub
repository.

Join the Community
This textbook is more than just a resource—it’s an invitation to collaborate
and learn together. Engage in community discussions to share insights, tackle
challenges, and learn alongside fellow students, researchers, and practitioners.

Whether you’re a student starting your journey, a practitioner solving real-
world challenges, or a researcher exploring advanced concepts, your contri-
butions will enrich this learning community. Introduce yourself, share your
goals, and let’s collectively build a deeper understanding of machine learning
systems.

https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://github.com/harvard-edge/cs249r_book
https://github.com/harvard-edge/cs249r_book
https://github.com/harvard-edge/cs249r_book/discussions

Book Changelog

This Machine Learning Systems textbook is constantly evolving. This changelog
automatically records all updates and improvements, helping you stay informed
about what’s new and refined.

For the complete and most up-to-date changelog, please visit mlsysbook.ai.

xi

https://mlsysbook.ai

Acknowledgements

This book, inspired by the TinyML edX course and CS294r at Harvard Univer-
sity, is the result of years of hard work and collaboration with many students,
researchers and practitioners. We are deeply indebted to the folks whose
groundbreaking work laid its foundation.

As our understanding of machine learning systems deepened, we realized
that fundamental principles apply across scales, from tiny embedded systems to
large-scale deployments. This realization shaped the book’s expansion into an
exploration of machine learning systems with the aim of providing a foundation
applicable across the spectrum of implementations.

Funding Agencies and Companies
Academic Support
We are grateful for the academic support that has made it possible to hire
teaching assistants to help improve instructional material and quality:

Non-Profit and Institutional Support
We gratefully acknowledge the support of the following non-profit organiza-
tions and institutions that have contributed to educational outreach efforts,
provided scholarship funds to students in developing countries, and organized
workshops to teach using the material:

xiii

https://www.edx.org/certificates/professional-certificate/harvardx-tiny-machine-learning

Contributors xiv

Corporate Support
The following companies contributed hardware kits used for the labs in this
book and/or supported the development of hands-on educational materials:

Contributors
We express our sincere gratitude to the open-source community of learners,
educators, and contributors. Each contribution, whether a chapter section or a
single-word correction, has significantly enhanced the quality of this resource.
We also acknowledge those who have shared insights, identified issues, and
provided valuable feedback behind the scenes.

A comprehensive list of all GitHub contributors, automatically updated with
each new contribution, is available below. For those interested in contributing
further, please consult our GitHub page for more information.

Vijay Janapa Reddi
jasonjabbour
Ikechukwu Uchendu
Zeljko Hrcek
Kai Kleinbard
Naeem Khoshnevis
Marcelo Rovai
Sara Khosravi
Douwe den Blanken
shanzehbatool
Elias
Jared Ping
Jeffrey Ma
Itai Shapira
Maximilian Lam
Jayson Lin
Sophia Cho
Andrea

https://github.com/harvard-edge/cs249r_book

Acknowledgements xv

Alex Rodriguez
Korneel Van den Berghe
Zishen Wan
Colby Banbury
Mark Mazumder
Divya Amirtharaj
Abdulrahman Mahmoud
Srivatsan Krishnan
marin-llobet
Emeka Ezike
Aghyad Deeb
Haoran Qiu
Aditi Raju
ELSuitorHarvard
Emil Njor
Michael Schnebly
Jared Ni
oishib
Yu-Shun Hsiao
Jae-Won Chung
Henry Bae
Jennifer Zhou
Arya Tschand
Eura Nofshin
Pong Trairatvorakul
Matthew Stewart
Marco Zennaro
Andrew Bass
Shvetank Prakash
Fin Amin
Allen-Kuang
Gauri Jain
gnodipac886
The Random DIY
Bruno Scaglione
Fatima Shah
Sercan Aygün
Alex Oesterling
Baldassarre Cesarano
Abenezer
TheHiddenLayer
abigailswallow
yanjingl
happyappledog
Yang Zhou
Aritra Ghosh
Andy Cheng
Bilge Acun

Contributors xvi

Jessica Quaye
Jason Yik
Emmanuel Rassou
Shreya Johri
Sonia Murthy
Vijay Edupuganti
Costin-Andrei Oncescu
Annie Laurie Cook
Jothi Ramaswamy
Batur Arslan
Curren Iyer
Fatima Shah
Edward Jin
a-saraf
songhan
Zishen

SocratiQ AI

AI Learning Companion
Welcome to SocratiQ (pronounced “Socratic’ ’), an AI learning assistant seam-
lessly integrated throughout this resource. Inspired by the Socratic method of
teaching—emphasizing thoughtful questions and answers to stimulate critical
thinking—SocratiQ is part of our experiment with what we call as Generative
Learning. By combining interactive quizzes, personalized assistance, and real-
time feedback, SocratiQ is meant to reinforce your understanding and help you
create new connections. SocratiQ is still a work in progress, and we welcome your
feedback.

Learn more: Read our research paper on SocratiQ’s design and pedagogy
here.

Listen to this AI-generated podcast about SocratiQ here.
You can enable SocratiQ by clicking the button below:
SocratiQ: OFF

L� Direct URL Access

You can directly control SocratiQ by adding ?socratiq= parameters to
your URL:

• To activate: mlsysbook.ai/?socratiq=true
• To deactivate: mlsysbook.ai/?socratiq=false

This gives you with quick access to toggle SocratiQ’s functionality directly
from your browser’s address bar if you are on a page and do not want to
return here to toggle functionality.

SocratiQ’s goal is to adapt to your needs while generating targeted questions
and engaging in meaningful dialogue about the material. Unlike traditional
textbook study, SocratiQ offers an interactive, personalized learning experience
that can help you better understand and retain complex concepts. It is only
available as an online feature.

Quick Start Guide
1. Enable SocratiQ using the button below or URL parameters

xvii

https://arxiv.org/abs/2502.00341
https://mlsysbook.ai/contents/frontmatter/socratiq/socratiq.html
https://mlsysbook.ai/?socratiq=true
https://mlsysbook.ai/?socratiq=false

Button Overview xviii

2. Use keyboard shortcut (Cmd/Ctrl + /) to open SocratiQ anytime
3. Set your academic level in Settings
4. Start learning! Look for quiz buttons at the end of sections

Please note that this is an experimental feature. We are experimenting with
the idea of creating a dynamic and personalized learning experience by har-
nessing the power of generative AI. We hope that this approach will transform
how you interact with and absorb the complex concepts.

Ĕŉ Warning

About AI Responses: While SocratiQ uses advanced AI to generate
quizzes and provide assistance, like all AI systems, it may occasionally
provide imperfect or incomplete answers. However, we’ve designed and
tested it to ensure it’s effective for supporting your learning journey. If
you’re unsure about any response, refer to the textbook content or consult
your instructor.

Once you’ve enabled SocratiQ it will always be available when you visit this
site.

You can access SocratiQ at any time using a keyboard shortcut shown in
Figure 0.2, which brings up the interface shown in Figure 0.3.

Figure 0.2: Keyboard shortcut for
SocratiQ.

Figure 0.3: The main SocratiQ inter-
face, showing the key components
of your AI learning assistant.

Button Overview
The top nav bar provides quick access to the following features:

SocratiQ AI xix

1. Adjust your settings at any time.
2. Track your progress by viewing the dashboard.
3. Start new or save your conversations with SocratiQ.

Figure 0.4: View of the top nav
menu.

Personalize Your Learning
Before diving into your studies, take a moment to configure SocratiQ for your
academic level. This initial setup ensures that all interactions, from quiz ques-
tions to explanations, are tailored to your background knowledge. Figure 0.5
shows where you can adjust these preferences.

You can augment any AI SocratiQ response using the dropdown menu at
the top of each message.

Learning with SocratiQ
Quizzes
As you progress through each section of the textbook, you have the option to ask
SocratiQ to automatically generate quizzes tailored to reinforce key concepts.

Learning with SocratiQ xx

Figure 0.5: The settings panel
where you can customize SocratiQ
to match your academic level.

These quizzes are conveniently inserted at the end of every major subsection
(e.g., 1.1, 1.2, 1.3, and so on), as illustrated in Figure 0.7.

Figure 0.6: Redo an AI message by
choosing a new experience level.

Each quiz typically consists of 3-5 multiple-choice questions and takes only
1-2 minutes to complete. These questions are designed to assess your un-
derstanding of the material covered in the preceding section, as shown in
Figure 0.8a.

SocratiQ AI xxi

Figure 0.7: Quizzes are generated at
the end of every section.

Upon submitting your answers, SocratiQ provides immediate feedback along
with detailed explanations for each question, as demonstrated in Figure 0.8b.

Figure 0.8: SocratiQ uses a Large
Language Model (LLM) to
automatically generate and grade
quizzes.

(a) Example of AI-generated quiz ques-
tions.

(b) Example of AI-generated feedback
and explanations for quizzes.

Example Learning Flow
1. Read a section
2. Select challenging text → Ask SocratiQ for explanation
3. Take the section quiz
4. Review related content suggestions

Learning with SocratiQ xxii

5. Track progress in dashboard

Getting Help with Concepts

When you encounter challenging concepts, SocratiQ offers two powerful ways
to get help. First, you can select any text from the textbook and ask for a detailed
explanation, as demonstrated in Figure 0.9.

Figure 0.9: Selecting specific text to
ask for clarification.

Once you’ve selected the text, you can ask questions about it, and SocratiQ will
provide detailed explanations based on that context, as illustrated in Figure 0.10.

Figure 0.10: Example of how Socra-
tiQ provides explanations based on
selected text.

Figure 0.12 shows the response for the ask in Figure 0.10.

SocratiQ AI xxiii

Figure 0.11: Referencing different
sections from the textbook.

Additionally, you can also reference Sections, as shown in Figure 0.11, Sub-
sections and keywords directly as you converse with SocratiQ. Use the @ symbol
to reference a section, sub-section or keyword. You can also click the + Context
button right above the input.

Figure 0.12: An interactive chat ses-
sion with SocratiQ, demonstrating
how to get clarification on concepts.

Tracking Your Progress xxiv

To enhance your learning experience, SocratiQ doesn’t just answer your
questions, it also suggests related content from the textbook that might be
helpful for deeper understanding, as shown in Figure 0.13.

Figure 0.13: SocratiQ suggests re-
lated content based on your ques-
tions to help deepen your under-
standing.

Tracking Your Progress
Performance Dashboard
SocratiQ maintains a comprehensive record of your learning journey. The
progress dashboard (Figure 0.14) displays your quiz performance statistics,
learning streaks, and achievement badges. This dashboard updates real-time.

Figure 0.14: The progress dash-
board showing your learning statis-
tics and achievements.

As you continue to engage with the material and complete quizzes, you’ll
earn various badges that recognize your progress, as shown in Figure 0.15.

Figure 0.15: Examples of achieve-
ment badges you can earn through
consistent engagement.

SocratiQ AI xxv

Achievement Badges
As you progress through the quizzes, you’ll earn special badges to mark your
achievements! Here’s what you can earn:

Badge Name How to Earn

First Steps Complete your first quiz

On a Streak Maintain a streak of perfect
scores

Quiz Medalist Complete 10 quizzes

Quiz Champion Complete 20 quizzes

Quiz Legend Complete 30 quizzes

x n Quiz AGI Super Human Complete 40 or more quizzes

L� Tip

Keep taking quizzes to collect all badges and improve your learning
journey! Your current badges will appear in the quiz statistics dashboard.

If you’d like a record of your progress you can generate a PDF report. It
will show your progress, average performance and all the questions you’ve
attempted. The PDF is a generated with a unique hash and can be uniquely
validated.

Data Storage

çĖ Important

Important Note: All progress data is stored locally in your browser.
Clearing your browser history or cache will erase your entire learning
history, including quiz scores, streaks, and achievement badges.

You can also delete all of your saved conversations by clicking the New Chat
button in the nav bar.

Technical Requirements xxvi

Technical Requirements
To use SocratiQ effectively, you’ll need:

• Chrome or Safari browser
• JavaScript enabled
• Stable internet connection

Figure 0.16: You can click the Down-
load Report button to view your
report. You can verify that your
PDF has been created by SocratiQ
by clicking the verify button and up-
loading your generated PDF.

Common Issues and Troubleshooting
• If SocratiQ isn’t responding: Refresh the page
• If quizzes don’t load: Check your internet connection
• If progress isn’t saving: Ensure cookies are enabled

For persistent issues, please contact us at vj[@]eecs.harvard.edu.

Providing Feedback
Your feedback helps us improve SocratiQ.

SocratiQ AI xxvii

Figure 0.17: Load or delete previous
chats or start a new chat.

You can report technical issues, suggest improvements to quiz questions, or
share thoughts about AI responses using the feedback buttons located through-
out the interface. You can submit a GitHub issue.

https://github.com/harvard-edge/cs249r_book/issues

MAIN

xxix

Chapter 1

Introduction

Figure 1.1: DALL·E 3 Prompt: A de-
tailed, rectangular, flat 2D illustration
depicting a roadmap of a book’s chapters
on machine learning systems, set on a
crisp, clean white background. The im-
age features a winding road traveling
through various symbolic landmarks.
Each landmark represents a chapter
topic: Introduction, ML Systems, Deep
Learning, AI Workflow, Data Engineer-
ing, AI Frameworks, AI Training, Ef-
ficient AI, Model Optimizations, AI
Acceleration, Benchmarking AI, On-
Device Learning, Embedded AIOps, Se-
curity & Privacy, Responsible AI, Sus-
tainable AI, AI for Good, Robust AI,
Generative AI. The style is clean, mod-
ern, and flat, suitable for a technical
book, with each landmark clearly labeled
with its chapter title.

1.1 AI Pervasiveness
Artificial Intelligence (AI) has emerged as one of the most transformative forces
in human history. From the moment we wake up to when we go to sleep, AI
systems invisibly shape our world. They manage trafÏc flows in our cities, opti-
mize power distribution across electrical grids, and enable billions of wireless
devices to communicate seamlessly. In hospitals, AI analyzes medical images
and helps doctors diagnose diseases. In research laboratories, it accelerates
scientific discovery by simulating molecular interactions and processing vast
datasets from particle accelerators. In space exploration, it helps rovers navigate
distant planets and telescopes detect new celestial phenomena.

Throughout history, certain technologies have fundamentally transformed
human civilization, defining their eras. The 18th and 19th centuries were
shaped by the Industrial Revolution, where steam power and mechanization
transformed how humans could harness physical energy. The 20th century was

1

1.2. AI and ML Basics 2

defined by the Digital Revolution, where the computer and internet transformed
how we process and share information. Now, the 21st century appears to be the
era of Artificial Intelligence, a shift noted by leading thinkers in technological
evolution (Brynjolfsson and McAfee 2014; Domingos 2016).

The vision driving AI development extends far beyond the practical appli-
cations we see today. We aspire to create systems that can work alongside
humanity, enhancing our problem-solving capabilities and accelerating scien-
tific progress. Imagine AI systems that could help us understand consciousness,
decode the complexities of biological systems, or unravel the mysteries of dark
matter. Consider the potential of AI to help address global challenges like
climate change, disease, or sustainable energy production. This is not just
about automation or efÏciency—it’s about expanding the boundaries of human
knowledge and capability.

The impact of this revolution operates at multiple scales, each with pro-
found implications. At the individual level, AI personalizes our experiences
and augments our daily decision-making capabilities. At the organizational
level, it transforms how businesses operate and how research institutions make
discoveries. At the societal level, it reshapes everything from transportation
systems to healthcare delivery. At the global level, it offers new approaches
to addressing humanity’s greatest challenges, from climate change to drug
discovery.

What makes this transformation unique is its unprecedented pace. While the
Industrial Revolution unfolded over centuries and the Digital Revolution over
decades, AI capabilities are advancing at an extraordinary rate. Technologies
that seemed impossible just years ago, including systems that can understand
human speech, generate novel ideas, or make complex decisions, are now
commonplace. This acceleration suggests we are only beginning to understand
how profoundly AI will reshape our world.

We stand at a historic inflection point. Just as the Industrial Revolution
required us to master mechanical engineering to harness the power of steam
and machinery, and the Digital Revolution demanded expertise in electrical
and computer engineering to build the internet age, the AI Revolution presents
us with a new engineering challenge. We must learn to build systems that
can learn, reason, and potentially achieve superhuman capabilities in specific
domains.

1.2 AI and ML Basics

The exploration of artificial intelligence’s transformative impact across society
presents a fundamental question: How can we create these intelligent capa-
bilities? Understanding the relationship between AI and ML provides the
theoretical and practical framework necessary to address this question.

Artificial Intelligence represents the systematic pursuit of understanding
and replicating intelligent behavior—specifically, the capacity to learn, reason,
and adapt to new situations. It encompasses fundamental questions about the
nature of intelligence, knowledge, and learning. How do we recognize patterns?
How do we learn from experience? How do we adapt our behavior based on

Chapter 1. Introduction 3

0 Gradient Descent: An opti-
mization algorithm that iteratively
adjusts model parameters to mini-
mize prediction errors by following
the gradient (slope) of the error sur-
face, similar to finding the bottom
of a valley by always walking down-
hill.

1 Deep Reinforcement Learn-
ing: A machine learning approach
that combines deep neural networks
with reinforcement learning princi-
ples, allowing agents to learn op-
timal actions through trial and er-
ror interaction with an environment
while receiving rewards or penal-
ties.

new information? AI as a field explores these questions, drawing insights from
cognitive science, psychology, neuroscience, and computer science.

Machine Learning, in contrast, constitutes the methodological approach
to creating systems that demonstrate intelligent behavior. Instead of imple-
menting intelligence through predetermined rules, machine learning systems
utilize gradient descent0 and other optimization techniques to identify patterns
and relationships. This methodology reflects fundamental learning processes
observed in biological systems. For instance, object recognition in machine
learning systems parallels human visual learning processes, requiring exposure
to numerous examples to develop robust recognition capabilities. Similarly,
natural language processing systems acquire linguistic capabilities through
extensive analysis of textual data.

L� AI and ML: Key Definitions

• Artificial Intelligence (AI): The goal of creating machines that
can match or exceed human intelligence—representing humanity’s
quest to build systems that can think, reason, and adapt.

• Machine Learning (ML): The scientific discipline of understanding
how systems can learn and improve from experience—providing
the theoretical foundation for building intelligent systems.

The relationship between AI and ML exemplifies the connection between
theoretical understanding and practical engineering implementation observed
in other scientific fields. For instance, physics provides the theoretical foun-
dation for mechanical engineering’s practical applications in structural design
and machinery, while AI’s theoretical frameworks inform machine learning’s
practical development of intelligent systems. Similarly, electrical engineering’s
transformation of electromagnetic theory into functional power systems paral-
lels machine learning’s implementation of intelligence theories into operational
ML systems.

The emergence of machine learning as a viable scientific discipline approach
to artificial intelligence resulted from extensive research and fundamental
paradigm shifts in the field. The progression of artificial intelligence encom-
passes both theoretical advances in understanding intelligence and practical
developments in implementation methodologies. This development mirrors the
evolution of other scientific and engineering disciplines—from mechanical engi-
neering’s advancement from basic force principles to contemporary robotics, to
electrical engineering’s progression from fundamental electromagnetic theory
to modern power and communication networks. Analysis of this historical
trajectory reveals both the technological innovations leading to current machine
learning approaches and the emergence of deep reinforcement learning1 that
inform contemporary AI system development.

1.3. AI Evolution 4

2 Perceptron: The first artificial
neural network—a simple model
that could learn to classify visual
patterns, similar to a single neuron
making a yes/no decision based on
its inputs.

1.3 AI Evolution
The evolution of AI, depicted in the timeline shown in Figure 1.2, highlights
key milestones such as the development of the perceptron2 in 1957 by Frank
Rosenblatt, a foundational element for modern neural networks. Imagine
walking into a computer lab in 1965. You’d find room-sized mainframes running
programs that could prove basic mathematical theorems or play simple games
like tic-tac-toe. These early artificial intelligence systems, while groundbreaking
for their time, were a far cry from today’s machine learning systems that can
detect cancer in medical images or understand human speech. The timeline
shows the progression from early innovations like the ELIZA chatbot in 1966, to
significant breakthroughs such as IBM’s Deep Blue defeating chess champion
Garry Kasparov in 1997. More recent advancements include the introduction
of OpenAI’s GPT-3 in 2020 and GPT-4 in 2023, demonstrating the dramatic
evolution and increasing complexity of AI systems over the decades.

Figure 1.2: Milestones in AI from
1950 to 2020. Source: IEEE Spec-
trum

Let’s explore how we got here.

Chapter 1. Introduction 5

1.3.1 Symbolic AI Era

The story of machine learning begins at the historic Dartmouth Conference in
1956, where pioneers like John McCarthy, Marvin Minsky, and Claude Shannon
first coined the term “artificial intelligence.” Their approach was based on a
compelling idea: intelligence could be reduced to symbol manipulation. Con-
sider Daniel Bobrow’s STUDENT system from 1964, one of the first AI programs
that could solve algebra word problems. It was one of the first AI programs to
demonstrate natural language understanding by converting English text into
algebraic equations, marking an important milestone in symbolic AI.

�� Example: STUDENT (1964)

Problem: "If the number of customers Tom gets is twice the
square of 20% of the number of advertisements he runs, and
the number of advertisements is 45, what is the number of
customers Tom gets?"

STUDENT would:

1. Parse the English text
2. Convert it to algebraic equations
3. Solve the equation: n = 2(0.2 × 45)²
4. Provide the answer: 162 customers

Early AI like STUDENT suffered from a fundamental limitation: they could
only handle inputs that exactly matched their pre-programmed patterns and
rules. Imagine a language translator that only works when sentences follow
perfect grammatical structure; even slight variations, such as changing word
order, using synonyms, or natural speech patterns, would cause the STUDENT
to fail. This “brittleness” meant that while these solutions could appear intel-
ligent when handling very specific cases they were designed for, they would
break down completely when faced with even minor variations or real-world
complexity. This limitation wasn’t just a technical inconvenience—it revealed
a deeper problem with rule-based approaches to AI: they couldn’t genuinely
understand or generalize from their programming, they could only match and
manipulate patterns exactly as specified.

1.3.2 Expert Systems Era

By the mid-1970s, researchers realized that general AI was too ambitious. In-
stead, they focused on capturing human expert knowledge in specific domains.
MYCIN, developed at Stanford, was one of the first large-scale expert systems
designed to diagnose blood infections.

1.3. AI Evolution 6

3 Moore’s Law: The observa-
tion made by Intel co-founder Gor-
don Moore in 1965 that the number
of transistors on a microchip dou-
bles approximately every two years,
while the cost halves. This exponen-
tial growth in computing power has
been a key driver of advances in ma-
chine learning, though the pace has
begun to slow in recent years.

�� Example: MYCIN (1976)

Rule Example from MYCIN:
IF
The infection is primary-bacteremia
The site of the culture is one of the sterile sites
The suspected portal of entry is the gastrointestinal tract

THEN
Found suggestive evidence (0.7) that infection is bacteroid

While MYCIN represented a major advance in medical AI with its 600 expert
rules for diagnosing blood infections, it revealed fundamental challenges that
still plague ML today. Getting domain knowledge from human experts and
converting it into precise rules proved incredibly time-consuming and difÏcult—
doctors often couldn’t explain exactly how they made decisions. MYCIN strug-
gled with uncertain or incomplete information, unlike human doctors who
could make educated guesses. Perhaps most importantly, maintaining and
updating the rule base became exponentially more complex as MYCIN grew, as
adding new rules frequently conflicted with existing ones, while medical knowl-
edge itself continued to evolve. These same challenges of knowledge capture,
uncertainty handling, and maintenance remain central concerns in modern
machine learning, even though we now use different technical approaches to
address them.

1.3.3 Statistical Learning Era
The 1990s marked a radical transformation in artificial intelligence as the field
moved away from hand-coded rules toward statistical learning approaches.
This wasn’t a simple choice—it was driven by three converging factors that
made statistical methods both possible and powerful. The digital revolution
meant massive amounts of data were suddenly available to train the algorithms.
Moore’s Law3 delivered the computational power needed to process this data
effectively. And researchers developed new algorithms like Support Vector
Machines and improved neural networks that could actually learn patterns
from this data rather than following pre-programmed rules. This combination
fundamentally changed how we built AI: instead of trying to encode human
knowledge directly, we could now let machines discover patterns automatically
from examples, leading to more robust and adaptable AI.

Consider how email spam filtering evolved:

�� Example: Early Spam Detection Systems

Rule-based (1980s):
IF contains("viagra") OR contains("winner") THEN spam

Statistical (1990s):
P(spam|word) = (frequency in spam emails) / (total frequency)

Chapter 1. Introduction 7

Combined using Naive Bayes:
P(spam|email) � P(spam) × � P(word|spam)

The move to statistical approaches fundamentally changed how we think
about building AI by introducing three core concepts that remain important
today. First, the quality and quantity of training data became as important
as the algorithms themselves. AI could only learn patterns that were present
in its training examples. Second, we needed rigorous ways to evaluate how
well AI actually performed, leading to metrics that could measure success
and compare different approaches. Third, we discovered an inherent tension
between precision (being right when we make a prediction) and recall (catching
all the cases we should find), forcing designers to make explicit trade-offs based
on their application’s needs. For example, a spam filter might tolerate some
spam to avoid blocking important emails, while medical diagnosis might need
to catch every potential case even if it means more false alarms.

Table 1.1 encapsulates the evolutionary journey of AI approaches we have
discussed so far, highlighting the key strengths and capabilities that emerged
with each new paradigm. As we move from left to right across the table, we can
observe several important trends. We will talk about shallow and deep learning
next, but it is useful to understand the trade-offs between the approaches we
have covered so far.

Table 1.1: Evolution of AI, Key Positive Aspects

Aspect Symbolic AI Expert Systems Statistical Learning
Shallow / Deep
Learning

Key Strength Logical reasoning Domain expertise Versatility Pattern recognition
Best Use Case Well-defined,

rule-based
problems

Specific domain
problems

Various structured
data problems

Complex,
unstructured data
problems

Data Handling Minimal data
needed

Domain
knowledge-based

Moderate data
required

Large-scale data
processing

Adaptability Fixed rules Domain-specific
adaptability

Adaptable to
various domains

Highly adaptable to
diverse tasks

Problem
Complexity

Simple, logic-based Complicated,
domain- specific

Complex,
structured

Highly complex,
unstructured

The table serves as a bridge between the early approaches we’ve discussed
and the more recent developments in shallow and deep learning that we’ll
explore next. It sets the stage for understanding why certain approaches gained
prominence in different eras and how each new paradigm built upon and
addressed the limitations of its predecessors. Moreover, it illustrates how the
strengths of earlier approaches continue to influence and enhance modern AI
techniques, particularly in the era of foundation models.

1.3.4 Shallow Learning Era
The 2000s marked a fascinating period in machine learning history that we now
call the “shallow learning’ ’ era. To understand why it’s “shallow,” imagine
building a house: deep learning (which came later) is like having multiple con-
struction crews working at different levels simultaneously, each crew learning

1.3. AI Evolution 8

4 Artificial Neurons: Basic
computational units in neural net-
works that mimic biological neu-
rons, taking multiple inputs, apply-
ing weights and biases, and produc-
ing an output signal through an ac-
tivation function.

from the work of crews below them. In contrast, shallow learning typically had
just one or two levels of processing, similar to having just a foundation crew
and a framing crew.

During this time, several powerful algorithms dominated the machine learn-
ing landscape. Each brought unique strengths to different problems: Decision
trees provided interpretable results by making choices much like a flowchart.
K-nearest neighbors made predictions by finding similar examples in past data,
like asking your most experienced neighbors for advice. Linear and logistic
regression offered straightforward, interpretable models that worked well for
many real-world problems. Support Vector Machines (SVMs) excelled at find-
ing complex boundaries between categories using the “kernel trick”—imagine
being able to untangle a bowl of spaghetti into straight lines by lifting it into a
higher dimension. These algorithms formed the foundation of practical ma-
chine learning.

Consider a typical computer vision solution from 2005:

�� Example: Traditional Computer Vision Pipeline

1. Manual Feature Extraction
- SIFT (Scale-Invariant Feature Transform)
- HOG (Histogram of Oriented Gradients)
- Gabor filters

2. Feature Selection/Engineering
3. "Shallow" Learning Model (e.g., SVM)
4. Post-processing

What made this era distinct was its hybrid approach: human-engineered
features combined with statistical learning. They had strong mathematical
foundations (researchers could prove why they worked). They performed well
even with limited data. They were computationally efÏcient. They produced
reliable, reproducible results.

Take the example of face detection, where the Viola-Jones algorithm (2001)
achieved real-time performance using simple rectangular features and a cascade
of classifiers. This algorithm powered digital camera face detection for nearly a
decade.

1.3.5 Deep Learning Era

While Support Vector Machines excelled at finding complex boundaries between
categories using mathematical transformations, deep learning took a radically
different approach inspired by the human brain’s architecture. Deep learning
is built from layers of artificial neurons4, where each layer learns to transform
its input data into increasingly abstract representations. Imagine processing an
image of a cat: the first layer might learn to detect simple edges and contrasts,
the next layer combines these into basic shapes and textures, another layer
might recognize whiskers and pointy ears, and the final layers assemble these
features into the concept of “cat.”

Chapter 1. Introduction 9

5 A breakthrough deep neural
network from 2012 that won the Ima-
geNet competition by a large margin
and helped spark the deep learning
revolution.

6 Parameters: The adjustable
values within a neural network that
are modified during training, simi-
lar to how the brain’s neural connec-
tions grow stronger as you learn a
new skill. Having more parameters
generally means that the model can
learn more complex patterns.

Unlike shallow learning methods that required humans to carefully engineer
features, deep learning networks can automatically discover useful features
directly from raw data. This ability to learn hierarchical representations, ranging
from simple to complex and concrete to abstract, is what makes deep learning
“deep,” and it turned out to be a remarkably powerful approach for handling
complex, real-world data like images, speech, and text.

In 2012, a deep neural network called AlexNet, shown in Figure 1.3, achieved
a breakthrough in the ImageNet competition that would transform the field
of machine learning. The challenge was formidable: correctly classify 1.2
million high-resolution images into 1,000 different categories. While previous
approaches struggled with error rates above 25%, AlexNet5 achieved a 15.3%
error rate, dramatically outperforming all existing methods.

The success of AlexNet wasn’t just a technical achievement; it was a water-
shed moment that demonstrated the practical viability of deep learning. It
showed that with sufÏcient data, computational power, and architectural in-
novations, neural networks could outperform hand-engineered features and
shallow learning methods that had dominated the field for decades. This single
result triggered an explosion of research and applications in deep learning that
continues to this day.

Figure 1.3: Deep neural network
architecture for Alexnet. Source:
Krizhevsky, Sutskever, and Hinton
(2017a)

From this foundation, deep learning entered an era of unprecedented scale.
By the late 2010s, companies like Google, Facebook, and OpenAI were training
neural networks thousands of times larger than AlexNet. These massive models,
often called “foundation models,” took deep learning to new heights. GPT-3,
released in 2020, contained 175 billion parameters6—imagine a student that
could read through all of Wikipedia multiple times and learn patterns from
every article. These models showed remarkable abilities: writing human-like
text, engaging in conversation, generating images from descriptions, and even
writing computer code. The key insight was simple but powerful: as we made
neural networks bigger and fed them more data, they became capable of solving
increasingly complex tasks. However, this scale brought unprecedented systems
challenges: how do you efÏciently train models that require thousands of GPUs
working in parallel? How do you store and serve models that are hundreds of
gigabytes in size? How do you handle the massive datasets needed for training?

The deep learning revolution of 2012 didn’t emerge from nowhere, as it was
founded on neural network research dating back to the 1950s. The story begins
with Frank Rosenblatt’s Perceptron in 1957, which captured the imagination of
researchers by showing how a simple artificial neuron could learn to classify

1.4. ML Systems Engineering 10

7 Convolutional Neural Network
(CNN): A type of neural network
specially designed for processing
images, inspired by how the human
visual system works. The “convolu-
tional” part refers to how it scans im-
ages in small chunks, similar to how
our eyes focus on different parts of
a scene.

patterns. While it could only handle linearly separable problems, a limitation
that was dramatically highlighted by Minsky and Papert’s 1969 book, “Percep-
trons,” it introduced the fundamental concept of trainable neural networks.
The 1980s brought more important breakthroughs: Rumelhart, Hinton, and
Williams introduced backpropagation in 1986, providing a systematic way to
train multi-layer networks, while Yann LeCun demonstrated its practical appli-
cation in recognizing handwritten digits using convolutional neural networks
(CNNs)7.

Yet these networks largely languished through the 1990s and 2000s, not
because the ideas were wrong, but because they were ahead of their time.
The field lacked three important ingredients: sufÏcient data to train complex
networks, enough computational power to process this data, and the technical
innovations needed to train very deep networks effectively.

çĖ Convolutional Network Demo from 1989

Watch on YouTube
Convolutional Net Demo

Scan with your phone
to watch the video

TV Watch on YouTube

The field had to wait for the convergence of big data, better computing hard-
ware, and algorithmic breakthroughs before deep learning’s potential could
be unlocked. This long gestation period helps explain why the 2012 ImageNet
moment was less a sudden revolution and more the culmination of decades
of accumulated research finally finding its moment. As we’ll explore in the
following sections, this evolution has led to two significant developments in
the field. First, it has given rise to define the field of machine learning sys-
tems engineering, a discipline that teaches how to bridge the gap between
theoretical advancements and practical implementation. Second, it has necessi-
tated a more comprehensive definition of machine learning systems, one that
encompasses not just algorithms, but also data and computing infrastructure.
Today’s challenges of scale echo many of the same fundamental questions about
computation, data, and learning methods that researchers have grappled with
since the field’s inception, but now within a more complex and interconnected
framework.

As AI progressed from symbolic reasoning to statistical learning and deep
learning, its applications became increasingly ambitious and complex. This
growth introduced challenges that extended beyond algorithms, necessitating a
new focus: engineering entire systems capable of deploying and sustaining AI at
scale. This gave rise to the discipline of Machine Learning Systems Engineering.

1.4 ML Systems Engineering
The story we’ve traced, from the early days of the Perceptron through the deep
learning revolution, has largely been one of algorithmic breakthroughs. Each
era brought new mathematical insights and modeling approaches that pushed
the boundaries of what AI could achieve. But something important changed
over the past decade: the success of AI systems became increasingly dependent
not just on algorithmic innovations, but on sophisticated engineering.

https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q&ab_channel=YannLeCun

Chapter 1. Introduction 11

This shift mirrors the evolution of computer science and engineering in
the late 1960s and early 1970s. During that period, as computing systems
grew more complex, a new discipline emerged: Computer Engineering. This
field bridged the gap between Electrical Engineering’s hardware expertise and
Computer Science’s focus on algorithms and software. Computer Engineering
arose because the challenges of designing and building complex computing
systems required an integrated approach that neither discipline could fully
address on its own.

Today, we’re witnessing a similar transition in the field of AI. While Computer
Science continues to push the boundaries of ML algorithms and Electrical En-
gineering advances specialized AI hardware, neither discipline fully addresses
the engineering principles needed to deploy, optimize, and sustain ML systems
at scale. This gap highlights the need for a new discipline: Machine Learning
Systems Engineering.

There is no explicit definition of what this field is as such today, but it can be
broadly defined as such:

L� Definition of Machine Learning Systems Engineering

Machine Learning Systems Engineering (MLSysEng) is the discipline of
designing, implementing, and operating artificially intelligent systems
across computing scales—from resource-constrained embedded devices
to warehouse-scale computers. This field integrates principles from engi-
neering disciplines spanning hardware to software to create systems that
are reliable, efÏcient, and optimized for their deployment context. It en-
compasses the complete lifecycle of AI applications: from requirements
engineering and data collection through model development, system
integration, deployment, monitoring, and maintenance. The field empha-
sizes engineering principles of systematic design, resource constraints,
performance requirements, and operational reliability.

Let’s consider space exploration. While astronauts venture into new frontiers
and explore the vast unknowns of the universe, their discoveries are only
possible because of the complex engineering systems supporting them, such as
the rockets that lift them into space, the life support systems that keep them
alive, and the communication networks that keep them connected to Earth.
Similarly, while AI researchers push the boundaries of what’s possible with
learning algorithms, their breakthroughs only become practical reality through
careful systems engineering. Modern AI systems need robust infrastructure
to collect and manage data, powerful computing systems to train models, and
reliable deployment platforms to serve millions of users.

This emergence of machine learning systems engineering as a important
discipline reflects a broader reality: turning AI algorithms into real-world
systems requires bridging the gap between theoretical possibilities and practical
implementation. It’s not enough to have a brilliant algorithm if you can’t
efÏciently collect and process the data it needs, distribute its computation

1.5. Defining ML Systems 12

across hundreds of machines, serve it reliably to millions of users, or monitor
its performance in production.

Understanding this interplay between algorithms and engineering has be-
come fundamental for modern AI practitioners. While researchers continue to
push the boundaries of what’s algorithmically possible, engineers are tackling
the complex challenge of making these algorithms work reliably and efÏciently
in the real world. This brings us to a fundamental question: what exactly is a
machine learning system, and what makes it different from traditional software
systems?

1.5 Defining ML Systems
There’s no universally accepted, clear-cut textbook definition of a machine
learning system. This ambiguity stems from the fact that different practitioners,
researchers, and industries often refer to machine learning systems in varying
contexts and with different scopes. Some might focus solely on the algorithmic
aspects, while others might include the entire pipeline from data collection to
model deployment. This loose usage of the term reflects the rapidly evolving
and multidisciplinary nature of the field.

Given this diversity of perspectives, it is important to establish a clear and
comprehensive definition that encompasses all these aspects. In this textbook,
we take a holistic approach to machine learning systems, considering not just
the algorithms but also the entire ecosystem in which they operate. Therefore,
we define a machine learning system as follows:

L� Definition of a Machine Learning System

A machine learning system is an integrated computing system compris-
ing three core components: (1) data that guides algorithmic behavior, (2)
learning algorithms that extract patterns from this data, and (3) comput-
ing infrastructure that enables both the learning process (i.e., training)
and the application of learned knowledge (i.e., inference/serving). To-
gether, these components create a computing system capable of making
predictions, generating content, or taking actions based on learned pat-
terns.

The core of any machine learning system consists of three interrelated compo-
nents, as illustrated in Figure 1.4: Models/Algorithms, Data, and Computing
Infrastructure. These components form a triangular dependency where each
element fundamentally shapes the possibilities of the others. The model archi-
tecture dictates both the computational demands for training and inference, as
well as the volume and structure of data required for effective learning. The
data’s scale and complexity influence what infrastructure is needed for storage
and processing, while simultaneously determining which model architectures
are feasible. The infrastructure capabilities establish practical limits on both
model scale and data processing capacity, creating a framework within which
the other components must operate.

Each of these components serves a distinct but interconnected purpose:

Chapter 1. Introduction 13

Figure 1.4: Machine learning sys-
tems involve algorithms, data, and
computation, all intertwined to-
gether.

• Algorithms: Mathematical models and methods that learn patterns from
data to make predictions or decisions

• Data: Processes and infrastructure for collecting, storing, processing,
managing, and serving data for both training and inference.

• Computing: Hardware and software infrastructure that enables efÏcient
training, serving, and operation of models at scale.

The interdependency of these components means no single element can
function in isolation. The most sophisticated algorithm cannot learn without
data or computing resources to run on. The largest datasets are useless without
algorithms to extract patterns or infrastructure to process them. And the most
powerful computing infrastructure serves no purpose without algorithms to
execute or data to process.

To illustrate these relationships, we can draw an analogy to space exploration.
Algorithm developers are like astronauts, who explore new frontiers and make
discoveries. Data science teams function like mission control specialists, who
ensure the constant flow of critical information and resources necessary to
maintain the mission’s operation. Computing infrastructure engineers are like
rocket engineers—designing and building the systems that make the mission
possible. Just as a space mission requires the seamless integration of astronauts,
mission control, and rocket systems, a machine learning system demands the
careful orchestration of algorithms, data, and computing infrastructure.

1.6 Lifecycle of ML Systems
Traditional software systems follow a predictable lifecycle where developers
write explicit instructions for computers to execute. These systems are built
on decades of established software engineering practices. Version control
systems maintain precise histories of code changes. Continuous integration and
deployment pipelines automate testing and release processes. Static analysis
tools measure code quality and identify potential issues. This infrastructure
enables reliable development, testing, and deployment of software systems,
following well-defined principles of software engineering.

Machine learning systems represent a fundamental departure from this
traditional paradigm. While traditional systems execute explicit programming

1.7. ML Systems in the Wild 14

logic, machine learning systems derive their behavior from patterns in data.
This shift from code to data as the primary driver of system behavior introduces
new complexities.

As illustrated in Figure 1.5, the ML lifecycle consists of interconnected stages
from data collection through model monitoring, with feedback loops for contin-
uous improvement when performance degrades or models need enhancement.

Figure 1.5: The typical lifecycle of a
machine learning system. Data

Preparation
Model

Evaluation

Model

Deployment

Model

Training

Data

Collection

Model

Monitoring

Meets
Requirements

Needs
Improvement

Performance
Degrades

Unlike source code, which changes only when developers modify it, data
reflects the dynamic nature of the real world. Changes in data distributions can
silently alter system behavior. Traditional software engineering tools, designed
for deterministic code-based systems, prove insufÏcient for managing these
data-dependent systems. For example, version control systems that excel at
tracking discrete code changes struggle to manage large, evolving datasets.
Testing frameworks designed for deterministic outputs must be adapted for
probabilistic predictions. This data-dependent nature creates a more dynamic
lifecycle, requiring continuous monitoring and adaptation to maintain system
relevance as real-world data patterns evolve.

Understanding the machine learning system lifecycle requires examining its
distinct stages. Each stage presents unique requirements from both learning
and infrastructure perspectives. This dual consideration, of learning needs and
systems support, is wildly important for building effective machine learning
systems.

However, the various stages of the ML lifecycle in production are not isolated;
they are, in fact, deeply interconnected. This interconnectedness can create
either virtuous or vicious cycles. In a virtuous cycle, high-quality data enables
effective learning, robust infrastructure supports efÏcient processing, and well-
engineered systems facilitate the collection of even better data. However, in a
vicious cycle, poor data quality undermines learning, inadequate infrastructure
hampers processing, and system limitations prevent the improvement of data
collection—each problem compounds the others.

1.7 ML Systems in the Wild

The complexity of managing machine learning systems becomes even more
apparent when we consider the broad spectrum across which ML is deployed
today. ML systems exist at vastly different scales and in diverse environments,
each presenting unique challenges and constraints.

Chapter 1. Introduction 15

At one end of the spectrum, we have cloud-based ML systems running in mas-
sive data centers. These systems, like large language models or recommendation
engines, process petabytes of data and serve millions of users simultaneously.
They can leverage virtually unlimited computing resources but must manage
enormous operational complexity and costs.

At the other end, we find TinyML systems running on microcontrollers
and embedded devices. These systems must perform ML tasks with severe
constraints on memory, computing power, and energy consumption. Imagine
a smart home device, such as Alexa or Google Assistant, that must recognize
voice commands using less power than a LED bulb, or a sensor that must detect
anomalies while running on a battery for months or even years.

Between these extremes, we find a rich variety of ML systems adapted for
different contexts. Edge ML systems bring computation closer to data sources,
reducing latency and bandwidth requirements while managing local comput-
ing resources. Mobile ML systems must balance sophisticated capabilities with
battery life and processor limitations on smartphones and tablets. Enterprise
ML systems often operate within specific business constraints, focusing on par-
ticular tasks while integrating with existing infrastructure. Some organizations
employ hybrid approaches, distributing ML capabilities across multiple tiers to
balance various requirements.

1.8 ML Systems Impact on Lifecycle

The diversity of ML systems across the spectrum represents a complex interplay
of requirements, constraints, and trade-offs. These decisions fundamentally
impact every stage of the ML lifecycle we discussed earlier, from data collection
to continuous operation.

Performance requirements often drive initial architectural decisions. Latency-
sensitive applications, like autonomous vehicles or real-time fraud detection,
might require edge or embedded architectures despite their resource constraints.
Conversely, applications requiring massive computational power for training,
such as large language models, naturally gravitate toward centralized cloud
architectures. However, raw performance is just one consideration in a complex
decision space.

Resource management varies dramatically across architectures. Cloud sys-
tems must optimize for cost efÏciency at scale—balancing expensive GPU
clusters, storage systems, and network bandwidth. Edge systems face fixed
resource limits and must carefully manage local compute and storage. Mobile
and embedded systems operate under the strictest constraints, where every
byte of memory and milliwatt of power matters. These resource considerations
directly influence both model design and system architecture.

Operational complexity increases with system distribution. While central-
ized cloud architectures benefit from mature deployment tools and managed
services, edge and hybrid systems must handle the complexity of distributed
system management. This complexity manifests throughout the ML lifecycle—
from data collection and version control to model deployment and monitoring.
This operational complexity can compound over time if not carefully managed.

1.8. ML Systems Impact on Lifecycle 16

8 Multi-Agent System: A com-
putational system where multiple
intelligent agents interact within an
environment, each pursuing their
own objectives while potentially co-
operating or competing with other
agents.

Data considerations often introduce competing pressures. Privacy require-
ments or data sovereignty regulations might push toward edge or embedded
architectures, while the need for large-scale training data might favor cloud ap-
proaches. The velocity and volume of data also influence architectural choices—
real-time sensor data might require edge processing to manage bandwidth,
while batch analytics might be better suited to cloud processing.

Evolution and maintenance requirements must be considered from the start.
Cloud architectures offer flexibility for system evolution but can incur signifi-
cant ongoing costs. Edge and embedded systems might be harder to update but
could offer lower operational overhead. The continuous cycle of ML systems
we discussed earlier becomes particularly challenging in distributed architec-
tures, where updating models and maintaining system health requires careful
orchestration across multiple tiers.

These trade-offs are rarely simple binary choices. Modern ML systems often
adopt hybrid approaches, carefully balancing these considerations based on
specific use cases and constraints. The key is understanding how these deci-
sions will impact the system throughout its lifecycle, from initial development
through continuous operation and evolution.

1.8.1 Emerging Trends
The landscape of machine learning systems is evolving rapidly, with innovations
happening from user-facing applications down to core infrastructure. These
changes are reshaping how we design and deploy ML systems.

1.8.1.1 Application-Level Innovation

The rise of agentic systems marks a profound shift from traditional reactive ML
systems that simply made predictions based on input data. Modern applications
can now take actions, learn from outcomes, and adapt their behavior accord-
ingly through multi-agent systems8 and advanced planning algorithms. These
autonomous agents can plan, reason, and execute complex tasks, introducing
new requirements for decision-making frameworks and safety constraints.

This increased sophistication extends to operational intelligence. Applica-
tions will likely incorporate sophisticated self-monitoring, automated resource
management, and adaptive deployment strategies. They can automatically han-
dle data distribution shifts, model updates, and system optimization, marking
a significant advance in autonomous operation.

1.8.1.2 System Architecture Evolution

Supporting these advanced applications requires fundamental changes in the
underlying system architecture. Integration frameworks are evolving to handle
increasingly complex interactions between ML systems and broader technol-
ogy ecosystems. Modern ML systems must seamlessly connect with exist-
ing software, process diverse data sources, and operate across organizational
boundaries, driving new approaches to system design.

Resource efÏciency has become a central architectural concern as ML systems
scale. Innovation in model compression and efÏcient training techniques is

Chapter 1. Introduction 17

9 Edge Processor: A special-
ized computing device designed
to perform AI computations close
to where data is generated, opti-
mized for low latency and energy
efÏciency rather than raw comput-
ing power.

being driven by both environmental and economic factors. Future architectures
must carefully balance the pursuit of more powerful models against growing
sustainability concerns.

At the infrastructure level, new hardware is reshaping deployment possi-
bilities. Specialized AI accelerators are emerging across the spectrum—from
powerful data center chips to efÏcient edge processors9 to tiny neural process-
ing units in mobile devices. This heterogeneous computing landscape enables
dynamic model distribution across tiers based on computing capabilities and
conditions, blurring traditional boundaries between cloud, edge, and embed-
ded systems.

These trends are creating ML systems that are more capable and efÏcient
while managing increasing complexity. Success in this evolving landscape
requires understanding how application requirements flow down to infras-
tructure decisions, ensuring systems can grow sustainably while delivering
increasingly sophisticated capabilities.

1.9 Practical Applications
The diverse architectures and scales of ML systems demonstrate their potential
to revolutionize industries. By examining real-world applications, we can see
how these systems address practical challenges and drive innovation. Their
ability to operate effectively across varying scales and environments has already
led to significant changes in numerous sectors. This section highlights examples
where theoretical concepts and practical considerations converge to produce
tangible, impactful results.

1.9.1 FarmBeats: ML in Agriculture
FarmBeats, a project developed by Microsoft Research, shown in Figure 1.6 is a
significant advancement in the application of machine learning to agriculture.
This system aims to increase farm productivity and reduce costs by leveraging
AI and IoT technologies. FarmBeats exemplifies how edge and embedded
ML systems can be deployed in challenging, real-world environments to solve
practical problems. By bringing ML capabilities directly to the farm, FarmBeats
demonstrates the potential of distributed AI systems in transforming traditional
industries.

1.9.1.1 Data Considerations

The data ecosystem in FarmBeats is diverse and distributed. Sensors deployed
across fields collect real-time data on soil moisture, temperature, and nutrient
levels. Drones equipped with multispectral cameras capture high-resolution
imagery of crops, providing insights into plant health and growth patterns.
Weather stations contribute local climate data, while historical farming records
offer context for long-term trends. The challenge lies not just in collecting
this heterogeneous data, but in managing its flow from dispersed, often re-
mote locations with limited connectivity. FarmBeats employs innovative data
transmission techniques, such as using TV white spaces (unused broadcasting
frequencies) to extend internet connectivity to far-flung sensors. This approach

https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/

1.9. Practical Applications 18

Figure 1.6: Microsoft FarmBeats: AI,
Edge & IoT for Agriculture.

to data collection and transmission embodies the principles of edge computing
we discussed earlier, where data processing begins at the source to reduce
bandwidth requirements and enable real-time decision making.

1.9.1.2 Algorithmic Considerations

FarmBeats uses a variety of ML algorithms tailored to agricultural applications.
For soil moisture prediction, it uses temporal neural networks that can capture
the complex dynamics of water movement in soil. Computer vision algorithms
process drone imagery to detect crop stress, pest infestations, and yield esti-
mates. These models must be robust to noisy data and capable of operating with
limited computational resources. Machine learning methods such as “transfer
learning” allow models to learn on data-rich farms to be adapted for use in areas
with limited historical data. The system also incorporates a mixture of methods
that combine outputs from multiple algorithms to improve prediction accuracy
and reliability. A key challenge FarmBeats addresses is model personalization,
adapting general models to the specific conditions of individual farms. These
conditions may include unique soil compositions, microclimates, and farming
practices.

1.9.1.3 Infrastructure Considerations

FarmBeats exemplifies the edge computing paradigm we explored in our dis-
cussion of the ML system spectrum. At the lowest level, embedded ML models
run directly on IoT devices and sensors, performing basic data filtering and
anomaly detection. Edge devices, such as ruggedized field gateways, aggregate
data from multiple sensors and run more complex models for local decision-
making. These edge devices operate in challenging conditions, requiring robust
hardware designs and efÏcient power management to function reliably in re-
mote agricultural settings. The system employs a hierarchical architecture, with
more computationally intensive tasks ofÒoaded to on-premises servers or the
cloud. This tiered approach allows FarmBeats to balance the need for real-time
processing with the benefits of centralized data analysis and model training.

Chapter 1. Introduction 19

The infrastructure also includes mechanisms for over-the-air model updates,
ensuring that edge devices can receive improved models as more data becomes
available and algorithms are refined.

1.9.1.4 Future Implications

FarmBeats shows how ML systems can be deployed in resource-constrained,
real-world environments to drive significant improvements in traditional in-
dustries. By providing farmers with AI-driven insights, the system has shown
potential to increase crop yields, reduce water usage, and optimize resource
allocation. Looking forward, the FarmBeats approach could be extended to
address global challenges in food security and sustainable agriculture. The
success of this system also highlights the growing importance of edge and
embedded ML in IoT applications, where bringing intelligence closer to the
data source can lead to more responsive, efÏcient, and scalable solutions. As
edge computing capabilities continue to advance, we can expect to see similar
distributed ML architectures applied to other domains, from smart cities to
environmental monitoring.

1.9.2 AlphaFold: Scientific ML
AlphaFold, developed by DeepMind, is a landmark achievement in the appli-
cation of machine learning to complex scientific problems. This AI system is
designed to predict the three-dimensional structure of proteins, as shown in
Figure 1.7, from their amino acid sequences, a challenge known as the “protein
folding problem” that has puzzled scientists for decades. AlphaFold’s success
demonstrates how large-scale ML systems can accelerate scientific discovery
and potentially revolutionize fields like structural biology and drug design.
This case study exemplifies the use of advanced ML techniques and massive
computational resources to tackle problems at the frontiers of science.

Figure 1.7: Examples of protein tar-
gets within the free modeling cate-
gory. Source: Google DeepMind

https://deepmind.google/technologies/alphafold/

1.9. Practical Applications 20

1.9.2.1 Data Considerations

The data underpinning AlphaFold’s success is vast and multifaceted. The
primary dataset is the Protein Data Bank (PDB), which contains the experimen-
tally determined structures of over 180,000 proteins. This is complemented
by databases of protein sequences, which number in the hundreds of millions.
AlphaFold also utilizes evolutionary data in the form of multiple sequence
alignments (MSAs), which provide insights into the conservation patterns of
amino acids across related proteins. The challenge lies not just in the volume
of data, but in its quality and representation. Experimental protein structures
can contain errors or be incomplete, requiring sophisticated data cleaning and
validation processes. Moreover, the representation of protein structures and
sequences in a form amenable to machine learning is a significant challenge
in itself. AlphaFold’s data pipeline involves complex preprocessing steps to
convert raw sequence and structural data into meaningful features that capture
the physical and chemical properties relevant to protein folding.

1.9.2.2 Algorithmic Considerations

AlphaFold’s algorithmic approach represents a tour de force in the application
of deep learning to scientific problems. At its core, AlphaFold uses a novel
neural network architecture that combines with techniques from computational
biology. The model learns to predict inter-residue distances and torsion angles,
which are then used to construct a full 3D protein structure. A key innovation
is the use of “equivariant attention” layers that respect the symmetries inherent
in protein structures. The learning process involves multiple stages, includ-
ing initial “pretraining” on a large corpus of protein sequences, followed by
fine-tuning on known structures. AlphaFold also incorporates domain knowl-
edge in the form of physics-based constraints and scoring functions, creating
a hybrid system that leverages both data-driven learning and scientific prior
knowledge. The model’s ability to generate accurate confidence estimates for
its predictions is crucial, allowing researchers to assess the reliability of the
predicted structures.

1.9.2.3 Infrastructure Considerations

The computational demands of AlphaFold epitomize the challenges of large-
scale scientific ML systems. Training the model requires massive parallel com-
puting resources, leveraging clusters of GPUs or TPUs (Tensor Processing Units)
in a distributed computing environment. DeepMind utilized Google’s cloud
infrastructure, with the final version of AlphaFold trained on 128 TPUv3 cores
for several weeks. The inference process, while less computationally intensive
than training, still requires significant resources, especially when predicting
structures for large proteins or processing many proteins in parallel. To make
AlphaFold more accessible to the scientific community, DeepMind has collabo-
rated with the European Bioinformatics Institute to create a public database
of predicted protein structures, which itself represents a substantial comput-
ing and data management challenge. This infrastructure allows researchers
worldwide to access AlphaFold’s predictions without needing to run the model

https://alphafold.ebi.ac.uk/

Chapter 1. Introduction 21

themselves, demonstrating how centralized, high-performance computing re-
sources can be leveraged to democratize access to advanced ML capabilities.

1.9.2.4 Future Implications

AlphaFold’s impact on structural biology has been profound, with the potential
to accelerate research in areas ranging from fundamental biology to drug discov-
ery. By providing accurate structural predictions for proteins that have resisted
experimental methods, AlphaFold opens new avenues for understanding dis-
ease mechanisms and designing targeted therapies. The success of AlphaFold
also serves as a powerful demonstration of how ML can be applied to other
complex scientific problems, potentially leading to breakthroughs in fields
like materials science or climate modeling. However, it also raises important
questions about the role of AI in scientific discovery and the changing nature
of scientific inquiry in the age of large-scale ML systems. As we look to the
future, the AlphaFold approach suggests a new paradigm for scientific ML,
where massive computational resources are combined with domain-specific
knowledge to push the boundaries of human understanding.

1.9.3 Autonomous Vehicles and ML

Waymo, a subsidiary of Alphabet Inc., stands at the forefront of autonomous
vehicle technology, representing one of the most ambitious applications of
machine learning systems to date. Evolving from the Google Self-Driving Car
Project initiated in 2009, Waymo’s approach to autonomous driving exemplifies
how ML systems can span the entire spectrum from embedded systems to cloud
infrastructure. This case study demonstrates the practical implementation of
complex ML systems in a safety-critical, real-world environment, integrating
real-time decision-making with long-term learning and adaptation.

1.9.3.1 Data Considerations

The data ecosystem underpinning Waymo’s technology is vast and dynamic.
Each vehicle serves as a roving data center, its sensor suite, which comprises
LiDAR, radar, and high-resolution cameras, generating approximately one
terabyte of data per hour of driving. This real-world data is complemented
by an even more extensive simulated dataset, with Waymo’s vehicles having
traversed over 20 billion miles in simulation and more than 20 million miles
on public roads. The challenge lies not just in the volume of data, but in its
heterogeneity and the need for real-time processing. Waymo must handle both
structured (e.g., GPS coordinates) and unstructured data (e.g., camera images)
simultaneously. The data pipeline spans from edge processing on the vehicle
itself to massive cloud-based storage and processing systems. Sophisticated data
cleaning and validation processes are necessary, given the safety-critical nature
of the application. Moreover, the representation of the vehicle’s environment in
a form amenable to machine learning presents significant challenges, requiring
complex preprocessing to convert raw sensor data into meaningful features
that capture the dynamics of trafÏc scenarios.

https://waymo.com/

1.9. Practical Applications 22

10 Recurrent Neural Network
(RNN): A type of neural network
specifically designed to handle se-
quential data by maintaining an in-
ternal memory state that allows it
to learn patterns across time, mak-
ing it particularly useful for tasks
like language processing and time
series prediction.

11 Tensor Processing Unit (TPU):
A specialized AI accelerator chip
designed by Google specifically for
neural network machine learning,
particularly efÏcient at matrix op-
erations common in deep learning
workloads.

1.9.3.2 Algorithmic Considerations

Waymo’s ML stack represents a sophisticated ensemble of algorithms tailored
to the multifaceted challenge of autonomous driving. The perception system
employs deep learning techniques, including convolutional neural networks,
to process visual data for object detection and tracking. Prediction models,
needed for anticipating the behavior of other road users, leverage recurrent
neural networks (RNNs)10 to understand temporal sequences. Waymo has
developed custom ML models like VectorNet for predicting vehicle trajectories.
The planning and decision-making systems may incorporate reinforcement
learning or imitation learning techniques to navigate complex trafÏc scenarios.
A key innovation in Waymo’s approach is the integration of these diverse models
into a coherent system capable of real-time operation. The ML models must
also be interpretable to some degree, as understanding the reasoning behind
a vehicle’s decisions is vital for safety and regulatory compliance. Waymo’s
learning process involves continuous refinement based on real-world driving
experiences and extensive simulation, creating a feedback loop that constantly
improves the system’s performance.

1.9.3.3 Infrastructure Considerations

The computing infrastructure supporting Waymo’s autonomous vehicles epito-
mizes the challenges of deploying ML systems across the full spectrum from
edge to cloud. Each vehicle is equipped with a custom-designed compute plat-
form capable of processing sensor data and making decisions in real-time, often
leveraging specialized hardware like GPUs or tensor processing units (TPUs)11.
This edge computing is complemented by extensive use of cloud infrastructure,
leveraging the power of Google’s data centers for training models, running
large-scale simulations, and performing fleet-wide learning. The connectivity
between these tiers is critical, with vehicles requiring reliable, high-bandwidth
communication for real-time updates and data uploading. Waymo’s infras-
tructure must be designed for robustness and fault tolerance, ensuring safe
operation even in the face of hardware failures or network disruptions. The
scale of Waymo’s operation presents significant challenges in data management,
model deployment, and system monitoring across a geographically distributed
fleet of vehicles.

1.9.3.4 Future Implications

Waymo’s impact extends beyond technological advancement, potentially rev-
olutionizing transportation, urban planning, and numerous aspects of daily
life. The launch of Waymo One, a commercial ride-hailing service using au-
tonomous vehicles in Phoenix, Arizona, represents a significant milestone in
the practical deployment of AI systems in safety-critical applications. Waymo’s
progress has broader implications for the development of robust, real-world
AI systems, driving innovations in sensor technology, edge computing, and
AI safety that have applications far beyond the automotive industry. However,
it also raises important questions about liability, ethics, and the interaction
between AI systems and human society. As Waymo continues to expand its

Chapter 1. Introduction 23

12 Data Drift: The gradual
change in the statistical properties of
the target variable (what the model
is trying to predict) over time, which
can degrade model performance
if not properly monitored and ad-
dressed.

13 Backpropagation: The pri-
mary algorithm used to train neu-
ral networks, which calculates how
each parameter in the network
should be adjusted to minimize pre-
diction errors by propagating error
gradients backward through the net-
work layers.

14 Transfer Learning: A machine
learning method where a model de-
veloped for one task is reused as the
starting point for a model on a sec-
ond task, significantly reducing the
amount of training data and compu-
tation required.

operations and explore applications in trucking and last-mile delivery, it serves
as an important test bed for advanced ML systems, driving progress in areas
such as continual learning, robust perception, and human-AI interaction. The
Waymo case study underscores both the tremendous potential of ML systems
to transform industries and the complex challenges involved in deploying AI
in the real world.

1.10 Challenges in ML Systems
Building and deploying machine learning systems presents unique challenges
that go beyond traditional software development. These challenges help explain
why creating effective ML systems is about more than just choosing the right
algorithm or collecting enough data. Let’s explore the key areas where ML
practitioners face significant hurdles.

1.10.1 Data-Related Challenges
The foundation of any ML system is its data, and managing this data introduces
several fundamental challenges. First, there’s the basic question of data quality,
as real-world data is often messy and inconsistent. Imagine a healthcare ap-
plication that needs to process patient records from different hospitals. Each
hospital might record information differently, use different units of measure-
ment, or have different standards for what data to collect. Some records might
have missing information, while others might contain errors or inconsistencies
that need to be cleaned up before the data can be useful.

As ML systems grow, they often need to handle increasingly large amounts
of data. A video streaming service like Netflix, for example, needs to process
billions of viewer interactions to power its recommendation system. This scale
introduces new challenges in how to store, process, and manage such large
datasets efÏciently.

Another critical challenge is how data changes over time. This phenomenon,
known as “data drift”12, occurs when the patterns in new data begin to differ
from the patterns the system originally learned from. For example, many
predictive models struggled during the COVID-19 pandemic because consumer
behavior changed so dramatically that historical patterns became less relevant.
ML systems need ways to detect when this happens and adapt accordingly.

1.10.2 Model-Related Challenges
Creating and maintaining the ML models themselves presents another set of
challenges. Modern ML models, particularly in deep learning, can be extremely
complex. Consider a language model like GPT-3, which has hundreds of bil-
lions of parameters that need to be optimized through backpropagation13. This
complexity creates practical challenges: these models require enormous com-
puting power to train and run, making it difÏcult to deploy them in situations
with limited resources, like on mobile phones or IoT devices.

Training these models effectively is itself a significant challenge. Unlike
traditional programming where we write explicit instructions, ML models
learn from examples through techniques like transfer learning14. This learning

1.10. Challenges in ML Systems 24

15 Inference Attack: A technique
where an adversary attempts to ex-
tract sensitive information about
the training data by making care-
ful queries to a trained model, ex-
ploiting patterns the model may
have inadvertently memorized dur-
ing training.

process involves many choices: How should we structure the model? How long
should we train it? How can we tell if it’s learning the right things? Making
these decisions often requires both technical expertise and considerable trial
and error.

A particularly important challenge is ensuring that models work well in
real-world conditions. A model might perform excellently on its training data
but fail when faced with slightly different situations in the real world. This gap
between training performance and real-world performance is a central challenge
in machine learning, especially for critical applications like autonomous vehicles
or medical diagnosis systems.

1.10.3 System-Related Challenges
Getting ML systems to work reliably in the real world introduces its own
set of challenges. Unlike traditional software that follows fixed rules, ML
systems need to handle uncertainty and variability in their inputs and outputs.
They also typically need both training systems (for learning from data) and
serving systems (for making predictions), each with different requirements and
constraints.

Consider a company building a speech recognition system. They need infras-
tructure to collect and store audio data, systems to train models on this data,
and then separate systems to actually process users’ speech in real-time. Each
part of this pipeline needs to work reliably and efÏciently, and all the parts need
to work together seamlessly.

These systems also need constant monitoring and updating. How do we
know if the system is working correctly? How do we update models without
interrupting service? How do we handle errors or unexpected inputs? These
operational challenges become particularly complex when ML systems are
serving millions of users.

1.10.4 Ethical Considerations
As ML systems become more prevalent in our daily lives, their broader impacts
on society become increasingly important to consider. One major concern is
fairness, as ML systems can sometimes learn to make decisions that discrim-
inate against certain groups of people. This often happens unintentionally,
as the systems pick up biases present in their training data. For example, a
job application screening system might inadvertently learn to favor certain
demographics if those groups were historically more likely to be hired.

Another important consideration is transparency. Many modern ML models,
particularly deep learning models, work as “black boxes”—while they can make
predictions, it’s often difÏcult to understand how they arrived at their decisions.
This becomes particularly problematic when ML systems are making important
decisions about people’s lives, such as in healthcare or financial services.

Privacy is also a major concern. ML systems often need large amounts of data
to work effectively, but this data might contain sensitive personal information.
How do we balance the need for data with the need to protect individual
privacy? How do we ensure that models don’t inadvertently memorize and
reveal private information through inference attacks15? These challenges aren’t

Chapter 1. Introduction 25

merely technical problems to be solved, but ongoing considerations that shape
how we approach ML system design and deployment.

These challenges aren’t merely technical problems to be solved, but ongoing
considerations that shape how we approach ML system design and deployment.
Throughout this book, we’ll explore these challenges in detail and examine
strategies for addressing them effectively.

1.11 Looking Ahead
As we look to the future of machine learning systems, several exciting trends are
shaping the field. These developments promise to both solve existing challenges
and open new possibilities for what ML systems can achieve.

One of the most significant trends is the democratization of AI technology.
Just as personal computers transformed computing from specialized main-
frames to everyday tools, ML systems are becoming more accessible to develop-
ers and organizations of all sizes. Cloud providers now offer pre-trained models
and automated ML platforms that reduce the expertise needed to deploy AI
solutions. This democratization is enabling new applications across industries,
from small businesses using AI for customer service to researchers applying
ML to previously intractable problems.

As concerns about computational costs and environmental impact grow,
there’s an increasing focus on making ML systems more efÏcient. Researchers
are developing new techniques for training models with less data and com-
puting power. Innovation in specialized hardware, from improved GPUs to
custom AI chips, is making ML systems faster and more energy-efÏcient. These
advances could make sophisticated AI capabilities available on more devices,
from smartphones to IoT sensors.

Perhaps the most transformative trend is the development of more autonomous
ML systems that can adapt and improve themselves. These systems are begin-
ning to handle their own maintenance tasks, such as detecting when they need
retraining, automatically finding and correcting errors, and optimizing their
own performance. This automation could dramatically reduce the operational
overhead of running ML systems while improving their reliability.

While these trends are promising, it’s important to recognize the field’s lim-
itations. Creating truly artificial general intelligence remains a distant goal.
Current ML systems excel at specific tasks but lack the flexibility and under-
standing that humans take for granted. Challenges around bias, transparency,
and privacy continue to require careful consideration. As ML systems become
more prevalent, addressing these limitations while leveraging new capabilities
will be crucial.

1.12 Book Structure and Learning Path
This book is designed to guide you from understanding the fundamentals of
ML systems to effectively designing and implementing them. To address the
complexities and challenges of Machine Learning Systems engineering, we’ve
organized the content around five fundamental pillars that encompass the

1.12. Book Structure and Learning Path 26

Figure 1.8: Overview of the five fun-
damental system pillars of Machine
Learning Systems engineering.

lifecycle of ML systems. These pillars provide a framework for understanding,
developing, and maintaining robust ML systems.

As illustrated in Figure 1.8, the five pillars central to the framework are:
• Data: Emphasizing data engineering and foundational principles critical

to how AI operates in relation to data.
• Training: Exploring the methodologies for AI training, focusing on ef-

ficiency, optimization, and acceleration techniques to enhance model
performance.

• Deployment: Encompassing benchmarks, on-device learning strategies,
and machine learning operations to ensure effective model application.

• Operations: Highlighting the maintenance challenges unique to machine
learning systems, which require specialized approaches distinct from
traditional engineering systems.

• Ethics & Governance: Addressing concerns such as security, privacy,
responsible AI practices, and the broader societal implications of AI tech-
nologies.

Each pillar represents a critical phase in the lifecycle of ML systems and is
composed of foundational elements that build upon each other. This structure
ensures a comprehensive understanding of MLSE, from basic principles to
advanced applications and ethical considerations.

For more detailed information about the book’s overview, contents, learning
outcomes, target audience, prerequisites, and navigation guide, please refer to
the About the Book section. There, you’ll also find valuable details about our
learning community and how to maximize your experience with this resource.

Chapter 2

ML Systems

Figure 2.1: DALL·E 3 Prompt: Illustra-
tion in a rectangular format depicting
the merger of embedded systems with
Embedded AI. The left half of the image
portrays traditional embedded systems,
including microcontrollers and proces-
sors, detailed and precise. The right half
showcases the world of artificial intelli-
gence, with abstract representations of
machine learning models, neurons, and
data flow. The two halves are distinctly
separated, emphasizing the individual
significance of embedded tech and AI,
but they come together in harmony at
the center.

Purpose
How do the diverse environments where machine learning operates shape the funda-
mental nature of these systems, and what drives their widespread deployment across
computing platforms?

The deployment of machine learning systems across varied computing envi-
ronments reveals essential insights into the relationship between theoretical
principles and practical implementation. Each computing environment, from
large-scale distributed systems to resource-constrained devices, introduces
distinct requirements that influence both system architecture and algorithmic
approaches. Understanding these relationships reveals core engineering princi-
ples that govern the design of machine learning systems. This understanding
provides a foundation for examining how theoretical concepts translate into
practical implementations, and how system designs adapt to meet diverse
computational, memory, and energy constraints.

27

2.1. Overview 28

L� Learning Objectives

• Understand the key characteristics and differences between Cloud
ML, Edge ML, Mobile ML, and Tiny ML systems.

• Analyze the benefits and challenges associated with each ML
paradigm.

• Explore real-world applications and use cases for Cloud ML, Edge
ML, Mobile ML, and Tiny ML.

• Compare the performance aspects of each ML approach, including
latency, privacy, and resource utilization.

• Examine the evolving landscape of ML systems and potential future
developments.

2.1 Overview

Modern machine learning systems span a spectrum of deployment options,
each with its own set of characteristics and use cases. At one end, we have
cloud-based ML, which leverages powerful centralized computing resources
for complex, data-intensive tasks. Moving along the spectrum, we encounter
edge ML, which brings computation closer to the data source for reduced
latency and improved privacy. Mobile ML further extends these capabilities to
smartphones and tablets, while at the far end, we find Tiny ML, which enables
machine learning on extremely low-power devices with severe memory and
processing constraints.

This spectrum of deployment can be visualized like Earth’s geological fea-
tures, each operating at different scales in our computational landscape. Cloud
ML systems operate like continents, processing vast amounts of data across
interconnected centers; Edge ML exists where these continental powers meet
the sea, creating dynamic coastlines where computation flows into local waters;
Mobile ML moves through these waters like ocean currents, carrying comput-
ing power across the digital seas; and where these currents meet the physical
world, TinyML systems rise like islands, each a precise point of intelligence in
the vast computational ocean.

Figure 2.2 illustrates the spectrum of distributed intelligence across these
approaches, providing a visual comparison of their characteristics. We will
examine the unique characteristics, advantages, and challenges of each ap-
proach, as depicted in the figure. Additionally, we will discuss the emerging
trends and technologies that are shaping the future of machine learning de-
ployment, considering how they might influence the balance between these
three paradigms.

To better understand the dramatic differences between these ML deployment
options, Table 2.1 provides examples of representative hardware platforms
for each category. These examples illustrate the vast range of computational
resources, power requirements, and cost considerations across the ML sys-
tems spectrum. As we explore each paradigm in detail, you can refer back to

Chapter 2. ML Systems 29

Figure 2.2: Cloud vs. Edge vs. Mo-
bile vs. Tiny ML: The Spectrum of
Distributed Intelligence. Source:
ABI Research – Tiny ML.

Gateway

Ultra Low Powered

Devices and Sensors

Intellignet

Device

On Premise

Servers

Cloud

TinyML Cloud AI
Edge AI

Source: ABI Research: TinyML

The Distributed Intelligence Spectrum

these concrete examples to better understand the practical implications of each
approach.

Table 2.1: Representative hardware platforms across the ML systems spectrum,
showing typical specifications and capabilities for each category.

Cate-
gory

Example
Device Processor

Mem-
ory Storage Power

Price
Range

Example
Models/Tasks

Cloud
ML

NVIDIA
DGX A100

8x NVIDIA A100
GPUs (40 GB/80
GB)

1 TB
System
RAM

15 TB
NVMe
SSD

6.5
kW

$200
K+

Large language
models
(GPT-3),
real-time video
processing

Google
TPU v4
Pod

4096 TPU v4 chips 128 TB+ Net-
worked
storage

~MW Pay-
per-
use

Training
foundation
models,
large-scale ML
research

Edge
ML

NVIDIA
Jetson
AGX Orin

12-core Arm®
Cortex®-A78AE,
NVIDIA Ampere
GPU

32 GB
LPDDR5

64GB
eMMC

15-60
W

$899 Computer
vision, robotics,
autonomous
systems

Intel NUC
12 Pro

Intel Core
i7-1260P, Intel Iris
Xe

32 GB
DDR4

1 TB SSD 28 W $750 Edge AI
servers,
industrial
automation

Mobile
ML

iPhone 15
Pro

A17 Pro (6-core
CPU, 6-core GPU)

8 GB
RAM

128 GB-1
TB

3-5
W

$999+ Face ID,
computational
photography,
voice
recognition

Tiny
ML

Arduino
Nano 33
BLE Sense

Arm Cortex-M4 @
64 MHz

256 KB
RAM

1 MB
Flash

0.02-
0.04
W

$35 Gesture
recognition,
voice detection

ESP32-
CAM

Dual-core @
240MHz

520 KB
RAM

4 MB
Flash

0.05-
0.25
W

$10 Image
classification,
motion
detection

The evolution of machine learning systems can be seen as a progression from
centralized to increasingly distributed and specialized computing paradigms:

Cloud ML: Initially, ML was predominantly cloud-based. Powerful, scalable
servers in data centers are used to train and run large ML models. This approach
leverages vast computational resources and storage capacities, enabling the
development of complex models trained on massive datasets. Cloud ML excels
at tasks requiring extensive processing power, distributed training of large

2.1. Overview 30

0 Quantization: Process of reduc-
ing the numerical precision of ML
model parameters to reduce mem-
ory footprint and computational de-
mand.

models, and is ideal for applications where real-time responsiveness isn’t critical.
Popular platforms like AWS SageMaker, Google Cloud AI, and Azure ML offer
flexible, scalable solutions for model development, training, and deployment.
Cloud ML can handle models with billions of parameters, training on petabytes
of data, but may incur latencies of 100-500 ms for online inference due to network
delays.

Edge ML: As the need for real-time, low-latency processing grew, Edge
ML emerged. This paradigm brings inference capabilities closer to the data
source, typically on edge devices such as industrial gateways, smart cameras,
autonomous vehicles, or IoT hubs. Edge ML reduces latency (often to less than
50 ms), enhances privacy by keeping data local, and can operate with inter-
mittent cloud connectivity. It’s particularly useful for applications requiring
quick responses or handling sensitive data in industrial or enterprise settings.
Frameworks like NVIDIA Jetson or Google’s Edge TPU enable powerful ML
capabilities on edge devices. Edge ML plays a crucial role in IoT ecosystems, en-
abling real-time decision making and reducing bandwidth usage by processing
data locally.

Mobile ML: Building on edge computing concepts, Mobile ML focuses on
leveraging the computational capabilities of smartphones and tablets. This
approach enables personalized, responsive applications while reducing reliance
on constant network connectivity. Mobile ML offers a balance between the
power of edge computing and the ubiquity of personal devices. It utilizes on-
device sensors (e.g., cameras, GPS, accelerometers) for unique ML applications.
Frameworks like TensorFlow Lite and Core ML allow developers to deploy
optimized models on mobile devices, with inference times often under 30 ms
for common tasks. Mobile ML enhances privacy by keeping personal data on
the device and can operate ofÒine, but must balance model performance with
device resource constraints (typically 4-8 GB RAM, 100-200 GB storage).

Tiny ML: The latest development in this progression is Tiny ML, which
enables ML models to run on extremely resource-constrained microcontrollers
and small embedded systems. Tiny ML allows for on-device inference without
relying on connectivity to the cloud, edge, or even the processing power of
mobile devices. This approach is crucial for applications where size, power
consumption, and cost are critical factors. Tiny ML devices typically operate
with less than 1 MB of RAM and flash memory, consuming only milliwatts of
power, enabling battery life of months or years. Applications include wake
word detection, gesture recognition, and predictive maintenance in industrial
settings. Platforms like Arduino Nano 33 BLE Sense and STM32 microcon-
trollers, coupled with frameworks like TensorFlow Lite for Microcontrollers,
enable ML on these tiny devices. However, Tiny ML requires significant model
optimization and quantization0 to fit within these constraints.

Each of these paradigms has its own strengths and is suited to different use
cases:

• Cloud ML remains essential for tasks requiring massive computational
power or large-scale data analysis.

• Edge ML is ideal for applications needing low-latency responses or local
data processing in industrial or enterprise environments.

Chapter 2. ML Systems 31

1 The cloud refers to networks
of remote computing servers that
provide scalable storage, processing
power, and specialized services for
deploying machine learning mod-
els.

2 Recommendation systems: An
AI technology used to personalize
user experiences by predicting and
showcasing what users would enjoy
or find suitable based on their past
behavior or interactions.

3 Natural Language Processing
(NLP): A branch of AI that gives
machines the ability to read, under-
stand and derive meaning from hu-
man languages to perform tasks like
translation, sentiment analysis, and
topic classification.

• Mobile ML is suited for personalized, responsive applications on smart-
phones and tablets.

• Tiny ML enables AI capabilities in small, power-efÏcient devices, expand-
ing the reach of ML to new domains.

This progression reflects a broader trend in computing towards more dis-
tributed, localized, and specialized processing. The evolution is driven by the
need for faster response times, improved privacy, reduced bandwidth usage,
and the ability to operate in environments with limited or no connectivity, while
also catering to the specific capabilities and constraints of different types of
devices.

Figure 2.3: From cloud GPUs to mi-
crocontrollers: Navigating the mem-
ory and storage landscape across
computing devices. Source: (Ji Lin,
Zhu, et al. 2023)

Cloud AI

(NVIDIA V100)

Mobile AI

(iPhone 11)

Tiny AI

(STM32F746)
ResNet-50 MobileNetV2

MobileNetV2

(int8)

Memory 16 GB 4 GB 320 kB 7.2 MB 6.8 MB 1.7 MB

Storage TB ∼ PB > 64 GB 1 MB 102 MB 13.6 MB 3.4 MB

4× 3100× gap

1000× 6400× gap

Figure 2.3 illustrates the key differences between Cloud ML, Edge ML, Mobile
ML, and Tiny ML in terms of hardware, latency, connectivity, power require-
ments, and model complexity. As we move from Cloud to Edge to Tiny ML,
we see a dramatic reduction in available resources, which presents significant
challenges for deploying sophisticated machine learning models. This resource
disparity becomes particularly apparent when attempting to deploy deep learn-
ing models on microcontrollers, the primary hardware platform for Tiny ML.
These tiny devices have severely constrained memory and storage capacities,
which are often insufÏcient for conventional deep learning models. We will
learn to put these things into perspective in this chapter.

2.2 Cloud-Based Machine Learning
The vast computational demands of modern machine learning often require
the scalability and power of centralized cloud1 infrastructures. Cloud Machine
Learning (Cloud ML) handles tasks such as large-scale data processing, col-
laborative model development, and advanced analytics. Cloud data centers
leverage distributed architectures, offering specialized resources to train com-
plex models and support diverse applications, from recommendation systems2

to natural language processing3.

�� Definition of Cloud ML

Cloud Machine Learning (Cloud ML) refers to the deployment of ma-
chine learning models on centralized computing infrastructures, such as
data centers. These systems operate in the kilowatt to megawatt power
range and utilize specialized computing systems to handle large-scale datasets
and train complex models. Cloud ML offers scalability and computational
capacity, making it well-suited for tasks requiring extensive resources

2.2. Cloud-Based Machine Learning 32

4 Tensor Processing Units (TPUs)
are Google’s custom-designed AI
accelerator chips optimized for ma-
chine learning workloads, particu-
larly deep neural network training
and inference.

5 Virtual platforms abstract phys-
ical hardware through software in-
terfaces, enabling efÏcient resource
management and automated scal-
ing across multiple users without
direct hardware interaction.

6 While centralized infrastruc-
ture enables efÏcient resource man-
agement and scalability, increasing
physical distance between data cen-
ters and end-users can introduce la-
tency and data privacy challenges.

and collaboration. However, it depends on consistent connectivity and
may introduce latency for real-time applications.

Figure 2.4 provides an overview of Cloud ML’s capabilities, which we will
discuss in greater detail throughout this section.

Figure 2.4: Section overview for
Cloud ML.

2.2.1 Characteristics

One of the key characteristics of Cloud ML is its centralized infrastructure.
Figure 2.5 illustrates this concept with an example from Google’s Cloud TPU4

data center. Cloud service providers offer a virtual platform5 that consists
of high-capacity servers, expansive storage solutions, and robust networking
architectures, all housed in data centers distributed across the globe. As shown
in the figure, these centralized facilities can be massive in scale, housing rows
upon rows of specialized hardware. This centralized setup allows for the
pooling and efÏcient management of computational resources, making it easier
to scale machine learning projects as needed.6

Cloud ML excels in its ability to process and analyze massive volumes of data.
The centralized infrastructure is designed to handle complex computations and
model training tasks that require significant computational power. By lever-
aging the scalability of the cloud, machine learning models can be trained on
vast amounts of data, leading to improved learning capabilities and predictive
performance.

../training/training.qmd

Chapter 2. ML Systems 33

Figure 2.5: Cloud TPU data center
at Google. Source: Google.

7 Internet of Things (IoT): A sys-
tem of interrelated computing de-
vices, mechanical and digital ma-
chines, capable of transferring data
over a network without human-to-
human or human-to-computer inter-
action.

8 Capital Expenditure (CapEx):
Funds used by a company to ac-
quire or upgrade physical assets
such as property, industrial build-
ings or equipment.

Another advantage of Cloud ML is the flexibility it offers in terms of deploy-
ment and accessibility. Once a machine learning model is trained and validated,
it can be deployed through cloud-based APIs and services, making it accessible
to users worldwide. This enables seamless integration of ML capabilities into
applications across mobile, web, and IoT platforms7, regardless of the end user’s
computational resources.

Cloud ML promotes collaboration and resource sharing among teams and or-
ganizations. The centralized nature of the cloud infrastructure enables multiple
data scientists and engineers to access and work on the same machine learning
projects simultaneously. This collaborative approach facilitates knowledge
sharing, accelerates the development cycle from experimentation to production,
and optimizes resource utilization across teams.

By leveraging the pay-as-you-go pricing model offered by cloud service
providers, Cloud ML allows organizations to avoid the upfront capital expen-
diture8 associated with building and maintaining dedicated ML infrastructure.
The ability to scale resources up during intensive training periods and down
during lower demand ensures cost-effectiveness and financial flexibility in
managing machine learning projects.

Cloud ML has revolutionized the way machine learning is approached, de-
mocratizing access to advanced AI capabilities and making them more accessi-
ble, scalable, and efÏcient. It has enabled organizations of all sizes to harness the
power of machine learning without requiring specialized hardware expertise
or significant infrastructure investments.

2.2.2 Benefits

Cloud ML offers several significant benefits that make it a powerful choice for
machine learning projects:

One of the key advantages of Cloud ML is its ability to provide vast com-
putational resources. The cloud infrastructure is designed to handle complex
algorithms and process large datasets efÏciently. This is particularly beneficial
for machine learning models that require significant computational power, such

https://blog.google/technology/ai/google-gemini-ai/#scalable-efficient

2.2. Cloud-Based Machine Learning 34

as deep learning networks or models trained on massive datasets. By lever-
aging the cloud’s computational capabilities, organizations can overcome the
limitations of local hardware setups and scale their machine learning projects
to meet demanding requirements.

Cloud ML offers dynamic scalability, allowing organizations to easily adapt to
changing computational needs. As the volume of data grows or the complexity
of machine learning models increases, the cloud infrastructure can seamlessly
scale up or down to accommodate these changes. This flexibility ensures con-
sistent performance and enables organizations to handle varying workloads
without the need for extensive hardware investments. With Cloud ML, re-
sources can be allocated on-demand, providing a cost-effective and efÏcient
solution for managing machine learning projects.

Cloud ML platforms provide access to a wide range of advanced tools and al-
gorithms specifically designed for machine learning. These tools often include
pre-built models, AutoML capabilities, and specialized APIs that simplify the
development and deployment of machine learning solutions. Developers can
leverage these resources to accelerate the building, training, and optimization
of sophisticated models. By utilizing the latest advancements in machine learn-
ing algorithms and techniques, organizations can implement state-of-the-art
solutions without needing to develop them from scratch.

Cloud ML fosters a collaborative environment that enables teams to work
together seamlessly. The centralized nature of the cloud infrastructure allows
multiple data scientists and engineers to access and contribute to the same ma-
chine learning projects simultaneously. This collaborative approach facilitates
knowledge sharing, promotes cross-functional collaboration, and accelerates
the development and iteration of machine learning models. Teams can easily
share code, datasets, and results through version control and project manage-
ment tools integrated with cloud platforms.

Adopting Cloud ML can be a cost-effective solution for organizations, espe-
cially compared to building and maintaining an on-premises machine learning
infrastructure. Cloud service providers offer flexible pricing models, such as
pay-as-you-go or subscription-based plans, allowing organizations to pay only
for the resources they consume. This eliminates the need for upfront capital
investments in specialized hardware like GPUs and TPUs, reducing the overall
cost of implementing machine learning projects. Additionally, the ability to
automatically scale down resources during periods of low utilization ensures
organizations only pay for what they actually use.

The benefits of Cloud ML, including its immense computational power, dy-
namic scalability, access to advanced tools and algorithms, collaborative envi-
ronment, and cost-effectiveness, make it a compelling choice for organizations
looking to harness the potential of machine learning. By leveraging the capabili-
ties of the cloud, organizations can accelerate their machine learning initiatives,
drive innovation, and gain a competitive edge in today’s data-driven landscape.

2.2.3 Challenges
While Cloud ML offers numerous benefits, it also comes with certain challenges
that organizations need to consider:

Chapter 2. ML Systems 35

9 GDPR (General Data Protection
Regulation) and HIPAA (Health In-
surance Portability and Accountabil-
ity Act): Regulations governing data
protection and maintaining data pri-
vacy in EU and US respectively.

Latency is a primary concern in Cloud ML, particularly for applications
requiring real-time responses. The process of transmitting data to centralized
cloud servers for processing and then back to applications introduces delays.
This can significantly impact time-sensitive scenarios like autonomous vehicles,
real-time fraud detection, and industrial control systems where immediate
decision-making is crucial. Organizations must implement careful system
design to minimize latency and ensure acceptable response times.

Data privacy and security represent critical challenges when centralizing
processing and storage in the cloud. Sensitive data transmitted to remote data
centers becomes potentially vulnerable to cyber-attacks and unauthorized ac-
cess. Cloud environments often attract hackers seeking to exploit vulnerabilities
in valuable information repositories. Organizations must implement robust
security measures including encryption, strict access controls, and continuous
monitoring. Additionally, compliance with regulations like GDPR or HIPAA9

becomes increasingly complex when handling sensitive data in cloud environ-
ments.

Cost management becomes increasingly important as data processing re-
quirements grow. Although Cloud ML provides scalability and flexibility,
organizations processing large data volumes may experience escalating costs
with increased cloud resource consumption. The pay-as-you-go pricing model
can quickly accumulate expenses, especially for compute-intensive operations
like model training and inference. Effective cloud adoption requires careful
monitoring and optimization of usage patterns. Organizations should consider
implementing data compression techniques, efÏcient algorithmic design, and
resource allocation optimization to balance cost-effectiveness with performance
requirements.

Network dependency presents another significant challenge for Cloud ML
implementations. The requirement for stable and reliable internet connectivity
means that any disruptions in network availability directly impact system per-
formance. This dependency becomes particularly problematic in environments
with limited, unreliable, or expensive network access. Building resilient ML
systems requires robust network infrastructure complemented by appropriate
failover mechanisms or ofÒine processing capabilities.

Vendor lock-in often emerges as organizations adopt specific tools, APIs, and
services from their chosen cloud provider. This dependency can complicate
future transitions between providers or platform migrations. Organizations
may encounter challenges with portability, interoperability, and cost implica-
tions when considering changes to their cloud ML infrastructure. Strategic
planning should include careful evaluation of vendor offerings, consideration of
long-term goals, and preparation for potential migration scenarios to mitigate
lock-in risks.

Addressing these challenges requires thorough planning, thoughtful archi-
tectural design, and comprehensive risk mitigation strategies. Organizations
must balance Cloud ML benefits against potential challenges based on their
specific requirements, data sensitivity concerns, and business objectives. Proac-
tive approaches to these challenges enable organizations to effectively leverage
Cloud ML while maintaining data privacy, security, cost-effectiveness, and
system reliability.

2.2. Cloud-Based Machine Learning 36

10 Virtual assistants exemplify
hybrid ML architecture by combin-
ing local wake word detection via
Tiny ML with cloud-based natural
language processing. This design
optimizes for both power efÏciency
and sophisticated language under-
standing capabilities while main-
taining responsiveness.

11 Anomaly Detection Systems:
Machine learning systems designed
to identify unusual patterns or out-
liers in the data which may indicate
suspicious or abnormal behavior.

2.2.4 Use Cases

Cloud ML has found widespread adoption across various domains, revolu-
tionizing the way businesses operate and users interact with technology. Let’s
explore some notable examples of Cloud ML in action:

Cloud ML plays a crucial role in powering virtual assistants like Siri and
Alexa. These systems leverage the immense computational capabilities of the
cloud to process and analyze voice inputs in real-time. By harnessing the power
of natural language processing and machine learning algorithms, virtual assis-
tants can understand user queries, extract relevant information, and generate
intelligent and personalized responses. The cloud’s scalability and processing
power enable these assistants to handle a vast number of user interactions
simultaneously, providing a seamless and responsive user experience.10

Cloud ML forms the backbone of advanced recommendation systems used
by platforms like Netflix and Amazon. These systems use the cloud’s ability
to process and analyze massive datasets to uncover patterns, preferences, and
user behavior. By leveraging collaborative filtering and other machine learning
techniques, recommendation systems can offer personalized content or product
suggestions tailored to each user’s interests. The cloud’s scalability allows
these systems to continuously update and refine their recommendations based
on the ever-growing amount of user data, enhancing user engagement and
satisfaction.

In the financial industry, Cloud ML has revolutionized fraud detection sys-
tems. By leveraging the cloud’s computational power, these systems can analyze
vast amounts of transactional data in real-time to identify potential fraudulent
activities. Machine learning algorithms trained on historical fraud patterns can
detect anomalies and suspicious behavior, enabling financial institutions to take
proactive measures to prevent fraud and minimize financial losses. The cloud’s
ability to process and store large volumes of data makes it an ideal platform for
implementing robust and scalable fraud detection systems.

Cloud ML is deeply integrated into our online experiences, shaping the way
we interact with digital platforms. From personalized ads on social media feeds
to predictive text features in email services, Cloud ML powers smart algorithms
that enhance user engagement and convenience. It enables e-commerce sites to
recommend products based on a user’s browsing and purchase history, fine-
tunes search engines to deliver accurate and relevant results, and automates the
tagging and categorization of photos on platforms like Facebook. By leveraging
the cloud’s computational resources, these systems can continuously learn and
adapt to user preferences, providing a more intuitive and personalized user
experience.

Cloud ML plays a role in bolstering user security by powering anomaly
detection systems11. These systems continuously monitor user activities and
system logs to identify unusual patterns or suspicious behavior. By analyzing
vast amounts of data in real-time, Cloud ML algorithms can detect potential
cyber threats, such as unauthorized access attempts, malware infections, or data
breaches. The cloud’s scalability and processing power enable these systems
to handle the increasing complexity and volume of security data, providing a
proactive approach to protecting users and systems from potential threats.

Chapter 2. ML Systems 37

12 Gateways: Network nodes
that act as a bridge between differ-
ent networks.

13 IoT Hubs: Devices or services
that manage data communication
between IoT devices and the cloud.

2.3 Edge Machine Learning
As machine learning applications grow, so does the need for faster, localized
decision-making. Edge Machine Learning (Edge ML) shifts computation away
from centralized servers, processing data closer to its source. This paradigm
is critical for time-sensitive applications, such as autonomous systems, indus-
trial IoT, and smart infrastructure, where minimizing latency and preserving
data privacy are paramount. Edge devices, like gateways12 and IoT hubs,13

enable these systems to function efÏciently while reducing dependence on
cloud infrastructures.

�� Definition of Edge ML

EdgeMachine Learning (EdgeML)describes the deployment of machine
learning models at or near the edge of the network. These systems operate in
the tens to hundreds of watts range and rely on localized hardware optimized
for real-time processing. Edge ML minimizes latency and enhances privacy
by processing data locally, but its primary limitation lies in restricted
computational resources.

Figure 2.6 provides an overview of this section.

Figure 2.6: Section overview for
Edge ML.

2.3.1 Characteristics
In Edge ML, data processing happens in a decentralized fashion, as illustrated
in Figure 2.7. Instead of sending data to remote servers, the data is processed
locally on devices like smartphones, tablets, or Internet of Things (IoT) devices.
The figure showcases various examples of these edge devices, including wear-
ables, industrial sensors, and smart home appliances. This local processing
allows devices to make quick decisions based on the data they collect without
relying heavily on a central server’s resources.

2.3. Edge Machine Learning 38

Figure 2.7: Edge ML Examples.
Source: Edge Impulse.

Local data storage and computation are key features of Edge ML. This setup
ensures that data can be stored and analyzed directly on the devices, thereby
maintaining the privacy of the data and reducing the need for constant inter-
net connectivity. Moreover, this approach reduces latency in decision-making
processes, as computations occur closer to where data is generated. This prox-
imity not only enhances real-time capabilities but also often results in more
efÏcient resource utilization, as data doesn’t need to travel across networks,
saving bandwidth and energy consumption.

2.3.2 Benefits
One of Edge ML’s main advantages is the significant latency reduction compared
to Cloud ML. This reduced latency can be a critical benefit in situations where
milliseconds count, such as in autonomous vehicles, where quick decision-
making can mean the difference between safety and an accident.

Edge ML also offers improved data privacy, as data is primarily stored and
processed locally. This minimizes the risk of data breaches that are more
common in centralized data storage solutions. Sensitive information can be
kept more secure, as it’s not sent over networks that could be intercepted.

Operating closer to the data source means less data must be sent over net-
works, reducing bandwidth usage. This can result in cost savings and efÏciency
gains, especially in environments where bandwidth is limited or costly.

2.3.3 Challenges
However, Edge ML has its challenges. One of the main concerns is the limited
computational resources compared to cloud-based solutions. Endpoint devices
may have a different processing power or storage capacity than cloud servers,
limiting the complexity of the machine learning models that can be deployed.

Managing a network of edge nodes can introduce complexity, especially
regarding coordination, updates, and maintenance. Ensuring all nodes operate

Chapter 2. ML Systems 39

14 Industrial IoT (IoT) encom-
passes interconnected sensors, in-
struments, and devices networked
together within industrial applica-
tions. It enables data collection,
exchange, and analysis to improve
manufacturing and industrial pro-
cesses through machine learning
and automation.

seamlessly and are up-to-date with the latest algorithms and security protocols
can be a logistical challenge.

While Edge ML offers enhanced data privacy, edge nodes can sometimes
be more vulnerable to physical and cyber-attacks. Developing robust security
protocols that protect data at each node without compromising the system’s
efÏciency remains a significant challenge in deploying Edge ML solutions.

2.3.4 Use Cases
Edge ML has many applications, from autonomous vehicles and smart homes
to industrial Internet of Things (IoT). These examples were chosen to highlight
scenarios where real-time data processing, reduced latency, and enhanced
privacy are not just beneficial but often critical to the operation and success of
these technologies. They demonstrate the role that Edge ML can play in driving
advancements in various sectors, fostering innovation, and paving the way for
more intelligent, responsive, and adaptive systems.

Autonomous vehicles stand as a prime example of Edge ML’s potential. These
vehicles rely heavily on real-time data processing to navigate and make de-
cisions. Localized machine learning models assist in quickly analyzing data
from various sensors to make immediate driving decisions, ensuring safety
and smooth operation.

Edge ML plays a crucial role in efÏciently managing various systems in smart
homes and buildings, from lighting and heating to security. By processing
data locally, these systems can operate more responsively and harmoniously
with the occupants’ habits and preferences, creating a more comfortable living
environment.

The Industrial IoT14 leverages Edge ML to monitor and control complex
industrial processes. Here, machine learning models can analyze data from
numerous sensors in real-time, enabling predictive maintenance, optimizing
operations, and enhancing safety measures. This revolution in industrial au-
tomation and efÏciency is transforming manufacturing and production across
various sectors.

The applicability of Edge ML is vast and not limited to these examples.
Various other sectors, including healthcare, agriculture, and urban planning, are
exploring and integrating Edge ML to develop innovative solutions responsive
to real-world needs and challenges, heralding a new era of smart, interconnected
systems.

2.4 Mobile Machine Learning
Machine learning is increasingly being integrated into portable devices like
smartphones and tablets, empowering users with real-time, personalized capa-
bilities. Mobile Machine Learning (Mobile ML) supports applications like voice
recognition, computational photography, and health monitoring, all while main-
taining data privacy through on-device computation. These battery-powered
devices are optimized for responsiveness and can operate ofÒine, making them
indispensable in everyday consumer technologies.

2.4. Mobile Machine Learning 40

15 System-on-Chip (SoC): An in-
tegrated circuit that packages essen-
tial components of a computer or
other system into a single chip.

16 Neural Processing Unit (NPU):
A specialized hardware unit de-
signed for accelerated processing
of AI and machine learning algo-
rithms.

17 Model compression re-
duces ML model size through tech-
niques like pruning, quantization,
and knowledge distillation. This
process decreases memory require-
ments and computational demands
while preserving key model func-
tionality, enabling efÏcient deploy-
ment on resource-constrained de-
vices.

�� Definition of Mobile ML

Mobile Machine Learning (Mobile ML) enables machine learning mod-
els to run directly on portable, battery-powered devices like smartphones and
tablets. Operating within the single-digit to tens of watts range, Mobile ML
leverages on-device computation to provide personalized and responsive appli-
cations. This paradigm preserves privacy and ensures ofÒine functionality,
though it must balance performance with battery and storage limitations.

2.4.1 Characteristics
Mobile ML utilizes the processing power of mobile devices’ System-on-Chip
(SoC)15 architectures, including specialized Neural Processing Units (NPUs)16

and AI accelerators. This enables efÏcient execution of ML models directly on
the device, allowing for real-time processing of data from device sensors like
cameras, microphones, and motion sensors without constant cloud connectivity.

Mobile ML is supported by specialized frameworks and tools designed specif-
ically for mobile deployment, such as TensorFlow Lite for Android devices and
Core ML for iOS devices. These frameworks are optimized for mobile hard-
ware and provide efÏcient model compression17 and quantization techniques
to ensure smooth performance within mobile resource constraints.

2.4.2 Benefits
Mobile ML enables real-time processing of data directly on mobile devices,
eliminating the need for constant server communication. This results in faster
response times for applications requiring immediate feedback, such as real-time
translation, face detection, or gesture recognition.

By processing data locally on the device, Mobile ML helps maintain user
privacy. Sensitive information doesn’t need to leave the device, reducing the
risk of data breaches and addressing privacy concerns, particularly important
for applications handling personal data.

Mobile ML applications can function without constant internet connectivity,
making them reliable in areas with poor network coverage or when users are
ofÒine. This ensures consistent performance and user experience regardless of
network conditions.

2.4.3 Challenges
Despite modern mobile devices being powerful, they still face resource con-
straints compared to cloud servers. Mobile ML must operate within limited
RAM, storage, and processing power, requiring careful optimization of models
and efÏcient resource management.

ML operations can be computationally intensive, potentially impacting device
battery life. Developers must balance model complexity and performance with
power consumption to ensure reasonable battery life for users.

Mobile devices have limited storage space, necessitating careful considera-
tion of model size. This often requires model compression and quantization
techniques, which can affect model accuracy and performance.

Chapter 2. ML Systems 41

2.4.4 Use Cases

Mobile ML has revolutionized how we use cameras on mobile devices, enabling
sophisticated computer vision applications that process visual data in real-time.
Modern smartphone cameras now incorporate ML models that can detect faces,
analyze scenes, and apply complex filters instantaneously. These models work
directly on the camera feed to enable features like portrait mode photogra-
phy, where ML algorithms separate foreground subjects from backgrounds.
Document scanning applications use ML to detect paper edges, correct per-
spective, and enhance text readability, while augmented reality applications
use ML-powered object detection to accurately place virtual objects in the real
world.

Natural language processing on mobile devices has transformed how we
interact with our phones and communicate with others. Speech recognition
models run directly on device, enabling voice assistants to respond quickly
to commands even without internet connectivity. Real-time translation appli-
cations can now translate conversations and text without sending data to the
cloud, preserving privacy and working reliably regardless of network condi-
tions. Mobile keyboards have become increasingly intelligent, using ML to
predict not just the next word but entire phrases based on the user’s writing
style and context, while maintaining all learning and personalization locally on
the device.

Mobile ML has enabled smartphones and tablets to become sophisticated
health monitoring devices. Through clever use of existing sensors combined
with ML models, mobile devices can now track physical activity, analyze sleep
patterns, and monitor vital signs. For example, cameras can measure heart
rate by detecting subtle color changes in the user’s skin, while accelerometers
and ML models work together to recognize specific exercises and analyze
workout form. These applications process sensitive health data directly on the
device, ensuring privacy while providing users with real-time feedback and
personalized health insights.

Perhaps the most pervasive but least visible application of Mobile ML lies in
how it personalizes and enhances the overall user experience. ML models con-
tinuously analyze how users interact with their devices to optimize everything
from battery usage to interface layouts. These models learn individual usage
patterns to predict which apps users are likely to open next, preload content
they might want to see, and adjust system settings like screen brightness and
audio levels based on environmental conditions and user preferences. This
creates a deeply personalized experience that adapts to each user’s needs while
maintaining privacy by keeping all learning and adaptation on the device itself.

These applications demonstrate how Mobile ML bridges the gap between
cloud-based solutions and edge computing, providing efÏcient, privacy-conscious,
and user-friendly machine learning capabilities on personal mobile devices.
The continuous advancement in mobile hardware capabilities and optimization
techniques continues to expand the possibilities for Mobile ML applications.

2.5. Tiny Machine Learning 42

18 Microcontroller: A com-
pact, low-cost computing device de-
signed for control-oriented applica-
tions. Includes an integrated CPU,
memory, and peripherals.

2.5 Tiny Machine Learning
Tiny Machine Learning (Tiny ML) brings intelligence to the smallest devices,
from microcontrollers18 to embedded sensors, enabling real-time computation
in resource-constrained environments. These systems power applications such
as predictive maintenance, environmental monitoring, and simple gesture
recognition. Tiny ML devices are optimized for energy efÏciency, often running
for months or years on limited power sources, such as coin-cell batteries, while
delivering actionable insights in remote or disconnected environments.

�� Definition of Tiny ML

Tiny Machine Learning (Tiny ML) refers to the execution of machine
learning models on ultra-constrained devices, such as microcontrollers
and sensors. These devices operate in the milliwatt to sub-watt power
range, prioritizing energy efÏciency and compactness. Tiny ML enables
localized decision-making in resource-constrained environments, excelling
in applications where extended operation on limited power sources is required.
However, it is limited by severely restricted computational resources.

Figure 2.8 encapsulates the key aspects of Tiny ML discussed in this section.

Figure 2.8: Section overview for
Tiny ML.

2.5.1 Characteristics
In Tiny ML, the focus, much like in Mobile ML, is on on-device machine learning.
This means that machine learning models are deployed and trained on the
device, eliminating the need for external servers or cloud infrastructures. This
allows Tiny ML to enable intelligent decision-making right where the data
is generated, making real-time insights and actions possible, even in settings
where connectivity is limited or unavailable.

Chapter 2. ML Systems 43

Tiny ML excels in low-power and resource-constrained settings. These envi-
ronments require highly optimized solutions that function within the available
resources. Figure 2.9 showcases an example Tiny ML device kit, illustrating
the compact nature of these systems. These devices can typically fit in the
palm of your hand or, in some cases, are even as small as a fingernail. Tiny
ML meets the need for efÏciency through specialized algorithms and models
designed to deliver decent performance while consuming minimal energy, thus
ensuring extended operational periods, even in battery-powered devices like
those shown.

Figure 2.9: Examples of Tiny ML de-
vice kits. Source: Widening Access
to Applied Machine Learning with
Tiny ML.

2.5.2 Benefits
One of the standout benefits of Tiny ML is its ability to offer ultra-low latency.
Since computation occurs directly on the device, the time required to send
data to external servers and receive a response is eliminated. This is crucial in
applications requiring immediate decision-making, enabling quick responses
to changing conditions.

Tiny ML inherently enhances data security. Because data processing and
analysis happen on the device, the risk of data interception during transmission
is virtually eliminated. This localized approach to data management ensures
that sensitive information stays on the device, strengthening user data security.

Tiny ML operates within an energy-efÏcient framework, a necessity given
its resource-constrained environments. By employing lean algorithms and
optimized computational methods, Tiny ML ensures that devices can execute
complex tasks without rapidly depleting battery life, making it a sustainable
option for long-term deployments.

2.5.3 Challenges
However, the shift to Tiny ML comes with its set of hurdles. The primary
limitation is the devices’ constrained computational capabilities. The need to
operate within such limits means that deployed models must be simplified,
which could affect the accuracy and sophistication of the solutions.

Tiny ML also introduces a complicated development cycle. Crafting light-
weight and effective models demands a deep understanding of machine learn-
ing principles and expertise in embedded systems. This complexity calls for a

https://arxiv.org/pdf/2106.04008.pdf
https://arxiv.org/pdf/2106.04008.pdf
https://arxiv.org/pdf/2106.04008.pdf

2.6. Hybrid Machine Learning 44

19 Predictive maintenance refers
to the use of data-driven, proactive
maintenance methods that predict
equipment failures.

collaborative development approach, where multi-domain expertise is essential
for success.

A central challenge in Tiny ML is model optimization and compression.
Creating machine learning models that can operate effectively within the limited
memory and computational power of microcontrollers requires innovative
approaches to model design. Developers often face the challenge of striking a
delicate balance and optimizing models to maintain effectiveness while fitting
within stringent resource constraints.

2.5.4 Use Cases
In wearables, Tiny ML opens the door to smarter, more responsive gadgets.
From fitness trackers offering real-time workout feedback to smart glasses
processing visual data on the fly, Tiny ML transforms how we engage with
wearable tech, delivering personalized experiences directly from the device.

In industrial settings, Tiny ML plays a significant role in predictive mainte-
nance19. By deploying Tiny ML algorithms on sensors that monitor equipment
health, companies can preemptively identify potential issues, reducing down-
time and preventing costly breakdowns. On-site data analysis ensures quick
responses, potentially stopping minor issues from becoming major problems.

Tiny ML can be employed to create anomaly detection models that identify
unusual data patterns. For instance, a smart factory could use Tiny ML to
monitor industrial processes and spot anomalies, helping prevent accidents
and improve product quality. Similarly, a security company could use Tiny
ML to monitor network trafÏc for unusual patterns, aiding in detecting and
preventing cyber-attacks. Tiny ML could monitor patient data for anomalies in
healthcare, aiding early disease detection and better patient treatment.

In environmental monitoring, Tiny ML enables real-time data analysis from
various field-deployed sensors. These could range from city air quality moni-
toring to wildlife tracking in protected areas. Through Tiny ML, data can be
processed locally, allowing for quick responses to changing conditions and
providing a nuanced understanding of environmental patterns, crucial for
informed decision-making.

In summary, Tiny ML serves as a trailblazer in the evolution of machine
learning, fostering innovation across various fields by bringing intelligence
directly to the edge. Its potential to transform our interaction with technology
and the world is immense, promising a future where devices are connected,
intelligent, and capable of making real-time decisions and responses.

2.6 Hybrid Machine Learning
The increasingly complex demands of modern applications often require a
blend of machine learning approaches. Hybrid Machine Learning (Hybrid
ML) combines the computational power of the cloud, the efÏciency of edge
and mobile devices, and the compact capabilities of Tiny ML. This approach
enables architects to create systems that balance performance, privacy, and re-
source efÏciency, addressing real-world challenges with innovative, distributed
solutions.

Chapter 2. ML Systems 45

�� Definition of Hybrid ML

Hybrid Machine Learning (Hybrid ML) refers to the integration of mul-
tiple ML paradigms, such as Cloud, Edge, Mobile, and Tiny ML, to form
a unified, distributed system. These systems leverage the complementary
strengths of each paradigm while addressing their individual limitations.
Hybrid ML supports scalability, adaptability, and privacy-preserving capabil-
ities, enabling sophisticated ML applications for diverse scenarios. By
combining centralized and decentralized computing, Hybrid ML facili-
tates efÏcient resource utilization while meeting the demands of complex
real-world requirements.

2.6.1 Design Patterns
Design patterns in Hybrid ML represent reusable solutions to common chal-
lenges faced when integrating multiple ML paradigms (cloud, edge, mobile,
and tiny). These patterns guide system architects in combining the strengths
of different approaches, including the computational power of the cloud and
the efÏciency of edge devices, while mitigating their individual limitations. By
following these patterns, architects can address key trade-offs in performance,
latency, privacy, and resource efÏciency.

Hybrid ML design patterns serve as blueprints, enabling the creation of
scalable, efÏcient, and adaptive systems tailored to diverse real-world applica-
tions. Each pattern reflects a specific strategy for organizing and deploying ML
workloads across different tiers of a distributed system, ensuring optimal use
of available resources while meeting application-specific requirements.

2.6.1.1 Train-Serve Split

One of the most common hybrid patterns is the train-serve split, where model
training occurs in the cloud but inference happens on edge, mobile, or tiny
devices. This pattern takes advantage of the cloud’s vast computational re-
sources for the training phase while benefiting from the low latency and privacy
advantages of on-device inference. For example, smart home devices often use
models trained on large datasets in the cloud but run inference locally to ensure
quick response times and protect user privacy. In practice, this might involve
training models on powerful systems like the NVIDIA DGX A100, leveraging
its 8 A100 GPUs and terabyte-scale memory, before deploying optimized ver-
sions to edge devices like the NVIDIA Jetson AGX Orin for efÏcient inference.
Similarly, mobile vision models for computational photography are typically
trained on powerful cloud infrastructure but deployed to run efÏciently on
phone hardware.

2.6.1.2 Hierarchical Processing

Hierarchical processing creates a multi-tier system where data and intelligence
flow between different levels of the ML stack. In industrial IoT applications,
tiny sensors might perform basic anomaly detection, edge devices aggregate

2.6. Hybrid Machine Learning 46

20 Wake-word Detection: The
task of detecting a specific phrase
(wake word) used to activate a voice-
controlled system.

and analyze data from multiple sensors, and cloud systems handle complex
analytics and model updates. For instance, we might see ESP32-CAM devices
performing basic image classification at the sensor level with their minimal 520
KB RAM, feeding data up to Jetson AGX Orin devices for more sophisticated
computer vision tasks, and ultimately connecting to cloud infrastructure for
complex analytics and model updates.

This hierarchy allows each tier to handle tasks appropriate to its capabilities.
Tiny ML devices handle immediate, simple decisions; edge devices manage
local coordination; and cloud systems tackle complex analytics and learning
tasks. Smart city installations often use this pattern, with street-level sensors
feeding data to neighborhood-level edge processors, which in turn connect to
city-wide cloud analytics.

2.6.1.3 Progressive Deployment

Progressive deployment strategies adapt models for different computational
tiers, creating a cascade of increasingly lightweight versions. A model might
start as a large, complex version in the cloud, then be progressively compressed
and optimized for edge servers, mobile devices, and finally tiny sensors. Voice
assistant systems often employ this pattern, where full natural language process-
ing runs in the cloud, while simplified wake-word detection20 runs on-device.
This allows the system to balance capability and resource constraints across the
ML stack.

2.6.1.4 Federated Learning

Federated learning represents a sophisticated hybrid approach where model
training is distributed across many edge or mobile devices while maintaining
privacy. Devices learn from local data and share model updates, rather than raw
data, with cloud servers that aggregate these updates into an improved global
model. This pattern is particularly powerful for applications like keyboard pre-
diction on mobile devices or healthcare analytics, where privacy is paramount
but benefits from collective learning are valuable. The cloud coordinates the
learning process without directly accessing sensitive data, while devices benefit
from the collective intelligence of the network.

2.6.1.5 Collaborative Learning

Collaborative learning enables peer-to-peer learning between devices at the
same tier, often complementing hierarchical structures. Autonomous vehicle
fleets, for example, might share learning about road conditions or trafÏc patterns
directly between vehicles while also communicating with cloud infrastructure.
This horizontal collaboration allows systems to share time-sensitive information
and learn from each other’s experiences without always routing through central
servers.

2.6.2 Real-World Integration
Design patterns establish a foundation for organizing and optimizing ML work-
loads across distributed systems. However, the practical application of these

Chapter 2. ML Systems 47

patterns often requires combining multiple paradigms into integrated work-
flows. Thus, in practice, ML systems rarely operate in isolation. Instead, they
form interconnected networks where each paradigm, including Cloud, Edge,
Mobile, and Tiny ML, plays a specific role while communicating with other
parts of the system. These interconnected networks follow integration patterns
that assign specific roles to Cloud, Edge, Mobile, and Tiny ML systems based
on their unique strengths and limitations. Recall that cloud systems excel at
training and analytics but require significant infrastructure. Edge systems pro-
vide local processing power and reduced latency. Mobile devices offer personal
computing capabilities and user interaction. Tiny ML enables intelligence in
the smallest devices and sensors.

Figure 2.10 illustrates these key interactions through specific connection types:
“Deploy” paths show how models flow from cloud training to various devices,
“Data” and “Results” show information flow from sensors through processing
stages, “Analyze” shows how processed information reaches cloud analytics,
and “Sync” demonstrates device coordination. Notice how data generally flows
upward from sensors through processing layers to cloud analytics, while model
deployments flow downward from cloud training to various inference points.
The interactions aren’t strictly hierarchical. Mobile devices might communicate
directly with both cloud services and tiny sensors, while edge systems can
assist mobile devices with complex processing tasks.

Figure 2.10: Example interaction
patterns between ML paradigms,
showing data flows, model deploy-
ment, and processing relationships
across Cloud, Edge, Mobile, and
Tiny ML systems.

Training

InferenceInference Inference

Processing ProcessingAnalytics

Sensors

TinyML Cloud ML

Data

Deploy Deploy Deploy

Results

Results

Assist

Sync

Results Data

Results

Edge ML Mobile ML

To understand how these labeled interactions manifest in real applications,
let’s explore several common scenarios using Figure 2.10:

• Model Deployment Scenario: A company develops a computer vision
model for defect detection. Following the “Deploy” paths shown in Fig-
ure 2.10, the cloud-trained model is distributed to edge servers in factories,
quality control tablets on the production floor, and tiny cameras embed-
ded in the production line. This showcases how a single ML solution
can be distributed across different computational tiers for optimal perfor-
mance.

2.7. Shared Principles 48

• Data Flow and Analysis Scenario: In a smart agriculture system, soil
sensors (Tiny ML) collect moisture and nutrient data, following the “Data”
path to Tiny ML inference. The “Results” flow to edge processors in local
stations, which process this information and use the “Analyze” path to
send insights to the cloud for farm-wide analytics, while also sharing
results with farmers’ mobile apps. This demonstrates the hierarchical flow
shown in Figure 2.10 from sensors through processing to cloud analytics.

• Edge-Mobile Assistance Scenario: When a mobile app needs to perform
complex image processing that exceeds the phone’s capabilities, it utilizes
the “Assist” connection shown in Figure 2.10. The edge system helps
process the heavier computational tasks, sending back results to enhance
the mobile app’s performance. This shows how different ML tiers can
cooperate to handle demanding tasks.

• Tiny ML-Mobile Integration Scenario: A fitness tracker uses Tiny ML to
continuously monitor activity patterns and vital signs. Using the “Sync”
pathway shown in Figure 2.10, it synchronizes this processed data with
the user’s smartphone, which combines it with other health data before
sending consolidated updates via the “Analyze” path to the cloud for
long-term health analysis. This illustrates the common pattern of tiny
devices using mobile devices as gateways to larger networks.

• Multi-Layer Processing Scenario: In a smart retail environment, tiny sen-
sors monitor inventory levels, using “Data” and “Results” paths to send
inference results to both edge systems for immediate stock management
and mobile devices for staff notifications. Following the “Analyze” path,
the edge systems process this data alongside other store metrics, while the
cloud analyzes trends across all store locations. This demonstrates how
the interactions shown in Figure 2.10 enable ML tiers to work together in
a complete solution.

These real-world patterns demonstrate how different ML paradigms naturally
complement each other in practice. While each approach has its own strengths,
their true power emerges when they work together as an integrated system.
By understanding these patterns, system architects can better design solutions
that effectively leverage the capabilities of each ML tier while managing their
respective constraints.

2.7 Shared Principles
The design and integration patterns illustrate how ML paradigms, such as
Cloud, Edge, Mobile, and Tiny, interact to address real-world challenges. While
each paradigm is tailored to specific roles, their interactions reveal recurring
principles that guide effective system design. These shared principles provide
a unifying framework for understanding both individual ML paradigms and
their hybrid combinations. As we explore these principles, a deeper system de-
sign perspective emerges, showing how different ML implementations, which
are optimized for distinct contexts, converge around core concepts. This con-
vergence forms the foundation for systematically understanding ML systems,
despite their diversity and breadth.

Chapter 2. ML Systems 49

Figure 2.11 illustrates this convergence, highlighting the relationships that
underpin practical system design and implementation. Grasping these princi-
ples is invaluable not only for working with individual ML systems but also
for developing hybrid solutions that leverage their strengths, mitigate their
limitations, and create cohesive, efÏcient ML workflows.

Figure 2.11: Core principles con-
verge across different ML system
implementations, from cloud to
tiny deployments, sharing common
foundations in data pipelines, re-
source management, and system ar-
chitecture.

Cloud ML Data

Centers Training at

Scale

Edge ML Local

Processing Inference

Focus

Mobile ML Personal

DevicesUser

Applications

TinyML Embedded

Systems Resource

Constrained

ML System Implementations

Data Pipeline Collection –

Processing – Deployment

Resource Management

Compute – Memory –

Energy – Network

System Architecture

Models – Hardware –

Software

Core System Principles

Optimization & Efficiency

Model – Hardware –

Energy

Operational Aspects

Deployment – Monitoring

– Updates

Trustworthy AI Security –

Privacy – Reliability

System Considerations

The figure shows three key layers that help us understand how ML systems
relate to each other. At the top, we see the diverse implementations that we
have explored throughout this chapter. Cloud ML operates in data centers,
focusing on training at scale with vast computational resources. Edge ML
emphasizes local processing with inference capabilities closer to data sources.
Mobile ML leverages personal devices for user-centric applications. Tiny ML
brings intelligence to highly constrained embedded systems and sensors.

Despite their distinct characteristics, the arrows in the figure show how
all these implementations connect to the same core system principles. This
reflects an important reality in ML systems, even though they may operate at
dramatically different scales, from cloud systems processing petabytes to tiny
devices handling kilobytes, they all must solve similar fundamental challenges
in terms of:

• Managing data pipelines from collection through processing to deploy-
ment

• Balancing resource utilization across compute, memory, energy, and net-
work

• Implementing system architectures that effectively integrate models, hard-
ware, and software

These core principles then lead to shared system considerations around
optimization, operations, and trustworthiness. This progression helps explain
why techniques developed for one scale of ML system often transfer effectively
to others. The underlying problems, efÏciently processing data, managing
resources, and ensuring reliable operation, remain consistent even as the specific
solutions vary based on scale and context.

2.7. Shared Principles 50

21 Foundation Models: Large-
scale AI models pre-trained on vast
amounts of data that can be adapted
to a wide range of downstream
tasks. Examples include GPT-3,
PaLM, and BERT. These models
demonstrate emergent capabilities
as they scale in size and training
data.

22 The Arduino Nano 33 BLE
Sense, introduced in 2019, is a mi-
crocontroller specifically designed
for Tiny ML applications, featuring
sensors and Bluetooth connectivity
to facilitate on-device intelligence.

Understanding this convergence becomes particularly valuable as we move
towards hybrid ML systems. When we recognize that different ML implementa-
tions share fundamental principles, combining them effectively becomes more
intuitive. We can better appreciate why, for example, a cloud-trained model can
be effectively deployed to edge devices, or why mobile and tiny ML systems
can complement each other in IoT applications.

2.7.1 Implementation Layer
The top layer of Figure 2.11 represents the diverse landscape of ML systems
we’ve explored throughout this chapter. Each implementation addresses spe-
cific needs and operational contexts, yet all contribute to the broader ecosystem
of ML deployment options.

Cloud ML, centered in data centers, provides the foundation for large-scale
training and complex model serving. With access to vast computational re-
sources like the NVIDIA DGX A100 systems we saw in Table 2.1, cloud im-
plementations excel at handling massive datasets and training sophisticated
models. This makes them particularly suited for tasks requiring extensive
computational power, such as training foundation models21 or processing large-
scale analytics.

Edge ML shifts the focus to local processing, prioritizing inference capabili-
ties closer to data sources. Using devices like the NVIDIA Jetson AGX Orin,
edge implementations balance computational power with reduced latency and
improved privacy. This approach proves especially valuable in scenarios re-
quiring quick decisions based on local data, such as industrial automation or
real-time video analytics.

Mobile ML leverages the capabilities of personal devices, particularly smart-
phones and tablets. With specialized hardware like Apple’s A17 Pro chip, mo-
bile implementations enable sophisticated ML capabilities while maintaining
user privacy and providing ofÒine functionality. This paradigm has revolu-
tionized applications from computational photography to on-device speech
recognition.

Tiny ML represents the frontier of embedded ML, bringing intelligence to
highly constrained devices. Operating on microcontrollers like the Arduino
Nano 33 BLE Sense22, tiny implementations must carefully balance functionality
with severe resource constraints. Despite these limitations, Tiny ML enables
ML capabilities in scenarios where power efÏciency and size constraints are
paramount.

2.7.2 System Principles Layer
The middle layer reveals the fundamental principles that unite all ML systems,
regardless of their implementation scale. These core principles remain con-
sistent even as their specific manifestations vary dramatically across different
deployments.

Data Pipeline principles govern how systems handle information flow, from
initial collection through processing to final deployment. In cloud systems, this
might mean processing petabytes of data through distributed pipelines. For
tiny systems, it could involve carefully managing sensor data streams within

Chapter 2. ML Systems 51

23 GPU Clusters: Groups of
GPUs networked together to pro-
vide increased processing power for
tasks like model training.

limited memory. Despite these scale differences, all systems must address the
same fundamental challenges of data ingestion, transformation, and utilization.

Resource Management emerges as a universal challenge across all implemen-
tations. Whether managing thousands of GPUs in a data center or optimizing
battery life on a microcontroller, all systems must balance competing demands
for computation, memory, energy, and network resources. The quantities in-
volved may differ by orders of magnitude, but the core principles of resource
allocation and optimization remain remarkably consistent.

System Architecture principles guide how ML systems integrate models,
hardware, and software components. Cloud architectures might focus on
distributed computing and scalability, while tiny systems emphasize efÏcient
memory mapping and interrupt handling. Yet all must solve fundamental
problems of component integration, data flow optimization, and processing
coordination.

2.7.3 System Considerations Layer
The bottom layer of Figure 2.11 illustrates how fundamental principles manifest
in practical system-wide considerations. These considerations span all ML
implementations, though their specific challenges and solutions vary based on
scale and context.

Optimization and EfÏciency shape how ML systems balance performance
with resource utilization. In cloud environments, this often means optimizing
model training across GPU clusters23 while managing energy consumption
in data centers. Edge systems focus on reducing model size and accelerating
inference without compromising accuracy. Mobile implementations must bal-
ance model performance with battery life and thermal constraints. Tiny ML
pushes optimization to its limits, requiring extensive model compression and
quantization to fit within severely constrained environments. Despite these
different emphases, all implementations grapple with the core challenge of
maximizing performance within their available resources.

Operational Aspects affect how ML systems are deployed, monitored, and
maintained in production environments. Cloud systems must handle contin-
uous deployment across distributed infrastructure while monitoring model
performance at scale. Edge implementations need robust update mechanisms
and health monitoring across potentially thousands of devices. Mobile systems
require seamless app updates and performance monitoring without disrupting
user experience. Tiny ML faces unique challenges in deploying updates to
embedded devices while ensuring continuous operation. Across all scales, the
fundamental problems of deployment, monitoring, and maintenance remain
consistent, even as solutions vary.

Trustworthy AI considerations ensure ML systems operate reliably, securely,
and with appropriate privacy protections. Cloud implementations must secure
massive amounts of data while ensuring model predictions remain reliable
at scale. Edge systems need to protect local data processing while maintain-
ing model accuracy in diverse environments. Mobile ML must preserve user
privacy while delivering consistent performance. Tiny ML systems, despite
their size, must still ensure secure operation and reliable inference. These trust-

2.8. System Comparison 52

worthiness considerations cut across all implementations, reflecting the critical
importance of building ML systems that users can depend on.

The progression through these layers, from diverse implementations through
core principles to shared considerations, reveals why ML systems can be stud-
ied as a unified field despite their apparent differences. While specific solutions
may vary dramatically based on scale and context, the fundamental challenges
remain remarkably consistent. This understanding becomes particularly valu-
able as we move toward increasingly sophisticated hybrid systems that combine
multiple implementation approaches.

The convergence of fundamental principles across ML implementations helps
explain why hybrid approaches work so effectively in practice. As we saw in
our discussion of hybrid ML, different implementations naturally complement
each other precisely because they share these core foundations. Whether we’re
looking at train-serve splits that leverage cloud resources for training and
edge devices for inference, or hierarchical processing that combines Tiny ML
sensors with edge aggregation and cloud analytics, the shared principles enable
seamless integration across scales.

2.7.4 Principles to Practice
This convergence also suggests why techniques and insights often transfer well
between different scales of ML systems. A deep understanding of data pipelines
in cloud environments can inform how we structure data flow in embedded
systems. Resource management strategies developed for mobile devices might
inspire new approaches to cloud optimization. System architecture patterns
that prove effective at one scale often adapt surprisingly well to others.

Understanding these fundamental principles and shared considerations pro-
vides a foundation for comparing different ML implementations more effec-
tively. While each approach has its distinct characteristics and optimal use
cases, they all build upon the same core elements. As we move into our detailed
comparison in the next section, keeping these shared foundations in mind will
help us better appreciate both the differences and similarities between various
ML system implementations.

2.8 System Comparison
Building on the shared principles explored earlier, we can synthesize our under-
standing by examining how the various ML system approaches compare across
different dimensions. This synthesis highlights the trade-offs system designers
often face when choosing deployment options and how these decisions align
with core principles like resource management, data pipelines, and system
architecture.

The relationship between computational resources and deployment location
forms one of the most fundamental comparisons across ML systems. As we
move from cloud deployments to tiny devices, we observe a dramatic reduction
in available computing power, storage, and energy consumption. Cloud ML
systems, with their data center infrastructure, can leverage virtually unlimited
resources, processing data at the scale of petabytes and training models with

Chapter 2. ML Systems 53

billions of parameters. Edge ML systems, while more constrained, still offer
significant computational capability through specialized hardware like edge
GPUs and neural processing units. Mobile ML represents a middle ground,
balancing computational power with energy efÏciency on devices like smart-
phones and tablets. At the far end of the spectrum, TinyML operates under
severe resource constraints, often limited to kilobytes of memory and milliwatts
of power consumption.

Table 2.2: Comparison of feature aspects across Cloud ML, Edge ML, and Tiny
ML.

Aspect Cloud ML Edge ML Mobile ML Tiny ML

Perfor-
mance
Process-
ing
Location

Centralized cloud
servers (Data
Centers)

Local edge devices
(gateways, servers)

Smartphones and
tablets

Ultra-low-power
microcontrollers and
embedded systems

Latency High (100 ms-1000
ms+)

Moderate (10-100 ms) Low-Moderate (5-50
ms)

Very Low (1-10 ms)

Compute
Power

Very High (Multiple
GPUs/TPUs)

High (Edge GPUs) Moderate (Mobile
NPUs/GPUs)

Very Low (MCU/tiny
processors)

Storage
Capacity

Unlimited
(petabytes+)

Large (terabytes) Moderate (gigabytes) Very Limited
(kilobytes-megabytes)

Energy
Con-
sumption

Very High (kW-MW
range)

High (100 s W) Moderate (1-10 W) Very Low (mW
range)

Scalabil-
ity

Excellent (virtually
unlimited)

Good (limited by
edge hardware)

Moderate (per-device
scaling)

Limited (fixed
hardware)

Opera-
tional
Data
Privacy

Basic-Moderate (Data
leaves device)

High (Data stays in
local network)

High (Data stays on
phone)

Very High (Data
never leaves sensor)

Connec-
tivity
Required

Constant
high-bandwidth

Intermittent Optional None

OfÒine
Capabil-
ity

None Good Excellent Complete

Real-time
Process-
ing

Dependent on
network

Good Very Good Excellent

Deploy-
ment
Cost High

($1000s+/month)
Moderate
($100s-1000s)

Low ($0-10s) Very Low ($1-10s)

Hard-
ware
Require-
ments

Cloud infrastructure Edge
servers/gateways

Modern smartphones MCUs/embedded
systems

Develop-
ment
Complex-
ity

High (cloud expertise
needed)

Moderate-High
(edge+networking)

Moderate (mobile
SDKs)

High (embedded
expertise)

Deploy-
ment
Speed

Fast Moderate Fast Slow

The operational characteristics of these systems reveal another important
dimension of comparison. Table 2.2 organizes these characteristics into logical
groupings, highlighting performance, operational considerations, costs, and
development aspects. For instance, latency shows a clear gradient: cloud
systems typically incur delays of 100-1000 ms due to network communication,
while edge systems reduce this to 10-100 ms by processing data locally. Mobile

2.8. System Comparison 54

ML achieves even lower latencies of 5-50 ms for many tasks, and TinyML
systems can respond in 1-10 ms for simple inferences. Similarly, privacy and
data handling improve progressively as computation shifts closer to the data
source, with TinyML offering the strongest guarantees by keeping data entirely
local to the device.

The table is designed to provide a high-level view of how these paradigms
differ across key dimensions, making it easier to understand the trade-offs and
select the most appropriate approach for specific deployment needs.

To complement the details presented in Table 2.2, radar plots are presented
below. These visualizations highlight two critical dimensions: performance
characteristics and operational characteristics. The performance characteristics
plot in Figure 2.12 focuses on latency, compute power, energy consumption,
and scalability. As discussed earlier, Cloud ML demands exceptional compute
power and demonstrates good scalability, making it ideal for large-scale tasks
requiring extensive resources. Tiny ML, in contrast, excels in latency and energy
efÏciency due to its lightweight and localized processing, suitable for low-power,
real-time scenarios. Edge ML and Mobile ML strike a balance, offering moderate
scalability and efÏciency for a variety of applications.

Figure 2.12: a) Performance
characteristics. b) Operational

characteristics.

Figure 2.12:Figure 2.13:

The operational characteristics plot in Figure 2.13 emphasizes data privacy,
connectivity independence, ofÒine capability, and real-time processing. Tiny
ML emerges as a highly independent and private paradigm, excelling in ofÒine
functionality and real-time responsiveness. In contrast, Cloud ML relies on
centralized infrastructure and constant connectivity, which can be a limitation
in scenarios demanding autonomy or low-latency decision-making.

Development complexity and deployment considerations also vary signifi-
cantly across these paradigms. Cloud ML benefits from mature development
tools and frameworks but requires expertise in cloud infrastructure. Edge ML
demands knowledge of both ML and networking protocols, while Mobile ML
developers must understand mobile-specific optimizations and platform con-
straints. TinyML development, though targeting simpler devices, often requires
specialized knowledge of embedded systems and careful optimization to work
within severe resource constraints.

Cost structures differ markedly as well. Cloud ML typically involves ongoing
operational costs for computation and storage, often running into thousands

Chapter 2. ML Systems 55

of dollars monthly for large-scale deployments. Edge ML requires significant
upfront investment in edge devices but may reduce ongoing costs. Mobile ML
leverages existing consumer devices, minimizing additional hardware costs,
while TinyML solutions can be deployed for just a few dollars per device, though
development costs may be higher.

These comparisons reveal that each paradigm has distinct advantages and
limitations. Cloud ML excels at complex, data-intensive tasks but requires
constant connectivity. Edge ML offers a balance of computational power and
local processing. Mobile ML provides personalized intelligence on ubiquitous
devices. TinyML enables ML in previously inaccessible contexts but requires
careful optimization. Understanding these trade-offs is crucial for selecting the
appropriate deployment strategy for specific applications and constraints.

2.9 Deployment Decision Framework
We have examined the diverse paradigms of machine learning systems, in-
cluding Cloud ML, Edge ML, Mobile ML, and Tiny ML, each with its own
characteristics, trade-offs, and use cases. Selecting an optimal deployment
strategy requires careful consideration of multiple factors.

To facilitate this decision-making process, we present a structured frame-
work in Figure 2.14. This framework distills the chapter’s key insights into a
systematic approach for determining the most suitable deployment paradigm
based on specific requirements and constraints.

The framework is organized into five fundamental layers of consideration:
• Privacy: Determines whether processing can occur in the cloud or must

remain local to safeguard sensitive data.
• Latency: Evaluates the required decision-making speed, particularly for

real-time or near-real-time processing needs.
• Reliability: Assesses network stability and its impact on deployment

feasibility.
• Compute Needs: Identifies whether high-performance infrastructure is

required or if lightweight processing sufÏces.
• Cost and Energy EfÏciency: Balances resource availability with financial

and energy constraints, particularly crucial for low-power or budget-
sensitive applications.

As designers progress through these layers, each decision point narrows the
viable options, ultimately guiding them toward one of the four deployment
paradigms. This systematic approach proves valuable across various scenarios.
For instance, privacy-sensitive healthcare applications might prioritize local
processing over cloud solutions, while high-performance recommendation
engines typically favor cloud infrastructure. Similarly, applications requiring
real-time responses often gravitate toward edge or mobile-based deployment.

While not exhaustive, this framework provides a practical roadmap for navi-
gating deployment decisions. By following this structured approach, system
designers can evaluate trade-offs and align their deployment choices with tech-
nical, financial, and operational priorities, even as they address the unique
challenges of each application.

2.10. Conclusion 56

Figure 2.14: A decision flowchart for
selecting the most suitable ML de-
ployment paradigm.

Start

Is privacy critical?

Cloud Processing

Allowed

Local Processing

Preferred

No Yes

Layer: Privacy

Is low latency required

(<10 ms)?

Latency Tolerant Tiny or Edge ML

No Yes

Layer: Performance

Does the model require

significant compute?

Heavy Compute
Lightweight

Processing

Yes No

Layer: Compute Needs

Are there strict cost

constraints?

Flexible Budget
Low-Cost

Options

No Yes

Layer: Cost

Cloud MLEdge ML Mobile ML Tiny ML

Layer: Deployment Options

2.10 Conclusion

This chapter has explored the diverse landscape of machine learning systems,
highlighting their unique characteristics, benefits, challenges, and applications.
Cloud ML leverages immense computational resources, excelling in large-scale
data processing and model training but facing limitations such as latency and
privacy concerns. Edge ML bridges this gap by enabling localized processing,
reducing latency, and enhancing privacy. Mobile ML builds on these strengths,
harnessing the ubiquity of smartphones to provide responsive, user-centric
applications. At the smallest scale, Tiny ML extends the reach of machine
learning to resource-constrained devices, opening new domains of application.

Together, these paradigms reflect an ongoing progression in machine learn-
ing, moving from centralized systems in the cloud to increasingly distributed
and specialized deployments across edge, mobile, and tiny devices. This evolu-
tion marks a shift toward systems that are finely tuned to specific deployment
contexts, balancing computational power, energy efÏciency, and real-time re-

Chapter 2. ML Systems 57

24 Federated learning is an ap-
proach where global models are
trained locally on devices and then
aggregated back on a server, main-
taining user privacy.

25 Hierarchical processing refers
to analyzing and processing data in
a hierarchical manner, often to man-
age computational complexity.

sponsiveness. As these paradigms mature, hybrid approaches are emerging,
blending their strengths to unlock new possibilities—from cloud-based training
paired with edge inference to federated learning24 and hierarchical processing25.

Despite their variety, ML systems can be distilled into a core set of unifying
principles that span resource management, data pipelines, and system architec-
ture. These principles provide a structured framework for understanding and
designing ML systems at any scale. By focusing on these shared fundamentals
and mastering their design and optimization, we can navigate the complexity
of the ML landscape with clarity and confidence. As we continue to advance,
these principles will act as a compass, guiding our exploration and innovation
within the ever-evolving field of machine learning systems. Regardless of how
diverse or complex these systems become, a strong grasp of these foundational
concepts will remain essential to unlocking their full potential.

2.11 Resources

�� Slides

• Embedded Systems Overview.
• Embedded Computer Hardware.
• Embedded I/O.
• Embedded systems software.
• Embedded ML software.
• Embedded Inference.
• Tiny ML on Microcontrollers.
• Tiny ML as a Service (Tiny MLaaS):

—Tiny MLaaS: Introduction.
—Tiny MLaaS: Design Overview.

çĖ Videos

• Coming soon.

¸Î Exercises

To reinforce the concepts covered in this chapter, we have curated a set of
exercises that challenge students to apply their knowledge and deepen
their understanding.

• Coming soon.

https://docs.google.com/presentation/d/1Lgrn7bddHYxyrOmk0JfSVmEBimRePqI7WSliUKRPK9E/edit?resourcekey=0-c5JvfDeqHIdV9A5RMAMAyw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1hDCFcOrZ08kZPhY4DA3gVikGUo47HwNyvqNrLW-t-Tg/edit?resourcekey=0-J6ix5AYvZMGbFFOa7ae4Hw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1rnWh9XC6iCKSx_hQd4xq2iIDlpc-GkBQw_GjzlP5mQc/edit#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1TApZn9xxPWCRY-D-soJ8YOSsfysnccR5UjOyspzeTuU/edit?resourcekey=0-BRWIyCKPLNQFnIfG0fJJ9A#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/17wgAfoF24Rcx7uPrbau0c8FyzXIUWbe48qGGBOXXT-g/edit?resourcekey=0-Uv29DvmF7gYzKdOoRtn0vw#slide=id.g94db9f9f78_0_8
https://docs.google.com/presentation/d/1FOUQ9dbe3l_qTa2AnroSbOz0ykuCz5cbTNO77tvFxEs/edit?usp=drive_link
https://docs.google.com/presentation/d/1jwAZz3UOoJTR8PY6Wa34FxijpoDc9gBM/edit?usp=drive_link&ouid=102419556060649178683&rtpof=true&sd=true
https://docs.google.com/presentation/d/1O7bxb36SnexfDI3iE_p0C8JI_VYXAL8cyAx3JKDfeUo/edit?usp=drive_link
https://docs.google.com/presentation/d/1ZUUHtTbKlzeTwVteQMSztscQmdmMxT1A24pBKSys7g0/edit#slide=id.g94db9f9f78_0_2

Chapter 3

DL Primer

Figure 3.1: DALL·E 3 Prompt: A rect-
angular illustration divided into two
halves on a clean white background. The
left side features a detailed and colorful
depiction of a biological neural network,
showing interconnected neurons with
glowing synapses and dendrites. The
right side displays a sleek and modern
artificial neural network, represented by
a grid of interconnected nodes and edges
resembling a digital circuit. The tran-
sition between the two sides is distinct
but harmonious, with each half clearly
illustrating its respective theme: biolog-
ical on the left and artificial on the right.

Purpose

What inspiration from nature drives the development of machine learning systems, and
how do biological neural processes inform their fundamental design?

The neural systems of nature offer profound insights into information process-
ing and adaptation, inspiring the core principles of modern machine learning.
Translating biological mechanisms into computational frameworks illuminates
fundamental patterns that shape artificial neural networks. These patterns
reveal essential relationships between biological principles and their digital
counterparts, establishing building blocks for understanding more complex
architectures. Analyzing these mappings from natural to artificial provides crit-
ical insights into system design, laying the foundation for exploring advanced
neural architectures and their practical implementations.

59

3.1. Overview 60

L� Learning Objectives

• Understand the biological inspiration for artificial neural networks
and how this foundation informs their design and function.

• Explore the fundamental structure of neural networks, including
neurons, layers, and connections.

• Examine the processes of forward propagation, backward propa-
gation, and optimization as the core mechanisms of learning.

• Understand the complete machine learning pipeline, from pre-
processing through neural computation to post-processing.

• Compare and contrast training and inference phases, understand-
ing their distinct computational requirements and optimizations.

• Learn how neural networks process data to extract patterns and
make predictions, bridging theoretical concepts with computa-
tional implementations.

3.1 Overview
Neural networks, a foundational concept within machine learning and artificial
intelligence, are computational models inspired by the structure and function
of biological neural systems. These networks represent a critical intersection of
algorithms, mathematical frameworks, and computing infrastructure, making
them integral to solving complex problems in AI.

When studying neural networks, it is helpful to place them within the broader
hierarchy of AI and machine learning. Figure 3.2 provides a visual representa-
tion of this context. AI, as the overarching field, encompasses all computational
methods that aim to mimic human cognitive functions. Within AI, machine
learning includes techniques that enable systems to learn patterns from data.
Neural networks, a key subset of ML, form the backbone of more advanced
learning systems, including deep learning, by modeling complex relationships
in data through interconnected computational units.

The emergence of neural networks reflects key shifts in how AI systems
process information across three fundamental dimensions:

• Data: From manually structured and rule-based datasets to raw, high-
dimensional data. Neural networks are particularly adept at learning
from complex and unstructured data, making them essential for tasks
involving images, speech, and text.

• Algorithms: From explicitly programmed rules to adaptive systems ca-
pable of learning patterns directly from data. Neural networks eliminate
the need for manual feature engineering by discovering representations
automatically through layers of interconnected units.

• Computation: From simple, sequential operations to massively parallel
computations. The scalability of neural networks has driven demand
for advanced hardware, such as GPUs, that can efÏciently process large
models and datasets.

Chapter 3. DL Primer 61

Figure 3.2: The diagram illustrates
artificial intelligence as the overarch-
ing field encompassing all computa-
tional methods that mimic human
cognitive functions. Machine learn-
ing is a subset of AI that includes
algorithms capable of learning from
data. Deep learning, a further sub-
set of ML, specifically involves neu-
ral networks that are able to learn
more complex patterns in large vol-
umes of data. Source: NVIDIA.

These shifts emphasize the importance of understanding neural networks, not
only as mathematical constructs but also as practical components of real-world
AI systems. The development and deployment of neural networks require care-
ful consideration of computational efÏciency, data processing workflows, and
hardware optimization. To build a strong foundation, this chapter focuses on
the core principles of neural networks, exploring their structure, functionality,
and learning mechanisms. By understanding these basics, readers will be well-
prepared to delve into more advanced architectures and their systems-level
implications in later chapters.

3.2 The Evolution to Deep Learning
The current era of AI represents a transformative advance in computational
problem-solving, marking the latest stage in an evolution from rule-based
programming through classical machine learning to modern neural networks.
To understand its significance, we must trace this progression and examine how
each approach builds upon and addresses the limitations of its predecessors.

3.2.1 Rule-Based Programming
Traditional programming requires developers to explicitly define rules that
tell computers how to process inputs and produce outputs. Consider a simple
game like Breakout, shown in Figure 3.3. The program needs explicit rules for
every interaction: when the ball hits a brick, the code must specify that the
brick should be removed and the ball’s direction should be reversed. While
this approach works well for games with clear physics and limited states, it
demonstrates an inherent limitation of rule-based systems.

This rules-based paradigm extends to all traditional programming, as illus-
trated in Figure 3.4. The program takes both rules for processing and input
data to produce outputs. Early artificial intelligence research explored whether

3.2. The Evolution to Deep Learning 62

Figure 3.3: Rule-based program-
ming.

if (ball.collide(brick)) {
removeBrick();
ball.dx = 1.1 * (ball.dx);
ball.dy = -1 * (ball.dy);

}

0 Knowledge Engineering:
The process of creating rules and
heuristics for problem-solving and
decision-making within artificial in-
telligence systems.

this approach could scale to solve complex problems by encoding sufÏcient
rules to capture intelligent behavior.

Figure 3.4: Traditional program-
ming.

Traditional Programming Answers

Rules

Data

However, the limitations of rule-based approaches become evident when
addressing complex real-world tasks. Consider the problem of recognizing
human activities, shown in Figure 3.5. Initial rules might appear straightfor-
ward: classify movement below 4 mph as walking and faster movement as
running. Yet real-world complexity quickly emerges. The classification must ac-
count for variations in speed, transitions between activities, and numerous edge
cases. Each new consideration requires additional rules, leading to increasingly
complex decision trees.

Figure 3.5: Activity rules.

This challenge extends to computer vision tasks. Detecting objects like cats in
images would require rules about System Implications: pointed ears, whiskers,
typical body shapes. Such rules would need to account for variations in viewing
angle, lighting conditions, partial occlusions, and natural variations among
instances. Early computer vision systems attempted this approach through
geometric rules but achieved success only in controlled environments with
well-defined objects.

This knowledge engineering approach0 characterized artificial intelligence

Chapter 3. DL Primer 63

1 Expert systems: An AI pro-
gram that leverages expert knowl-
edge in a particular field to answer
questions or solve problems.

2 Feature engineering: The pro-
cess of using domain knowledge to
create features that make machine
learning algorithms work.

research in the 1970s and 1980s. Expert systems1 encoded domain knowledge
as explicit rules, showing promise in specific domains with well-defined pa-
rameters but struggling with tasks humans perform naturally, such as object
recognition, speech understanding, or natural language interpretation. These
limitations highlighted a fundamental challenge: many aspects of intelligent
behavior rely on implicit knowledge that resists explicit rule-based representa-
tion.

3.2.2 Classical Machine Learning
The limitations of pure rule-based systems led researchers to explore approaches
that could learn from data. Machine learning offered a promising direction:
instead of writing rules for every situation, we could write programs that found
patterns in examples. However, the success of these methods still depended
heavily on human insight to define what patterns might be important, a process
known as feature engineering2.

Feature engineering involves transforming raw data into representations
that make patterns more apparent to learning algorithms. In computer vision,
researchers developed sophisticated methods to extract meaningful patterns
from images. The Histogram of Oriented Gradients (HOG) method, shown in
Figure 3.6, exemplifies this approach. HOG works by first identifying edges in
an image, which are places where brightness changes sharply and often indicate
object boundaries. It then divides the image into small cells and measures
how edges are oriented within each cell, summarizing these orientations in a
histogram. This transformation converts raw pixel values into a representation
that captures important shape information while being robust to variations in
lighting and small changes in position.

Figure 3.6: Histogram of Oriented
Gradients (HOG) requires explicit
feature engineering.

Other feature extraction methods like SIFT (Scale-Invariant Feature Trans-
form) and Gabor filters provided different ways to capture patterns in images.
SIFT found distinctive points that could be recognized even when an object’s
size or orientation changed. Gabor filters helped identify textures and repeated
patterns. Each method encoded different types of human insight about what
makes visual patterns recognizable.

These engineered features enabled significant advances in computer vision
during the 2000s. Systems could now recognize objects with some robustness
to real-world variations, leading to applications in face detection, pedestrian

3.2. The Evolution to Deep Learning 64

detection, and object recognition. However, the approach had fundamental
limitations. Experts needed to carefully design feature extractors for each new
problem, and the resulting features might miss important patterns that weren’t
anticipated in their design.

3.2.3 Neural Networks and Representation Learning
Neural networks represent a fundamental shift in how we approach problem
solving with computers, establishing a new programming paradigm that learns
from data rather than following explicit rules. This shift becomes particularly
evident when considering tasks like computer vision—specifically, identifying
objects in images.

�� Definition of Deep Learning

Deep Learning is a subfield of machine learning that utilizes artificial
neural networks with multiple layers to automatically learn hierarchical rep-
resentations from data. This approach enables the extraction of complex
patterns from large datasets, facilitating tasks like image recognition, nat-
ural language processing, and speech recognition without explicit feature
engineering. Deep learning’s effectiveness arises from its ability to learn
features directly from raw data, adapt to diverse data structures, and scale
with increasing data volume.

Unlike traditional programming approaches that require manual rule speci-
fication, deep learning utilizes artificial neural networks with multiple layers
to automatically learn hierarchical representations from data. This enables
systems to extract complex patterns from large datasets, facilitating tasks like
image recognition, natural language processing, and speech recognition with-
out explicit feature engineering. The effectiveness of deep learning comes
from its ability to learn features directly from raw data, adapt to diverse data
structures, and scale with increasing data volume.

Deep learning fundamentally differs by learning directly from raw data. Tra-
ditional programming, as we saw earlier in Figure 3.4, required both rules and
data as inputs to produce answers. Machine learning inverts this relationship,
as shown in Figure 3.7. Instead of writing rules, we provide examples (data)
and their correct answers to discover the underlying rules automatically. This
shift eliminates the need for humans to specify what patterns are important.

Figure 3.7: Deep learning. MachineLearning Rules

Answers

Data

The system discovers these patterns automatically from examples. When
shown millions of images of cats, the system learns to identify increasingly

Chapter 3. DL Primer 65

complex visual patterns, from simple edges to more sophisticated combinations
that make up cat-like features. This mirrors how our own visual system works,
building up understanding from basic visual elements to complex objects.

Unlike traditional approaches where performance often plateaus with more
data and computation, deep learning systems continue to improve as we pro-
vide more resources. More training examples help the system recognize more
variations and nuances. More computational power enables the system to dis-
cover more subtle patterns. This scalability has led to dramatic improvements
in performance; for example, the accuracy of image recognition systems has
improved from 74% in 2012 to over 95% today.

This different approach has profound implications for how we build AI sys-
tems. Deep learning’s ability to learn directly from raw data eliminates the
need for manual feature engineering, but it comes with new demands. We need
sophisticated infrastructure to handle massive datasets, powerful computers to
process this data, and specialized hardware to perform the complex mathemat-
ical calculations efÏciently. The computational requirements of deep learning
have even driven the development of new types of computer chips optimized
for these calculations.

The success of deep learning in computer vision exemplifies how this ap-
proach, when given sufÏcient data and computation, can surpass traditional
methods. This pattern has repeated across many domains, from speech recogni-
tion to game playing, establishing deep learning as a transformative approach
to artificial intelligence.

3.2.4 Neural System Implications
The progression from traditional programming to deep learning represents
not just a shift in how we solve problems, but a fundamental transformation
in computing system requirements. This transformation becomes particularly
critical when we consider the full spectrum of ML systems, from massive cloud
deployments to resource-constrained tiny ML devices.

Traditional programs follow predictable patterns. They execute sequential in-
structions, access memory in regular patterns, and utilize computing resources
in well-understood ways. A typical rule-based image processing system might
scan through pixels methodically, applying fixed operations with modest and
predictable computational and memory requirements. These characteristics
made traditional programs relatively straightforward to deploy across different
computing platforms.

Machine learning with engineered features introduced new complexities.
Feature extraction algorithms required more intensive computation and struc-
tured data movement. The HOG feature extractor discussed earlier, for instance,
requires multiple passes over image data, computing gradients and constructing
histograms. While this increased both computational demands and memory
complexity, the resource requirements remained relatively predictable and
scalable across platforms.

Deep learning, however, fundamentally reshapes system requirements across
multiple dimensions. Table 3.1 shows the evolution of system requirements
across programming paradigms:

3.2. The Evolution to Deep Learning 66

3 Hardware accelerators: Special-
ized hardware designed to perform
certain types of operations more ef-
ficiently than general-purpose com-
puting units.

Table 3.1: Evolution of system requirements across programming paradigms.

System Aspect
Traditional
Programming ML with Features Deep Learning

Computation Sequential, predictable
paths

Structured parallel
operations

Massive matrix parallelism

Memory Access Small, predictable
patterns

Medium, batch-oriented Large, complex hierarchical
patterns

Data Movement Simple input/output
flows

Structured batch
processing

Intensive cross-system
movement

Hardware Needs CPU-centric CPU with vector units Specialized accelerators
Resource Scaling Fixed requirements Linear with data size Exponential with complexity

These differences manifest in several critical ways, with implications across
the entire ML systems spectrum.

3.2.4.1 Computation Patterns

While traditional programs follow sequential logic flows, deep learning requires
massive parallel operations on matrices. This shift explains why conventional
CPUs, designed for sequential processing, prove inefÏcient for neural network
computations. The need for parallel processing has driven the adoption of
specialized hardware architectures, ranging from powerful cloud GPUs to
specialized mobile processors to tiny ML accelerators.

3.2.4.2 Memory Systems

Traditional programs typically maintain small, fixed memory footprints. Deep
learning models, however, must manage parameters across complex memory
hierarchies. Memory bandwidth often becomes the primary performance
bottleneck, creating particular challenges for resource-constrained systems.
This drives different optimization strategies across the ML systems spectrum,
ranging from memory-rich cloud deployments to heavily optimized tiny ML
implementations.

3.2.4.3 System Scaling

Perhaps most importantly, deep learning fundamentally changes how systems
scale and the critical importance of efÏciency. Traditional programs have rela-
tively fixed resource requirements with predictable performance characteristics.
Deep learning systems, however, can consume exponentially more resources as
models grow in complexity. This relationship between model capability and
resource consumption makes system efÏciency a central concern.

The need to bridge algorithmic concepts with hardware realities becomes cru-
cial. While traditional programs map relatively straightforwardly to standard
computer architectures, deep learning requires us to think carefully about:

• How to efÏciently map matrix operations to physical hardware
• Ways to minimize data movement across memory hierarchies
• Methods to balance computational capability with resource constraints
• Techniques to optimize both algorithm and system-level efÏciency

Chapter 3. DL Primer 67

4 Memory architecture: The de-
sign of a computer’s memory sys-
tem, including the physical struc-
ture and components, data organi-
zation and access, and pathways
between memory and computing
units.

These fundamental shifts explain why deep learning has spurred innovations
across the entire computing stack. From specialized hardware accelerators3 to
new memory architectures4 to sophisticated software frameworks, the demands
of deep learning continue to reshape computer system design. Interestingly,
many of these challenges, efÏciency, scaling, and adaptability, are ones that
biological systems have already solved. This brings us to a critical question:
what can we learn from nature’s own information processing system and strive
to mimic them as artificially intelligent systems.

3.3 Biological to Artificial Neurons

The quest to create artificial intelligence has been profoundly influenced by
our understanding of biological intelligence, particularly the human brain.
This isn’t surprising; the brain represents the most sophisticated information
processing system we know of. It is capable of learning, adapting, and solving
complex problems while maintaining remarkable energy efÏciency. The way
our brains function has provided fundamental insights that continue to shape
how we approach artificial intelligence.

3.3.1 Biological Intelligence

When we observe biological intelligence, several key principles emerge. The
brain demonstrates an extraordinary ability to learn from experience, constantly
modifying its neural connections based on new information and interactions
with the environment. This adaptability is fundamental; every experience
potentially alters the brain’s structure and refines its responses for future situ-
ations. This biological capability directly inspired one of the core principles
of machine learning: the ability to learn and improve from data rather than
following fixed, pre-programmed rules.

Another striking feature of biological intelligence is its parallel processing
capability. The brain processes vast amounts of information simultaneously,
with different regions specializing in specific functions while working in con-
cert. This distributed, parallel architecture stands in stark contrast to traditional
sequential computing and has significantly influenced modern AI system de-
sign. The brain’s ability to efÏciently coordinate these parallel processes while
maintaining coherent function represents a level of sophistication we’re still
working to fully understand and replicate.

The brain’s pattern recognition capabilities are particularly noteworthy. Bio-
logical systems excel at identifying patterns in complex, noisy data, whether it
is recognizing faces in a crowd, understanding speech in a noisy environment,
or identifying objects from partial information. This remarkable ability has
inspired numerous AI applications, particularly in computer vision and speech
recognition systems. The brain accomplishes these tasks with an efÏciency that
artificial systems are still striving to match.

Perhaps most remarkably, biological systems achieve all this with incredible
energy efÏciency. The human brain operates on approximately 20 watts of
power, about the same as a low-power light bulb, while performing complex

3.3. Biological to Artificial Neurons 68

cognitive tasks that would require orders of magnitude more power in cur-
rent artificial systems. This efÏciency hasn’t just impressed researchers; it has
become a crucial goal in the development of AI hardware and algorithms.

These biological principles have led to two distinct but complementary ap-
proaches in artificial intelligence. The first attempts to directly mimic neural
structure and function, leading to artificial neural networks and deep learn-
ing architectures that structurally resemble biological neural networks. The
second takes a more abstract approach, adapting biological principles to work
efÏciently within the constraints of computer hardware without necessarily
copying biological structures exactly. In the following sections, we will explore
how these approaches manifest in practice, beginning with the fundamental
building block of neural networks: the neuron itself.

3.3.2 Transition to Artificial Neurons
To understand how biological principles translate into artificial systems, we
must first examine the basic unit of biological information processing: the
neuron. This cellular building block provides the blueprint for its artificial
counterpart and helps us understand how complex neural networks emerge
from simple components working in concert.

In biological systems, the neuron (or cell) is the basic functional unit of the
nervous system. Understanding its structure is crucial before we draw parallels
to artificial systems. Figure 3.8 illustrates the structure of a biological neuron.

Figure 3.8: Bilogical structure of a
neuron and its mapping to an artifi-
cial neuron. Source: Geeksforgeeks

A biological neuron consists of several key components. The central part is the
cell body, or soma, which contains the nucleus and performs the cell’s basic life
processes. Extending from the soma are branch-like structures called dendrites,
which receive signals from other neurons. At the junctions where signals are
passed between neurons are synapses. Finally, a long, slender projection called
the axon conducts electrical impulses away from the cell body to other neurons.

The neuron functions as follows: Dendrites receive inputs from other neurons,
with synapses determining the strength of the connections. The soma integrates
these signals and decides whether to trigger an output signal. If triggered, the
axon transmits this signal to other neurons.

Each element of a biological neuron has a computational analog in artificial
systems, reflecting the principles of learning, adaptability, and efÏciency found

Chapter 3. DL Primer 69

in nature. To better understand how biological intelligence informs artificial
systems, Table 3.2 captures the mapping between the components of biological
and artificial neurons. This should be viewed alongside Figure 3.8 for a complete
picture. Together, they paint a picture of the biological-to-artificial neuron
mapping.

Table 3.2: Mapping the biological neuron structure to an artificial neuron.

Biological Neuron Artificial Neuron

Cell Neuron / Node
Dendrites / Synapse Weights
Soma Net Input
Axon Output

Each component serves a similar function, albeit through vastly different
mechanisms. Here, we explain these mappings and their implications for
artificial neural networks.

1. Cell ⟷ Neuron/Node: The artificial neuron or node serves as the funda-
mental computational unit, mirroring the cell’s role in biological systems.

2. Dendrites/Synapse ⟷ Weights: Weights in artificial neurons represent
connection strengths, analogous to synapses in biological neurons. These
weights are adjustable, enabling learning and optimization over time.

3. Soma ⟷ Net Input: The net input in artificial neurons sums weighted
inputs to determine activation, similar to how the soma integrates signals
in biological neurons.

4. Axon ⟷ Output: The output of an artificial neuron passes processed
information to subsequent network layers, much like an axon transmits
signals to other neurons.

This mapping illustrates how artificial neural networks simplify and abstract
biological processes while preserving their essential computational principles.
However, understanding individual neurons is just the beginning—the true
power of neural networks emerges from how these basic units work together in
larger systems.

3.3.3 Artificial Intelligence
The translation from biological principles to artificial computation requires
a deep appreciation of what makes biological neural networks so effective at
both the cellular and network levels. The brain processes information through
distributed computation across billions of neurons, each operating relatively
slowly compared to silicon transistors. A biological neuron fires at approx-
imately 200Hz, while modern processors operate at gigahertz frequencies.
Despite this speed limitation, the brain’s parallel architecture enables sophis-
ticated real-time processing of complex sensory input, decision making, and
control of behavior.

This computational efÏciency emerges from the brain’s basic organizational
principles. Each neuron acts as a simple processing unit, integrating inputs

3.3. Biological to Artificial Neurons 70

5 Synaptic Plasticity: The abil-
ity of connections between neurons
to change in strength in response to
changes in synaptic activity.

from thousands of other neurons and producing a binary output signal based
on whether this integrated input exceeds a threshold. The connection strengths
between neurons, mediated by synapses, are continuously modified through
experience. This synaptic plasticity5 forms the basis for learning and adap-
tation in biological neural networks. These biological principles suggest key
computational elements needed in artificial neural systems:

• Simple processing units that integrate multiple inputs
• Adjustable connection strengths between units
• Nonlinear activation based on input thresholds
• Parallel processing architecture
• Learning through modification of connection strengths

3.3.4 Computational Translation
We face the challenge of capturing the essence of neural computation within the
rigid framework of digital systems. The implementation of biological principles
in artificial neural systems represents a nuanced balance between biological
fidelity and computational efÏciency. At its core, an artificial neuron captures
the essential computational properties of its biological counterpart through
mathematical operations that can be efÏciently executed on digital hardware.

Table 3.3 provides a systematic view of how key biological features map
to their computational counterparts. Each biological feature has an analog
in computational systems, revealing both the possibilities and limitations of
digital neural implementation, which we will learn more about later.

Table 3.3: Translating biological features to the computing domain.

Biological Feature Computational Translation

Neuron firing Activation function
Synaptic strength Weighted connections
Signal integration Summation operation
Distributed memory Weight matrices
Parallel processing Concurrent computation

The basic computational unit in artificial neural networks, the artificial neu-
ron, simplifies the complex electrochemical processes of biological neurons into
three fundamental operations. First, input signals are weighted, mimicking
how biological synapses modulate incoming signals with different strengths.
Second, these weighted inputs are summed together, analogous to how a bio-
logical neuron integrates incoming signals in its cell body. Finally, the summed
input passes through an activation function that determines the neuron’s out-
put, similar to how a biological neuron fires based on whether its membrane
potential exceeds a threshold.

This mathematical abstraction preserves key computational principles while
enabling efÏcient digital implementation. The weighting of inputs allows the
network to learn which connections are important, just as biological neural
networks strengthen or weaken synaptic connections through experience. The
summation operation captures how biological neurons integrate multiple inputs

Chapter 3. DL Primer 71

into a single decision. The activation function introduces nonlinearity essential
for learning complex patterns, much like the threshold-based firing of biological
neurons.

Memory in artificial neural networks takes a markedly different form from
biological systems. While biological memories are distributed across synap-
tic connections and neural patterns, artificial networks store information in
discrete weights and parameters. This architectural difference reflects the con-
straints of current computing hardware, where memory and processing are
physically separated rather than integrated as in biological systems. Despite
these implementation differences, artificial neural networks achieve similar
functional capabilities in pattern recognition and learning.

The brain’s massive parallelism represents a fundamental challenge in arti-
ficial implementation. While biological neural networks process information
through billions of neurons operating simultaneously, artificial systems ap-
proximate this parallelism through specialized hardware like GPUs and tensor
processing units. These devices efÏciently compute the matrix operations that
form the mathematical foundation of artificial neural networks, achieving par-
allel processing at a different scale and granularity than biological systems.

3.3.5 System Requirements

The computational translation of neural principles creates specific demands
on the underlying computing infrastructure. These requirements emerge from
the fundamental differences between biological and artificial implementations
of neural processing, shaping how we design and build systems capable of
supporting artificial neural networks.

Table 3.4 shows how each computational element drives particular system
requirements. From this mapping, we can see how the choices made in com-
putational translation directly influence the hardware and system architecture
needed for implementation.

Table 3.4: From computation to system requirements.

Computational Element System Requirements

Activation functions Fast nonlinear operation units
Weight operations High-bandwidth memory access
Parallel computation Specialized parallel processors
Weight storage Large-scale memory systems
Learning algorithms Gradient computation hardware

Storage architecture represents a critical requirement, driven by the fun-
damental difference in how biological and artificial systems handle memory.
In biological systems, memory and processing are intrinsically integrated—
synapses both store connection strengths and process signals. Artificial systems,
however, must maintain a clear separation between processing units and mem-
ory. This creates a need for both high-capacity storage to hold millions or
billions of connection weights and high-bandwidth pathways to move this
data quickly between storage and processing units. The efÏciency of this data

3.3. Biological to Artificial Neurons 72

6 Backpropagation: A common
method used to train artificial neu-
ral networks. It calculates the gradi-
ent of the loss function with respect
to the weights of the network.

7 Floating Point Operations per
Second (FLOPS): A measure of com-
puter performance, useful in fields
of scientific computations that re-
quire floating-point calculations.

movement often becomes a critical bottleneck that biological systems do not
face.

The learning process itself imposes distinct requirements on artificial systems.
While biological networks modify synaptic strengths through local chemical
processes, artificial networks must coordinate weight updates across the entire
network. This creates substantial computational and memory demands during
training—systems must not only store current weights but also maintain space
for gradients and intermediate calculations. The requirement to backpropagate
error signals6, with no real biological analog, further complicates the system
architecture.

Energy efÏciency emerges as a final critical requirement, highlighting perhaps
the starkest contrast between biological and artificial implementations. The
human brain’s remarkable energy efÏciency, which operates on approximately
20 watts, stands in sharp contrast to the substantial power demands of artificial
neural networks. Current systems often require orders of magnitude more
energy to implement similar capabilities. This gap drives ongoing research in
more efÏcient hardware architectures and has profound implications for the
practical deployment of neural networks, particularly in resource-constrained
environments like mobile devices or edge computing systems.

3.3.6 Evolution and Impact

We can now better appreciate how the field of deep learning evolved to meet
these challenges through advances in hardware and algorithms. This journey
began with early artificial neural networks in the 1950s, marked by the introduc-
tion of the Perceptron. While groundbreaking in concept, these early systems
were severely limited by the computational capabilities of their era—primarily
mainframe computers that lacked both the processing power and memory
capacity needed for complex networks.

The development of backpropagation algorithms in the 1980s (Rumelhart,
Hinton, and Williams 1986), which we will learn about later, represented a
theoretical breakthrough and povided a systematic way to train multi-layer
networks. However, the computational demands of this algorithm far exceeded
available hardware capabilities. Training even modest networks could take
weeks, making experimentation and practical applications challenging. This
mismatch between algorithmic requirements and hardware capabilities con-
tributed to a period of reduced interest in neural networks.

The term “deep learning” gained prominence in the 2010s, coinciding with
significant advances in computational power and data accessibility. The field
has since experienced exponential growth, as illustrated in Figure 3.9. The
graph reveals two remarkable trends: computational capabilities measured in
the number of Floating Point Operations per Second (FLOPS)7 initially followed
a 1.4× improvement pattern from 1952 to 2010, then accelerated to a 3.4-month
doubling cycle from 2012 to 2022. Perhaps more striking is the emergence of
large-scale models between 2015 and 2022 (not explicitly shown or easily seen
in the figure), which scaled 2 to 3 orders of magnitude faster than the general
trend, following an aggressive 10-month doubling cycle.

Chapter 3. DL Primer 73

Figure 3.9: Growth of deep learning
models. Source: EPOCH AI

The evolutionary trends were driven by parallel advances across three funda-
mental dimensions: data availability, algorithmic innovations, and computing
infrastructure. These three factors, namely, data, algorithms, and infrastructure,
reinforced each other in a virtuous cycle that continues to drive progress in
the field today. As Figure 9.15 shows, more powerful computing infrastructure
enabled processing larger datasets. Larger datasets drove algorithmic inno-
vations. Better algorithms demanded more sophisticated computing systems.
This virtuous cycle continues to drive progress in the field today.

Figure 3.10: The virtuous cycle en-
abled by key breakthroughs in each
layer.

Data

Availability
Algorithmic

Innovations

Computing

Infrastructure

Key Breakthroughs

The data revolution transformed what was possible with neural networks.
The rise of the internet and digital devices created unprecedented access to
training data. Image sharing platforms provided millions of labeled images.
Digital text collections enabled language processing at scale. Sensor networks
and IoT devices generated continuous streams of real-world data. This abun-
dance of data provided the raw material needed for neural networks to learn
complex patterns effectively.

Algorithmic innovations made it possible to harness this data effectively.
New methods for initializing networks and controlling learning rates made
training more stable. Techniques for preventing overfitting allowed models to
generalize better to new data. Most importantly, researchers discovered that
neural network performance scaled predictably with model size, computation,
and data quantity, leading to increasingly ambitious architectures.

Computing infrastructure evolved to meet these growing demands. On the
hardware side, graphics processing units (GPUs) provided the parallel process-
ing capabilities needed for efÏcient neural network computation. Specialized AI

3.4. Neural Network Fundamentals 74

accelerators like TPUs (Jouppi, Young, et al. 2017a) pushed performance further.
High-bandwidth memory systems and fast interconnects addressed data move-
ment challenges. Equally important were software advances—frameworks
and libraries that made it easier to build and train networks, distributed com-
puting systems that enabled training at scale, and tools for optimizing model
deployment.

3.4 Neural Network Fundamentals
We can now examine the fundamental building blocks that make machine
learning systems work. While the field has grown tremendously in sophisti-
cation, all modern neural networks, ranging from simple classifiers to large
language models, share a common architectural foundation built upon basic
computational units and principles.

This foundation begins with understanding how individual artificial neurons
process information, how they are organized into layers, and how these layers
are connected to form complete networks. By starting with these fundamen-
tal concepts, we can progressively build up to understanding more complex
architectures and their applications.

Neural networks have come a long way since their inception in the 1950s,
when the perceptron was first introduced. After a period of decline in popularity
due to computational and theoretical limitations, the field saw a resurgence in
the 2000s, driven by advancements in hardware (e.g., GPUs) and innovations
like deep learning. These breakthroughs have made it possible to train networks
with millions of parameters, enabling applications once considered impossible.

3.4.1 Basic Architecture
The architecture of a neural network determines how information flows through
the system, from input to output. While modern networks can be tremendously
complex, they all build upon a few key organizational principles that we will
explore in the following sections. Understanding these principles is essential
for both implementing neural networks and appreciating how they achieve
their remarkable capabilities.

3.4.1.1 Neurons and Activations

The Perceptron is the basic unit or node that forms the foundation for more
complex structures. It functions by taking multiple inputs, each representing a
feature of the object under analysis, such as the characteristics of a home for
predicting its price or the attributes of a song to forecast its popularity in music
streaming services. These inputs are denoted as 𝑥1,𝑥2, ...,𝑥𝑛. A perceptron can
be configured to perform either regression or classification tasks. For regression,
the actual numerical output ̂𝑦 is used. For classification, the output depends on
whether ̂𝑦 crosses a certain threshold. If ̂𝑦 exceeds this threshold, the perceptron
might output one class (e.g., ‘yes’), and if it does not, another class (e.g., ‘no’).

Figure 3.11 illustrates the fundamental building blocks of a perceptron, which
serves as the foundation for more complex neural networks. A perceptron can
be thought of as a miniature decision-maker, utilizing its weights, bias, and

Chapter 3. DL Primer 75

Figure 3.11: Perceptron. Conceived
in the 1950s, perceptrons paved the
way for developing more intricate
neural networks and have been a
fundamental building block in deep
learning.

w1j

w2j

w3j

wij

•
•

•

x1

x2

x3

WeightsInputs

xi

•
•

•

∑
σ

z

b

Bias

ŷ

Output

Activation

function

8 Activation Function: A mathe-
matical ‘gate’ in between the input
from the previous layer and the out-
put of the current layer, adding non-
linearity to model complex patterns.

activation function to process inputs and generate outputs based on learned
parameters. This concept forms the basis for understanding more intricate
neural network architectures, such as multilayer perceptrons.

In these advanced structures, layers of perceptrons work in concert, with each
layer’s output serving as the input for the subsequent layer. This hierarchical
arrangement creates a deep learning model capable of comprehending and
modeling complex, abstract patterns within data. By stacking these simple
units, neural networks gain the ability to tackle increasingly sophisticated tasks,
from image recognition to natural language processing.

Each input 𝑥𝑖 has a corresponding weight 𝑤𝑖𝑗, and the perceptron simply
multiplies each input by its matching weight. This operation is similar to linear
regression, where the intermediate output, 𝑧, is computed as the sum of the
products of inputs and their weights:𝑧 = ∑(𝑥𝑖 ⋅𝑤𝑖𝑗)

To this intermediate calculation, a bias term 𝑏 is added, allowing the model
to better fit the data by shifting the linear output function up or down. Thus,
the intermediate linear combination computed by the perceptron including the
bias becomes: 𝑧 = ∑(𝑥𝑖 ⋅𝑤𝑖𝑗)+𝑏

Common activation functions include:8

• ReLU (Rectified Linear Unit): Defined as 𝑓(𝑥) = max(0,𝑥), it introduces
sparsity and accelerates convergence in deep networks. Its simplicity and
effectiveness have made it the default choice in many modern architec-
tures.

• Sigmoid: Historically popular, the sigmoid function maps inputs to a
range between 0 and 1 but is prone to vanishing gradients in deeper
architectures. It’s particularly useful in binary classification problems
where probabilities are needed.

• Tanh: Similar to sigmoid but maps inputs to a range of −1 to 1, centering
the data. This centered output often leads to faster convergence in practice
compared to sigmoid.

3.4. Neural Network Fundamentals 76

Figure 3.12: Activation functions
enable the modeling of complex
non-linear relationships. Source:
Medium, Sachin Kaushik.

Neural Network without

an Activation Function

Neural Network with

an Activation Function

These activation functions transform the linear input sum into a non-linear
output: ̂𝑦 = 𝜎(𝑧)

Thus, the final output of the perceptron, including the activation function,
can be expressed as:

Figure 3.12 shows an example where data exhibit a nonlinear pattern that
could not be adequately modeled with a linear approach. The activation func-
tion enables the network to learn and represent complex relationships in the
data, making it possible to solve sophisticated tasks like image recognition or
speech processing.

Thus, the final output of the perceptron, including the activation function,
can be expressed as: 𝑧 = 𝜎(∑(𝑥𝑖 ⋅𝑤𝑖𝑗)+𝑏)
3.4.1.2 Layers and Connections

While a single perceptron can model simple decisions, the power of neural
networks comes from combining multiple neurons into layers. A layer is a
collection of neurons that process information in parallel. Each neuron in a
layer operates independently on the same input but with its own set of weights
and bias, allowing the layer to learn different features or patterns from the same
input data.

In a typical neural network, we organize these layers hierarchically:
1. Input Layer: Receives the raw data features
2. Hidden Layers: Process and transform the data through multiple stages
3. Output Layer: Produces the final prediction or decision

Figure 3.13 illustrates this layered architecture. When data flows through
these layers, each successive layer transforms the representation of the data,
gradually building more complex and abstract features. This hierarchical pro-
cessing is what gives deep neural networks their remarkable ability to learn
complex patterns.

3.4.1.3 Data Flow and Transformations

As data flows through the network, it is transformed at each layer (l) to extract
meaningful patterns. Each layer combines the input data using learned weights

Chapter 3. DL Primer 77

Figure 3.13: Neural network layers.
Source: BrunelloN

• • •

Hidden layersInput layer Output layer

9 Pre-activation output: The
output produced by a neuron in a
neural network before the activation
function is applied.

and biases, then applies an activation function to introduce non-linearity. This
process can be written mathematically as:

z(𝑙) = W(𝑙)x(𝑙−1) + b(𝑙)
Where:

• x(𝑙−1) is the input vector from the previous layer
• W(𝑙) is the weight matrix for the current layer
• b(𝑙) is the bias vector
• z(𝑙) is the pre-activation output9

Now that we have covered the basics, Video 1 provides a great overview of
how neural networks work using handwritten digit recognition. It introduces
some new concepts that we will explore in more depth soon, but it serves as an
excellent introduction.

çĖ Important 1: Neural Network

Watch on YouTube
Neural Network

Scan with your phone
to watch the video

TV Watch on YouTube

3.4.2 Weights and Biases

3.4.2.1 Weight Matrices

Weights in neural networks determine how strongly inputs influence the output
of a neuron. While we first discussed weights for a single perceptron, in larger
networks, weights are organized into matrices for efÏcient computation across
entire layers. For example, in a layer with 𝑛 input features and 𝑚 neurons, the
weights form a matrix W ∈ ℝ𝑛×𝑚. Each column in this matrix represents the
weights for a single neuron in the layer. This organization allows the network

https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q

3.4. Neural Network Fundamentals 78

to process multiple inputs simultaneously, an essential feature for handling
real-world data efÏciently.

Let’s consider how this extends our previous perceptron equations to han-
dle multiple neurons simultaneously. For a layer of 𝑚 neurons, instead of
computing each neuron’s output separately:𝑧𝑗 = 𝑛∑𝑖=1(𝑥𝑖 ⋅𝑤𝑖𝑗)+𝑏𝑗

We can compute all outputs at once using matrix multiplication:

z = x𝑇W + b

This matrix organization is more than just mathematical convenience; it
reflects how modern neural networks are implemented for efÏciency. Each
weight 𝑤𝑖𝑗 represents the strength of the connection between input feature 𝑖
and neuron 𝑗 in the layer.

3.4.2.2 Connection Patterns

In the simplest and most common case, each neuron in a layer is connected to
every neuron in the previous layer, forming what we call a “dense” or “fully-
connected” layer. This pattern means that each neuron has the opportunity to
learn from all available features from the previous layer.

Figure 3.14 illustrates these dense connections between layers. For a network
with layers of sizes (𝑛1,𝑛2,𝑛3), the weight matrices would have dimensions:

• Between first and second layer: W(1) ∈ ℝ𝑛1×𝑛2
• Between second and third layer: W(2) ∈ ℝ𝑛2×𝑛3

Figure 3.14: Dense connections be-
tween layers in a MLP. Source: J. Mc-
Caffrey

.8337

.8764

.9087

.9329

1.0

5.0

9.0

.4886

.5114

ihWeight00 = 0.01

0.02
0.030.04

0.05

0.06

0.07
0.08

0.
09

0.10

0.11

ihWeight23 = 0.12

hoWeight00 = 017
018

019

020

021

022

023

hoWeight31 = 024

hBias0 = 0.13

0.14

0.15

hBias3 = 0.16

oBias0 = 0.25

oBias1 = 0.26

Hidden layerInput layer Output layer

Chapter 3. DL Primer 79

10 MNIST (Modified National
Institute of Standards and Technol-
ogy) is a large database of hand-
written digits that has been widely
used to train and test machine learn-
ing systems since its creation in
1998. The dataset consists of 60,000
training images and 10,000 testing
images, each being a 28×28 pixel
grayscale image of a single hand-
written digit from 0 to 9.

3.4.2.3 Bias Terms

Each neuron in a layer also has an associated bias term. While weights de-
termine the relative importance of inputs, biases allow neurons to shift their
activation functions. This shifting is crucial for learning, as it gives the network
flexibility to fit more complex patterns.

For a layer with 𝑚 neurons, the bias terms form a vector b ∈ ℝ𝑚. When we
compute the layer’s output, this bias vector is added to the weighted sum of
inputs:

z = x𝑇W + b

The bias terms effectively allow each neuron to have a different “threshold”
for activation, making the network more expressive.

3.4.2.4 Parameter Organization

The organization of weights and biases across a neural network follows a sys-
tematic pattern. For a network with 𝐿 layers, we maintain:

• A weight matrix W(𝑙) for each layer 𝑙
• A bias vector b(𝑙) for each layer 𝑙
• Activation functions 𝑓 (𝑙) for each layer 𝑙

This gives us the complete layer computation:

h(𝑙) = 𝑓 (𝑙)(z(𝑙)) = 𝑓 (𝑙)(h(𝑙−1)𝑇W(𝑙) + b(𝑙))
Where h(𝑙) represents the layer’s output after applying the activation function.

3.4.3 Network Topology
Network topology describes how the basic building blocks we’ve discussed,
such as neurons, layers, and connections, come together to form a complete
neural network. We can best understand network topology through a concrete
example. Consider the task of recognizing handwritten digits, a classic problem
in deep learning using the MNIST10 dataset.

3.4.3.1 Basic Structure

The fundamental structure of a neural network consists of three main compo-
nents: input layer, hidden layers, and output layer. As shown in Figure 3.15a, a28×28 pixel grayscale image of a handwritten digit must be processed through
these layers to produce a classification output.

The input layer’s width is directly determined by our data format. As shown
in Figure 3.15b, for a 28×28 pixel image, each pixel becomes an input feature,
requiring 784 input neurons (28×28 = 784). We can think of this either as a 2D
grid of pixels or as a flattened vector of 784 values, where each value represents
the intensity of one pixel.

The output layer’s structure is determined by our task requirements. For digit
classification, we use 10 output neurons, one for each possible digit (0-9). When
presented with an image, the network produces a value for each output neuron,

3.4. Neural Network Fundamentals 80

11 Vanishing Gradients: Problem
in deep learning where gradient be-
comes so small that the model stops
(or significantly slows down) learn-
ing.

where higher values indicate greater confidence that the image represents that
particular digit.

Between these fixed input and output layers, we have flexibility in designing
the hidden layer topology. The choice of hidden layer structure, including
the number of layers to use and their respective widths, represents one of the
fundamental design decisions in neural networks. Additional layers increase the
network’s depth, allowing it to learn more abstract features through successive
transformations. The width of each layer provides capacity for learning different
features at each level of abstraction.

Figure 3.15: a) A neural network
topology for classifying MNIST
digits, showing how a 28×28
pixel image is processed. The

image on the left shows the original
digit, with dimensions labeled. The

network on the right shows how
each pixel connects to the hidden

layers, ultimately producing 10
outputs for digit classification.
b) Alternative visualization of the

MNIST network topology, showing
how the 2D image is flattened into

a 784-dimensional vector before
being processed by the network.
This representation emphasizes
how spatial data is transformed
into a format suitable for neural

network processing.

(a) (b)

These basic topological choices have significant implications for both the
network’s capabilities and its computational requirements. Each additional
layer or neuron increases the number of parameters that must be stored and
computed during both training and inference. However, without sufÏcient
depth or width, the network may lack the capacity to learn complex patterns in
the data.

3.4.3.2 Design Trade-offs

The design of neural network topology centers on three fundamental decisions:
the number of layers (depth), the size of each layer (width), and how these
layers connect. Each choice affects both the network’s learning capability and
its computational requirements.

Network depth determines the level of abstraction the network can achieve.
Each layer transforms its input into a new representation, and stacking multiple
layers allows the network to build increasingly complex features. In our MNIST
example, a deeper network might first learn to detect edges, then combine these
edges into strokes, and finally assemble strokes into complete digit patterns.
However, adding layers isn’t always beneficial—deeper networks increase com-
putational cost substantially, can be harder to train due to vanishing gradients11,
and may require more sophisticated training techniques.

The width of each layer, which is determined by the number of neurons
it contains, controls how much information the network can process in par-
allel at each stage. Wider layers can learn more features simultaneously but

Chapter 3. DL Primer 81

12 Convolutional Networks
(CNNs): A type of neural network
architecture designed to process
grid-structured input data, like im-
ages.

13 Residual Connections (Skip
Connections): Shortcut connections
between layers in a neural network,
helping mitigate the vanishing gra-
dient problem by allowing gradi-
ents to flow directly through the net-
work.

require proportionally more parameters and computation. For instance, if a
hidden layer is processing edge features in our digit recognition task, its width
determines how many different edge patterns it can detect simultaneously.

A very important consideration in topology design is the total parameter
count. For a network with layers of size (𝑛1,𝑛2,…,𝑛𝐿), each pair of adjacent
layers 𝑙 and 𝑙+1 requires 𝑛𝑙 ×𝑛𝑙+1 weight parameters, plus 𝑛𝑙+1 bias parameters.
These parameters must be stored in memory and updated during training,
making the parameter count a key constraint in practical applications.

When designing networks, we need to balance learning capacity, computa-
tional efÏciency, and ease of training. While the basic approach connects every
neuron to every neuron in the next layer (fully connected), this isn’t always the
most effective strategy. Sometimes, using fewer but more strategic connections,
as seen in convolutional networks12, can achieve better results with less com-
putation. Consider our MNIST example—when humans recognize digits, we
don’t analyze every pixel independently but look for meaningful patterns like
lines and curves. Similarly, we can design our network to focus on local patterns
in the image rather than treating each pixel as completely independent.

Another important consideration is how information flows through the net-
work. While the basic flow is from input to output, some network designs
include additional paths for information to flow, such as skip connections or
residual connections13. These alternative paths can make the network easier
to train and more effective at learning complex patterns. Think of these as
shortcuts that help information flow more directly when needed, similar to how
our brain can combine both detailed and general impressions when recognizing
objects.

These design decisions have significant practical implications for memory
usage for storing network parameters, computational costs during both training
and inference, training behavior and convergence, and the network’s ability
to generalize to new examples. The optimal balance of these trade-offs de-
pends heavily on your specific problem, available computational resources, and
dataset characteristics. Successful network design requires carefully weighing
these factors against practical constraints.

3.4.3.3 Connection Patterns

Neural networks can be structured with different connection patterns between
layers, each offering distinct advantages for learning and computation. Un-
derstanding these fundamental patterns provides insight into how networks
process information and learn representations from data.

Dense connectivity represents the standard pattern where each neuron con-
nects to every neuron in the subsequent layer. In our MNIST example, connect-
ing our 784-dimensional input layer to a hidden layer of 100 neurons requires
78,400 weight parameters. This full connectivity enables the network to learn ar-
bitrary relationships between inputs and outputs, but the number of parameters
scales quadratically with layer width.

Sparse connectivity patterns introduce purposeful restrictions in how neu-
rons connect between layers. Rather than maintaining all possible connections,
neurons connect to only a subset of neurons in the adjacent layer. This approach

3.4. Neural Network Fundamentals 82

14 Sparsity: In data structures,
sparsity refers to elements being
zero or absent. In neural networks,
it can refer to the absence of connec-
tions between nodes.

draws inspiration from biological neural systems, where neurons typically form
connections with a limited number of other neurons. In visual processing tasks
like our MNIST example, neurons might connect only to inputs representing
nearby pixels, reflecting the local nature of visual features.

As networks grow deeper, the path from input to output becomes longer,
potentially complicating the learning process. Skip connections address this by
adding direct paths between non-adjacent layers. These connections provide
alternative routes for information flow, supplementing the standard layer-by-
layer progression. In our digit recognition example, skip connections might
allow later layers to reference both high-level patterns and the original pixel
values directly.

These connection patterns have significant implications for both the theo-
retical capabilities and practical implementation of neural networks. Dense
connections maximize learning flexibility at the cost of computational efÏciency.
Sparse connections can reduce computational requirements while potentially
improving the network’s ability to learn structured patterns. Skip connections
help maintain effective information flow in deeper networks.

3.4.3.4 Parameter Considerations

The arrangement of parameters (weights and biases) in a neural network de-
termines both its learning capacity and computational requirements. While
topology defines the network’s structure, the initialization and organization of
parameters plays a crucial role in learning and performance.

Parameter count grows with network width and depth. For our MNIST
example, consider a network with a 784-dimensional input layer, two hidden
layers of 100 neurons each, and a 10-neuron output layer. The first layer requires
78,400 weights and 100 biases, the second layer 10,000 weights and 100 biases,
and the output layer 1,000 weights and 10 biases, totaling 89,610 parameters.
Each must be stored in memory and updated during learning.

Parameter initialization is fundamental to network behavior. Setting all pa-
rameters to zero would cause neurons in a layer to behave identically, preventing
diverse feature learning. Instead, weights are typically initialized randomly,
while biases often start at small constant values or even zeros. The scale of these
initial values matters significantly, as values that are too large or too small can
lead to poor learning dynamics.

The distribution of parameters affects information flow through layers. In
digit recognition, if weights are too small, important input details might not
propagate to later layers. If too large, the network might amplify noise. Biases
help adjust the activation threshold of each neuron, enabling the network to
learn optimal decision boundaries.

Different architectures may impose specific constraints on parameter organi-
zation. Some share weights across network regions to encode position-invariant
pattern recognition. Others might restrict certain weights to zero, implementing
sparse connectivity patterns14.

Chapter 3. DL Primer 83

15 Loss function: A method
for evaluating how well the algo-
rithm models the given training
data. The lower the value, the better
the model.

3.5 Learning Process
Neural networks learn to perform tasks through a process of training on ex-
amples. This process transforms the network from its initial state, where its
weights are randomly initialized, to a trained state where the weights encode
meaningful patterns from the training data. Understanding this process is
fundamental to both the theoretical foundations and practical implementations
of deep learning systems.

3.5.1 Training Overview
The core principle of neural network training is supervised learning from
labeled examples. Consider our MNIST digit recognition task: we have a
dataset of 60,000 training images, each a 28×28 pixel grayscale image paired
with its correct digit label. The network must learn the relationship between
these images and their corresponding digits through an iterative process of
prediction and weight adjustment.

Training operates as a loop, where each iteration involves processing a subset
of training examples called a batch. For each batch, the network performs
several key operations:

• Forward computation through the network layers to generate predictions
• Evaluation of prediction accuracy using a loss function15

• Computation of weight adjustments based on prediction errors
• Update of network weights to improve future predictions

This process can be expressed mathematically. Given an input image 𝑥 and
its true label 𝑦, the network computes its prediction:̂𝑦 = 𝑓(𝑥;𝜃)
where 𝑓 represents the neural network function and 𝜃 represents all trainable
parameters (weights and biases, which we discussed earlier). The network’s
error is measured by a loss function 𝐿:

loss = 𝐿(̂𝑦,𝑦)
This error measurement drives the adjustment of network parameters through

a process called “backpropagation,” which we will examine in detail later.
In practice, training operates on batches of examples rather than individual

inputs. For the MNIST dataset, each training iteration might process, for ex-
ample, 32, 64, or 128 images simultaneously. This batch processing serves two
purposes: it enables efÏcient use of modern computing hardware through par-
allel processing, and it provides more stable parameter updates by averaging
errors across multiple examples.

The training cycle continues until the network achieves sufÏcient accuracy
or reaches a predetermined number of iterations. Throughout this process,
the loss function serves as a guide, with its minimization indicating improved
network performance.

3.5. Learning Process 84

3.5.2 Forward Propagation

Forward propagation, as illustrated in Figure 3.16, is the core computational
process in a neural network, where input data flows through the network’s
layers to generate predictions. Understanding this process is essential as it
forms the foundation for both network inference and training. Let’s examine
how forward propagation works using our MNIST digit recognition example.

Figure 3.16: Neural networks, for-
ward and backward propagation.

X1

X2

X3

...

Prediction

(ŷ)
True Value

(y)

Loss

Function L

Loss ScoreOptimizer
Weights

& bias

Parameters

update

Forward Propagation

Backward Propagation

When an image of a handwritten digit enters our network, it undergoes a
series of transformations through the layers. Each transformation combines the
weighted inputs with learned patterns to progressively extract relevant features.
In our MNIST example, a 28 × 28 pixel image is processed through multiple
layers to ultimately produce probabilities for each possible digit (0-9).

The process begins with the input layer, where each pixel’s grayscale value
becomes an input feature. For MNIST, this means 784 input values (28×28 =784), each normalized between 0 and 1. These values then propagate forward
through the hidden layers, where each neuron combines its inputs according
to its learned weights and applies a nonlinear activation function.

3.5.2.1 Layer Computation

The forward computation through a neural network proceeds systematically,
with each layer transforming its inputs into increasingly abstract representations.
In our MNIST network, this transformation process occurs in distinct stages.

At each layer, the computation involves two key steps: a linear transformation
of inputs followed by a nonlinear activation. The linear transformation combines
all inputs to a neuron using learned weights and a bias term. For a single neuron
receiving inputs from the previous layer, this computation takes the form:𝑧 = 𝑛∑𝑖=1 𝑤𝑖𝑥𝑖 +𝑏

Chapter 3. DL Primer 85

where 𝑤𝑖 represents the weights, 𝑥𝑖 the inputs, and 𝑏 the bias term. For an entire
layer of neurons, we can express this more efÏciently using matrix operations:

Z(𝑙) = W(𝑙)A(𝑙−1) + b(𝑙)
Here, W(𝑙) represents the weight matrix for layer 𝑙, A(𝑙−1) contains the activa-

tions from the previous layer, and b(𝑙) is the bias vector.
Following this linear transformation, each layer applies a nonlinear activation

function 𝑓:
A(𝑙) = 𝑓(Z(𝑙))

This process repeats at each layer, creating a chain of transformations:
Input → Linear Transform → Activation → Linear Transform → Activation

→ … → Output
In our MNIST example, the pixel values first undergo a transformation by

the first hidden layer’s weights, converting the 784-dimensional input into an
intermediate representation. Each subsequent layer further transforms this rep-
resentation, ultimately producing a 10-dimensional output vector representing
the network’s confidence in each possible digit.

3.5.2.2 Mathematical Representation
The complete forward propagation process can be expressed as a composition
of functions, each representing a layer’s transformation. Let us formalize this
mathematically, building on our MNIST example.

For a network with 𝐿 layers, we can express the full forward computation as:

A(𝐿) = 𝑓 (𝐿)(W(𝐿)𝑓 (𝐿−1)(W(𝐿−1) ⋯(𝑓 (1)(W(1)X + b(1)))⋯+ b(𝐿−1))+ b(𝐿))
While this nested expression captures the complete process, we typically

compute it step by step:
1. First layer:

Z(1) = W(1)X + b(1)
A(1) = 𝑓 (1)(Z(1))

2. Hidden layers (𝑙 = 2,…,𝐿−1):

Z(𝑙) = W(𝑙)A(𝑙−1) + b(𝑙)
A(𝑙) = 𝑓 (𝑙)(Z(𝑙))

3. Output layer:
Z(𝐿) = W(𝐿)A(𝐿−1) + b(𝐿)

A(𝐿) = 𝑓 (𝐿)(Z(𝐿))
In our MNIST example, if we have a batch of 𝐵 images, the dimensions of

these operations are:
• Input X: 𝐵 ×784
• First layer weights W(1): 𝑛1 ×784
• Hidden layer weights W(𝑙): 𝑛𝑙 ×𝑛𝑙−1
• Output layer weights W(𝐿): 𝑛𝐿−1 ×10

3.5. Learning Process 86

3.5.2.3 Computational Process

To understand how these mathematical operations translate into actual com-
putation, let’s walk through the forward propagation process for a batch of
MNIST images. This process illustrates how data is transformed from raw pixel
values to digit predictions.

Consider a batch of 32 images entering our network. Each image starts as a28×28 grid of pixel values, which we flatten into a 784-dimensional vector. For
the entire batch, this gives us an input matrix X of size 32 × 784, where each
row represents one image. The values are typically normalized to lie between 0
and 1.

The transformation at each layer proceeds as follows:
• Input Layer Processing: The network takes our input matrix X (32×784)

and transforms it using the first layer’s weights. If our first hidden layer
has 128 neurons, W(1) is a 784×128 matrix. The resulting computation
XW(1) produces a 32×128 matrix.

• Hidden Layer Transformations: Each element in this matrix then has
its corresponding bias added and passes through an activation function.
For example, with a ReLU activation, any negative values become zero
while positive values remain unchanged. This nonlinear transformation
enables the network to learn complex patterns in the data.

• Output Generation: The final layer transforms its inputs into a 32×10
matrix, where each row contains 10 values corresponding to the network’s
confidence scores for each possible digit. Often, these scores are converted
to probabilities using a softmax function:𝑃 (digit 𝑗) = 𝑒𝑧𝑗∑10𝑘=1 𝑒𝑧𝑘

For each image in our batch, this gives us a probability distribution over the
possible digits. The digit with the highest probability becomes the network’s
prediction.

3.5.2.4 Practical Considerations

The implementation of forward propagation requires careful attention to several
practical aspects that affect both computational efÏciency and memory usage.
These considerations become particularly important when processing large
batches of data or working with deep networks.

Memory management plays an important role during forward propagation.
Each layer’s activations must be stored for potential use in the backward pass
during training. For our MNIST example with a batch size of 32, if we have three
hidden layers of sizes 128, 256, and 128, the activation storage requirements are:

• First hidden layer: 32×128 = 4,096 values
• Second hidden layer: 32×256 = 8,192 values
• Third hidden layer: 32×128 = 4,096 values
• Output layer: 32×10 = 320 values

Chapter 3. DL Primer 87

This gives us a total of 16,704 values that must be maintained in memory
for each batch during training. The memory requirements scale linearly with
batch size and can become substantial for larger networks.

Batch processing introduces important trade-offs. Larger batches enable
more efÏcient matrix operations and better hardware utilization but require
more memory. For example, doubling the batch size to 64 would double our
memory requirements for activations. This relationship between batch size,
memory usage, and computational efÏciency often guides the choice of batch
size in practice.

The organization of computations also affects performance. Matrix operations
can be optimized through careful memory layout and the use of specialized
libraries. The choice of activation functions impacts not only the network’s
learning capabilities but also its computational efÏciency, as some functions
(like ReLU) are less expensive to compute than others (like tanh or sigmoid).

These considerations form the foundation for understanding the system
requirements of neural networks, which we will explore in more detail in later
chapters.

3.5.3 Loss Functions

Neural networks learn by measuring and minimizing their prediction errors.
Loss functions provide the Algorithmic Structure for quantifying these errors,
serving as the essential feedback mechanism that guides the learning process.
Through loss functions, we can convert the abstract goal of “making good
predictions” into a concrete optimization problem.

To understand the role of loss functions, let’s continue with our MNIST digit
recognition example. When the network processes a handwritten digit image,
it outputs ten numbers representing its confidence in each possible digit (0-9).
The loss function measures how far these predictions deviate from the true
answer. For instance, if an image shows a “7”, we want high confidence for
digit “7” and low confidence for all other digits. The loss function penalizes
the network when its prediction differs from this ideal.

Consider a concrete example: if the network sees an image of “7” and outputs
confidences:

[0.1, 0.1, 0.1, 0.0, 0.0, 0.0, 0.2, 0.3, 0.1, 0.1]

The highest confidence (0.3) is assigned to digit “7”, but this confidence is
quite low, indicating uncertainty in the prediction. A good loss function would
produce a high loss value here, signaling that the network needs significant
improvement. Conversely, if the network outputs:

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.9, 0.0, 0.1]

The loss function should produce a lower value, as this prediction is much
closer to ideal.

3.5. Learning Process 88

16 Cross-Entropy Loss: A type
of loss function that measures the
difference between two probability
distributions.

3.5.3.1 Basic Concepts

A loss function measures how far the network’s predictions are from the correct
answers. This difference is expressed as a single number: a lower loss means
the predictions are more accurate, while a higher loss indicates the network
needs improvement. During training, the loss function guides the network
by helping it adjust its weights to make better predictions. For example, in
recognizing handwritten digits, the loss will penalize predictions that assign
low confidence to the correct digit.

Mathematically, a loss function 𝐿 takes two inputs: the network’s predictionŝ𝑦 and the true values 𝑦. For a single training example in our MNIST task:𝐿(̂𝑦,𝑦) = measure of discrepancy between prediction and truth

When training with batches of data, we typically compute the average loss
across all examples in the batch:𝐿batch = 1𝐵 𝐵∑𝑖=1 𝐿(̂𝑦𝑖,𝑦𝑖)
where 𝐵 is the batch size and (̂𝑦𝑖,𝑦𝑖) represents the prediction and truth for
the 𝑖-th example.

The choice of loss function depends on the type of task. For our MNIST
classification problem, we need a loss function that can:

1. Handle probability distributions over multiple classes
2. Provide meaningful gradients for learning
3. Penalize wrong predictions effectively
4. Scale well with batch processing

3.5.3.2 Classification Losses

For classification tasks like MNIST digit recognition, “cross-entropy” loss16 has
emerged as the standard choice. This loss function is particularly well-suited
for comparing predicted probability distributions with true class labels.

For a single digit image, our network outputs a probability distribution over
the ten possible digits. We represent the true label as a one-hot vector where
all entries are 0 except for a 1 at the correct digit’s position. For instance, if the
true digit is “7”, the label would be:𝑦 = [0,0,0,0,0,0,0,1,0,0]

The cross-entropy loss for this example is:𝐿(̂𝑦,𝑦) = − 10∑𝑗=1 𝑦𝑗 log(̂𝑦𝑗)
where ̂𝑦𝑗 represents the network’s predicted probability for digit j. Given our
one-hot encoding, this simplifies to:𝐿(̂𝑦,𝑦) = − log(̂𝑦𝑐)

Chapter 3. DL Primer 89

17 Log-Sum-Exp trick: A method
used in machine learning to prevent
numerical underflow and overflow
by normalizing the inputs of expo-
nentiated operations.

where 𝑐 is the index of the correct class. This means the loss depends only on
the predicted probability for the correct digit—the network is penalized based
on how confident it is in the right answer.

For example, if our network predicts the following probabilities for an image
of “7”:

Predicted: [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8, 0.0, 0.1]
True: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

The loss would be − log(0.8), which is approximately 0.223. If the network
were more confident and predicted 0.9 for the correct digit, the loss would
decrease to approximately 0.105.

3.5.3.3 Loss Computation

The practical computation of loss involves considerations for both numerical
stability and batch processing. When working with batches of data, we compute
the average loss across all examples in the batch.

For a batch of B examples, the cross-entropy loss becomes:𝐿batch = − 1𝐵 𝐵∑𝑖=1 10∑𝑗=1 𝑦𝑖𝑗 log(̂𝑦𝑖𝑗)
Computing this loss efÏciently requires careful consideration of numerical

precision. Taking the logarithm of very small probabilities can lead to numerical
instability. Consider a case where our network predicts a probability of 0.0001
for the correct class. Computing log(0.0001) directly might cause underflow or
result in imprecise values.

To address this, we typically implement the loss computation with two key
modifications:

1. Add a small epsilon to prevent taking log of zero:𝐿 = − log(̂𝑦 +𝜖)
2. Apply the log-sum-exp trick17 for numerical stability:

softmax(𝑧𝑖) = exp(𝑧𝑖 − max(𝑧))∑𝑗 exp(𝑧𝑗 − max(𝑧))
For our MNIST example with a batch size of 32, this means:
• Processing 32 sets of 10 probabilities
• Computing 32 individual loss values
• Averaging these values to produce the final batch loss

3.5. Learning Process 90

18 Chain rule of calculus: A basic
theorem in calculus stating that the
derivative of a composite function is
the product of the derivative of the
outer function and the derivative of
the inner function.

3.5.3.4 Training Implications
Understanding how loss functions influence training helps explain key imple-
mentation decisions in deep learning systems.

During each training iteration, the loss value serves multiple purposes:
1. Performance Metric: It quantifies current network accuracy
2. Optimization Target: Its gradients guide weight updates
3. Convergence Signal: Its trend indicates training progress

For our MNIST classifier, monitoring the loss during training reveals the
network’s learning trajectory. A typical pattern might show:

• Initial high loss (∼ 2.3, equivalent to random guessing among 10 classes)
• Rapid decrease in early training iterations
• Gradual improvement as the network fine-tunes its predictions
• Eventually stabilizing at a lower loss (∼ 0.1, indicating confident correct

predictions)

The loss function’s gradients with respect to the network’s outputs provide
the initial error signal that drives backpropagation. For cross-entropy loss, these
gradients have a particularly simple form: the difference between predicted
and true probabilities. This mathematical property makes cross-entropy loss
especially suitable for classification tasks, as it provides strong gradients even
when predictions are very wrong.

The choice of loss function also influences other training decisions:
• Learning rate selection (larger loss gradients might require smaller learn-

ing rates)
• Batch size (loss averaging across batches affects gradient stability)
• Optimization algorithm behavior
• Convergence criteria

3.5.4 Backward Propagation
Backward propagation, often called backpropagation, is the algorithmic cor-
nerstone of neural network training. While forward propagation computes
predictions, backward propagation determines how to adjust the network’s
weights to improve these predictions. This process enables neural networks to
learn from their mistakes.

To understand backward propagation, let’s continue with our MNIST exam-
ple. When the network predicts a “3” for an image of “7”, we need a systematic
way to adjust weights throughout the network to make this mistake less likely
in the future. Backward propagation provides this by calculating how each
weight contributed to the error.

The process begins at the network’s output, where we compare the predicted
digit probabilities with the true label. This error then flows backward through
the network, with each layer’s weights receiving an update signal based on
their contribution to the final prediction. The computation follows the chain
rule of calculus18, breaking down the complex relationship between weights
and final error into manageable steps.

Chapter 3. DL Primer 91

Video 2 and Video 3 give a good high level overview of cost functions help
neural networks learn

çĖ Important 2: Gradient descent – Part 1

Watch on YouTube
Gradient descent – Part 1

TV Watch on YouTube

çĖ Important 3: Gradient descent – Part 2

Gradient descent – Part 2

Scan with your phone
to watch the video

TV Watch on YouTube

3.5.4.1 Gradient Flow

The flow of gradients through a neural network follows a path opposite to
the forward propagation. Starting from the loss at the output layer, gradients
propagate backwards, computing how each layer, and ultimately each weight,
influenced the final prediction error.

In our MNIST example, consider what happens when the network misclas-
sifies a “7” as a “3”. The loss function generates an initial error signal at the
output layer, essentially indicating that the probability for “7” should increase
while the probability for “3” should decrease. This error signal then propagates
backward through the network layers.

For a network with L layers, the gradient flow can be expressed mathemat-
ically. At each layer l, we compute how the layer’s output affected the final
loss: 𝜕𝐿𝜕A(𝑙) = 𝜕𝐿𝜕A(𝑙+1) 𝜕A(𝑙+1)𝜕A(𝑙)

This computation cascades backward through the network, with each layer’s
gradients depending on the gradients computed in the layer previous to it. The
process reveals how each layer’s transformation contributed to the final predic-
tion error. For instance, if certain weights in an early layer strongly influenced
a misclassification, they will receive larger gradient values, indicating a need
for more substantial adjustment.

However, this process faces important challenges in deep networks. As
gradients flow backward through many layers, they can either vanish or ex-
plode. When gradients are repeatedly multiplied through many layers, they
can become exponentially small, particularly with sigmoid or tanh activation
functions. This causes early layers to learn very slowly or not at all, as they
receive negligible (vanishing) updates. Conversely, if gradient values are consis-
tently greater than 1, they can grow exponentially, leading to unstable training
and destructive weight updates.

3.5.4.2 Gradient Computation

The actual computation of gradients involves calculating several partial deriva-
tives at each layer. For each layer, we need to determine how changes in weights,
biases, and activations affect the final loss. These computations follow directly

https://youtu.be/IHZwWFHWa-w?si=_MpUFVskdVHYztkz
https://youtu.be/IHZwWFHWa-w?si=_MpUFVskdVHYztkz
https://youtu.be/Ilg3gGewQ5U?si=YXVP3tm_ZBY9R-Hg
https://youtu.be/Ilg3gGewQ5U?si=YXVP3tm_ZBY9R-Hg

3.5. Learning Process 92

from the chain rule of calculus but must be implemented efÏciently for practical
neural network training.

At each layer 𝑙, we compute three main gradient components:
1. Weight Gradients: 𝜕𝐿𝜕W(𝑙) = 𝜕𝐿𝜕Z(𝑙) A(𝑙−1)𝑇
2. Bias Gradients: 𝜕𝐿𝜕b(𝑙) = 𝜕𝐿𝜕Z(𝑙)
3. Input Gradients (for propagating to previous layer):𝜕𝐿𝜕A(𝑙−1) = W(𝑙)𝑇 𝜕𝐿𝜕Z(𝑙)
In our MNIST example, consider the final layer where the network outputs

digit probabilities. If the network predicted [0.1,0.2,0.5,…,0.05] for an image
of “7”, the gradient computation would:

1. Start with the error in these probabilities
2. Compute how weight adjustments would affect this error
3. Propagate these gradients backward to help adjust earlier layer weights

3.5.4.3 Implementation Aspects

The practical implementation of backward propagation requires careful consid-
eration of computational resources and memory management. These imple-
mentation details significantly impact training efÏciency and scalability.

Memory requirements during backward propagation stem from two main
sources. First, we need to store the intermediate activations from the forward
pass, as these are required for computing gradients. For our MNIST network
with a batch size of 32, each layer’s activations must be maintained:

• Input layer: 32×784 values
• Hidden layers: 32×ℎ values (where ℎ is the layer width)
• Output layer: 32×10 values

Second, we need storage for the gradients themselves. For each layer, we must
maintain gradients of similar dimensions to the weights and biases. Taking our
previous example of a network with hidden layers of size 128, 256, and 128, this
means storing:

• First layer gradients: 784×128 values
• Second layer gradients: 128×256 values
• Third layer gradients: 256×128 values
• Output layer gradients: 128×10 values

The computational pattern of backward propagation follows a specific se-
quence:

1. Compute gradients at current layer

Chapter 3. DL Primer 93

2. Update stored gradients
3. Propagate error signal to previous layer
4. Repeat until input layer is reached

For batch processing, these computations are performed simultaneously
across all examples in the batch, enabling efÏcient use of matrix operations and
parallel processing capabilities.

3.5.5 Optimization Process

3.5.5.1 Gradient Descent Basics

The optimization process adjusts the network’s weights to improve its predic-
tions. Using a method called gradient descent, the network calculates how
much each weight contributes to the error and updates it to reduce the loss.
This process is repeated over many iterations, gradually refining the network’s
ability to make accurate predictions.

The fundamental update rule for gradient descent is:𝜃new = 𝜃old −𝛼∇𝜃𝐿
where 𝜃 represents any network parameter (weights or biases), 𝛼 is the learning
rate, and ∇𝜃𝐿 is the gradient of the loss with respect to that parameter.

For our MNIST example, this means adjusting weights to improve digit
classification accuracy. If the network frequently confuses “7”s with “1”s,
gradient descent will modify the weights to better distinguish between these
digits. The learning rate 𝛼 controls how large these adjustments are—too large,
and the network might overshoot optimal values; too small, and training will
progress very slowly.

Video 4 demonstrates how the backpropagation math works in neural net-
works for those inclined towards a more theoretical foundation.

çĖ Important 4: Backpropagation
Watch on YouTube

Backpropagation

Scan with your phone
to watch the video

TV Watch on YouTube

3.5.5.2 Batch Processing

Neural networks typically process multiple examples simultaneously during
training, an approach known as mini-batch gradient descent. Rather than
updating weights after each individual image, we compute the average gradient
over a batch of examples before performing the update.

For a batch of size 𝐵, the loss gradient becomes:∇𝜃𝐿batch = 1𝐵 𝐵∑𝑖=1 ∇𝜃𝐿𝑖
In our MNIST training, with a typical batch size of 32, this means:
1. Process 32 images through forward propagation

https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q

3.5. Learning Process 94

2. Compute loss for all 32 predictions
3. Average the gradients across all 32 examples
4. Update weights using this averaged gradient

3.5.5.3 Training Loop

The complete training process combines forward propagation, backward prop-
agation, and weight updates into a systematic training loop. This loop repeats
until the network achieves satisfactory performance or reaches a predetermined
number of iterations.

A single pass through the entire training dataset is called an epoch. For
MNIST, with 60,000 training images and a batch size of 32, each epoch consists
of 1,875 batch iterations. The training loop structure is:

1. For each epoch:
• ShufÒe training data to prevent learning order-dependent patterns
• For each batch:

– Perform forward propagation
– Compute loss
– Execute backward propagation
– Update weights using gradient descent

• Evaluate network performance

During training, we monitor several key metrics:
• Training loss: average loss over recent batches
• Validation accuracy: performance on held-out test data
• Learning progress: how quickly the network improves

For our digit recognition task, we might observe the network’s accuracy
improve from 10% (random guessing) to over 95% through multiple epochs of
training.

3.5.5.4 Practical Considerations

The successful implementation of neural network training requires attention
to several key practical aspects that significantly impact learning effectiveness.
These considerations bridge the gap between theoretical understanding and
practical implementation.

Learning rate selection is perhaps the most critical parameter affecting train-
ing. For our MNIST network, the choice of learning rate dramatically influences
the training dynamics. A large learning rate of 0.1 might cause unstable training
where the loss oscillates or explodes as weight updates overshoot optimal val-
ues. Conversely, a very small learning rate of 0.0001 might result in extremely
slow convergence, requiring many more epochs to achieve good performance.
A moderate learning rate of 0.01 often provides a good balance between train-
ing speed and stability, allowing the network to make steady progress while
maintaining stable learning.

Chapter 3. DL Primer 95

Convergence monitoring provides crucial feedback during the training pro-
cess. As training progresses, we typically observe the loss value stabilizing
around a particular value, indicating the network is approaching a local opti-
mum. The validation accuracy often plateaus as well, suggesting the network
has extracted most of the learnable patterns from the data. The gap between
training and validation performance offers insights into whether the network
is overfitting or generalizing well to new examples.

Resource requirements become increasingly important as we scale neural
network training. The memory footprint must accommodate both model param-
eters and the intermediate computations needed for backpropagation. Com-
putation scales linearly with batch size, affecting training speed and hardware
utilization. Modern training often leverages GPU acceleration, making efÏcient
use of parallel computing capabilities crucial for practical implementation.

Training neural networks also presents several fundamental challenges. Over-
fitting occurs when the network becomes too specialized to the training data,
performing well on seen examples but poorly on new ones. Gradient instability
can manifest as either vanishing or exploding gradients, making learning difÏ-
cult. The interplay between batch size, available memory, and computational
resources often requires careful balancing to achieve efÏcient training while
working within hardware constraints.

3.6 Prediction Phase
Neural networks serve two distinct purposes: learning from data during train-
ing and making predictions during inference. While we’ve explored how net-
works learn through forward propagation, backward propagation, and weight
updates, the prediction phase operates differently. During inference, networks
use their learned parameters to transform inputs into outputs without the need
for learning mechanisms. This simpler computational process still requires
careful consideration of how data flows through the network and how system
resources are utilized. Understanding the prediction phase is crucial as it repre-
sents how neural networks are actually deployed to solve real-world problems,
from classifying images to generating text predictions.

3.6.1 Inference Basics
3.6.1.1 Training vs Inference

The computation flow fundamentally changes when moving from training to
inference. While training requires both forward and backward passes through
the network to compute gradients and update weights, inference involves only
the forward pass computation. This simpler flow means that each layer needs
to perform only one set of operations, transforming inputs to outputs using
the learned weights, rather than tracking intermediate values for gradient
computation, as illustrated in Figure 3.17.

Parameter freezing is another another major distinction between training and
inference phases. During training, weights and biases continuously update
to minimize the loss function. In inference, these parameters remain fixed,
acting as static transformations learned from the training data. This freezing

3.6. Prediction Phase 96

Figure 3.17: Comparing training ver-
sus inference data flow and compu-
tation.

Inference

Smaller,

varied N

forward
"person"

Training

Large N

forward
"person"

backward

error

of parameters not only simplifies computation but also enables optimizations
impossible during training, such as weight quantization or pruning.

The structural difference between training loops and inference passes signifi-
cantly impacts system design. Training operates in an iterative loop, processing
multiple batches of data repeatedly across many epochs to refine the network’s
parameters. Inference, in contrast, typically processes each input just once,
generating predictions in a single forward pass. This fundamental shift from it-
erative refinement to single-pass prediction influences how we architect systems
for deployment.

Memory and computation requirements differ substantially between training
and inference. Training demands considerable memory to store intermediate
activations for backpropagation, gradients for weight updates, and optimization
states. Inference eliminates these memory-intensive requirements, needing only
enough memory to store the model parameters and compute a single forward
pass. This reduction in memory footprint, coupled with simpler computation
patterns, enables inference to run efÏciently on a broader range of devices, from
powerful servers to resource-constrained edge devices.

In general, the training phase requires more computational resources and
memory for learning, while inference is streamlined for efÏcient prediction.
Table 3.5 summarizes the key differences between training and inference.

Table 3.5: Key differences between training and inference phases in neural net-
works.

Aspect Training Inference

Computation Flow Forward and backward passes,
gradient computation

Forward pass only, direct input to
output

Parameters Continuously updated weights and
biases

Fixed/frozen weights and biases

Processing Pattern Iterative loops over multiple epochs Single pass through the network
Memory Requirements High – stores activations, gradients,

optimizer state
Lower– stores only model | parameters
and current input

Chapter 3. DL Primer 97

Aspect Training Inference

Computational Needs Heavy – gradient updates,
backpropagation

Lighter – matrix multiplication only

Hardware Requirements GPUs/specialized hardware for
efÏcient training

Can run on simpler devices, including
mobile/edge

This stark contrast between training and inference phases highlights why
system architectures often differ significantly between development and de-
ployment environments. While training requires substantial computational
resources and specialized hardware, inference can be optimized for efÏciency
and deployed across a broader range of devices.

3.6.1.2 Basic Pipeline

The implementation of neural networks in practical applications requires a
complete processing pipeline that extends beyond the network itself. This
pipeline, which is illustrated in Figure 3.18 transforms raw inputs into mean-
ingful outputs through a series of distinct stages, each essential for the system’s
operation. Understanding this complete pipeline provides critical insights into
the design and deployment of machine learning systems.

Figure 3.18: End-to-end workflow
for the inference prediction phase.

Raw

Input
Pre-processing

Neural

Network

Raw

Output
Post-processing

Final

Output

Traditional Computing Deep Learning Traditional Computing

The key thing to notice from the figure is that machine learning systems op-
erate as hybrid architectures that combine conventional computing operations
with neural network computations. The neural network component, focused on
learned transformations through matrix operations, represents just one element
within a broader computational framework. This framework encompasses
both the preparation of input data and the interpretation of network outputs,
processes that rely primarily on traditional computing methods.

Consider how data flows through the pipeline in Figure 3.18:
1. Raw inputs arrive in their original form, which might be images, text,

sensor readings, or other data types
2. Pre-processing transforms these inputs into a format suitable for neural

network consumption
3. The neural network performs its learned transformations
4. Raw outputs emerge from the network, often in numerical form
5. Post-processing converts these outputs into meaningful, actionable results

This pipeline structure reveals several fundamental characteristics of machine
learning systems. The neural network, despite its computational sophistication,
functions as a component within a larger system. Performance bottlenecks may
arise at any stage of the pipeline, not exclusively within the neural network
computation. System optimization must therefore consider the entire pipeline
rather than focusing solely on the neural network’s operation.

3.6. Prediction Phase 98

The hybrid nature of this architecture has significant implications for system
implementation. While neural network computations may benefit from spe-
cialized hardware accelerators, pre- and post-processing operations typically
execute on conventional processors. This distribution of computation across
heterogeneous hardware resources represents a fundamental consideration in
system design.

3.6.2 Pre-processing
The pre-processing stage transforms raw inputs into a format suitable for neural
network computation. While often overlooked in theoretical discussions, this
stage forms a critical bridge between real-world data and neural network oper-
ations. Consider our MNIST digit recognition example: before a handwritten
digit image can be processed by the neural network we designed earlier, it must
undergo several transformations. Raw images of handwritten digits arrive in
various formats, sizes, and pixel value ranges. For instance, in Figure 3.19, we
see that the digits are all of different sizes, and even the number 6 is written
differently by the same person.

Figure 3.19: Images of handwritten
digits. Source: O. Augereau

The pre-processing stage standardizes these inputs through conventional
computing operations:

• Image scaling to the required 28×28 pixel dimensions, camera images
are usually large(r).

• Pixel value normalization from [0,255] to [0,1], most cameras generate
colored images.

• Flattening the 2D image array into a 784-dimensional vector, preparing it
for the neural network.

• Basic validation to ensure data integrity, making sure the network pre-
dicted correctly.

What distinguishes pre-processing from neural network computation is its
reliance on traditional computing operations rather than learned transforma-
tions. While the neural network learns to recognize digits through training,
pre-processing operations remain fixed, deterministic transformations. This
distinction has important system implications: pre-processing operates on
conventional CPUs rather than specialized neural network hardware, and its
performance characteristics follow traditional computing patterns.

The effectiveness of pre-processing directly impacts system performance.
Poor normalization can lead to reduced accuracy, inconsistent scaling can in-
troduce artifacts, and inefÏcient implementation can create bottlenecks. Un-
derstanding these implications helps in designing robust machine learning
systems that perform well in real-world conditions.

Chapter 3. DL Primer 99

3.6.3 Inference
The inference phase represents the operational state of a neural network, where
learned parameters are used to transform inputs into predictions. Unlike the
training phase we discussed earlier, inference focuses solely on forward com-
putation with fixed parameters.

3.6.3.1 Network Initialization

Before processing any inputs, the neural network must be properly initialized
for inference. This initialization phase involves loading the model parameters
learned during training into memory. For our MNIST digit recognition network,
this means loading specific weight matrices and bias vectors for each layer. Let’s
examine the exact memory requirements for our architecture:

• Input to first hidden layer:
– Weight matrix: 784×100 = 78,400 parameters
– Bias vector: 100 parameters

• First to second hidden layer:
– Weight matrix: 100×100 = 10,000 parameters
– Bias vector: 100 parameters

• Second hidden layer to output:
– Weight matrix: 100×10 = 1,000 parameters
– Bias vector: 10 parameters

In total, the network requires storage for 89,610 learned parameters (89,400
weights plus 210 biases). Beyond these fixed parameters, memory must also
be allocated for intermediate activations during forward computation. For
processing a single image, this means allocating space for:

• First hidden layer activations: 100 values
• Second hidden layer activations: 100 values
• Output layer activations: 10 values

This memory allocation pattern differs significantly from training, where
additional memory was needed for gradients, optimizer states, and backpropa-
gation computations.

3.6.3.2 Forward Pass Computation

During inference, data propagates through the network’s layers using the initial-
ized parameters. This forward propagation process, while similar in structure
to its training counterpart, operates with different computational constraints
and optimizations. The computation follows a deterministic path from input to
output, transforming the data at each layer using learned parameters.

For our MNIST digit recognition network, consider the precise computations
at each layer. The network processes a pre-processed image represented as a
784-dimensional vector through successive transformations:

1. First Hidden Layer Computation:

3.6. Prediction Phase 100

• Input transformation: 784 inputs combine with 78,400 weights through
matrix multiplication

• Linear computation: z(1) = xW(1) + b(1)
• Activation: a(1) = ReLU(z(1))
• Output: 100-dimensional activation vector

2. Second Hidden Layer Computation:
• Input transformation: 100 values combine with 10,000 weights
• Linear computation: z(2) = a(1)W(2) + b(2)
• Activation: a(2) = ReLU(z(2))
• Output: 100-dimensional activation vector

3. Output Layer Computation:
• Final transformation: 100 values combine with 1,000 weights
• Linear computation: z(3) = a(2)W(3) + b(3)
• Activation: a(3) = softmax(z(3))
• Output: 10 probability values

Table 3.6 shows how these computations, while mathematically identical to
training-time forward propagation, show important operational differences:

Table 3.6: Operational characteristics of forward pass computation during train-
ing versus inference

Characteristic Training Forward Pass Inference Forward Pass

Activation Storage Maintains complete activation history
for backpropagation

Retains only current layer activations

Memory Pattern Preserves intermediate states
throughout forward pass

Releases memory after layer
computation completes

Computational Flow Structured for gradient computation
preparation

Optimized for direct output generation

Resource Profile Higher memory requirements for
training operations

Minimized memory footprint for
efÏcient execution

This streamlined computation pattern enables efÏcient inference while main-
taining the network’s learned capabilities. The reduction in memory require-
ments and simplified computational flow make inference particularly suitable
for deployment in resource-constrained environments, such as Mobile ML and
Tiny ML.

3.6.3.3 Resource Requirements

Neural networks consume computational resources differently during inference
compared to training. During inference, resource utilization focuses primarily
on efÏcient forward pass computation and minimal memory overhead. Let’s
examine the specific requirements for our MNIST digit recognition network.

Memory requirements during inference can be precisely quantified:
1. Static Memory (Model Parameters):

• Layer 1: 78,400 weights + 100 biases

Chapter 3. DL Primer 101

• Layer 2: 10,000 weights + 100 biases
• Layer 3: 1,000 weights + 10 biases
• Total: 89,610 parameters (≈ 358.44 KB at 32-bit floating point preci-

sion)

2. Dynamic Memory (Activations):
• Layer 1 output: 100 values
• Layer 2 output: 100 values
• Layer 3 output: 10 values
• Total: 210 values (≈ 0.84 KB at 32-bit floating point precision)

Computational requirements follow a fixed pattern for each input:
• First layer: 78,400 multiply-adds
• Second layer: 10,000 multiply-adds
• Output layer: 1,000 multiply-adds
• Total: 89,400 multiply-add operations per inference

This resource profile stands in stark contrast to training requirements, where
additional memory for gradients and computational overhead for backpropa-
gation significantly increase resource demands. The predictable, streamlined
nature of inference computations enables various optimization opportunities
and efÏcient hardware utilization.

3.6.3.4 Optimization Opportunities

The fixed nature of inference computation presents several opportunities for
optimization that are not available during training. Once a neural network’s
parameters are frozen, the predictable pattern of computation allows for sys-
tematic improvements in both memory usage and computational efÏciency.

Batch size selection represents a fundamental trade-off in inference opti-
mization. During training, large batches were necessary for stable gradient
computation, but inference offers more flexibility. Processing single inputs
minimizes latency, making it ideal for real-time applications where immediate
responses are crucial. However, batch processing can significantly improve
throughput by better utilizing parallel computing capabilities, particularly on
GPUs. For our MNIST network, consider the memory implications: processing
a single image requires storing 210 activation values, while a batch of 32 images
requires 6,720 activation values but can process images up to 32 times faster on
parallel hardware.

Memory management during inference can be significantly more efÏcient
than during training. Since intermediate values are only needed for forward
computation, memory buffers can be carefully managed and reused. The acti-
vation values from each layer need only exist until the next layer’s computation
is complete. This enables in-place operations where possible, reducing the total
memory footprint. Furthermore, the fixed nature of inference allows for precise
memory alignment and access patterns optimized for the underlying hardware
architecture.

3.6. Prediction Phase 102

Hardware-specific optimizations become particularly important during infer-
ence. On CPUs, computations can be organized to maximize cache utilization
and take advantage of SIMD (Single Instruction, Multiple Data) capabilities.
GPU deployments benefit from optimized matrix multiplication routines and
efÏcient memory transfer patterns. These optimizations extend beyond pure
computational efÏciency, as they can significantly impact power consumption
and hardware utilization, critical factors in real-world deployments.

The predictable nature of inference also enables more aggressive optimiza-
tions like reduced numerical precision. While training typically requires 32-bit
floating-point precision to maintain stable gradient computation, inference can
often operate with 16-bit or even 8-bit precision while maintaining acceptable
accuracy. For our MNIST network, this could reduce the memory footprint from
358.44 KB to 179.22 KB or even 89.61 KB, with corresponding improvements in
computational efÏciency.

These optimization principles, while illustrated through our simple MNIST
feedforward network, represent only the foundation of neural network optimiza-
tion. More sophisticated architectures introduce additional considerations and
opportunities. Convolutional Neural Networks (CNNs), for instance, present
unique optimization opportunities in handling spatial data and filter opera-
tions. Recurrent Neural Networks (RNNs) require careful consideration of
sequential computation and state management. Transformer architectures in-
troduce distinct patterns of attention computation and memory access. These
architectural variations and their optimizations will be explored in detail in
subsequent chapters, particularly when we discuss deep learning architectures,
model optimizations, and efÏcient AI implementations.

3.6.4 Post-processing
The transformation of neural network outputs into actionable predictions re-
quires a return to traditional computing paradigms. Just as pre-processing
bridges real-world data to neural computation, post-processing bridges neural
outputs back to conventional computing systems. This completes the hybrid
computing pipeline we examined earlier, where neural and traditional comput-
ing operations work in concert to solve real-world problems.

The complexity of post-processing extends beyond simple mathematical
transformations. Real-world systems must handle uncertainty, validate out-
puts, and integrate with larger computing systems. In our MNIST example, a
digit recognition system might require not just the most likely digit, but also
confidence measures to determine when human intervention is needed. This
introduces additional computational steps: confidence thresholds, secondary
prediction checks, and error handling logic, all of which are implemented in
traditional computing frameworks.

The computational requirements of post-processing differ significantly from
neural network inference. While inference benefits from parallel processing and
specialized hardware, post-processing typically runs on conventional CPUs and
follows sequential logic patterns. This return to traditional computing brings
both advantages and constraints. Operations are more flexible and easier to
modify than neural computations, but they may become bottlenecks if not

Chapter 3. DL Primer 103

19 Softmax: A function that con-
verts logits into probabilities by scal-
ing them based on a temperature pa-
rameter.

carefully implemented. For instance, computing softmax probabilities19 for a
batch of predictions requires different optimization strategies than the matrix
multiplications of neural network layers.

System integration considerations often dominate post-processing design.
Output formats must match downstream system requirements, error handling
must align with broader system protocols, and performance must meet system-
level constraints. In a complete mail sorting system, the post-processing stage
must not only identify digits but also format these predictions for the sorting
machinery, handle uncertainty cases appropriately, and maintain processing
speeds that match physical mail flow rates.

This return to traditional computing paradigms completes the hybrid nature
of machine learning systems. Just as pre-processing prepared real-world data
for neural computation, post-processing adapts neural outputs for real-world
use. Understanding this hybrid nature, the interplay between neural and tradi-
tional computing, is essential for designing and implementing effective machine
learning systems.

3.7 Case Study: USPS Postal Service

3.7.1 Real-world Problem
The United States Postal Service (USPS) processes over 100 million pieces of
mail daily, each requiring accurate routing based on handwritten ZIP codes. In
the early 1990s, this task was primarily performed by human operators, making
it one of the largest manual data entry operations in the world. The automation
of this process through neural networks represents one of the earliest and most
successful large-scale deployments of artificial intelligence, embodying many
of the principles we’ve explored in this chapter.

Consider the complexity of this task: a ZIP code recognition system must
process images of handwritten digits captured under varying conditions, dif-
ferent writing styles, pen types, paper colors, and environmental factors (see
Figure 3.20). It must make accurate predictions within milliseconds to main-
tain mail processing speeds. Furthermore, errors in recognition can lead to
significant delays and costs from misrouted mail. This real-world constraint
meant the system needed not just high accuracy, but also reliable measures of
prediction confidence to identify when human intervention was necessary.

This challenging environment presented requirements spanning every aspect
of neural network implementation we’ve discussed, from biological inspiration
to practical deployment considerations. The success or failure of the system
would depend not just on the neural network’s accuracy, but on the entire
pipeline from image capture through to final sorting decisions.

3.7.2 System Development
The development of the USPS digit recognition system required careful con-
sideration at every stage, from data collection to deployment. This process
illustrates how theoretical principles of neural networks translate into practical
engineering decisions.

3.7. Case Study: USPS Postal Service 104

Figure 3.20: Example handwritten
zipcodes from the USPS dataset.

Data collection presented the first major challenge. Unlike controlled labora-
tory environments, postal facilities needed to process mail pieces with tremen-
dous variety. The training dataset had to capture this diversity. Digits written
by people of different ages, educational backgrounds, and writing styles formed
just part of the challenge. Envelopes came in varying colors and textures, and
images were captured under different lighting conditions and orientations. This
extensive data collection effort later contributed to the creation of the MNIST
database we’ve used in our examples.

The network architecture design required balancing multiple constraints.
While deeper networks might achieve higher accuracy, they would also increase
processing time and computational requirements. Processing 28 × 28 pixel
images of individual digits needed to complete within strict time constraints
while running reliably on available hardware. The network had to maintain con-
sistent accuracy across varying conditions, from well-written digits to hurried
scrawls.

Training the network introduced additional complexity. The system needed
to achieve high accuracy not just on a test dataset, but on the endless vari-
ety of real-world handwriting styles. Careful preprocessing normalized input
images to account for variations in size and orientation. Data augmentation
techniques increased the variety of training samples. The team validated perfor-
mance across different demographic groups and tested under actual operating
conditions to ensure robust performance.

Chapter 3. DL Primer 105

20 Confidence thresholds: Prede-
termined limits set to decide when
the model’s prediction is to be ac-
cepted. Influences system efÏciency
and accuracy.

21 Image Thresholding: A tech-
nique in image processing that con-
verts grayscale images into binary
images.

22 Connected Component Anal-
ysis: An operation in image process-
ing used to distinguish and identify
disjoint objects within an image.

The engineering team faced a critical decision regarding confidence thresh-
olds20. Setting these thresholds too high would route too many pieces to human
operators, defeating the purpose of automation. Setting them too low would
risk delivery errors. The solution emerged from analyzing the confidence dis-
tributions of correct versus incorrect predictions. This analysis established
thresholds that optimized the tradeoff between automation rate and error rate,
ensuring efÏcient operation while maintaining acceptable accuracy.

3.7.3 Complete Pipeline
Following a single piece of mail through the USPS recognition system illustrates
how the concepts we’ve discussed integrate into a complete solution. The jour-
ney from physical mail piece to sorted letter demonstrates the interplay between
traditional computing, neural network inference, and physical machinery.

The process begins when an envelope reaches the imaging station. High-
speed cameras capture the ZIP code region at rates exceeding several pieces
of mail (e.g. 10) pieces per second. This image acquisition process must adapt
to varying envelope colors, handwriting styles, and environmental conditions.
The system must maintain consistent image quality despite the speed of opera-
tion, as motion blur and proper illumination present significant engineering
challenges.

Pre-processing transforms these raw camera images into a format suitable for
neural network analysis. The system must locate the ZIP code region, segment
individual digits, and normalize each digit image. This stage employs tradi-
tional computer vision techniques: image thresholding21 adapts to envelope
background color, connected component analysis22 identifies individual digits,
and size normalization produces standard 28 × 28 pixel images. Speed re-
mains critical; these operations must complete within milliseconds to maintain
throughput.

The neural network then processes each normalized digit image. The trained
network, with its 89,610 parameters (as we detailed earlier), performs forward
propagation to generate predictions. Each digit passes through two hidden
layers of 100 neurons each, ultimately producing ten output values representing
digit probabilities. This inference process, while computationally intensive,
benefits from the optimizations we discussed in the previous section.

Post-processing converts these neural network outputs into sorting decisions.
The system applies confidence thresholds to each digit prediction. A complete
ZIP code requires high confidence in all five digits, a single uncertain digit
flags the entire piece for human review. When confidence meets thresholds,
the system transmits sorting instructions to mechanical systems that physically
direct the mail piece to its appropriate bin.

The entire pipeline operates under strict timing constraints. From image
capture to sorting decision, processing must complete before the mail piece
reaches its sorting point. The system maintains multiple pieces in various
pipeline stages simultaneously, requiring careful synchronization between
computing and mechanical systems. This real-time operation illustrates why
the optimizations we discussed in inference and post-processing become crucial
in practical applications.

3.7. Case Study: USPS Postal Service 106

3.7.4 Results and Impact

The implementation of neural network-based ZIP code recognition transformed
USPS mail processing operations. By 2000, several facilities across the country
utilized this technology, processing millions of mail pieces daily. This real-
world deployment demonstrated both the potential and limitations of neural
network systems in mission-critical applications.

Performance metrics revealed interesting patterns that validate many of the
principles discussed earlier in this chapter. The system achieved its highest
accuracy on clearly written digits, similar to those in the training data. However,
performance varied significantly with real-world factors. Lighting conditions
affected pre-processing effectiveness. Unusual writing styles occasionally con-
fused the neural network. Environmental vibrations could also impact image
quality. These challenges led to continuous refinements in both the physical
system and the neural network pipeline.

The economic impact proved substantial. Prior to automation, manual sorting
required operators to read and key in ZIP codes at an average rate of one piece
per second. The neural network system processed pieces at ten times this rate
while reducing labor costs and error rates. However, the system didn’t eliminate
human operators entirely; their role shifted to handling uncertain cases and
maintaining system performance. This hybrid approach, combining artificial
and human intelligence, became a model for other automation projects.

The system also revealed important lessons about deploying neural networks
in production environments. Training data quality proved crucial; the network
performed best on digit styles well-represented in its training set. Regular
retraining helped adapt to evolving handwriting styles. Maintenance required
both hardware specialists and machine learning experts, introducing new oper-
ational considerations. These insights influenced subsequent deployments of
neural networks in other industrial applications.

Perhaps most importantly, this implementation demonstrated how theoretical
principles translate into practical constraints. The biological inspiration of
neural networks provided the foundation for digit recognition, but successful
deployment required careful consideration of system-level factors: processing
speed, error handling, maintenance requirements, and integration with existing
infrastructure. These lessons continue to inform modern machine learning
deployments, where similar challenges of scale, reliability, and integration
persist.

3.7.5 Key Takeaways

The USPS ZIP code recognition system is an excellent example of the journey
from biological inspiration to practical neural network deployment that we’ve
explored throughout this chapter. It demonstrates how the basic principles of
neural computation, from pre-processing through inference to post-processing,
come together in solving real-world problems.

The system’s development shows why understanding both the theoretical
foundations and practical considerations is crucial. While the biological visual
system processes handwritten digits effortlessly, translating this capability

Chapter 3. DL Primer 107

into an artificial system required careful consideration of network architecture,
training procedures, and system integration.

The success of this early large-scale neural network deployment helped es-
tablish many practices we now consider standard: the importance of compre-
hensive training data, the need for confidence metrics, the role of pre- and
post-processing, and the critical nature of system-level optimization.

As we move forward to explore more complex architectures and applications
in subsequent chapters, this case study reminds us that successful deployment
requires mastery of both fundamental principles and practical engineering
considerations.

3.8 Conclusion

In this chapter, we explored the foundational concepts of neural networks,
bridging the gap between biological inspiration and artificial implementation.
We began by examining the remarkable efÏciency and adaptability of the human
brain, uncovering how its principles influence the design of artificial neurons.
From there, we delved into the behavior of a single artificial neuron, breaking
down its components and operations. This understanding laid the ground-
work for constructing neural networks, where layers of interconnected neurons
collaborate to tackle increasingly complex tasks.

The progression from single neurons to network-wide behavior underscored
the power of hierarchical learning, where each layer extracts and transforms
patterns from raw data into meaningful abstractions. We examined both the
learning process and the prediction phase, showing how neural networks first
refine their performance through training and then deploy that knowledge
through inference. The distinction between these phases revealed important
system-level considerations for practical implementations.

Our exploration of the complete processing pipeline, from pre-processing
through inference to post-processing, highlighted the hybrid nature of machine
learning systems, where traditional computing and neural computation work
together. The USPS case study demonstrated how these theoretical principles
translate into practical applications, revealing both the power and complexity
of deployed neural networks. These real-world considerations, from data col-
lection to system integration, form an essential part of understanding machine
learning systems.

In the next chapter, we will expand on these ideas, exploring sophisticated
deep learning architectures such as convolutional and recurrent neural net-
works. These architectures are tailored to process diverse data types, from
images and text to time series, enabling breakthroughs across a wide range
of applications. By building on the concepts introduced here, we will gain a
deeper appreciation for the design, capabilities, and versatility of modern deep
learning systems.

3.9. Resources 108

3.9 Resources

�� Slides

• Past, Present, and Future of ML.
• Thinking About Loss.
• Minimizing Loss.
• First Neural Network.
• Understanding Neurons.
• Intro to CLassification.
• Training, Validation, and Test Data.
• Intro to Convolutions.

çĖ Videos

• Video 1
• Video 2
• Video 3
• Video 4

¸Î Exercises

Coming soon.

https://docs.google.com/presentation/d/16ensKAKBG8DOUHF4f5thTJklVGTadxjm3kPkdoPyabI/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1X92JqVkUY7k6yJXQcT2u83dpdrx5UzGFAJkkDMDfKe0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1x3xbZHo4VtaZgoXfueCbOGGXuWRYj0nOsKwAAoGsrD0/edit#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1zQwhTwF_plXBPQLxluahpzoQg-VdMyJbctaJxSUncag/edit?usp=drive_link
https://docs.google.com/presentation/d/1jXCAC6IT5f9XFKZbfhJ4p2D5URVTYqgAnkcQR4ALhSk/edit?usp=drive_link&resourcekey=0-K228bxVdwO2w3kr0daV2cw
https://docs.google.com/presentation/d/1VtWV9LAVLJ0uAkhFMbDJFjsUH6IvBDnPde4lR1cD2mo/edit?usp=drive_link
https://docs.google.com/presentation/d/1G56D0-qG9YWnzQQeje9LMpcLSotMgBCiMyfj53yz7lY/edit?usp=drive_link
https://docs.google.com/presentation/d/1hQDabWqaKUWRb60Cze-MhAyeUUVyNgyTUMBpLnqhtvc/edit?resourcekey=0-uHZoNwsbjeY3EIMD3fYAfg#slide=id.g94db9f9f78_0_2

Chapter 4

DNN Architectures

Figure 4.1: DALL·E 3 Prompt: A visu-
ally striking rectangular image illustrat-
ing the interplay between deep learning
algorithms like CNNs, RNNs, and At-
tention Networks, interconnected with
machine learning systems. The compo-
sition features neural network diagrams
blending seamlessly with representa-
tions of computational systems such as
processors, graphs, and data streams.
Bright neon tones contrast against a
dark futuristic background, symboliz-
ing cutting-edge technology and intri-
cate system complexity.

Purpose

What recurring patterns emerge across modern deep learning architectures, and how
do these patterns enable systematic approaches to AI system design?

Deep learning architectures represent a convergence of computational pat-
terns that form the building blocks of modern AI systems. These foundational
patterns, ranging from convolutional structures to attention mechanisms, reveal
how complex models arise from simple, repeatable components. The exam-
ination of these architectural elements provides insights into the systematic
construction of flexible, efÏcient AI systems, establishing core principles that
influence every aspect of system design and deployment. These structural in-
sights illuminate the path toward creating scalable, adaptable solutions across
diverse application domains.

109

4.1. Overview 110

L� Learning Objectives

• Map fundamental neural network concepts to deep learning archi-
tectures (dense, spatial, temporal, attention-based).

• Analyze how architectural patterns shape computational and mem-
ory demands.

• Evaluate system-level impacts of architectural choices on system
attributes.

• Compare architectures’ hardware mapping and identify optimiza-
tion strategies.

• Assess trade-offs between complexity and system needs for specific
applications.

4.1 Overview
Deep learning architecture stands for specific representation or organizations
of neural network components, the neurons, weights, and connections (as
introduced in Chapter 3), arranged to efÏciently process different types of
patterns in data. While the previous chapter established the fundamental
building blocks of neural networks, in this chapter we examine how these
components are structured into architectures that map efÏciently to computer
systems.

Neural network architectures have evolved to address specific pattern process-
ing challenges. Whether processing arbitrary feature relationships, exploiting
spatial patterns, managing temporal dependencies, or handling dynamic infor-
mation flow, each architectural pattern emerged from particular computational
needs. These architectures, from a computer systems perspective, require an
examination of how their computational patterns map to system resources.

Most often the architectures are discussed in terms of their algorithmic struc-
tures (MLPs, CNNs, RNNs, Transformers). However, in this chapter we take
a more fundamental approach by examining how their computational pat-
terns map to hardware resources. Each section analyzes how specific pattern
processing needs influence algorithmic structure and how these structures
map to computer system resources. The implications for computer system
design require examining how their computational patterns map to hardware
resources. The mapping from algorithmic requirements to computer system
design involves several key considerations:

1. Memory access patterns: How data moves through the memory hierarchy
2. Computation characteristics: The nature and organization of arithmetic

operations
3. Data movement: Requirements for on-chip and off-chip data transfer
4. Resource utilization: How computational and memory resources are

allocated
For example, dense connectivity patterns generate different memory band-

width demands than localized processing structures. Similarly, stateful process-

Chapter 4. DNN Architectures 111

ing creates distinct requirements for on-chip memory organization compared
to stateless operations. Getting a firm grasp on these mappings is important
for modern computer architects and system designers who must implement
these algorithms efÏciently in hardware.

4.2 Multi-Layer Perceptrons: Dense Pattern Processing
Multi-Layer Perceptrons (MLPs) represent the most direct extension of neural
networks into deep architectures. Unlike more specialized networks, MLPs
process each input element with equal importance, making them versatile
but computationally intensive. Their architecture, while simple, establishes
fundamental computational patterns that appear throughout deep learning
systems. These patterns were initially formalized by the introduction of the
Universal Approximation Theorem (UAT) (Cybenko 1992; Hornik, Stinchcombe,
and White 1989), which states that a sufÏciently large MLP with non-linear
activation functions can approximate any continuous function on a compact
domain, given suitable weights and biases.

When applied to the MNIST handwritten digit recognition challenge, an
MLP reveals its computational power by transforming a complex 28×28 pixel
image into a precise digit classification. By treating each of the 784 pixels as an
equally weighted input, the network learns to decompose visual information
through a systematic progression of layers, converting raw pixel intensities into
increasingly abstract representations that capture the essential characteristics
of handwritten digits.

4.2.1 Pattern Processing Needs
Deep learning systems frequently encounter problems where any input feature
could potentially influence any output, as there are no inherent constraints on
these relationships. Consider analyzing financial market data: any economic
indicator might affect any market outcome or in natural language processing,
where the meaning of a word could depend on any other word in the sentence.
These scenarios demand an architectural pattern capable of learning arbitrary
relationships across all input features.

Dense pattern processing addresses this fundamental need by enabling sev-
eral key capabilities. First, it allows unrestricted feature interactions where
each output can depend on any combination of inputs. Second, it facilitates
learned feature importance, allowing the system to determine which connec-
tions matter rather than having them prescribed. Finally, it provides adaptive
representation, enabling the network to reshape its internal representations
based on the data.

For example, in the MNIST digit recognition task, while humans might
focus on specific parts of digits (like loops in ‘6’ or crossings in ‘8’), we cannot
definitively say which pixel combinations are important for classification. A
‘7’ written with a serif could share pixel patterns with a ‘2’, while variations in
handwriting mean discriminative features might appear anywhere in the image.
This uncertainty about feature relationships necessitates a dense processing
approach where every pixel can potentially influence the classification decision.

4.2. Multi-Layer Perceptrons: Dense Pattern Processing 112

4.2.2 Algorithmic Structure
To enable unrestricted feature interactions, MLPs implement a direct algorith-
mic solution: connect everything to everything. This is realized through a
series of fully-connected layers, where each neuron connects to every neuron in
adjacent layers. The dense connectivity pattern translates mathematically into
matrix multiplication operations. As shown in Figure 4.2, each layer transforms
its input through matrix multiplication followed by element-wise activation:

h(𝑙) = 𝑓(W(𝑙)h(𝑙−1) + b(𝑙))
Figure 4.2: MLP layers and its associ-
ated matrix representation. Source:
Reagen et al. (2017)

Weighted Edge

Neuron

Weighted Edge
Neuron

× ×

Input Layer Hidden Layer Output Layer Input Layer Hidden Layer Output Layer

The dimensions of these operations reveal the computational scale of dense
pattern processing:

• Input vector: h(0) ∈ ℝ𝑑in represents all potential input features
• Weight matrices: W(𝑙) ∈ ℝ𝑑out×𝑑in capture all possible input-output rela-

tionships
• Output vector: h(𝑙) ∈ ℝ𝑑out produces transformed representations

In the MNIST example, this means:
• Each 784-dimensional input (28×28 pixels) connects to every neuron in

the first hidden layer
• A hidden layer with 100 neurons requires a 784×100 weight matrix
• Each weight in this matrix is a learnable relationship between an input

pixel and a hidden feature

This algorithmic structure directly addresses our need for arbitrary feature
relationships but creates specific computational patterns that must be handled
efÏciently by computer systems.

4.2.3 Computational Mapping
The elegant mathematical representation of dense matrix multiplication maps
to specific computational patterns that systems must handle. Let’s examine
how this mapping progresses from mathematical abstraction to computational
reality.

The first implementation is shown in Listing 4.1. The function mlp_layer_-
matrix directly mirrors our mathematical equation. It uses high-level matrix
operations (matmul) to express the computation in a single line, hiding the

Chapter 4. DNN Architectures 113

Listing 4.1: Mathematical abstraction in code

def mlp_layer_matrix(X, W, b):
X: input matrix (batch_size × num_inputs)
W: weight matrix (num_inputs × num_outputs)
b: bias vector (num_outputs)
H = activation(matmul(X, W) + b)
One clean line of math
return H

underlying complexity. This is the style commonly used in deep learning
frameworks, where optimized libraries handle the actual computation.

The second implementation, mlp_layer_compute (shown in Listing 4.2), ex-
poses the actual computational pattern through nested loops. This version
shows us what really happens when we compute a layer’s output: we process
each sample in the batch, computing each output neuron by accumulating
weighted contributions from all inputs.

Listing 4.2: Core computational pattern

def mlp_layer_compute(X, W, b):
Process each sample in the batch
for batch in range(batch_size):

Compute each output neuron
for out in range(num_outputs):

Initialize with bias
Z[batch,out] = b[out]
Accumulate weighted inputs
for in_ in range(num_inputs):

Z[batch,out] += X[batch,in_] * W[in_,out]

H = activation(Z)
return H

This translation from mathematical abstraction to concrete computation ex-
poses how dense matrix multiplication decomposes into nested loops of simpler
operations. The outer loop processes each sample in the batch, while the middle
loop computes values for each output neuron. Within the innermost loop, the
system performs repeated multiply-accumulate operations, combining each
input with its corresponding weight.

In the MNIST example, each output neuron requires 784 multiply-accumulate
operations and at least 1,568 memory accesses (784 for inputs, 784 for weights).
While actual implementations use sophisticated optimizations through libraries
like BLAS or cuBLAS, these fundamental patterns drive key system design
decisions.

https://www.netlib.org/blas/
https://developer.nvidia.com/cublas

4.2. Multi-Layer Perceptrons: Dense Pattern Processing 114

0 Multiply-Accumulate Oper-
ation: A basic operation in digi-
tal computing and neural networks
that multiplies two numbers and
adds the result to an accumulator.

4.2.4 System Implications
When analyzing how computational patterns impact computer systems, we
typically examine three fundamental dimensions: memory requirements, com-
putation needs, and data movement. This framework enables a systematic
analysis of how algorithmic patterns influence system design decisions. We
will use this framework for analyzing other network architectures, allowing us
to compare and contrast their different characteristics.

4.2.4.1 Memory Requirements

For dense pattern processing, the memory requirements stem from storing and
accessing weights, inputs, and intermediate results. In our MNIST example,
connecting our 784-dimensional input layer to a hidden layer of 100 neurons
requires 78,400 weight parameters. Each forward pass must access all these
weights, along with input data and intermediate results. The all-to-all con-
nectivity pattern means there’s no inherent locality in these accesses—every
output needs every input and its corresponding weights.

These memory access patterns suggest opportunities for optimization through
careful data organization and reuse. Modern processors handle these patterns
differently; CPUs leverage their cache hierarchy for data reuse, while GPUs
employ specialized memory hierarchies designed for high-bandwidth access.
Deep learning frameworks abstract these hardware-specific details through
optimized matrix multiplication implementations.

4.2.4.2 Computation Needs

The core computation revolves around multiply-accumulate operations0 ar-
ranged in nested loops. Each output value requires as many multiply-accumulates
as there are inputs. For MNIST, this means 784 multiply-accumulates per out-
put neuron. With 100 neurons in our hidden layer, we’re performing 78,400
multiply-accumulates for a single input image. While these operations are
simple, their volume and arrangement create specific demands on processing
resources.

This computational structure lends itself to particular optimization strate-
gies in modern hardware. The dense matrix multiplication pattern can be
efÏciently parallelized across multiple processing units, with each handling
different subsets of neurons. Modern hardware accelerators take advantage
of this through specialized matrix multiplication units, while deep learning
frameworks automatically convert these operations into optimized BLAS (Basic
Linear Algebra Subprograms) calls. CPUs and GPUs can both exploit cache
locality by carefully tiling the computation to maximize data reuse, though
their specific approaches differ based on their architectural strengths.

4.2.4.3 Data Movement

The all-to-all connectivity pattern in MLPs creates significant data movement
requirements. Each multiply-accumulate operation needs three pieces of data:
an input value, a weight value, and the running sum. For our MNIST example
layer, computing a single output value requires moving 784 inputs and 784

Chapter 4. DNN Architectures 115

weights to wherever the computation occurs. This movement pattern repeats
for each of the 100 output neurons, creating substantial data transfer demands
between memory and compute units.

The predictable nature of these data movement patterns enables strategic
data staging and transfer optimizations. Different architectures address this
challenge through various mechanisms; CPUs use sophisticated prefetching and
multi-level caches; meanwhile, GPUs employ high-bandwidth memory systems
and latency hiding through massive threading. Deep learning frameworks
orchestrate these data movements through optimized memory management
systems.

4.3 Convolutional Neural Networks: Spatial Pattern
Processing

While MLPs treat each input element independently, many real-world data
types exhibit strong spatial relationships. Images, for example, derive their
meaning from the spatial arrangement of pixels—a pattern of edges and tex-
tures that form recognizable objects. Audio signals show temporal patterns of
frequency components, and sensor data often contains spatial or temporal cor-
relations. These spatial relationships suggest that treating every input-output
connection with equal importance, as MLPs do, might not be the most effective
approach.

4.3.1 Pattern Processing Needs

Spatial pattern processing addresses scenarios where the relationship between
data points depends on their relative positions or proximity. Consider pro-
cessing a natural image: a pixel’s relationship with its neighbors is important
for detecting edges, textures, and shapes. These local patterns then combine
hierarchically to form more complex features—edges form shapes, shapes form
objects, and objects form scenes.

This hierarchical spatial pattern processing appears across many domains.
In computer vision, local pixel patterns form edges and textures that combine
into recognizable objects. Speech processing relies on patterns across nearby
time segments to identify phonemes and words. Sensor networks analyze
correlations between physically proximate sensors to understand environmental
patterns. Medical imaging depends on recognizing tissue patterns that indicate
biological structures.

Taking image processing as an example, if we want to detect a cat in an
image, certain spatial patterns must be recognized: the triangular shape of ears,
the round contours of the face, the texture of fur. Importantly, these patterns
maintain their meaning regardless of where they appear in the image—a cat
is still a cat whether it’s in the top-left or bottom-right corner. This suggests
two key requirements for spatial pattern processing: the ability to detect local
patterns and the ability to recognize these patterns regardless of their position.

This leads us to the convolutional neural network architecture (CNN), intro-
duced by Y. LeCun et al. (1989). As illustrated in Figure 4.3, CNNs address

4.3. Convolutional Neural Networks: Spatial Pattern Processing 116

Figure 4.3: How convolutional neu-
ral networks extract spaital features
for classification.

Kernel

0.2

0.7

0.1

Horse

Zebra

Dog

Output

SoftMax Activation

FunctionConvolution

+

ReLU

Convolution

+

ReLU

Convolution

+

ReLU

Flatten

Layer

Feature Maps

Feature Extraction Classification Probabilistic Distribution

Fully Connected Layer

Input Pooling Pooling Pooling

1 Convolution: A mathematical
operation on two functions produc-
ing a third function expressing how
the shape of one is modified by the
other.

spatial pattern processing through a fundamentally different connection pat-
tern than MLPs. Instead of connecting every input to every output, CNNs use
a local connection pattern where each output connects only to a small, spatially
contiguous region of the input. This local receptive field moves across the input
space, applying the same set of weights at each position—a process known as
convolution1.

4.3.2 Algorithmic Structure
The core operation in a CNN can be expressed mathematically as:

H(𝑙)𝑖,𝑗,𝑘 = 𝑓(∑𝑑𝑖 ∑𝑑𝑗 ∑𝑐 W(𝑙)𝑑𝑖,𝑑𝑗,𝑐,𝑘H(𝑙−1)𝑖+𝑑𝑖,𝑗+𝑑𝑗,𝑐 + b(𝑙)𝑘)
Here, (𝑖, 𝑗) corresponds to spatial positions, 𝑘 indexes output channels, 𝑐

indexes input channels, and (𝑑𝑖,𝑑𝑗) spans the local receptive field. Unlike the
dense matrix multiplication of MLPs, this operation:

• Processes local neighborhoods (typically 3×3 or 5×5)
• Reuses the same weights at each spatial position
• Maintains spatial structure in its output

For a concrete example, consider the MNIST digit classification task with28×28 grayscale images. Each convolutional layer applies a set of filters (e.g.,3× 3) that slide across the image, computing local weighted sums. If we use
32 filters, the layer produces a 28×28×32 output, where each spatial position
contains 32 different feature measurements of its local neighborhood. This
contrasts sharply with the multi-layer perceptron (MLP) approach, where the
entire image is flattened into a 784-dimensional vector before processing.

This algorithmic structure directly implements the requirements for spatial
pattern processing, creating distinct computational patterns that influence
system design. Unlike MLPs, convolutional networks preserve spatial locality,
allowing for efÏcient hierarchical feature extraction. These properties drive
architectural optimizations in AI accelerators, where operations such as data
reuse, tiling, and parallel filter computation are critical for performance.

As illustrated in Figure 4.4, convolution operations involve sliding a small
filter over the input image to generate a feature map. This process efÏciently

Chapter 4. DNN Architectures 117

captures local structures while maintaining translation invariance, making it a
fundamental component of modern deep learning architectures. For an inter-
active visual exploration of convolutional networks, the CNN Explainer project
provides an insightful demonstration of how these networks are constructed.

Figure 4.4: Convolution operation,
image data (blue) and 3 × 3 filter
(green). Source: V. Dumoulin, F.
Visin, MIT

4.3.3 Computational Mapping
The elegant spatial structure of convolution operations maps to computational
patterns quite different from the dense matrix multiplication of MLPs. Let’s
examine how this mapping progresses from mathematical abstraction to com-
putational reality.

The first implementation, conv_layer_spatial (shown in Listing 4.3), uses
high-level convolution operations to express the computation concisely. This
is typical in deep learning frameworks, where optimized libraries handle the
underlying complexity.

Listing 4.3: Mathematical abstraction - simple and clean

def conv_layer_spatial(input, kernel, bias):
output = convolution(input, kernel) + bias
return activation(output)

The second implementation, conv_layer_compute (see Listing 4.4), reveals the
actual computational pattern: nested loops that process each spatial position,
applying the same filter weights to local regions of the input. These nested
loops reveal the true nature of convolution’s computational structure.

The seven nested loops reveal different aspects of the computation:
• Outer loops (1-3) manage position: which image and where in the image
• Middle loop (4) handles output features: computing different learned

patterns
• Inner loops (5-7) perform the actual convolution: sliding the kernel win-

dow

Let’s take a closer look. The outer two loops (for y and for x) traverse each
spatial position in the output feature map (for our MNIST example, this means
moving across all 28×28 positions). At each position, we compute values for

https://poloclub.github.io/cnn-explainer/

4.3. Convolutional Neural Networks: Spatial Pattern Processing 118

Listing 4.4: System reality - nested loops of computation

def conv_layer_compute(input, kernel, bias):
Loop 1: Process each image in batch
for image in range(batch_size):

Loop 2&3: Move across image spatially
for y in range(height):

for x in range(width):

Loop 4: Compute each output feature
for out_channel in range(num_output_channels):
result = bias[out_channel]

Loop 5&6: Move across kernel window
for ky in range(kernel_height):

for kx in range(kernel_width):

Loop 7: Process each input feature
for in_channel in range(num_input_channels):
Get input value from correct window position
in_y = y + ky
in_x = x + kx
Perform multiply-accumulate operation
result += (
input[image, in_y, in_x, in_channel]
* kernel[ky, kx, in_channel, out_channel]

)

Store result for this output position
output[image, y, x, out_channel] = result

each output channel (for k loop), which represents different learned features
or patterns—our 32 different feature detectors.

The inner three loops implement the actual convolution operation at each
position. For each output value, we process a local 3×3 region of the input (the
dy and dx loops) across all input channels (for c loop). This creates a sliding
window effect, where the same 3×3 filter moves across the image, performing
multiply-accumulates between the filter weights and the local input values.
Unlike the MLP’s global connectivity, this local processing pattern means each
output value depends only on a small neighborhood of the input.

For our MNIST example with 3×3 filters and 32 output channels, each out-
put position requires only 9 multiply-accumulate operations per input channel,
compared to the 784 operations needed in our MLP layer. However, this oper-
ation must be repeated for every spatial position (28 × 28) and every output
channel (32).

Chapter 4. DNN Architectures 119

2 Feature Map: The output of
one layer of a neural network, which
serves as the input for the next layer.

3 Single Instruction, Multiple
Data (SIMD): A type of parallel com-
puting used in processors.

While using fewer operations per output, the spatial structure creates dif-
ferent patterns of memory access and computation that systems must handle
efÏciently. These patterns fundamentally influence system design, creating
both challenges and opportunities for optimization, which we’ll examine next.

4.3.4 System Implications
When analyzing how computational patterns impact computer systems, we
examine three fundamental dimensions: memory requirements, computation
needs, and data movement. For CNNs, the spatial nature of processing creates
distinctive patterns in each dimension that differ significantly from the dense
connectivity of MLPs.

4.3.4.1 Memory Requirements

For convolutional layers, memory requirements center around two key compo-
nents: filter weights and feature maps2. Unlike MLPs that require storing full
connection matrices, CNNs use small, reusable filters. In our MNIST example,
a convolutional layer with 32 filters of size 3×3 requires storing only 288 weight
parameters (3×3×32), in contrast to the 78,400 weights needed for our MLP’s
fully-connected layer. However, the system must store feature maps for all
spatial positions, creating a different memory demand—a 28×28 input with
32 output channels requires storing 25,088 activation values (28×28×32).

These memory access patterns suggest opportunities for optimization through
weight reuse and careful feature map management. Modern processors handle
these patterns by caching filter weights, which are reused across spatial posi-
tions, while streaming through feature map data. Deep learning frameworks
typically implement this through specialized memory layouts that optimize
for both filter reuse and spatial locality in feature map access. CPUs and GPUs
approach this differently—CPUs leverage their cache hierarchy to keep fre-
quently used filters resident, while GPUs use specialized memory architectures
designed for the spatial access patterns of image processing.

4.3.4.2 Computation Needs

The core computation in CNNs involves repeatedly applying small filters across
spatial positions. Each output value requires a local multiply-accumulate op-
eration over the filter region. For our MNIST example with 3 × 3 filters and
32 output channels, computing one spatial position involves 288 multiply-
accumulates (3×3×32), and this must be repeated for all 784 spatial positions(28×28). While each individual computation involves fewer operations than
an MLP layer, the total computational load remains substantial due to spatial
repetition.

This computational pattern presents different optimization opportunities
than MLPs. The regular, repeated nature of convolution operations enables
efÏcient hardware utilization through structured parallelism. Modern proces-
sors exploit this pattern in various ways. CPUs leverage SIMD3 instructions to
process multiple filter positions simultaneously, while GPUs parallelize compu-
tation across spatial positions and channels. Deep learning frameworks further

4.4. Recurrent Neural Networks: Sequential Pattern Processing 120

optimize this through specialized convolution algorithms that transform the
computation to better match hardware capabilities.

4.3.4.3 Data Movement

The sliding window pattern of convolutions creates a distinctive data movement
profile. Unlike MLPs where each weight is used once per forward pass, CNN
filter weights are reused many times as the filter slides across spatial positions.
For our MNIST example, each 3×3 filter weight is reused 784 times (once for
each position in the 28 × 28 feature map). However, this creates a different
challenge: the system must stream input features through the computation unit
while keeping filter weights stable.

The predictable spatial access pattern enables strategic data movement op-
timizations. Different architectures handle this movement pattern through
specialized mechanisms. CPUs maintain frequently used filter weights in cache
while streaming through input features. GPUs employ memory architectures
optimized for spatial locality and provide hardware support for efÏcient sliding
window operations. Deep learning frameworks orchestrate these movements
by organizing computations to maximize filter weight reuse and minimize
redundant feature map accesses.

4.4 Recurrent Neural Networks: Sequential Pattern Processing
While MLPs handle arbitrary relationships and CNNs process spatial pat-
terns, many real-world problems involve sequential data where the order and
relationship between elements over time matters. Text processing requires
understanding how words relate to previous context, speech recognition needs
to track how sounds form coherent patterns, and time-series analysis must
capture how values evolve over time. These sequential relationships suggest
that treating each time step independently misses crucial temporal patterns.

4.4.1 Pattern Processing Needs
Sequential pattern processing addresses scenarios where the meaning of current
input depends on what came before it. Consider natural language processing:
the meaning of a word often depends heavily on previous words in the sentence.
The word “bank” means something different in “river bank” versus “bank
account.” Similarly, in speech recognition, a phoneme’s interpretation often
depends on surrounding sounds, and in financial forecasting, future predictions
require understanding patterns in historical data.

The key challenge in sequential processing is maintaining and updating
relevant context over time. When reading text, humans don’t start fresh with
each word—we maintain a running understanding that evolves as we process
new information. Similarly, when processing time-series data, patterns might
span different timescales, from immediate dependencies to long-term trends.
This suggests we need an architecture that can both maintain state over time
and update it based on new inputs.

These requirements demand specific capabilities from our processing archi-
tecture. The system must maintain internal state to capture temporal context,

Chapter 4. DNN Architectures 121

update this state based on new inputs, and learn which historical information
is relevant for current predictions. Unlike MLPs and CNNs, which process
fixed-size inputs, sequential processing must handle variable-length sequences
while maintaining computational efÏciency. This leads us to the recurrent
neural network (RNN) architecture.

4.4.2 Algorithmic Structure
RNNs address sequential processing through a fundamentally different ap-
proach than MLPs or CNNs by introducing recurrent connections. Instead
of just mapping inputs to outputs, RNNs maintain an internal state that is
updated at each time step. This creates a memory mechanism that allows the
network to carry information forward in time. This unique ability to model
temporal dependencies was first explored by Elman (2002), who demonstrated
how RNNs could find structure in time-dependent data.

The core operation in a basic RNN can be expressed mathematically as:

h𝑡 = 𝑓(Wℎℎh𝑡−1 + W𝑥ℎx𝑡 + bℎ)
where h𝑡 corresponds to the hidden state at time 𝑡, x𝑡 is the input at time 𝑡, Wℎℎ
contains the recurrent weights, and W𝑥ℎ contains the input weights, as shown
in the unfolded network structure in Figure 4.5.

For example, in processing a sequence of words, each word might be repre-
sented as a 100-dimensional vector (x𝑡), and we might maintain a hidden state
of 128 dimensions (h𝑡). At each time step, the network combines the current
input with its previous state to update its understanding of the sequence. This
creates a form of memory that can capture patterns across time steps.

This recurrent structure directly implements our requirements for sequential
processing through the introduction of recurrent connections, which maintain
internal state and allow the network to carry information forward in time.
Instead of processing all inputs independently, RNNs process sequences of
data by iteratively updating a hidden state based on the current input and
the previous hidden state, as depicted in Figure 4.5. This makes RNNs well-
suited for tasks such as language modeling, speech recognition, and time-series
forecasting.

Figure 4.5: RNN architecture.
Source: A. Amidi, S. Amidi,
Stanford

h ht − 1 ht ht + 1

y yt − 1 yt yt + 1

x xt − 1 xt xt + 1

Whx Whx Whx Whx

Wyh Wyh Wyh Wyh

Whh Whh Whh

Whh

unfold Whh

4.4. Recurrent Neural Networks: Sequential Pattern Processing 122

4.4.3 Computational Mapping

The sequential structure of RNNs maps to computational patterns quite differ-
ent from both MLPs and CNNs. Let’s examine how this mapping progresses
from mathematical abstraction to computational reality.

As shown in Listing 4.5, the rnn_layer_step function demonstrates how
the operation looks using high-level matrix operations found in deep learning
frameworks. It handles a single time step, taking the current input x_t and
previous hidden state h_prev, along with two weight matrices: W_hh for hidden-
to-hidden connections and W_xh for input-to-hidden connections. Through
matrix multiplication operations (matmul), it merges the previous state and
current input to generate the next hidden state.

Listing 4.5: Mathematical abstraction in code

def rnn_layer_step(x_t, h_prev, W_hh, W_xh, b):
x_t: input at time t (batch_size × input_dim)
h_prev: previous hidden state (batch_size × hidden_dim)
W_hh: recurrent weights (hidden_dim × hidden_dim)
W_xh: input weights (input_dim × hidden_dim)
h_t = activation(

matmul(h_prev, W_hh)
+ matmul(x_t, W_xh)
+ b

)
return h_t

This simplified view masks the underlying complexity of the nested loops and
individual computations shown in the detailed implementation (Listing 4.6).
Its actual implementation reveals a more detailed computational reality.

The nested loops in rnn_layer_compute expose the core computational pat-
tern of RNNs (see Listing 4.6). Loop 1 processes each sequence in the batch in-
dependently, allowing for batch-level parallelism. Within each batch item, Loop
2 computes how the previous hidden state influences the next state through
the recurrent weights W_hh. Loop 3 then incorporates new information from
the current input through the input weights W_xh. Finally, Loop 4 adds biases
and applies the activation function to produce the new hidden state.

For a sequence processing task with input dimension 100 and hidden state di-
mension 128, each time step requires two matrix multiplications: one 128×128
for the recurrent connection and one 100×128 for the input projection. While
individual time steps can process in parallel across batch elements, the time
steps themselves must process sequentially. This creates a unique computa-
tional pattern that systems must handle efÏciently.

Chapter 4. DNN Architectures 123

Listing 4.6: Core computational pattern

def rnn_layer_compute(x_t, h_prev, W_hh, W_xh, b):
Initialize next hidden state
h_t = np.zeros_like(h_prev)

Loop 1: Process each sequence in the batch
for batch in range(batch_size):

Loop 2: Compute recurrent contribution
(h_prev × W_hh)
for i in range(hidden_dim):

for j in range(hidden_dim):
h_t[batch,i] += h_prev[batch,j] * W_hh[j,i]

Loop 3: Compute input contribution (x_t × W_xh)
for i in range(hidden_dim):

for j in range(input_dim):
h_t[batch,i] += x_t[batch,j] * W_xh[j,i]

Loop 4: Add bias and apply activation
for i in range(hidden_dim):

h_t[batch,i] = activation(h_t[batch,i] + b[i])

return h_t

4 Memory storage area where fre-
quently accessed data can be stored
for rapid access.

4.4.4 System Implications
For RNNs, the sequential nature of processing creates distinctive patterns in
each dimension (memory requirements, computation needs, and data move-
ment) that differ significantly from both MLPs and CNNs.

4.4.4.1 Memory Requirements
RNNs require storing two sets of weights (input-to-hidden and hidden-to-
hidden) along with the hidden state. For our example with input dimension
100 and hidden state dimension 128, this means storing 12,800 weights for input
projection (100×128) and 16,384 weights for recurrent connections (128×128).
Unlike CNNs where weights are reused across spatial positions, RNN weights
are reused across time steps. Additionally, the system must maintain the hidden
state, which becomes a critical factor in memory usage and access patterns.

These memory access patterns create a different profile from MLPs and CNNs.
Modern processors handle these patterns by keeping the weight matrices in
cache4 while streaming through sequence elements. Deep learning frameworks
optimize memory access by batching sequences together and carefully manag-
ing hidden state storage between time steps. CPUs and GPUs approach this
through different strategies; CPUs leverage their cache hierarchy for weight
reuse; meanwhile, GPUs use specialized memory architectures designed for
maintaining state across sequential operations.

4.5. Attention Mechanisms: Dynamic Pattern Processing 124

5 Sequence Packing: A technique
in deep learning where sequences
of different lengths are packed to-
gether to optimize memory and pro-
cessing efÏciency.

4.4.4.2 Computation Needs

The core computation in RNNs involves repeatedly applying weight matrices
across time steps. For each time step, we perform two matrix multiplications:
one with the input weights and one with the recurrent weights. In our example,
processing a single time step requires 12,800 multiply-accumulates for the
input projection (100×128) and 16,384 multiply-accumulates for the recurrent
connection (128×128).

This computational pattern differs from both MLPs and CNNs in a key way:
while we can parallelize across batch elements, we cannot parallelize across
time steps due to the sequential dependency. Each time step must wait for the
previous step’s hidden state before it can begin computation. This creates a
tension between the inherent sequential nature of the algorithm and the desire
for parallel execution in modern hardware.

Modern processors handle these patterns through different approaches.
CPUs pipeline operations within each time step while maintaining the sequen-
tial order across steps. GPUs batch multiple sequences together to maintain
high throughput despite sequential dependencies. Deep learning frameworks
optimize this further by techniques like sequence packing5 and unrolling com-
putations across multiple time steps when possible.

4.4.4.3 Data Movement

The sequential processing in RNNs creates a distinctive data movement pattern
that differs from both MLPs and CNNs. While MLPs need each weight only
once per forward pass and CNNs reuse weights across spatial positions, RNNs
reuse their weights across time steps while requiring careful management of
the hidden state data flow.

For our example with a 128-dimensional hidden state, each time step must:
load the previous hidden state (128 values), access both weight matrices (29,184
total weights from both input and recurrent connections), and store the new
hidden state (128 values). This pattern repeats for every element in the sequence.
Unlike CNNs where we can predict and prefetch data based on spatial patterns,
RNN data movement is driven by temporal dependencies.

Different architectures handle this sequential data movement through spe-
cialized mechanisms. CPUs maintain weight matrices in cache while streaming
through sequence elements and managing hidden state updates. GPUs em-
ploy memory architectures optimized for maintaining state information across
sequential operations while processing multiple sequences in parallel. Deep
learning frameworks orchestrate these movements by managing data transfers
between time steps and optimizing batch operations.

4.5 Attention Mechanisms: Dynamic Pattern Processing
While previous architectures process patterns in fixed ways, such as MLPs with
dense connectivity, CNNs with spatial operations, and RNNs with sequential
updates, many tasks require dynamic relationships between elements that
change based on content. Language understanding, for instance, needs to
capture relationships between words that depend on meaning rather than just

Chapter 4. DNN Architectures 125

position. Graph analysis requires understanding connections that vary by node.
These dynamic relationships suggest we need an architecture that can learn
and adapt its processing patterns based on the data itself.

4.5.1 Pattern Processing Needs
Dynamic pattern processing addresses scenarios where relationships between
elements aren’t fixed by architecture but instead emerge from content. Consider
language translation: when translating “the bank by the river,” understanding
“bank” requires attending to “river,” but in “the bank approved the loan,” the
important relationship is with “approved” and “loan.” Unlike RNNs that pro-
cess information sequentially or CNNs that use fixed spatial patterns, we need
an architecture that can dynamically determine which relationships matter.

This requirement for dynamic processing appears across many domains.
In protein structure prediction, interactions between amino acids depend on
their chemical properties and spatial arrangements. In graph analysis, node
relationships vary based on graph structure and node features. In document
analysis, connections between different sections depend on semantic content
rather than just proximity.

These scenarios demand specific capabilities from our processing architec-
ture. The system must compute relationships between all pairs of elements,
weigh these relationships based on content, and use these weights to selectively
combine information. Unlike previous architectures with fixed connectivity
patterns, dynamic processing requires the flexibility to modify its computation
graph based on the input itself. This leads us to the Transformer architecture,
which implements these capabilities through attention mechanisms. Figure 4.6
shows the relationships learned for an attention head between subwords in a
sentence.

4.5.2 Basic Attention Mechanism

4.5.2.1 Algorithmic Structure

Attention mechanisms form the foundation of dynamic pattern processing by
computing weighted connections between elements based on their content
(Bahdanau, Cho, and Bengio 2014). This approach allows for the processing of
relationships that aren’t fixed by architecture but instead emerge from the data
itself. At the core of an attention mechanism is a fundamental operation that
can be expressed mathematically as:

Attention(Q,K,V) = softmax(QK𝑇√𝑑𝑘)V

In this equation, Q (queries), K (keys), and V (values) represent learned
projections of the input. For a sequence of length 𝑁 with dimension 𝑑, this
operation creates an 𝑁 ×𝑁 attention matrix, determining how each position
should attend to all others.

The attention operation involves several key steps. First, it computes query,
key, and value projections for each position in the sequence. Next, it generates

4.5. Attention Mechanisms: Dynamic Pattern Processing 126

Figure 4.6: Transformer architec-
tures “attend” or identify pairwise
relationships with subwords in a se-
quence.

The_

student_

didn_

’_

t_

finish_

the_

homework_

because_

they_

were_

tired_

The_

student_

didn_

’_

t_

finish_

the_

homework_

because_

they_

were_

tired_

they_

The student didnt finish the homework because they were tired.

Layer: 4 Head: 2

an 𝑁 × 𝑁 attention matrix through query-key interactions. These steps are
illustrated in Figure 4.7. Finally, it uses these attention weights to combine
value vectors, producing the output.

The key is that, unlike the fixed weight matrices found in previous architec-
tures, as shown in Figure 4.8, these attention weights are computed dynamically
for each input. This allows the model to adapt its processing based on the dy-
namic content at hand.

4.5.2.2 Computational Mapping
The dynamic structure of attention operations maps to computational patterns
that differ significantly from those of previous architectures. To understand
this mapping, let’s examine how it progresses from mathematical abstraction
to computational reality (see Listing 4.7).

The nested loops in attention_layer_compute reveal the true nature of
attention’s computational pattern (see Listing 4.7). The first loop processes each
sequence in the batch independently. The second and third loops compute
attention scores between all pairs of positions, creating a quadratic computation
pattern with respect to sequence length. The fourth loop uses these attention
weights to combine values from all positions, producing the final output.

4.5.2.3 System Implications
The attention mechanism creates distinctive patterns in memory requirements,
computation needs, and data movement that set it apart from previous archi-
tectures.

Chapter 4. DNN Architectures 127

Figure 4.7: The interaction between
Query, Key, and Value components.
Source: Transformer Explainer.

Figure 4.8: Dynamic weight calcu-
lation. Source: Transformer Ex-
plainer.

https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/

4.5. Attention Mechanisms: Dynamic Pattern Processing 128

Listing 4.7: Mathematical abstraction in code

def attention_layer_matrix(Q, K, V):
Q, K, V: (batch_size × seq_len × d_model)
scores = matmul(Q, K.transpose(-2, -1)) / \

sqrt(d_k) # Compute attention scores
weights = softmax(scores) # Normalize scores
output = matmul(weights, V) # Combine values
return output

Core computational pattern
def attention_layer_compute(Q, K, V):

Initialize outputs
scores = np.zeros((batch_size, seq_len, seq_len))
outputs = np.zeros_like(V)

Loop 1: Process each sequence in batch
for b in range(batch_size):

Loop 2: Compute attention for each query position
for i in range(seq_len):

Loop 3: Compare with each key position
for j in range(seq_len):

Compute attention score
for d in range(d_model):

scores[b,i,j] += Q[b,i,d] * K[b,j,d]
scores[b,i,j] /= sqrt(d_k)

Apply softmax to scores
for i in range(seq_len):

scores[b,i] = softmax(scores[b,i])

Loop 4: Combine values using attention weights
for i in range(seq_len):

for j in range(seq_len):
for d in range(d_model):

outputs[b, i, d] += (
scores[b, i, j]
* V[b, j, d]

)

return outputs

Memory Requirements. In terms of memory requirements, attention mecha-
nisms necessitate storage for attention weights, key-query-value projections,
and intermediate feature representations. For a sequence length 𝑁 and dimen-
sion d, each attention layer must store an 𝑁 × 𝑁 attention weight matrix for

Chapter 4. DNN Architectures 129

each sequence in the batch, three sets of projection matrices for queries, keys,
and values (each sized 𝑑 ×𝑑), and input and output feature maps of size 𝑁 ×𝑑.
The dynamic generation of attention weights for every input creates a memory
access pattern where intermediate attention weights become a significant factor
in memory usage.

Computation Needs. Computation needs in attention mechanisms center
around two main phases: generating attention weights and applying them
to values. For each attention layer, the system performs substantial multiply-
accumulate operations across multiple computational stages. The query-key
interactions alone require 𝑁 ×𝑁 ×𝑑 multiply-accumulates, with an equal num-
ber needed for applying attention weights to values. Additional computations
are required for the projection matrices and softmax operations. This computa-
tional pattern differs from previous architectures due to its quadratic scaling
with sequence length and the need to perform fresh computations for each
input.

Data Movement. Data movement in attention mechanisms presents unique
challenges. Each attention operation involves projecting and moving query,
key, and value vectors for each position, storing and accessing the full attention
weight matrix, and coordinating the movement of value vectors during the
weighted combination phase. This creates a data movement pattern where
intermediate attention weights become a major factor in system bandwidth
requirements. Unlike the more predictable access patterns of CNNs or the
sequential access of RNNs, attention operations require frequent movement of
dynamically computed weights across the memory hierarchy.

These distinctive characteristics of attention mechanisms in terms of memory,
computation, and data movement have significant implications for system de-
sign and optimization, setting the stage for the development of more advanced
architectures like Transformers.

4.5.3 Transformers and Self-Attention
Transformers, first introduced by M. X. Chen et al. (2018), represent a significant
evolution in the application of attention mechanisms, introducing the concept of
self-attention to create a powerful architecture for dynamic pattern processing.
While the basic attention mechanism allows for content-based weighting of
information from a source sequence, Transformers extend this idea by applying
attention within a single sequence, enabling each element to attend to all other
elements including itself.

4.5.3.1 Algorithmic Structure

The key innovation in Transformers lies in their use of self-attention layers. In a
self-attention layer, the queries, keys, and values are all derived from the same
input sequence. This allows the model to weigh the importance of different
positions within the same sequence when encoding each position. For instance,
in processing the sentence “The animal didn’t cross the street because it was
too wide,” self-attention allows the model to link “it” with “street,” capturing
long-range dependencies that are challenging for traditional sequential models.

4.5. Attention Mechanisms: Dynamic Pattern Processing 130

Transformers typically employ multi-head attention, which involves multiple
sets of query/key/value projections. Each set, or “head,” can focus on different
aspects of the input, allowing the model to jointly attend to information from
different representation subspaces. This multi-head structure provides the
model with a richer representational capability, enabling it to capture various
types of relationships within the data simultaneously.

The self-attention mechanism in Transformers can be expressed mathemati-
cally in a form similar to the basic attention mechanism:

SelfAttention(X) = softmax(XWQ(XWK)𝑇√𝑑𝑘)XWV

Here, X is the input sequence, and WQ, WK, and WV are learned weight
matrices for queries, keys, and values respectively. This formulation highlights
how self-attention derives all its components from the same input, creating a
dynamic, content-dependent processing pattern.

The Transformer architecture leverages this self-attention mechanism within
a broader structure that typically includes feed-forward layers, layer normal-
ization, and residual connections (see Figure 4.9). This combination allows
Transformers to process input sequences in parallel, capturing complex depen-
dencies without the need for sequential computation. As a result, Transformers
have demonstrated remarkable effectiveness across a wide range of tasks, from
natural language processing to computer vision, revolutionizing the landscape
of deep learning architectures.

4.5.3.2 Computational Mapping

While Transformer self-attention builds upon the basic attention mechanism,
it introduces distinct computational patterns that set it apart. To understand
these patterns, we must examine the typical implementation of self-attention
in Transformers (see Listing 4.8):

4.5.3.3 System Implications

This implementation reveals several key computational characteristics of Trans-
former self-attention. First, self-attention enables parallel processing across all
positions in the sequence. This is evident in the matrix multiplications that
compute Q, K, and V simultaneously for all positions. Unlike recurrent archi-
tectures that process inputs sequentially, this parallel nature allows for more
efÏcient computation, especially on modern hardware designed for parallel
operations.

Second, the attention score computation results in a matrix of size (seq_len
× seq_len), leading to quadratic complexity with respect to sequence length.
This quadratic relationship becomes a significant computational bottleneck
when processing long sequences, a challenge that has spurred research into
more efÏcient attention mechanisms.

Third, the multi-head attention mechanism effectively runs multiple self-
attention operations in parallel, each with its own set of learned projections.
While this increases the computational load linearly with the number of heads,

Chapter 4. DNN Architectures 131

Figure 4.9: The Transformer model
architecture. Source: Attention Is
All You Need

Input
Embedding

Output
Embedding

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head

Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Probabilities

N×

N×

Positional

Encoding
Positional
Encoding

it allows the model to capture different types of relationships within the same
input, enhancing the model’s representational power.

Fourth, the core computations in self-attention are dominated by large ma-
trix multiplications. For a sequence of length 𝑁 and embedding dimension 𝑑,
the main operations involve matrices of sizes (𝑁 × 𝑑), (𝑑 × 𝑑), and (𝑁 × 𝑁).
These intensive matrix operations are well-suited for acceleration on special-
ized hardware like GPUs, but they also contribute significantly to the overall
computational cost of the model.

Finally, self-attention generates memory-intensive intermediate results. The
attention weights matrix (𝑁 ×𝑁) and the intermediate results for each attention
head create substantial memory requirements, especially for long sequences.
This can pose challenges for deployment on memory-constrained devices and
necessitates careful memory management in implementations.

These computational patterns create a unique profile for Transformer self-
attention, distinct from previous architectures. The parallel nature of the com-
putations makes Transformers well-suited for modern parallel processing hard-
ware, but the quadratic complexity with sequence length poses challenges
for processing long sequences. As a result, much research has focused on

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762

4.6. Architectural Building Blocks 132

Listing 4.8: Self-attention mechanism in Transformers

def self_attention_layer(X, W_Q, W_K, W_V, d_k):
X: input tensor (batch_size × seq_len × d_model)
W_Q, W_K, W_V: weight matrices (d_model × d_k)

Q = matmul(X, W_Q)
K = matmul(X, W_K)
V = matmul(X, W_V)

scores = matmul(Q, K.transpose(-2, -1)) / sqrt(d_k)
attention_weights = softmax(scores, dim=-1)
output = matmul(attention_weights, V)

return output

def multi_head_attention(
X, W_Q, W_K, W_V, W_O, num_heads, d_k

):
outputs = []
for i in range(num_heads):

head_output = self_attention_layer(
X, W_Q[i], W_K[i], W_V[i], d_k

)
outputs.append(head_output)

concat_output = torch.cat(outputs, dim=-1)
final_output = matmul(concat_output, W_O)

return final_output

developing optimization techniques, such as sparse attention patterns or low-
rank approximations, to address these challenges. Each of these optimizations
presents its own trade-offs between computational efÏciency and model expres-
siveness, a balance that must be carefully considered in practical applications.

4.6 Architectural Building Blocks

Deep learning architectures, while we presented them as distinct approaches
in the previous sections, are better understood as compositions of fundamen-
tal building blocks that evolved over time. Much like how complex LEGO
structures are built from basic bricks, modern neural networks combine and
iterate on core computational patterns that emerged through decades of re-
search (Yann LeCun, Bengio, and Hinton 2015a). Each architectural innovation
introduced new building blocks while finding novel ways to use existing ones.

Chapter 4. DNN Architectures 133

These building blocks and their evolution provide insight into modern ar-
chitectures. What began with the simple perceptron (Rosenblatt 1958) evolved
into multi-layer networks (Rumelhart, Hinton, and Williams 1986), which then
spawned specialized patterns for spatial and sequential processing. Each ad-
vancement maintained useful elements from its predecessors while introducing
new computational primitives. Today’s sophisticated architectures, like Trans-
formers, can be seen as carefully engineered combinations of these fundamental
building blocks.

This progression reveals not just the evolution of neural networks, but also the
discovery and refinement of core computational patterns that remain relevant.
As we have seen through our exploration of different neural network archi-
tectures, deep learning has evolved significantly, with each new architecture
bringing its own set of computational demands and system-level challenges.

Table 4.1 summarizes this evolution, highlighting the key primitives and
system focus for each era of deep learning development. This table encapsulates
the major shifts in deep learning architecture design and the corresponding
changes in system-level considerations. From the early focus on dense matrix
operations optimized for CPUs, we see a progression through convolutions
leveraging GPU acceleration, to sequential operations necessitating sophisti-
cated memory hierarchies, and finally to the current era of attention mechanisms
requiring flexible accelerators and high-bandwidth memory.

Table 4.1: Evolution of deep learning architectures and their system implica-
tions

Era
Dominant
Architecture Key Primitives System Focus

Early NN MLP Dense Matrix Ops CPU optimization
CNN Revolution CNN Convolutions GPU acceleration
Sequence
Modeling

RNN Sequential Ops Memory hierarchies

Attention Era Transformer Attention, Dynamic
Compute

Flexible accelerators, High-bandwidth
memory

As we dive deeper into each of these building blocks, we see how these
primitives evolved and combined to create increasingly powerful and complex
neural network architectures.

4.6.1 From Perceptron to Multi-Layer Networks
While we examined MLPs earlier as a mechanism for dense pattern processing,
here we focus on how they established fundamental building blocks that appear
throughout deep learning. The evolution from perceptron to MLP introduced
several key concepts: the power of layer stacking, the importance of non-linear
transformations, and the basic feedforward computation pattern.

The introduction of hidden layers between input and output created a tem-
plate for feature transformation that appears in virtually every modern archi-
tecture. Even in sophisticated networks like Transformers, we find MLP-style
feedforward layers performing feature processing. The concept of transforming

4.6. Architectural Building Blocks 134

data through successive non-linear layers has become a fundamental paradigm
that transcends the specific architecture types.

Perhaps most importantly, the development of MLPs established the back-
propagation algorithm, which to this day remains the cornerstone of neural
network training. This key contribution has enabled the training of deep archi-
tectures and influenced how later architectures would be designed to maintain
gradient flow.

These building blocks, layered feature transformation, non-linear activation,
and gradient-based learning, set the foundation for more specialized archi-
tectures. Subsequent innovations often focused on structuring these basic
components in new ways rather than replacing them entirely.

4.6.2 From Dense to Spatial Processing
The development of CNNs marked a significant architectural innovation, specif-
ically the realization that we could specialize the dense connectivity of MLPs
for spatial patterns. While retaining the core concept of layer-wise processing,
CNNs introduced several fundamental building blocks that would influence
all future architectures.

The first key innovation was the concept of parameter sharing. Unlike MLPs
where each connection had its own weight, CNNs showed how the same pa-
rameters could be reused across different parts of the input. This not only made
the networks more efÏcient but introduced the powerful idea that architectural
structure could encode useful priors about the data (Lecun et al. 1998).

Perhaps even more influential was the introduction of skip connections
through ResNets (K. He et al. 2016a). Originally they were designed to help
train very deep CNNs, skip connections have become a fundamental building
block that appears in virtually every modern architecture. They showed how
direct paths through the network could help gradient flow and information
propagation, a concept now central to Transformer designs.

CNNs also introduced batch normalization, a technique for stabilizing neu-
ral network training by normalizing intermediate features (Ioffe and Szegedy
2015a); we will learn more about this in the AI Training chapter. This con-
cept of feature normalization, while originating in CNNs, evolved into layer
normalization and is now a key component in modern architectures.

These innovations, such as parameter sharing, skip connections, and nor-
malization, transcended their origins in spatial processing to become essential
building blocks in the deep learning toolkit.

4.6.3 The Evolution of Sequence Processing
While CNNs specialized MLPs for spatial patterns, sequence models adapted
neural networks for temporal dependencies. RNNs introduced the fundamental
concept of maintaining and updating state, a building block that influenced
how networks could process sequential information, (Elman 2002).

The development of LSTMs and GRUs brought sophisticated gating mecha-
nisms to neural networks (Hochreiter and Schmidhuber 1997; Cho et al. 2014).
These gates, themselves small MLPs, showed how simple feedforward compu-
tations could be composed to control information flow. This concept of using

Chapter 4. DNN Architectures 135

6 Position Embeddings: Vector
representations that encode the po-
sition of elements within a sequence
in neural network processing.

7 Skip Connections: Connections
that skip one or more layers in a neu-
ral network by feeding the output of
one layer as the input to subsequent
layers, enhancing gradient flow dur-
ing training.

neural networks to modulate other neural networks became a recurring pattern
in architecture design.

Perhaps most significantly, sequence models demonstrated the power of
adaptive computation paths. Unlike the fixed patterns of MLPs and CNNs,
RNNs showed how networks could process variable-length inputs by reusing
weights over time. This insight, that architectural patterns could adapt to input
structure, laid groundwork for more flexible architectures.

Sequence models also popularized the concept of attention through encoder-
decoder architectures (Bahdanau, Cho, and Bengio 2014). Initially introduced
as an improvement to machine translation, attention mechanisms showed how
networks could learn to dynamically focus on relevant information. This build-
ing block would later become the foundation of Transformer architectures.

4.6.4 Modern Architectures: Synthesis and Innovation
Modern architectures, particularly Transformers, represent a sophisticated syn-
thesis of these fundamental building blocks. Rather than introducing entirely
new patterns, they innovate through clever combination and refinement of
existing components. Consider the Transformer architecture: at its core, we
find MLP-style feedforward networks processing features between attention lay-
ers. The attention mechanism itself builds on ideas from sequence models but
removes the recurrent connection, instead using position embeddings6 inspired
by CNN intuitions. The architecture extensively utilizes skip connections (see
Figure 4.10)7, inherited from ResNets, while layer normalization, evolved from
CNN’s batch normalization, stabilizes training (Ba, Kiros, and Hinton 2016).

Figure 4.10: Example of a skip con-
nection, where a computation is
performed and its residual is also
added to the result.

Weight Layer Weight LayerReLU

ReLU

x

x identity

F(x) + x

F(x)

This composition of building blocks creates something greater than the sum
of its parts. The self-attention mechanism, while building on previous attention
concepts, enables a new form of dynamic pattern processing. The arrangement
of these components, attention followed by feedforward layers, with skip con-
nections and normalization, has proven so effective it’s become a template for
new architectures.

Even recent innovations in vision and language models follow this pattern
of recombining fundamental building blocks. Vision Transformers adapt the
Transformer architecture to images while maintaining its essential compo-
nents (Dosovitskiy et al. 2021). Large language models scale up these patterns
while introducing refinements like grouped-query attention or sliding window
attention, yet still rely on the core building blocks established through this

4.7. System-Level Building Blocks 136

8 A technique in signal process-
ing and computer vision where a
window moves across data, comput-
ing results from subsets, essential in
CNNs.

9 Computational processes
where the operations adjust based
on input data, used prominently in
machine learning models like the
Transformer.

architectural evolution (T. B. Brown, Mann, Ryder, Subbiah, Kaplan, and al.
2020).

To illustrate how these modern architectures synthesize and innovate upon
previous approaches, consider the following comparison of primitive utilization
across different neural network architectures:

Table 4.2: Comparison of primitive utilization across neural network architec-
tures.

Primitive
Type MLP CNN RNN Transformer

Computa-
tional

Matrix
Multiplication

Convolution (Matrix
Mult.)

Matrix Mult. + State
Update

Matrix Mult. +
Attention

Memory
Access

Sequential Strided Sequential + Random Random (Attention)

Data
Movement

Broadcast Sliding Window Sequential Broadcast + Gather

As shown in Table 4.2, Transformers combine elements from previous archi-
tectures while introducing new patterns. They retain the core matrix multipli-
cation operations common to all architectures but introduce a more complex
memory access pattern with their attention mechanism. Their data movement
patterns blend the broadcast operations of MLPs with the gather operations
reminiscent of more dynamic architectures.

This synthesis of primitives in Transformers exemplifies how modern archi-
tectures innovate by recombining and refining existing building blocks, rather
than inventing entirely new computational paradigms. Also, this evolutionary
process provides insight into the development of future architectures and helps
to guide the design of efÏcient systems to support them.

4.7 System-Level Building Blocks
After having examined different deep learning architectures, we can distill their
system requirements into fundamental primitives that underpin both hardware
and software implementations. These primitives represent operations that
cannot be broken down further while maintaining their essential characteristics.
Just as complex molecules are built from basic atoms, sophisticated neural
networks are constructed from these fundamental operations.

4.7.1 Core Computational Primitives
Three fundamental operations serve as the building blocks for all deep learning
computations: matrix multiplication, sliding window operations8, and dynamic
computation9. What makes these operations primitive is that they cannot be
further decomposed without losing their essential computational properties
and efÏciency characteristics.

Matrix multiplication represents the most basic form of transforming sets of
features. When we multiply a matrix of inputs by a matrix of weights, we’re
computing weighted combinations, which is the fundamental operation of
neural networks. For example, in our MNIST network, each 784-dimensional

Chapter 4. DNN Architectures 137

10 The 26×26 output dimension
comes from the formula (N-F+1)
where N is the input dimension (28)
and F is the filter size (3), calculated
as: 28-3+1=26 for both dimensions.

input vector multiplies with a 784×100 weight matrix. This pattern appears
everywhere: MLPs use it directly for layer computations, CNNs reshape convo-
lutions into matrix multiplications (turning a 3×3 convolution into a matrix
operation, as illustrated in Figure 4.11), and Transformers use it extensively in
their attention mechanisms.

Figure 4.11: Depiction of how
im2col can map a convolution into a
dense matrix multiplication for bet-
ter efÏciency.1 2 4 5 10 11 13 14

2 3 5 6 11 12 14 15

4 5 7 8 13 14 16 17

5 6 8 9 14 15 17 18

Transformed GEMM
1 2

3 4

5 6

7 8

Filter Kernels

1 2 3

4 5 6

7 8 9

Input feature maps

10 11 12

13 14 15

16 17 18

1

2

3

4

5

6

7

8

×

In modern systems, matrix multiplication maps to specific hardware and
software implementations. Hardware accelerators provide specialized tensor
cores that can perform thousands of multiply-accumulates in parallel, NVIDIA’s
A100 tensor cores can achieve up to 312 TFLOPS (32-bit) through massive
parallelization of these operations. Software frameworks like PyTorch and
TensorFlow automatically map these high-level operations to optimized matrix
libraries (NVIDIA cuBLAS, Intel MKL) that exploit these hardware capabilities.

Sliding window operations compute local relationships by applying the same
operation to chunks of data. In CNNs processing MNIST images, a 3×3 con-
volution filter slides across the 28 × 28 input, requiring 26 × 26 windows of
computation,10 assuming a stride size of 1. Modern hardware accelerators
implement this through specialized memory access patterns and data buffering
schemes that optimize data reuse. For example, Google’s TPU uses a 128×128
systolic array where data flows systematically through processing elements,
allowing each input value to be reused across multiple computations without
accessing memory. Software frameworks optimize these operations by trans-
forming them into efÏcient matrix multiplications (a 3×3 convolution becomes
a 9×𝑁 matrix multiplication) and carefully managing data layout in memory
to maximize spatial locality.

Dynamic computation, where the operation itself depends on the input data,
emerged prominently with attention mechanisms but represents a fundamental
capability needed for adaptive processing. In Transformer attention, each query
dynamically determines its interaction weights with all keys; for a sequence
of length 512, this means 512 different weight patterns must be computed on
the fly. Unlike fixed patterns where we know the computation graph in ad-
vance, dynamic computation requires runtime decisions. This creates specific
implementation challenges; hardware must provide flexible routing of data
(modern GPUs use dynamic scheduling) and support variable computation

https://developer.nvidia.com/cublas
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html#gs.kxb9ve

4.7. System-Level Building Blocks 138

11 DRAM: Dynamic Random Ac-
cess Memory, used for main system
memory.

patterns, while software frameworks need efÏcient mechanisms for handling
data-dependent execution paths (PyTorch’s dynamic computation graphs, Ten-
sorFlow’s dynamic control flow).

These primitives combine in sophisticated ways in modern architectures.
A Transformer layer processing a sequence of 512 tokens demonstrates this
clearly: it uses matrix multiplications for feature projections (512 × 512 op-
erations implemented through tensor cores), may employ sliding windows
for efÏcient attention over long sequences (using specialized memory access
patterns for local regions), and requires dynamic computation for attention
weights (computing 512 × 512 attention patterns at runtime). The way these
primitives interact creates specific demands on system design, ranging from
memory hierarchy organization to computation scheduling.

The building blocks we’ve discussed help explain why certain hardware
features exist (like tensor cores for matrix multiplication) and why software
frameworks organize computations in particular ways (like batching similar
operations together). As we move from computational primitives to consider
memory access and data movement patterns, it’s important to recognize how
these fundamental operations shape the demands placed on memory systems
and data transfer mechanisms. The way computational primitives are imple-
mented and combined has direct implications for how data needs to be stored,
accessed, and moved within the system.

4.7.2 Memory Access Primitives
The efÏciency of deep learning systems heavily depends on how they access and
manage memory. In fact, memory access often becomes the primary bottleneck
in modern ML systems, even though a matrix multiplication unit might be
capable of performing thousands of operations per cycle, it will sit idle if data
isn’t available at the right time. For example, accessing data from DRAM11

typically takes hundreds of cycles, while on-chip computation takes only a few
cycles.

Three fundamental memory access patterns dominate in deep learning ar-
chitectures: sequential access, strided access, and random access. Each pattern
creates different demands on the memory system and offers different opportu-
nities for optimization.

Sequential access is the simplest and most efÏcient pattern. Consider an MLP
performing matrix multiplication with a batch of MNIST images: it needs to
access both the 784×100 weight matrix and the input vectors sequentially. This
pattern maps well to modern memory systems; DRAM can operate in burst
mode for sequential reads (achieving up to 400 GB/s in modern GPUs), and
hardware prefetchers can effectively predict and fetch upcoming data. Software
frameworks optimize for this by ensuring data is laid out contiguously in
memory and aligning data to cache line boundaries.

Strided access appears prominently in CNNs, where each output position
needs to access a window of input values at regular intervals. For a CNN
processing MNIST images with 3 × 3 filters, each output position requires
accessing 9 input values with a stride matching the input width. While less
efÏcient than sequential access, hardware supports this through pattern-aware

Chapter 4. DNN Architectures 139

12 im2col: An algorithm that
transforms input data for efÏcient
matrix multiplication in CNNs.

caching strategies and specialized memory controllers. Software frameworks
often transform these strided patterns into sequential access through data layout
reorganization, where the im2col transformation12 in deep learning frameworks
converts convolution’s strided access into efÏcient matrix multiplications.

Random access poses the greatest challenge for system efÏciency. In a Trans-
former processing a sequence of 512 tokens, each attention operation potentially
needs to access any position in the sequence, creating unpredictable memory
access patterns. Random access can severely impact performance through cache
misses (potentially causing 100+ cycle stalls per access) and unpredictable mem-
ory latencies. Systems address this through large cache hierarchies (modern
GPUs have several MB of L2 cache) and sophisticated prefetching strategies,
while software frameworks employ techniques like attention pattern pruning
to reduce random access requirements.

These different memory access patterns contribute significantly to the overall
memory requirements of each architecture. To illustrate this, Table 4.3 compares
the memory complexity of MLPs, CNNs, RNNs, and Transformers.

Table 4.3: DNN architecture complexity. Note that for RNNs, parameter storage
is bounded by 𝑂(𝑁 ×ℎ) when 𝑁 > ℎ.

Architecture
Input
Dependency Parameter Storage Activation Storage

Scaling
Behavior

MLP Linear 𝑂(𝑁 ×𝑊) 𝑂(𝐵×𝑊) Predictable
CNN Constant 𝑂(𝐾 ×𝐶) 𝑂(𝐵×𝐻img ×𝑊img) EfÏcient
RNN Linear 𝑂(ℎ2) 𝑂(𝐵×𝑇 ×ℎ) Challenging
Transformer Quadratic 𝑂(𝑁 ×𝑑) 𝑂(𝐵×𝑁2) Problematic

Where:
• 𝑁: Input or sequence size
• 𝑊: Layer width
• 𝐵: Batch size
• 𝐾: Kernel size
• 𝐶: Number of channels
• 𝐻img: Height of input feature map (CNN)
• 𝑊img: Width of input feature map (CNN)
• ℎ: Hidden state size (RNN)
• 𝑇: Sequence length
• 𝑑: Model dimensionality

Table 4.3 reveals how memory requirements scale with different architec-
tural choices. The quadratic scaling of activation storage in Transformers, for
instance, highlights the need for large memory capacities and efÏcient mem-
ory management in systems designed for Transformer-based workloads. In
contrast, CNNs exhibit more favorable memory scaling due to their parameter
sharing and localized processing. These memory complexity considerations are
crucial when making system-level design decisions, such as choosing memory
hierarchy configurations and developing memory optimization strategies.

4.7. System-Level Building Blocks 140

The impact of these patterns becomes clearer when we consider data reuse
opportunities. In CNNs, each input pixel participates in multiple convolution
windows (typically 9 times for a 3×3 filter), making effective data reuse funda-
mental for performance. Modern GPUs provide multi-level cache hierarchies
(L1, L2, shared memory) to capture this reuse, while software techniques like
loop tiling ensure data remains in cache once loaded.

Working set size, the amount of data needed simultaneously for computa-
tion, varies dramatically across architectures. An MLP layer processing MNIST
images might need only a few hundred KB (weights plus activations), while
a Transformer processing long sequences can require several MB just for stor-
ing attention patterns. These differences directly influence hardware design
choices, like the balance between compute units and on-chip memory, and soft-
ware optimizations like activation checkpointing or attention approximation
techniques.

Having a good grasp of these memory access patterns is essential as archi-
tectures evolve. The shift from CNNs to Transformers, for instance, has driven
the development of hardware with larger on-chip memories and more sophisti-
cated caching strategies to handle increased working sets and more dynamic
access patterns. Future architectures will likely continue to be shaped by their
memory access characteristics as much as their computational requirements.

4.7.3 Data Movement Primitives

While computational and memory access patterns define what operations occur
where, data movement primitives characterize how information flows through
the system. These patterns are key because data movement often consumes
more time and energy than computation itself, as moving data from off-chip
memory typically requires 100-1000$ imes$ more energy than performing a
floating-point operation.

Four fundamental data movement patterns are prevalent in deep learning
architectures: broadcast, scatter, gather, and reduction. Figure 4.12 illustrates
these patterns and their relationships. Broadcast operations send the same
data to multiple destinations simultaneously. In matrix multiplication with
batch size 32, each weight must be broadcast to process different inputs in
parallel. Modern hardware supports this through specialized interconnects,
NVIDIA GPUs provide hardware multicast capabilities, achieving up to 600
GB/s broadcast bandwidth, while TPUs use dedicated broadcast buses. Soft-
ware frameworks optimize broadcasts by restructuring computations (like
matrix tiling) to maximize data reuse.

Scatter operations distribute different elements to different destinations.
When parallelizing a 512×512 matrix multiplication across GPU cores, each
core receives a subset of the computation. This parallelization is important for
performance but challenging, as memory conflicts and load imbalance, can
reduce efÏciency by 50% or more. Hardware provides flexible interconnects
(like NVIDIA’s NVLink offering 600 GB/s bi-directional bandwidth), while
software frameworks employ sophisticated work distribution algorithms to
maintain high utilization.

Chapter 4. DNN Architectures 141

Figure 4.12: Collective communica-
tion routines.

Gather operations collect data from multiple sources. In Transformer atten-
tion with sequence length 512, each query must gather information from 512
different key-value pairs. These irregular access patterns are challenging, ran-
dom gathering can be 10× slower than sequential access. Hardware supports
this through high-bandwidth interconnects and large caches, while software
frameworks employ techniques like attention pattern pruning to reduce gather-
ing overhead.

Reduction operations combine multiple values into a single result through
operations like summation. When computing attention scores in Transformers
or layer outputs in MLPs, efÏcient reduction is essential. Hardware implements
tree-structured reduction networks (reducing latency from 𝑂(𝑛) to 𝑂(log𝑛)),
while software frameworks use optimized parallel reduction algorithms that
can achieve near-theoretical peak performance.

These patterns combine in sophisticated ways. A Transformer attention
operation with sequence length 512 and batch size 32 involves:

• Broadcasting query vectors (512×64 elements)
• Gathering relevant keys and values (512×512×64 elements)
• Reducing attention scores (512×512 elements per sequence)

The evolution from CNNs to Transformers has increased reliance on gather
and reduction operations, driving hardware innovations like more flexible inter-
connects and larger on-chip memories. As models grow (some now exceeding
100 billion parameters), efÏcient data movement becomes increasingly critical,
leading to innovations like near-memory processing and sophisticated data
flow optimizations.

4.7. System-Level Building Blocks 142

13 High-bandwidth memory
(HBM): A type of stacked DRAM de-
signed to provide high-speed data
access for processing units.

4.7.4 System Design Impact

The computational, memory access, and data movement primitives we’ve ex-
plored form the foundational requirements that shape the design of systems
for deep learning. The way these primitives influence hardware design, create
common bottlenecks, and drive trade-offs is important for developing efÏcient
and effective deep learning systems.

One of the most significant impacts of these primitives on system design is the
push towards specialized hardware. The prevalence of matrix multiplications
and convolutions in deep learning has led to the development of tensor pro-
cessing units (TPUs) and tensor cores in GPUs, which are specifically designed
to perform these operations efÏciently. These specialized units can perform
many multiply-accumulate operations in parallel, dramatically accelerating the
core computations of neural networks.

Memory systems have also been profoundly influenced by the demands of
deep learning primitives. The need to support both sequential and random
access patterns efÏciently has driven the development of sophisticated memory
hierarchies. High-bandwidth memory (HBM)13 has become common in AI
accelerators to support the massive data movement requirements, especially
for operations like attention mechanisms in Transformers. On-chip memory
hierarchies have grown in complexity, with multiple levels of caching and
scratchpad memories to support the diverse working set sizes of different
neural network layers.

The data movement primitives have particularly influenced the design of
interconnects and on-chip networks. The need to support efÏcient broadcasts,
gathers, and reductions has led to the development of more flexible and higher-
bandwidth interconnects. Some AI chips now feature specialized networks-
on-chip designed to accelerate common data movement patterns in neural
networks.

Table 4.4 summarizes the system implications of these primitives:

Table 4.4: System implications of primitives.

Primitive Hardware Impact Software Optimization Key Challenges

Matrix Multiplication Tensor Cores Batching, GEMM
libraries

Parallelization, precision

Sliding Window Specialized datapaths Data layout optimization Stride handling
Dynamic
Computation

Flexible routing Dynamic graph
execution

Load balancing

Sequential Access Burst mode DRAM Contiguous allocation Access latency
Random Access Large caches Memory-aware

scheduling
Cache misses

Broadcast Specialized interconnects Operation fusion Bandwidth
Gather/Scatter High-bandwidth memory Work distribution Load balancing

Despite these advancements, several common bottlenecks persist in deep
learning systems. Memory bandwidth often remains a key limitation, particu-
larly for models with large working sets or those that require frequent random
access. The energy cost of data movement, especially between off-chip memory
and processing units, continues to be a significant concern. For large-scale

Chapter 4. DNN Architectures 143

models, the communication overhead in distributed training can become a
bottleneck, limiting scaling efÏciency.

System designers must navigate complex trade-offs in supporting different
primitives, each with unique characteristics that influence system design and
performance. For example, optimizing for the dense matrix operations common
in MLPs and CNNs might come at the cost of flexibility needed for the more
dynamic computations in attention mechanisms. Supporting large working
sets for Transformers might require sacrificing energy efÏciency.

Balancing these trade-offs requires careful consideration of the target work-
loads and deployment scenarios. Having a good grip on the nature of each
primitive guides the development of both hardware and software optimizations
in deep learning systems, allowing designers to make informed decisions about
system architecture and resource allocation.

4.8 Conclusion

Deep learning architectures, despite their diversity, exhibit common patterns in
their algorithmic structures that significantly influence computational require-
ments and system design. In this chapter, we explored the intricate relationship
between high-level architectural concepts and their practical implementation
in computing systems.

From the straightforward dense connections of MLPs to the complex, dy-
namic patterns of Transformers, each architecture builds upon a set of funda-
mental building blocks. These core computational primitives, including matrix
multiplication, sliding windows, and dynamic computation, recur across vari-
ous architectures, forming a universal language of deep learning computation.

The identification of these shared elements provides a valuable framework
for understanding and designing deep learning systems. Each primitive brings
its own set of requirements in terms of memory access patterns and data move-
ment, which in turn shape both hardware and software design decisions. This
relationship between algorithmic intent and system implementation is crucial
for optimizing performance and efÏciency.

As the field of deep learning continues to evolve, the ability to efÏciently
support and optimize these fundamental building blocks will be key to the
development of more powerful and scalable systems. Future advancements
in deep learning are likely to stem not only from novel architectural designs
but also from innovative approaches to implementing and optimizing these
essential computational patterns.

In conclusion, understanding the mapping between neural architectures
and their computational requirements is vital for pushing the boundaries of
what’s possible in artificial intelligence. As we look to the future, the interplay
between algorithmic innovation and systems optimization will continue to
drive progress in this rapidly advancing field.

4.9. Resources 144

4.9 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 5

AI Workflow

Figure 5.1: DALL·E 3 Prompt: Cre-
ate a rectangular illustration of a styl-
ized flowchart representing the AI work-
flow/pipeline. From left to right, de-
pict the stages as follows: ‘Data Collec-
tion’ with a database icon, ‘Data Prepro-
cessing’ with a filter icon, ‘Model De-
sign’ with a brain icon, ‘Training’ with
a weight icon, ‘Evaluation’ with a check-
mark, and ‘Deployment’ with a rocket.
Connect each stage with arrows to guide
the viewer horizontally through the AI
processes, emphasizing these steps’ se-
quential and interconnected nature.

Purpose

What are the diverse elements of AI systems and how do we combine to create effective
machine learning system solutions?

The creation of practical AI solutions requires the orchestration of multiple
components into coherent workflows. Workflow design highlights the connec-
tions and interactions that animate these components. This systematic perspec-
tive reveals how data flow, model training, and deployment considerations are
intertwined to form robust AI systems. Analyzing these interconnections offers
important insights into system-level design choices, establishing a framework
for understanding how theoretical concepts can be translated into deployable
solutions that meet real-world needs.

145

5.1. Overview 146

L� Learning Objectives

• Understand the ML lifecycle and gain insights into the structured
approach and stages of developing, deploying, and maintaining
machine learning models.

• Identify the unique challenges and distinctions between lifecycles
for traditional machine learning and specialized applications.

• Explore the various people and roles involved in ML projects.
• Examine the importance of system-level considerations, including

resource constraints, infrastructure, and deployment environments.
• Appreciate the iterative nature of ML lifecycles and how feedback

loops drive continuous improvement in real-world applications.

5.1 Overview
The machine learning lifecycle is a systematic, interconnected process that
guides the transformation of raw data into actionable models deployed in real-
world applications. Each stage builds upon the outcomes of the previous one,
creating an iterative cycle of refinement and improvement that supports robust,
scalable, and reliable systems.

Figure 5.2 illustrates the lifecycle as a series of stages connected through
continuous feedback loops. The process begins with data collection, which
ensures a steady input of raw data from various sources. The collected data
progresses to data ingestion, where it is prepared for downstream machine
learning applications. Subsequently, data analysis and curation involve inspect-
ing and selecting the most appropriate data for the task at hand. Following this,
data labeling and data validation, which nowadays involves both humans and
AI itself, ensure that the data is properly annotated and verified for usability
before advancing further.

Figure 5.2: The ML lifecycle. Data
Collection

Continuous input

stream

Data Ingestion
Prep data for

downstream ML

apps

Data Analysis,
Curation

Inspect/select the

right data

Data Labeling
Annotate data

Data
Validation
Verify data is

usable through

pipeline

Data
Preparation

Prep data for ML

uses (split,

versioning)

ML System
Deployment

Deploy ML

system to

production

ML System
Validation
Validate ML

system for

deployment

Model
Evaluation

Compute model

KPIs

Model Training
Use ML algos to

create models

Raw
data

Indexed
data

Selected
data

Labeled
data

Validated
data

ML ready
Datasets

ModelsKPIsValidated
ML System

ML
Certificate

Online
ML System

Online
Performance

Data fixes Data needs

The data then enters the preparation stage, where it is transformed into
machine learning-ready datasets through processes such as splitting and ver-
sioning. These datasets are used in the model training stage, where machine

Chapter 5. AI Workflow 147

learning algorithms are applied to create predictive models. The resulting
models are rigorously tested in the model evaluation stage, where performance
metrics, such as key performance indicators (KPIs), are computed to assess
reliability and effectiveness. The validated models move to the ML system vali-
dation phase, where they are verified for deployment readiness. Once validated,
these models are integrated into production systems during the ML system
deployment stage, ensuring alignment with operational requirements. The
final stage tracks the performance of deployed systems in real time, enabling
continuous adaptation to new data and evolving conditions.

This general lifecycle forms the backbone of machine learning systems, with
each stage contributing to the creation, validation, and maintenance of scalable
and efÏcient solutions. While the lifecycle provides a detailed view of the
interconnected processes in machine learning systems, it can be distilled into a
simplified framework for practical implementation.

Each stage aligns with one of the following overarching categories:
• Data Collection and Preparation ensures the availability of high-quality,

representative datasets.
• Model Development and Training focuses on creating accurate and

efÏcient models tailored to the problem at hand.
• Evaluation and Validation rigorously tests models to ensure reliability

and robustness in real-world conditions.
• Deployment and Integration translates models into production-ready

systems that align with operational realities.
• Monitoring and Maintenance ensures ongoing system performance and

adaptability in dynamic environments.

A defining feature of this framework is its iterative and dynamic nature.
Feedback loops, such as those derived from monitoring that guide data collec-
tion improvements or deployment adjustments, ensure that machine learning
systems maintain effectiveness and relevance over time. This adaptability is
critical for addressing challenges such as shifting data distributions, operational
constraints, and evolving user requirements.

By studying this framework, we establish a solid foundation for exploring spe-
cialized topics such as data engineering, model optimization, and deployment
strategies in subsequent chapters. Viewing the ML lifecycle as an integrated
and iterative process promotes a deeper understanding of how systems are
designed, implemented, and maintained over time. To that end, this chapter
focuses on the machine learning lifecycle as a systems-level framework, pro-
viding a high-level overview that bridges theoretical concepts with practical
implementation. Through an examination of the lifecycle in its entirety, we gain
insight into the interdependencies among its stages and the iterative processes
that ensure long-term system scalability and relevance.

5.1.1 Definition
The machine learning (ML) lifecycle is a structured, iterative process that guides
the development, evaluation, and continual improvement of machine learning
systems. Integrating ML into broader software engineering practices introduces

5.1. Overview 148

unique challenges that necessitate systematic approaches to experimentation,
evaluation, and adaptation over time (Amershi et al. 2019).

�� Definition of the Machine Learning Lifecycle

The Machine Learning (ML) Lifecycle is a structured, iterative process
that defines the key stages involved in the development, deployment, and
refinement of ML systems. It encompasses interconnected steps such as
problem formulation, data collection, model training, evaluation, deployment,
and monitoring. The lifecycle emphasizes feedback loops and continuous
improvement, ensuring that systems remain robust, scalable, and responsive
to changing requirements and real-world conditions.

Rather than prescribing a fixed methodology, the ML lifecycle focuses on
achieving specific objectives at each stage. This flexibility allows practitioners
to adapt the process to the unique constraints and goals of individual projects.
Typical stages include problem formulation, data acquisition and preprocess-
ing, model development and training, evaluation, deployment, and ongoing
optimization.

Although these stages may appear sequential, they are frequently revisited,
creating a dynamic and interconnected process. The iterative nature of the
lifecycle encourages feedback loops, whereby insights from later stages, in-
cluding deployment, can inform earlier phases, including data preparation
or model architecture design. This adaptability is essential for managing the
uncertainties and complexities inherent in real-world ML applications.

From an instructional standpoint, the ML lifecycle provides a clear framework
for organizing the study of machine learning systems. By decomposing the
field into well-defined stages, students can engage more systematically with its
core components. This structure mirrors industrial practice while supporting
deeper conceptual understanding.

It is important to distinguish between the ML lifecycle and machine learning
operations (MLOps), as the two are often conflated. The ML lifecycle, as pre-
sented in this chapter, emphasizes the stages and evolution of ML systems—the
“what” and “why” of system development. In contrast, MLOps, which will
be discussed in the MLOps Chapter, addresses the “how,” focusing on tools,
processes, and automation that support efÏcient implementation and main-
tenance. Introducing the lifecycle first provides a conceptual foundation for
understanding the operational aspects that follow.

5.1.2 Traditional vs. AI Lifecycles

Software development lifecycles have evolved through decades of engineering
practice, establishing well-defined patterns for system development. Tradi-
tional lifecycles consist of sequential phases: requirements gathering, system
design, implementation, testing, and deployment. Each phase produces specific
artifacts that serve as inputs to subsequent phases. In financial software devel-
opment, for instance, the requirements phase produces detailed specifications

../ops/ops.qmd

Chapter 5. AI Workflow 149

for transaction processing, security protocols, and regulatory compliance—
specifications that directly translate into system behavior through explicit pro-
gramming.

Machine learning systems require a fundamentally different approach to
this traditional lifecycle model. The deterministic nature of conventional soft-
ware, where behavior is explicitly programmed, contrasts sharply with the
probabilistic nature of ML systems. Consider financial transaction processing:
traditional systems follow predetermined rules (if account balance > transaction
amount, then allow transaction), while ML-based fraud detection systems learn
to recognize suspicious patterns from historical transaction data. This shift
from explicit programming to learned behavior fundamentally reshapes the
development lifecycle.

The unique characteristics of machine learning systems, characterized by
data dependency, probabilistic outputs, and evolving performance, introduce
new dynamics that alter how lifecycle stages interact. These systems require
ongoing refinement, with insights from later stages frequently feeding back into
earlier ones. Unlike traditional systems, where lifecycle stages aim to produce
stable outputs, machine learning systems are inherently dynamic and must
adapt to changing data distributions and objectives.

The key distinctions are summarized in Table 5.1 below:

Table 5.1: Differences between traditional and ML lifecycles.

Aspect Traditional Software Lifecycles Machine Learning Lifecycles

Problem Definition Precise functional specifications are
defined upfront.

Performance-driven objectives evolve as the
problem space is explored.

Development
Process

Linear progression of feature
implementation.

Iterative experimentation with data, features
and models.

Testing and
Validation

Deterministic, binary pass/fail testing
criteria.

Statistical validation and metrics that involve
uncertainty.

Deployment Behavior remains static until explicitly
updated.

Performance may change over time due to
shifts in data distributions.

Maintenance Maintenance involves modifying code
to address bugs or add features.

Continuous monitoring, updating data
pipelines, retraining models, and adapting to
new data distributions.

Feedback Loops Minimal; later stages rarely impact
earlier phases.

Frequent; insights from deployment and
monitoring often refine earlier stages like data
preparation and model design.

These differences underline the need for a robust ML lifecycle framework that
can accommodate iterative development, dynamic behavior, and data-driven
decision-making. This lifecycle ensures that machine learning systems remain
effective not only at launch but throughout their operational lifespan, even as
environments evolve.

5.2 Lifecycle Stages
The AI lifecycle consists of several interconnected stages, each essential to the
development and maintenance of effective machine learning systems. While
the specific implementation details may vary across projects and organizations,
Figure 5.3 provides a high-level illustration of the ML system development

5.2. Lifecycle Stages 150

Figure 5.3: ML lifecycle overview.

Problem

Definition

Data

Collection &

Preparation

Model

Development

& Training

Evaluation

& Validation

Deployment &

Integration
Monitoring &

Maintenance

Feedback Loop

lifecycle. This chapter focuses on the overview, with subsequent chapters diving
into the implementation aspects of each stage.

Problem Definition and Requirements: The first stage involves clearly defin-
ing the problem to be solved, establishing measurable performance objectives,
and identifying key constraints. Precise problem definition ensures alignment
between the system’s goals and the desired outcomes.

Data Collection and Preparation: This stage includes gathering relevant
data, cleaning it, and preparing it for model training. This process often in-
volves curating diverse datasets, ensuring high-quality labeling, and developing
preprocessing pipelines to address variations in the data.

Model Development and Training: In this stage, researchers select appro-
priate algorithms, design model architectures, and train models using the
prepared data. Success depends on choosing techniques suited to the problem
and iterating on the model design for optimal performance.

Evaluation andValidation: Evaluation involves rigorously testing the model’s
performance against predefined metrics and validating its behavior in different
scenarios. This stage ensures the model is not only accurate but also reliable
and robust in real-world conditions.

Deployment and Integration: Once validated, the trained model is inte-
grated into production systems and workflows. This stage requires addressing
practical challenges such as system compatibility, scalability, and operational
constraints.

Monitoring and Maintenance: The final stage focuses on continuously mon-
itoring the system’s performance in real-world environments and maintaining
or updating it as necessary. Effective monitoring ensures the system remains
relevant and accurate over time, adapting to changes in data, requirements, or
external conditions.

A Case Study in Medical AI: To further ground our discussion on these
stages, we will explore Google’s Diabetic Retinopathy (DR) screening project as
a case study. This project exemplifies the transformative potential of machine
learning in medical imaging analysis, an area where the synergy between algo-
rithmic innovation and robust systems engineering plays a pivotal role. Building
upon the foundational work by Gulshan et al. (2016), which demonstrated the
effectiveness of deep learning algorithms in detecting diabetic retinopathy from
retinal fundus photographs, the project progressed from research to real-world
deployment, revealing the complex challenges that characterize modern ML
systems.

Diabetic retinopathy, a leading cause of preventable blindness worldwide,
can be detected through regular screening of retinal photographs. Figure 5.4
illustrates examples of such images: (A) a healthy retina and (B) a retina with
diabetic retinopathy, marked by hemorrhages (red spots). The goal is to train a
model to detect the hemorrhages.

Chapter 5. AI Workflow 151

Figure 5.4: Retinal fundus photos:
(A) healthy retina and (B) retina
with diabetic retinopathy showing
hemorrhages (red spots). Source:
Google

On the surface, the goal appears straightforward: develop an AI system that
could analyze retinal images and identify signs of DR with accuracy comparable
to expert ophthalmologists. However, as the project progressed from research
to real-world deployment, it revealed the complex challenges that characterize
modern ML systems.

The initial results in controlled settings were promising. The system achieved
performance comparable to expert ophthalmologists in detecting DR from
high-quality retinal photographs. Yet, when the team attempted to deploy the
system in rural clinics across Thailand and India, they encountered a series of
challenges that spanned the entire ML lifecycle, from data collection through
deployment and maintenance.

This case study will serve as a recurring thread throughout this chapter to
illustrate how success in machine learning systems depends on more than just
model accuracy. It requires careful orchestration of data pipelines, training
infrastructure, deployment systems, and monitoring frameworks. Furthermore,
the project highlights the iterative nature of ML system development, where
real-world deployment often necessitates revisiting and refining earlier stages.

While this narrative is inspired by Google’s documented experiences in
Thailand and India, certain aspects have been embellished to emphasize specific
challenges frequently encountered in real-world healthcare ML deployments.
These enhancements are to provide a richer understanding of the complexities
involved while maintaining credibility and relevance to practical applications.

5.3 Problem Definition
The development of machine learning systems begins with a critical challenge
that fundamentally differs from traditional software development: defining
not just what the system should do, but how it should learn to do it. Unlike
conventional software, where requirements directly translate into implemen-
tation rules, ML systems require teams to consider how the system will learn
from data while operating within real-world constraints. This stage lays the
foundation for all subsequent phases in the ML lifecycle.

In our case study, diabetic retinopathy is a problem that blends technical
complexity with global healthcare implications. With 415 million diabetic
patients at risk of blindness worldwide and limited access to specialists in

5.3. Problem Definition 152

0 Microaneurysms: Small bulges
in blood vessels of the retina com-
monly seen in diabetic retinopathy.

1 Hemorrhages: Blood that has
leaked from the blood vessels into
the surrounding tissues.

2 Hard Exudates: Deposits of
lipids or fats indicative of leakage
from impaired retinal blood vessels.

underserved regions, defining the problem required balancing technical goals,
such as expert-level diagnostic accuracy, with practical constraints. The system
needed to prioritize cases for early intervention while operating effectively in
resource-limited settings. These constraints showcased how problem definition
must integrate learning capabilities with operational needs to deliver actionable
and sustainable solutions.

5.3.1 Requirements and System Impact
Defining an ML problem involves more than specifying desired performance
metrics. It requires a deep understanding of the broader context in which the
system will operate. For instance, developing a system to detect DR with expert-
level accuracy might initially appear to be a straightforward classification task.
After all, one might assume that training a model on a sufÏciently large dataset
of labeled retinal images and evaluating its performance against standard
metrics would sufÏce.

However, real-world challenges complicate this picture. ML systems must
function effectively in diverse environments, where factors like computational
constraints, data variability, and integration requirements play significant roles.
For example, the DR system needed to detect subtle features like microa-
neurysms0, hemorrhages1, and hard exudates2 across retinal images of varying
quality while operating within the limitations of hardware in rural clinics.
A model that performs well in isolation may falter if it cannot handle opera-
tional realities, such as inconsistent imaging conditions or time-sensitive clinical
workflows. Addressing these factors requires aligning learning objectives with
system constraints, ensuring the system’s long-term viability in its intended
context.

5.3.2 Definition Workflow
Establishing clear and actionable problem definitions involves a multi-step
workflow that bridges technical, operational, and user considerations. The
process begins with identifying the core objective of the system—what tasks
it must perform and what constraints it must satisfy. Teams collaborate with
stakeholders to gather domain knowledge, outline requirements, and anticipate
challenges that may arise in real-world deployment.

In the DR project, this phase involved close collaboration with clinicians to
determine the diagnostic needs of rural clinics. Key decisions, such as balancing
model complexity with hardware limitations and ensuring interpretability
for healthcare providers, were made during this phase. The team’s iterative
approach also accounted for regulatory considerations, such as patient privacy
and compliance with healthcare standards. This collaborative process ensured
that the problem definition aligned with both technical feasibility and clinical
relevance.

5.3.3 Scale and Distribution
As ML systems scale, their problem definitions must adapt to new operational
challenges. For example, the DR project initially focused on a limited number

Chapter 5. AI Workflow 153

3 Emergent Behavior: Unex-
pected phenomena or behaviors not
foreseen by designers, arising from
the interaction of system compo-
nents.

4 3D Optical Coherence Tomogra-
phy (OCT): A non-invasive imaging
technique used to obtain high reso-
lution cross-sectional images of the
retina.

of clinics with consistent imaging setups. However, as the system expanded to
include clinics with varying equipment, staff expertise, and patient demograph-
ics, the original problem definition required adjustments to accommodate these
variations.

Scaling also introduces data challenges. Larger datasets may include more
diverse edge cases, which can expose weaknesses in the initial model design.
In the DR project, for instance, expanding the deployment to new regions intro-
duced variations in imaging equipment and patient populations that required
further tuning of the system. Defining a problem that accommodates such di-
versity from the outset ensures the system can handle future expansion without
requiring a complete redesign.

5.3.4 Systems Thinking
Problem definition, viewed through a systems lens, connects deeply with every
stage of the ML lifecycle. Choices made during this phase shape how data
is collected, how models are developed, and how systems are deployed and
maintained. A poorly defined problem can lead to inefÏciencies or failures in
later stages, emphasizing the need for a holistic perspective.

Feedback loops are central to effective problem definition. As the system
evolves, real-world feedback from deployment and monitoring often reveals
new constraints or requirements that necessitate revisiting the problem defini-
tion. For example, feedback from clinicians about system usability or patient
outcomes may guide refinements in the original goals. In the DR project, the
need for interpretable outputs that clinicians could trust and act upon influ-
enced both model development and deployment strategies.

Emergent behaviors3 also play a role. A system that was initially designed to
detect retinopathy might reveal additional use cases, such as identifying other
conditions like diabetic macular edema, which can reshape the problem’s scope
and requirements. In the DR project, insights from deployment highlighted
potential extensions to other imaging modalities, such as 3D Optical Coherence
Tomography (OCT)4.

Resource dependencies further highlight the interconnectedness of problem
definition. Decisions about model complexity, for instance, directly affect infras-
tructure needs, data collection strategies, and deployment feasibility. Balancing
these dependencies requires careful planning during the problem definition
phase, ensuring that early decisions do not create bottlenecks in later stages.

5.3.5 Lifecycle Implications
The problem definition phase is foundational, influencing every subsequent
stage of the lifecycle. A well-defined problem ensures that data collection
focuses on the most relevant features, that models are developed with the right
constraints in mind, and that deployment strategies align with operational
realities.

In the DR project, defining the problem with scalability and adaptability in
mind enabled the team to anticipate future challenges, such as accommodating
new imaging devices or expanding to additional clinics. For instance, early

5.4. Data Collection 154

considerations of diverse imaging conditions and patient demographics re-
duced the need for costly redesigns later in the lifecycle. This forward-thinking
approach ensured the system’s long-term success and adaptability in dynamic
healthcare environments.

By embedding lifecycle thinking into problem definition, teams can create
systems that not only meet initial requirements but also adapt and evolve in
response to changing conditions. This ensures that ML systems remain effective,
scalable, and impactful over time.

5.4 Data Collection
Data is the foundation of machine learning systems, yet collecting and preparing
data for ML applications introduces challenges that extend far beyond gathering
enough training examples. Modern ML systems often need to handle terabytes
of data, which range from raw, unstructured inputs to carefully annotated
datasets, while maintaining quality, diversity, and relevance for model training.
For medical systems like DR screening, data preparation must meet the highest
standards to ensure diagnostic accuracy.

In the DR project, data collection involved a development dataset of 128,000
retinal fundus photographs evaluated by a panel of 54 ophthalmologists, with
each image reviewed by 3-7 experts. This collaborative effort ensured high-
quality labels that captured clinically relevant features like microaneurysms,
hemorrhages, and hard exudates. Additionally, clinical validation datasets
comprising 12,000 images provided an independent benchmark to test the
model’s robustness against real-world variability, illustrating the importance of
rigorous and representative data collection. The scale and complexity of this
effort highlight how domain expertise and interdisciplinary collaboration are
critical to building datasets for high-stakes ML systems.

5.4.1 Data Requirements and Impact
The requirements for data collection and preparation emerge from the dual
perspectives of machine learning and operational constraints. In the DR project,
high-quality retinal images annotated by experts were a foundational need
to train accurate models. However, real-world conditions quickly revealed
additional complexities. Images were collected from rural clinics using different
camera equipment, operated by staff with varying levels of expertise, and often
under conditions of limited network connectivity.

These operational realities shaped the system architecture in significant ways.
The volume and size of high-resolution images necessitated local storage and
preprocessing capabilities at clinics, as centralizing all data collection was
impractical due to unreliable internet access. Furthermore, patient privacy
regulations required secure data handling at every stage, from image capture
to model training. Coordinating expert annotations also introduced logisti-
cal challenges, necessitating systems that could bridge the physical distance
between clinics and ophthalmologists while maintaining workflow efÏciency.

These considerations demonstrate how data collection requirements influence
the entire ML lifecycle. Infrastructure design, annotation pipelines, and privacy

Chapter 5. AI Workflow 155

5 Lifecycle Thinking: Consider-
ing all phases of a system’s life from
design to decommissioning to opti-
mize overall performance.

protocols all play critical roles in ensuring that collected data aligns with both
technical and operational goals.

5.4.2 Data Infrastructure
The flow of data through the system highlights critical infrastructure require-
ments at every stage. In the DR project, the journey of a single retinal image
offers a glimpse into these complexities. From its capture on a retinal camera,
where image quality is paramount, the data moves through local clinic systems
for initial storage and preprocessing. Eventually, it must reach central systems
where it is aggregated with data from other clinics for model training and
validation.

At each step, the system must balance local needs with centralized aggre-
gation requirements. Clinics with reliable high-speed internet could transmit
data in real-time, but many rural locations relied on store-and-forward systems,
where data was queued locally and transmitted in bulk when connectivity per-
mitted. These differences necessitated flexible infrastructure that could adapt
to varying conditions while maintaining data consistency and integrity across
the lifecycle. This adaptability ensured that the system could function reliably
despite the diverse operational environments of the clinics.

5.4.3 Scale and Distribution
As ML systems scale, the challenges of data collection grow exponentially. In the
DR project, scaling from an initial few clinics to a broader network introduced
significant variability in equipment, workflows, and operating conditions. Each
clinic effectively became an independent data node, yet the system needed to
ensure consistent performance and reliability across all locations.

This scaling effort also brought increasing data volumes, as higher-resolution
imaging devices became standard, generating larger and more detailed images.
These advances amplified the demands on storage and processing infrastruc-
ture, requiring optimizations to maintain efÏciency without compromising
quality. Differences in patient demographics, clinic workflows, and connectiv-
ity patterns further underscored the need for robust design to handle these
variations gracefully.

Scaling challenges highlight how decisions made during the data collection
phase ripple through the lifecycle, impacting subsequent stages like model
development, deployment, and monitoring. For instance, accommodating
higher-resolution data during collection directly influences computational re-
quirements for training and inference, emphasizing the need for lifecycle think-
ing5 even at this early stage.

5.4.4 Data Validation
Quality assurance is an integral part of the data collection process, ensuring
that data meets the requirements for downstream stages. In the DR project,
automated checks at the point of collection flagged issues like poor focus or
incorrect framing, allowing clinic staff to address problems immediately. These

5.4. Data Collection 156

proactive measures ensured that low-quality data was not propagated through
the pipeline.

Validation systems extended these efforts by verifying not just image quality
but also proper labeling, patient association, and compliance with privacy reg-
ulations. Operating at both local and centralized levels, these systems ensured
data reliability and robustness, safeguarding the integrity of the entire ML
pipeline.

5.4.5 Systems Thinking

Viewing data collection and preparation through a lifecycle lens reveals the
interconnected nature of these processes. Each decision made during this
phase influences subsequent stages of the ML system. For instance, choices
about camera equipment and image preprocessing affect not only the quality
of the training dataset but also the computational requirements for model
development and the accuracy of predictions during deployment.

Figure 5.5: Feedback loops and de-
pendencies between stages in the
ML lifecycle.

Data

Preparation
Model

Evaluation

Monitoring &

Maintenance

Data

Collection

Model

Training

Model

Deployment

Data gaps

Validation Issues

Performance Insights

Model Updates

Data Quality Issues

Deployment Constraints

Figure 5.5 illustrates the key feedback loops that characterize the ML lifecycle,
with particular relevance to data collection and preparation. Looking at the
left side of the diagram, we see how monitoring and maintenance activities
feed back to both data collection and preparation stages. For example, when
monitoring reveals data quality issues in production (shown by the “Data Qual-
ity Issues” feedback arrow), this triggers refinements in our data preparation
pipelines. Similarly, performance insights from deployment might highlight
gaps in our training data distribution (indicated by the “Performance Insights”
loop back to data collection), prompting the collection of additional data to
cover underrepresented cases. In the DR project, this manifested when mon-
itoring revealed that certain demographic groups were underrepresented in
the training data, leading to targeted data collection efforts to improve model
fairness and accuracy across all populations.

Feedback loops are another critical aspect of this lifecycle perspective. In-
sights from model performance often lead to adjustments in data collection
strategies, creating an iterative improvement process. For example, in the DR
project, patterns observed during model evaluation influenced updates to pre-
processing pipelines, ensuring that new data aligned with the system’s evolving
requirements.

Chapter 5. AI Workflow 157

6 Transfer Learning: A method
where a model developed for a task
is reused as the starting point for a
model on a second task.

The scaling of data collection introduces emergent behaviors that must be
managed holistically. While individual clinics may function well in isolation,
the simultaneous operation of multiple clinics can lead to system-wide patterns
like network congestion or storage bottlenecks. These behaviors reinforce the
importance of considering data collection as a system-level challenge rather
than a discrete, isolated task.

In the following chapters, we will step through each of the major stages of
the lifecycle shown in Figure 5.5. We will consider several key questions like
what influences data source selection, how feedback loops can be systematically
incorporated, and how emergent behaviors can be anticipated and managed
holistically.

In addition, by adopting a systems thinking approach, we emphasize the
iterative and interconnected nature of the ML lifecycle. How do choices in data
collection and preparation ripple through the entire pipeline? What mecha-
nisms ensure that monitoring insights and performance evaluations effectively
inform improvements at earlier stages? And how can governance frameworks
and infrastructure design evolve to meet the challenges of scaling while main-
taining fairness and efÏciency? These questions will guide our exploration
of the lifecycle, offering a foundation for designing robust and adaptive ML
systems.

5.4.6 Lifecycle Implications
The success of ML systems depends on how effectively data collection integrates
with the entire lifecycle. Decisions made in this stage affect not only the quality
of the initial model but also the system’s ability to evolve and adapt. For instance,
data distribution shifts or changes in imaging equipment over time require the
system to handle new inputs without compromising performance.

In the DR project, embedding lifecycle thinking into data management strate-
gies ensured the system remained robust and scalable as it expanded to new
clinics and regions. By proactively addressing variability and quality during
data collection, the team minimized the need for costly downstream adjust-
ments, aligning the system with long-term goals and operational realities.

5.5 Model Development
Model development and training form the core of machine learning systems,
yet this stage presents unique challenges that extend far beyond selecting algo-
rithms and tuning hyperparameters. It involves designing architectures suited
to the problem, optimizing for computational efÏciency, and iterating on mod-
els to balance performance with deployability. In high-stakes domains like
healthcare, the stakes are particularly high, as every design decision impacts
clinical outcomes.

For DR detection, the model needed to achieve expert-level accuracy while
handling the high resolution and variability of retinal images. Using a deep
neural network trained on their meticulously labeled dataset, the team achieved
an F-score of 0.95, slightly exceeding the median score of the consulted ophthal-
mologists (0.91). This outcome highlights the effectiveness of state-of-the-art

5.5. Model Development 158

methods, such as transfer learning6, and the importance of interdisciplinary
collaboration between data scientists and medical experts to refine features and
interpret model outputs.

5.5.1 Model Requirements and Impact
The requirements for model development emerge not only from the specific
learning task but also from broader system constraints. In the DR project,
the model needed high sensitivity and specificity to detect different stages of
retinopathy. However, achieving this purely from an ML perspective was not
sufÏcient. The system had to meet operational constraints, including running
on limited hardware in rural clinics, producing results quickly enough to fit into
clinical workflows, and being interpretable enough for healthcare providers to
trust its outputs.

These requirements shaped decisions during model development. While
state-of-the-art accuracy might favor the largest and most complex models, such
approaches were infeasible given hardware and workflow constraints. The
team focused on designing architectures that balanced accuracy with efÏciency,
exploring lightweight models that could perform well on constrained devices.
For example, techniques like pruning and quantization were employed to
optimize the models for resource-limited environments, ensuring compatibility
with rural clinic infrastructure.

This balancing act influenced every part of the system lifecycle. Decisions
about model architecture affected data preprocessing, shaped the training
infrastructure, and determined deployment strategies. For example, choosing
to use an ensemble of smaller models instead of a single large model altered
data batching during training, required changes to inference pipelines, and
introduced complexities in how model updates were managed in production.

5.5.2 Development Workflow
The model development workflow reflects the complex interplay between data,
compute resources, and human expertise. In the DR project, this process began
with data exploration and feature engineering, where data scientists collab-
orated with ophthalmologists to identify image characteristics indicative of
retinopathy.

This initial stage required tools capable of handling large medical images and
facilitating experimentation with preprocessing techniques. The team needed
an environment that supported collaboration, visualization, and rapid iteration
while managing the sheer scale of high-resolution data.

As the project advanced to model design and training, computational de-
mands escalated. Training deep learning models on high-resolution images
required extensive GPU resources and sophisticated infrastructure. The team
implemented distributed training systems that could scale across multiple
machines while managing large datasets, tracking experiments, and ensur-
ing reproducibility. These systems also supported experiment comparison,
enabling rapid evaluation of different architectures, hyperparameters, and
preprocessing pipelines.

Chapter 5. AI Workflow 159

Model development was inherently iterative, with each cycle, involving ad-
justments to DNN architectures, refinements of hyperparameters, or incor-
porations of new data, producing extensive metadata, including checkpoints,
validation results, and performance metrics. Managing this information across
the team required robust tools for experiment tracking and version control to
ensure that progress remained organized and reproducible.

5.5.3 Scale and Distribution
As ML systems scale in both data volume and model complexity, the challenges
of model development grow exponentially. The DR project’s evolution from
prototype models to production-ready systems highlights these hurdles. Ex-
panding datasets, more sophisticated models, and concurrent experiments
demanded increasingly powerful computational resources and meticulous
organization.

Distributed training became essential to meet these demands. While it signif-
icantly reduced training time, it introduced complexities in data synchroniza-
tion, gradient aggregation, and fault tolerance. The team relied on advanced
frameworks to optimize GPU clusters, manage network latency, and address
hardware failures, ensuring training processes remained efÏcient and reliable.
These frameworks included automated failure recovery mechanisms, which
helped maintain progress even in the event of hardware interruptions.

The need for continuous experimentation and improvement compounded
these challenges. Over time, the team managed an expanding repository of
model versions, training datasets, and experimental results. This growth re-
quired scalable systems for tracking experiments, versioning models, and ana-
lyzing results to maintain consistency and focus across the project.

5.5.4 Systems Thinking
Approaching model development through a systems perspective reveals its
connections to every other stage of the ML lifecycle. Decisions about model ar-
chitecture ripple through the system, influencing preprocessing requirements,
deployment strategies, and clinical workflows. For instance, adopting a com-
plex model might improve accuracy but increase memory usage, complicating
deployment in resource-constrained environments.

Feedback loops are inherent to this stage. Insights from deployment inform
adjustments to models, while performance on test sets guides future data
collection and annotation. Understanding these cycles is critical for iterative
improvement and long-term success.

Scaling model development introduces emergent behaviors, such as bottle-
necks in shared resources or unexpected interactions between multiple training
experiments. Addressing these behaviors requires robust planning and the
ability to anticipate system-wide patterns that might arise from local changes.

The boundaries between model development and other lifecycle stages often
blur. Feature engineering overlaps with data preparation, while optimization
for inference spans both development and deployment. Navigating these over-
laps effectively requires careful coordination and clear interface definitions.

5.6. Deployment 160

5.5.5 Lifecycle Implications
Model development is not an isolated task; it exists within the broader ML
lifecycle. Decisions made here influence data preparation strategies, training
infrastructure, and deployment feasibility. The iterative nature of this stage
ensures that insights gained feed back into data collection and system optimiza-
tion, reinforcing the interconnectedness of the lifecycle.

In subsequent chapters, we will explore key questions that arise during model
development:

• How can scalable training infrastructures be designed for large-scale ML
models?

• What frameworks and tools help manage the complexity of distributed
training?

• How can model reproducibility and version control be ensured in evolving
projects?

• What trade-offs must be made to balance accuracy with operational con-
straints?

• How can continual learning and updates be handled in production sys-
tems?

These questions highlight how model development sits at the core of ML
systems, with decisions in this stage resonating throughout the entire lifecycle.

5.6 Deployment
Once validated, the trained model is integrated into production systems and
workflows. Deployment requires addressing practical challenges such as system
compatibility, scalability, and operational constraints. Successful integration
hinges on ensuring that the model’s predictions are not only accurate but also
actionable in real-world settings, where resource limitations and workflow
disruptions can pose significant barriers.

In the DR project, deployment strategies were shaped by the diverse envi-
ronments in which the system would operate. Edge deployment enabled local
processing of retinal images in rural clinics with intermittent connectivity, while
automated quality checks flagged poor-quality images for recapture, ensuring
reliable predictions. These measures demonstrate how deployment must bridge
technological sophistication with usability and scalability across varied clinical
settings.

5.6.1 Deployment Requirements and Impact
The requirements for deployment stem from both the technical specifications
of the model and the operational constraints of its intended environment. In
the DR project, the model needed to operate in rural clinics with limited com-
putational resources and intermittent internet connectivity. Additionally, it
had to fit seamlessly into the existing clinical workflow, which required rapid,
interpretable results that could assist healthcare providers without causing
disruption.

Chapter 5. AI Workflow 161

These requirements influenced deployment strategies significantly. A cloud-
based deployment, while technically simpler, was not feasible due to unreliable
connectivity in many clinics. Instead, the team opted for edge deployment,
where models ran locally on clinic hardware. This approach required opti-
mizing the model for smaller, less powerful devices while maintaining high
accuracy. Optimization techniques such as model quantization and pruning
were employed to reduce resource demands without sacrificing performance.

Integration with existing systems posed additional challenges. The ML sys-
tem had to interface with hospital information systems (HIS) for accessing
patient records and storing results. Privacy regulations mandated secure data
handling at every step, further shaping deployment decisions. These consider-
ations ensured that the system adhered to clinical and legal standards while
remaining practical for daily use.

5.6.2 Deployment Workflow
The deployment and integration workflow in the DR project highlighted the
interplay between model functionality, infrastructure, and user experience. The
process began with thorough testing in simulated environments that replicated
the technical constraints and workflows of the target clinics. These simulations
helped identify potential bottlenecks and incompatibilities early, allowing the
team to refine the deployment strategy before full-scale rollout.

Once the deployment strategy was finalized, the team implemented a phased
rollout. Initial deployments were limited to a few pilot sites, allowing for
controlled testing in real-world conditions. This approach provided valuable
feedback from clinicians and technical staff, helping to identify issues that
hadn’t surfaced during simulations.

Integration efforts focused on ensuring seamless interaction between the ML
system and existing tools. For example, the DR system had to pull patient
information from the HIS, process retinal images from connected cameras, and
return results in a format that clinicians could easily interpret. These tasks
required the development of robust APIs, real-time data processing pipelines,
and user-friendly interfaces tailored to the needs of healthcare providers.

5.6.3 Scale and Distribution
Scaling deployment across multiple locations introduced new complexities.
Each clinic had unique infrastructure, ranging from differences in imaging
equipment to variations in network reliability. These differences necessitated
flexible deployment strategies that could adapt to diverse environments while
ensuring consistent performance.

Despite achieving high performance metrics during development, the DR
system faced unexpected challenges in real-world deployment. For example, in
rural clinics, variations in imaging equipment and operator expertise led to in-
consistencies in image quality that the model struggled to handle. These issues
underscored the gap between laboratory success and operational reliability,
prompting iterative refinements in both the model and the deployment strategy.
Feedback from clinicians further revealed that initial system interfaces were
not intuitive enough for widespread adoption, leading to additional redesigns.

5.6. Deployment 162

Distribution challenges extended beyond infrastructure variability. The team
needed to maintain synchronized updates across all deployment sites to ensure
that improvements in model performance or system features were universally
applied. This required implementing centralized version control systems and
automated update pipelines that minimized disruption to clinical operations.

Despite achieving high performance metrics during development, the DR
system faced unexpected challenges in real-world deployment. As illustrated
in Figure 5.5, these challenges create multiple feedback paths—“Deployment
Constraints” flowing back to model training to trigger optimizations, while
“Performance Insights” from monitoring could necessitate new data collection.
For example, when the system struggled with images from older camera models,
this triggered both model optimizations and targeted data collection to improve
performance under these conditions.

Another critical scaling challenge was training and supporting end-users.
Clinicians and staff needed to understand how to operate the system, interpret
its outputs, and provide feedback. The team developed comprehensive training
programs and support channels to facilitate this transition, recognizing that
user trust and proficiency were essential for system adoption.

5.6.4 Robustness and Reliability
In a clinical context, reliability is paramount. The DR system needed to function
seamlessly under a wide range of conditions, from high patient volumes to
suboptimal imaging setups. To ensure robustness, the team implemented
fail-safes that could detect and handle common issues, such as incomplete
or poor-quality data. These mechanisms included automated image quality
checks and fallback workflows for cases where the system encountered errors.

Testing played a central role in ensuring reliability. The team conducted
extensive stress testing to simulate peak usage scenarios, validating that the
system could handle high throughput without degradation in performance. Re-
dundancy was built into critical components to minimize the risk of downtime,
and all interactions with external systems, such as the HIS, were rigorously
tested for compatibility and security.

5.6.5 Systems Thinking
Deployment and integration, viewed through a systems lens, reveal deep con-
nections to every other stage of the ML lifecycle. Decisions made during model
development influence deployment architecture, while choices about data han-
dling affect integration strategies. Monitoring requirements often dictate how
deployment pipelines are structured, ensuring compatibility with real-time
feedback loops.

Feedback loops are integral to deployment and integration. Real-world usage
generates valuable insights that inform future iterations of model development
and evaluation. For example, clinician feedback on system usability during the
DR project highlighted the need for clearer interfaces and more interpretable
outputs, prompting targeted refinements in design and functionality.

Emergent behaviors frequently arise during deployment. In the DR project,
early adoption revealed unexpected patterns, such as clinicians using the system

Chapter 5. AI Workflow 163

for edge cases or non-critical diagnostics. These behaviors, which were not
predicted during development, necessitated adjustments to both the system’s
operational focus and its training programs.

Deployment introduces significant resource dependencies. Running ML
models on edge devices required balancing computational efÏciency with accu-
racy, while ensuring other clinic operations were not disrupted. These trade-offs
extended to the broader system, influencing everything from hardware require-
ments to scheduling updates without affecting clinical workflows.

The boundaries between deployment and other lifecycle stages are fluid.
Optimization efforts for edge devices often overlapped with model develop-
ment, while training programs for clinicians fed directly into monitoring and
maintenance. Navigating these overlaps required clear communication and col-
laboration between teams, ensuring seamless integration and ongoing system
adaptability.

By applying a systems perspective to deployment and integration, we can
better anticipate challenges, design robust solutions, and maintain the flexibility
needed to adapt to evolving operational and technical demands. This approach
ensures that ML systems not only achieve initial success but remain effective
and reliable in real-world applications.

5.6.6 Lifecycle Implications

Deployment and integration are not terminal stages; they are the point at which
an ML system becomes operationally active and starts generating real-world
feedback. This feedback loops back into earlier stages, informing data collection
strategies, model improvements, and evaluation protocols. By embedding
lifecycle thinking into deployment, teams can design systems that are not only
operationally effective but also adaptable and resilient to evolving needs.

In subsequent chapters, we will explore key questions related to deployment
and integration:

• How can deployment strategies balance computational constraints with
performance needs?

• What frameworks support scalable, synchronized deployments across
diverse environments?

• How can systems be designed for seamless integration with existing
workflows and tools?

• What are best practices for ensuring user trust and proficiency in operating
ML systems?

• How do deployment insights feed back into the ML lifecycle to drive
continuous improvement?

These questions emphasize the interconnected nature of deployment and
integration within the lifecycle, highlighting the importance of aligning techni-
cal and operational priorities to create systems that deliver meaningful, lasting
impact.

5.7. Maintenance 164

5.7 Maintenance
Monitoring and maintenance represent the ongoing, critical processes that
ensure the continued effectiveness and reliability of deployed machine learning
systems. Unlike traditional software, ML systems must account for shifts in data
distributions, changing usage patterns, and evolving operational requirements.
Monitoring provides the feedback necessary to adapt to these challenges, while
maintenance ensures the system evolves to meet new needs.

As shown in Figure 5.5, monitoring serves as a central hub for system im-
provement, generating three critical feedback loops: “Performance Insights”
flowing back to data collection to address gaps, “Data Quality Issues” triggering
refinements in data preparation, and “Model Updates” initiating retraining
when performance drifts. In the DR project, these feedback loops enabled
continuous system improvement, from identifying underrepresented patient
demographics (triggering new data collection) to detecting image quality issues
(improving preprocessing) and addressing model drift (initiating retraining).

For DR screening, continuous monitoring tracked system performance across
diverse clinics, detecting issues such as changing patient demographics or
new imaging technologies that could impact accuracy. Proactive maintenance
included plans to incorporate 3D imaging modalities like OCT, expanding the
system’s capabilities to diagnose a wider range of conditions. This highlights
the importance of designing systems that can adapt to future challenges while
maintaining compliance with rigorous healthcare regulations.

5.7.1 Monitoring Requirements and Impact
The requirements for monitoring and maintenance emerged from both technical
needs and operational realities. In the DR project, the technical perspective
required continuous tracking of model performance, data quality, and system
resource usage. However, operational constraints added layers of complexity:
monitoring systems had to align with clinical workflows, detect shifts in patient
demographics, and provide actionable insights to both technical teams and
healthcare providers.

Initial deployment highlighted several areas where the system failed to meet
real-world needs, such as decreased accuracy in clinics with outdated equip-
ment or lower-quality images. Monitoring systems detected performance drops
in specific subgroups, such as patients with less common retinal conditions,
demonstrating that even a well-trained model could face blind spots in practice.
These insights informed maintenance strategies, including targeted updates to
address specific challenges and expanded training datasets to cover edge cases.

These requirements influenced system design significantly. The critical na-
ture of the DR system’s function demanded real-time monitoring capabilities
rather than periodic ofÒine evaluations. To support this, the team implemented
advanced logging and analytics pipelines to process large amounts of opera-
tional data from clinics without disrupting diagnostic workflows. Secure and
efÏcient data handling was essential to transmit data across multiple clinics
while preserving patient confidentiality.

Monitoring requirements also affected model design, as the team incorpo-
rated mechanisms for granular performance tracking and anomaly detection.

Chapter 5. AI Workflow 165

7 A/B Testing: A method in
statistics to compare two versions of
a variable to determine which per-
forms better in a controlled environ-
ment.

Even the system’s user interface was influenced, needing to present monitoring
data in a clear, actionable manner for clinical and technical staff alike.

5.7.2 Maintenance Workflow
The monitoring and maintenance workflow in the DR project revealed the
intricate interplay between automated systems, human expertise, and evolv-
ing healthcare practices. The process began with defining a comprehensive
monitoring framework, establishing key performance indicators (KPIs), and
implementing dashboards and alert systems. This framework had to balance
depth of monitoring with system performance and privacy considerations,
collecting sufÏcient data to detect issues without overburdening the system or
violating patient confidentiality.

As the system matured, maintenance became an increasingly dynamic pro-
cess. Model updates driven by new medical knowledge or performance im-
provements required careful validation and controlled rollouts. The team
employed A/B testing frameworks7 to evaluate updates in real-world condi-
tions and implemented rollback mechanisms to address issues quickly when
they arose.

Monitoring and maintenance formed an iterative cycle rather than discrete
phases. Insights from monitoring informed maintenance activities, while main-
tenance efforts often necessitated updates to monitoring strategies. The team
developed workflows to transition seamlessly from issue detection to resolution,
involving collaboration across technical and clinical domains.

5.7.3 Scale and Distribution
As the DR project scaled from pilot sites to widespread deployment, monitoring
and maintenance complexities grew exponentially. Each additional clinic added
to the volume of operational data and introduced new environmental variables,
such as differing hardware configurations or demographic patterns.

The need to monitor both global performance metrics and site-specific behav-
iors required sophisticated infrastructure. While global metrics provided an
overview of system health, localized issues, including a hardware malfunction
at a specific clinic or unexpected patterns in patient data, needed targeted mon-
itoring. Advanced analytics systems processed data from all clinics to identify
these localized anomalies while maintaining a system-wide perspective.

Continuous adaptation added further complexity. Real-world usage exposed
the system to an ever-expanding range of scenarios. Capturing insights from
these scenarios and using them to drive system updates required efÏcient
mechanisms for integrating new data into training pipelines and deploying
improved models without disrupting clinical workflows.

5.7.4 Proactive Maintenance
Reactive maintenance alone was insufÏcient for the DR project’s dynamic op-
erating environment. Proactive strategies became essential to anticipate and
prevent issues before they affected clinical operations.

5.7. Maintenance 166

The team implemented predictive maintenance models to identify potential
problems based on patterns in operational data. Continuous learning pipelines
allowed the system to retrain and adapt based on new data, ensuring its rele-
vance as clinical practices or patient demographics evolved. These capabilities
required careful balancing to ensure safety and reliability while maintaining
system performance.

Metrics assessing adaptability and resilience became as important as accuracy,
reflecting the system’s ability to evolve alongside its operating environment.
Proactive maintenance ensured the system could handle future challenges
without sacrificing reliability.

5.7.5 Systems Thinking

Monitoring and maintenance, viewed through a systems lens, reveal their deep
integration with every other stage of the ML lifecycle. Changes in data collection
affect model behavior, which influences monitoring thresholds. Maintenance
actions can alter system availability or performance, impacting users and clinical
workflows.

Feedback loops are central to these processes. Monitoring insights drive
updates to models and workflows, while user feedback informs maintenance
priorities. These loops ensure the system remains responsive to both technical
and clinical needs.

Emergent behaviors often arise in distributed deployments. The DR team
identified subtle system-wide shifts in diagnostic patterns that were invisible
in individual clinics but evident in aggregated data. Managing these behaviors
required sophisticated analytics and a holistic view of the system.

Resource dependencies also presented challenges. Real-time monitoring
competed with diagnostic functions for computational resources, while mainte-
nance activities required skilled personnel and occasional downtime. Effective
resource planning was critical to balancing these demands.

5.7.6 Lifecycle Implications

Monitoring and maintenance are not isolated stages but integral parts of the
ML lifecycle. Insights gained from these activities feed back into data collection,
model development, and evaluation, ensuring the system evolves in response
to real-world challenges. This lifecycle perspective emphasizes the need for
strategies that not only address immediate concerns but also support long-term
adaptability and improvement.

In subsequent chapters, we will explore critical questions related to monitor-
ing and maintenance:

• How can monitoring systems detect subtle degradations in ML perfor-
mance across diverse environments?

• What strategies support efÏcient maintenance of ML systems deployed at
scale?

• How can continuous learning pipelines ensure relevance without com-
promising safety?

Chapter 5. AI Workflow 167

• What tools facilitate proactive maintenance and minimize disruption in
production systems?

• How do monitoring and maintenance processes influence the design of
future ML models?

These questions highlight the interconnected nature of monitoring and main-
tenance, where success depends on creating a framework that ensures both
immediate reliability and long-term viability in complex, dynamic environ-
ments.

5.8 AI Lifecycle Roles
Building effective and resilient machine learning systems is far more than a
solo pursuit; it’s a collaborative endeavor that thrives on the diverse expertise
of a multidisciplinary team. Each role in this intricate dance brings unique
skills and insights, supporting different phases of the AI development process.
Understanding who these players are, what they contribute, and how they
interconnect is crucial to navigating the complexities of modern AI systems.

5.8.1 Collaboration in AI
At the heart of any AI project is a team of data scientists. These innovative
thinkers focus on model creation, experiment with architectures, and refine
the algorithms that will become the neural networks driving insights from
data. In our DR project, data scientists were instrumental in architecting neural
networks capable of identifying retinal anomalies, advancing through iterations
to fine-tune a balance between accuracy and computational efÏciency.

Behind the scenes, data engineers work tirelessly to design robust data
pipelines, ensuring that vast amounts of data are ingested, transformed, and
stored effectively. They play a crucial role in the DR project, handling data from
various clinics and automating quality checks to guarantee that the training
inputs were standardized and reliable.

Meanwhile, machine learning engineers take the baton to integrate these
models into production settings. They guarantee that models are nimble, scal-
able, and fit the constraints of the deployment environment. In rural clinics
where computational resources can be scarce, their work in optimizing models
was pivotal to enabling on-the-spot diagnosis.

Domain experts, such as ophthalmologists in the DR project, infuse tech-
nical progress with practical relevance. Their insights shape early problem
definitions and ensure that AI tools align closely with real-world needs, offer-
ing a measure of validation that keeps the outcome aligned with clinical and
operational realities.

MLOps engineers are the guardians of workflow automation, orchestrating
the continuous integration and monitoring systems that keep AI models up and
running. They crafted centralized monitoring frameworks in the DR project,
ensuring that updates were streamlined and model performance remained
optimal across different deployment sites.

Ethicists and compliance ofÏcers remind us of the larger responsibility that
accompanies AI deployment, ensuring adherence to ethical standards and legal

5.9. Conclusion 168

requirements. Their oversight in the DR initiative safeguarded patient privacy
amidst strict healthcare regulations.

Project managers weave together these diverse strands, orchestrating time-
lines, resources, and communication streams to maintain project momentum
and alignment with objectives. They acted as linchpins within the project, har-
monizing efforts between tech teams, clinical practitioners, and policy makers.

5.8.2 Role Interplay
The synergy between these roles fuels the AI machinery toward successful out-
comes. Data engineers establish a solid foundation for data scientists’ creative
model-building endeavors. As models transition into real-world applications,
ML engineers ensure compatibility and efÏciency. Meanwhile, feedback loops
between MLOps engineers and data scientists foster continuous improvement,
enabling quick adaptation to data-driven discoveries.

Ultimately, the success of the DR project underscores the irreplaceable value
of interdisciplinary collaboration. From bridging clinical insights with technical
prowess to ensuring ethical deployment, this collective effort exemplifies how
AI initiatives can be both technically successful and socially impactful.

This interconnected approach underlines why our exploration in later chap-
ters will delve into various aspects of AI development, including those that
may be seen as outside an individual’s primary expertise. Understanding these
diverse roles will equip us to build more robust, well-rounded AI solutions. By
comprehending the broader context and the interplay of roles, you’ll be better
prepared to address challenges and collaborate effectively, paving the way for
innovative and responsible AI systems.

5.9 Conclusion
The AI workflow we’ve explored, while illustrated through the Diabetic Retinopa-
thy project, represents a framework applicable across diverse domains of AI
application. From finance and manufacturing to environmental monitoring
and autonomous vehicles, the core stages of the workflow remain consistent,
even as their specific implementations vary widely.

The interconnected nature of the AI lifecycle, illustrated in Figure 5.5, is a
universal constant. The feedback loops, from “Performance Insights” driving
data collection to “Validation Issues” triggering model updates, demonstrate
how decisions in one stage invariably impact others. Data quality affects model
performance, deployment constraints influence architecture choices, and real-
world usage patterns drive ongoing refinement through these well-defined
feedback paths.

Regardless of the application, the interconnected nature of the AI lifecycle is
a universal constant. Whether developing fraud detection systems for banks
or predictive maintenance models for industrial equipment, decisions made
in one stage invariably impact others. Data quality affects model performance,
deployment constraints influence architecture choices, and real-world usage
patterns drive ongoing refinement.

This interconnectedness underscores the importance of systems thinking in
AI development across all sectors. Success in AI projects, regardless of domain,

Chapter 5. AI Workflow 169

comes from understanding and managing the complex interactions between
stages, always considering the broader context in which the system will operate.

As AI continues to evolve and expand into new areas, this holistic approach
becomes increasingly crucial. Future challenges in AI development, whether in
healthcare, finance, environmental science, or any other field, will likely center
around managing increased complexity, ensuring adaptability, and balancing
performance with ethical considerations. By approaching AI development with
a systems-oriented mindset, we can create solutions that are not only technically
proficient but also robust, adaptable, and aligned with real-world needs across
a wide spectrum of applications.

5.10 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 6

Data Engineering

Figure 6.1: DALL·E 3 Prompt: Create a
rectangular illustration visualizing the
concept of data engineering. Include el-
ements such as raw data sources, data
processing pipelines, storage systems,
and refined datasets. Show how raw
data is transformed through cleaning,
processing, and storage to become valu-
able information that can be analyzed
and used for decision-making.

Purpose
How does data shape ML systems engineering?

In the field of machine learning, data engineering is often overshadowed
by the allure of sophisticated algorithms, when in fact data plays a founda-
tional role in determining an AI system’s capabilities and limitations. We need
to understand the core principles of data in ML systems, exploring how the
acquisition, processing, storage, and governance of data directly impact the
performance, reliability, and ethical considerations of AI systems. By under-
standing these fundamental concepts, we can unlock the true potential of AI
and build a solid foundation of high-quality ML solutions.

171

6.1. Overview 172

L� Learning Objectives

• Analyze different data sourcing methods (datasets, web scraping,
crowdsourcing, synthetic data).

• Explain the importance of data labeling and ensure label quality.
• Evaluate data storage systems for ML workloads (databases, data

warehouses, data lakes).
• Describe the role of data pipelines in ML systems.
• Explain the importance of data governance in ML (security, privacy,

ethics).
• Identify key challenges in data engineering for ML.

6.1 Overview
Data is the foundation of modern machine learning systems, as success is gov-
erned by the quality and accessibility of training and evaluation data. Despite
its pivotal role, data engineering is often overlooked compared to algorithm
design and model development. However, the effectiveness of any machine
learning system hinges on the robustness of its data pipeline. As machine
learning applications become more sophisticated, the challenges associated
with curating, cleaning, organizing, and storing data have grown significantly.
These activities have emerged as some of the most resource-intensive aspects
of the data engineering process, requiring sustained effort and attention.

�� Definition of Data Engineering

Data Engineering is the process of designing, building, and maintaining the
infrastructure and systems that collect, store, and process data for analysis
and machine learning. It involves data acquisition, transformation, and man-
agement, ensuring data is reliable, accessible, and optimized for downstream
applications. Data engineering focuses on building robust data pipelines
and architectures that support the efÏcient and scalable handling of large
datasets.

The concept of “Data Cascades,” introduced by Sambasivan et al. (2021),
highlights the systemic failures that can arise when data quality issues are left
unaddressed. Errors originating during data collection or processing stages
can compound over time, creating cascading effects that lead to model failures,
costly retraining, or even project termination. The failures of IBM Watson Health
in 2019, where flawed training data resulted in unsafe and incorrect cancer treat-
ment recommendations (Strickland 2019), show the real-world consequences
of neglecting data quality and its associated engineering requirements.

It is therefore unsurprising that data scientists spend the majority of their
time, up to 60% as shown in Figure 6.2, is spent on cleaning and organizing data.
This statistic highlights the critical need to prioritize data-related challenges

Chapter 6. Data Engineering 173

early in the pipeline to avoid downstream issues and ensure the effectiveness
of machine learning systems.

Figure 6.2: Data scientists spend
most of their time on cleaning and
organizing data.60%

19% 9%

5%

4%

3%

Cleaning and organizing data

Collecting data sets

Mining data for patterns

Building training sets

Refining algorithms

Other

Data engineering encompasses multiple critical stages in machine learn-
ing systems, from initial data collection through processing and storage. The
discussion begins with the identification and sourcing of data, exploring di-
verse origins such as pre-existing datasets, web scraping, crowdsourcing, and
synthetic data generation. Special attention is given to the complexities of
integrating heterogeneous sources, validating incoming data, and handling
errors during ingestion.

Next, the exploration covers the transformation of raw data into machine
learning-ready formats. This process involves cleaning, normalizing, and ex-
tracting features, tasks that are critical to optimizing model learning and ensur-
ing robust performance. The challenges of scale and computational efÏciency
are also discussed, as they are particularly important for systems that operate
on vast and complex datasets.

Beyond data processing, the text addresses the intricacies of data labeling,
a crucial step for supervised learning systems. Effective labeling requires
sound annotation methodologies and advanced techniques such as AI-assisted
annotation to ensure the accuracy and consistency of labeled data. Challenges
such as bias and ambiguity in labeling are explored, with examples illustrating
their potential impact on downstream tasks.

The discussion also examines the storage and organization of data, a vital
aspect of supporting machine learning pipelines across their lifecycle. Topics
such as storage system design, feature stores, caching strategies, and access
patterns are discussed, with a focus on ensuring scalability and efÏciency. Gov-
ernance is highlighted as a key component of data storage and management,
emphasizing the importance of compliance with privacy regulations, ethical
considerations, and the use of documentation frameworks to maintain trans-
parency and accountability.

This chapter provides an exploration of data engineering practices necessary
for building and maintaining effective machine learning systems. The end goal
is to emphasize the often-overlooked importance of data in enabling the success
of machine learning applications.

6.2. Problem Definition 174

6.2 Problem Definition
As discussed in the overview, Sambasivan et al. (2021) observes that neglecting
the fundamental importance of data quality gives rise to “Data Cascades” —
events where lapses in data quality compound, leading to negative downstream
consequences such as flawed predictions, project terminations, and even po-
tential harm to communities. Despite many ML professionals recognizing the
importance of data, numerous practitioners report facing these cascades.

Figure 6.3 illustrates these potential data pitfalls at every stage and how they
influence the entire process down the line. The influence of data collection
errors is especially pronounced. As illustrated in the figure, any lapses in this
initial stage will become apparent at later stages (in model evaluation and
deployment) and might lead to costly consequences, such as abandoning the
entire model and restarting anew. Therefore, investing in data engineering
techniques from the onset will help us detect errors early, mitigating these
cascading effects.

Figure 6.3: Data cascades: com-
pounded costs. Source: Sambasivan
et al. (2021).

P
ro

bl
e
m

S
ta

te
m

e
n
t

D
a
ta

co
lle

ct
io

n

a
n
d

la
b
e
lin

g

D
a
ta

a
n
a
ly

si
s

a
n
d

cl
e
a
n
in

g

M
o
d
e
l

se
le

ct
io

n

M
o
d
e
l

tr
a
in

in
g

M
o
d
e
l

ev
a
lu

a
tio

n

M
o
d
e
l

d
e
p
lo

ym
e
n
t

Interacting with physical
world brittleness

Inadequate
application-domain expertise

Conflicting reward
systems

Poor cross-organizational
documentation

Impacts of cascades

Abandon / re-start process

This emphasis on data quality and proper problem definition is fundamental
across all types of ML systems. As Sculley et al. (2015) emphasize, it is impor-
tant to distinguish ML-specific problem framing from the broader context of
general software development. Whether developing recommendation engines
processing millions of user interactions, computer vision systems analyzing
medical images, or natural language models handling diverse text data, each
system brings unique challenges that must be carefully considered from the
outset. Production ML systems are particularly sensitive to data quality issues,
as they must handle continuous data streams, maintain consistent process-
ing pipelines, and adapt to evolving patterns while maintaining performance
standards.

A solid project foundation is essential for setting the trajectory and ensuring
the eventual success of any initiative. At the heart of this foundation lies the
crucial first step: identifying a clear problem to solve. This could involve
challenges like developing a recommendation system that effectively handles
cold-start scenarios, or creating a classification model that maintains consistent
accuracy across diverse population segments.

As we will explore later in this chapter, establishing clear objectives provides
a unified direction that guides the entire project. These objectives might include
creating representative datasets that account for various real-world scenarios.
Equally important is defining specific benchmarks, such as prediction accuracy

Chapter 6. Data Engineering 175

and system latency, which offer measurable outcomes to gauge progress and
success.

Throughout this process, engaging with stakeholders, including end-users
and business leaders, provides invaluable insights that ensure the project re-
mains aligned with real-world needs and expectations.

In particular, a cardinal sin in ML is to begin collecting data (or augmenting an
existing dataset) without clearly specifying the underlying problem definition
to guide the data collection. We identify the key steps that should precede any
data collection effort here:

1. Identify and clearly state the problem definition
2. Set clear objectives to meet
3. Establish success benchmarks
4. Understand end-user engagement/use
5. Understand the constraints and limitations of deployment
6. Perform data collection.
7. Iterate and refine.

6.2.1 Keyword Spotting Example
Keyword Spotting (KWS) is an excellent example to illustrate all of the gen-
eral steps in action. This technology is critical for voice-enabled interfaces on
endpoint devices such as smartphones. Typically functioning as lightweight
wake-word engines, KWS systems are constantly active, listening for a specific
phrase to trigger further actions.

As shown in Figure 6.4, when we say “OK, Google” or “Alexa,” this initiates
a process on a microcontroller embedded within the device.

Figure 6.4: Keyword Spotting exam-
ple: interacting with Alexa. Source:
Amazon.

Building a reliable KWS model is a complex task. It demands a deep un-
derstanding of the deployment scenario, encompassing where and how these
devices will operate. For instance, a KWS model’s effectiveness is not just
about recognizing a word; it’s about discerning it among various accents and
background noises, whether in a bustling cafe or amid the blaring sound of
a television in a living room or a kitchen where these devices are commonly
found. It’s about ensuring that a whispered “Alexa” in the dead of night or
a shouted “OK Google” in a noisy marketplace are recognized with equal
precision.

Moreover, many current KWS voice assistants support a limited number
of languages, leaving a substantial portion of the world’s linguistic diversity
unrepresented. This limitation is partly due to the difÏculty in gathering and

6.2. Problem Definition 176

monetizing data for languages spoken by smaller populations. In the long-tail
distribution of languages, most languages have limited or zero speech training
data available, making the development of voice assistants challenging.

Keyword spotting models can run on low-power, low-price microcontrollers,
so theoretically voice interfaces could be expanded to a huge gamut of devices
worldwide, beyond smartphones and home assistants. But the level of accuracy
and robustness that end-users expect hinges on the availability and quality of
speech data, and the ability to label the data correctly. Developing a keyword-
spotting model for an arbitrary word or phrase in an arbitrary language begins
with clearly understanding the problem statement or definition. Using KWS as
an example, we can break down each of the steps as follows:

1. Identifying the Problem: KWS detects specific keywords amidst ambient
sounds and other spoken words. The primary problem is to design a
system that can recognize these keywords with high accuracy, low latency,
and minimal false positives or negatives, especially when deployed on
devices with limited computational resources. A well-specified problem
definition for developing a new KWS model should identify the desired
keywords along with the envisioned application and deployment sce-
nario.

2. Setting Clear Objectives: The objectives for a KWS system might include:
• Achieving a specific accuracy rate (e.g., 98% accuracy in keyword

detection).
• Ensuring low latency (e.g., keyword detection and response within

200 milliseconds).
• Minimizing power consumption to extend battery life on embedded

devices.
• Ensuring the model’s size is optimized for the available memory on

the device.

3. Benchmarks for Success: Establish clear metrics to measure the success
of the KWS system. This could include:

• True Positive Rate: The percentage of correctly identified keywords
relative to all spoken keywords.

• False Positive Rate: The percentage of non-keywords (including si-
lence, background noise, and out-of-vocabulary words) incorrectly
identified as keywords.

• Detection/Error Tradeoff These curves evaluate KWS on streaming
audio representative of a real-world deployment scenario, by com-
paring the number of false accepts per hour (the number of false
positives over the total duration of the evaluation audio) against the
false rejection rate (the number of missed keywords relative to the
number of spoken keywords in the evaluation audio). Nayak et al.
(2022) provides one example of this.

• Response Time: The time taken from keyword utterance to system
response.

• Power Consumption: Average power used during keyword detection.

Chapter 6. Data Engineering 177

0 Always-on Island: A special-
ized, low-power subsystem within
an SoC that continuously monitors
sensors and manages wake-up func-
tions. It enables efÏcient power
management by keeping only es-
sential components active while al-
lowing rapid system wake-up when
needed.

4. Stakeholder Engagement andUnderstanding: Engage with stakeholders,
which include device manufacturers, hardware and software developers,
and end-users. Understand their needs, capabilities, and constraints. For
instance:

• Device manufacturers might prioritize low power consumption.
• Software developers might emphasize ease of integration.
• End-users would prioritize accuracy and responsiveness.

5. Understanding the Constraints and Limitations of Embedded Systems:
Embedded devices come with their own set of challenges:

• Memory Limitations: KWS models must be lightweight to fit within
the memory constraints of embedded devices. Typically, KWS mod-
els need to be as small as 16 KB to fit in the always-on island0 of
the SoC. Moreover, this is just the model size. Additional applica-
tion code for preprocessing may also need to fit within the memory
constraints.

• Processing Power: The computational capabilities of embedded de-
vices are limited (a few hundred MHz of clock speed), so the KWS
model must be optimized for efÏciency.

• Power Consumption: Since many embedded devices are battery-powered,
the KWS system must be power-efÏcient.

• Environmental Challenges: Devices might be deployed in various en-
vironments, from quiet bedrooms to noisy industrial settings. The
KWS system must be robust enough to function effectively across
these scenarios.

6. Data Collection and Analysis: For a KWS system, the quality and diver-
sity of data are paramount. Considerations might include:

• Demographics: Collect data from speakers with various accents across
age and gender to ensure wide-ranging recognition support.

• Keyword Variations: People might pronounce keywords differently or
express slight variations in the wake word itself. Ensure the dataset
captures these nuances.

• Background Noises: Include or augment data samples with different
ambient noises to train the model for real-world scenarios.

7. Iterative Feedback and Refinement: Once a prototype KWS system is
developed, it is important to do the following to ensure that the system re-
mains aligned with the defined problem and objectives as the deployment
scenarios change over time and as use-cases evolve.

• Test it in real-world scenarios
• Gather feedback - are some users or deployment scenarios encoun-

tering underperformance relative to others?
• Iteratively refine the dataset and model

The KWS example illustrates the broader principles of problem definition,
showing how initial decisions about data requirements ripple throughout a

6.3. Pipeline Basics 178

project’s lifecycle. By carefully considering each aspect, from core problem iden-
tification, through performance benchmarks, to deployment constraints, teams
can build a strong foundation for their ML systems. The methodical problem
definition process provides a framework applicable across the ML spectrum.
Whether developing computer vision systems for medical diagnostics, recom-
mendation engines processing millions of user interactions, or natural language
models analyzing diverse text corpora, this structured approach helps teams
anticipate and plan for their data needs.

This brings us to data pipelines, the foundational infrastructure that trans-
forms raw data into ML-ready formats, while maintaining quality and reliabil-
ity throughout the process. These pipelines implement our carefully defined
requirements in production systems, handling everything from initial data
ingestion to final feature generation.

6.3 Pipeline Basics
Modern machine learning systems depend on data pipelines to process mas-
sive amounts of data efÏciently and reliably. For instance, recommendation
systems at companies like Netflix process billions of user interactions daily,
while autonomous vehicle systems must handle terabytes of sensor data in
real-time. These pipelines serve as the backbone of ML systems, acting as the
infrastructure through which raw data transforms into ML-ready training data.

These data pipelines are not simple linear paths but rather complex systems.
They must manage data acquisition, transformation, storage, and delivery while
ensuring data quality and system reliability. The design of these pipelines
fundamentally shapes what is possible with an ML system.

ML data pipelines consist of several distinct layers: data sources, ingestion,
processing, labeling, storage, and eventually ML training (Figure 6.5). Each layer
plays a specific role in the data preparation workflow. The interactions between
these layers are crucial to the system’s overall effectiveness. The flow from raw
data sources to ML training demonstrates the importance of maintaining data
quality and meeting system requirements throughout the pipeline.

6.4 Data Sources
The first stage of the pipeline architecture sourcing appropriate data to meet
the training needs. The quality and diversity of this data will fundamentally
determine our ML system’s learning and prediction capabilities and limitations.
ML systems can obtain their training data through several different approaches,
each with their own advantages and challenges. Let’s examine each of these
approaches in detail.

6.4.1 Existing Datasets
Platforms like Kaggle and UCI Machine Learning Repository provide ML prac-
titioners with ready-to-use datasets that can jumpstart system development.
These pre-existing datasets are particularly valuable when building ML sys-
tems as they offer immediate access to cleaned, formatted data with established

https://www.kaggle.com/
https://archive.ics.uci.edu/

Chapter 6. Data Engineering 179

Figure 6.5: Overview of the data
pipeline.

Raw Data Sources External APIs Streaming Sources

Batch Ingestion Stream Processing

Storage Layer

Training Data
Data Validation &

Quality Checks

Model Training Transformation

Feature Creation /

Engineering

Data Labeling

Sources

Data Ingestion

ML Training

Processing Layer

Data Governance

1 It is essential to be aware of the
several limitations of these bench-
mark datasets that might not be im-
mediately clear. For example, mod-
els trained on these datasets may
be overly optimized to specifics in
the dataset and will begin to over-
fit to these characteristics. Many
benchmark datasets are not updated
overtime which may make them out-
dated and biased towards a different
time period.

benchmarks. One of their primary advantages is cost efÏciency, as creating
datasets from scratch requires significant time and resources, especially when
building production ML systems that need large amounts of high-quality train-
ing data.

Many of these datasets, such as ImageNet,1 have become standard bench-
marks in the machine learning community, enabling consistent performance
comparisons across different models and architectures. For ML system de-
velopers, this standardization provides clear metrics for evaluating model
improvements and system performance. The immediate availability of these
datasets allows teams to begin experimentation and prototyping without delays
in data collection and preprocessing.

However, ML practitioners must carefully consider the quality assurance
aspects of pre-existing datasets. For instance, the ImageNet dataset was found
to have label errors on 6.4% of the validation set (Northcutt, Athalye, and
Mueller 2021). While popular datasets benefit from community scrutiny that
helps identify and correct errors and biases, most datasets remain “untended
gardens” where quality issues can significantly impact downstream system
performance if not properly addressed. Moreover, as (Gebru et al. 2021a)
highlighted in her paper, simply providing a dataset without documentation

https://www.image-net.org/

6.4. Data Sources 180

2 Biases can infiltrate all stages
of the ML workflow from data
collection and feature engineering
through model training and deploy-
ment. Each stage presents opportu-
nities for bias to be introduced or
amplified. The impacts of bias and
approaches for mitigation are cov-
ered in depth in later chapters.

can lead to misuse and misinterpretation, potentially amplifying biases present
in the data.2

Supporting documentation accompanying existing datasets is invaluable, yet
is often only present in widely-used datasets. Good documentation provides
insights into the data collection process and variable definitions and sometimes
even offers baseline model performances. This information not only aids un-
derstanding but also promotes reproducibility in research, a cornerstone of
scientific integrity; currently, there is a crisis around improving reproducibility
in machine learning systems (Pineau et al. 2021). When other researchers have
access to the same data, they can validate findings, test new hypotheses, or
apply different methodologies, thus allowing us to build on each other’s work
more rapidly.

While existing datasets are invaluable resources, it’s essential to understand
the context in which the data was collected. Researchers should be wary of
potential overfitting when using popular datasets such as ImageNet (Beyer et
al. 2020), leading to inflated performance metrics. Sometimes, these datasets
do not reflect the real-world data.

A key consideration for ML systems is how well pre-existing datasets reflect
real-world deployment conditions. Relying on standard datasets can create a
concerning disconnect between training and production environments. This
misalignment becomes particularly problematic when multiple ML systems
are trained on the same datasets (Figure 6.6), potentially propagating biases
and limitations throughout an entire ecosystem of deployed models.

Figure 6.6: Training different mod-
els on the same dataset.

Model A Model B Model C Model D Model E

Central Training Dataset Repository

Limited Real-World Alignment

Potential Issues

Same Data Same Data Same DataTraining Data Same Data

Shared Limitations Dataset Blind Spots Common WeaknessesPropagated Biases Systemic Issues

6.4.2 Web Scraping
When building ML systems, particularly in domains where pre-existing datasets
are insufÏcient, web scraping offers a powerful approach to gathering training
data at scale. This automated technique for extracting data from websites has
become a powerful tool in modern ML system development. It enables teams
to build custom datasets tailored to their specific needs.

Web scraping has proven particularly valuable for building large-scale ML
systems when human-labeled data is scarce. Consider computer vision systems:
major datasets like ImageNet and OpenImages were built through systematic
web scraping, fundamentally advancing the field of computer vision. In pro-
duction environments, companies regularly scrape e-commerce sites to gather

https://venturebeat.com/uncategorized/3-big-problems-with-datasets-in-ai-and-machine-learning/
https://venturebeat.com/uncategorized/3-big-problems-with-datasets-in-ai-and-machine-learning/
https://www.image-net.org/
https://storage.googleapis.com/openimages/web/index.html

Chapter 6. Data Engineering 181

3 Crowdsourcing became pop-
ular for data labelling because it is
cost effective and offers wide cover-
age across different demographics
and cultures. However, this cost ad-
vantage often comes at the expense
of the inadequate worker compensa-
tion, unpaid training time, and un-
stable income. Organizations using
crowdsourcing platforms should
prioritize ethical considerations re-
lated to the financial and emotional
wellbeing of the workers.

product images for recognition systems or social media platforms for computer
vision applications. Stanford’s LabelMe project demonstrated this approach’s
potential early on, scraping Flickr to create a diverse dataset of over 63,000
annotated images.

The impact of web scraping extends well beyond computer vision systems. In
natural language processing, web-scraped data has enabled the development of
increasingly sophisticated ML systems. Large language models, such as Chat-
GPT and Claude, rely on vast amounts of text scraped from the public internet
and media to learn language patterns and generate responses (Groeneveld et
al. 2024). Similarly, specialized ML systems like GitHub’s Copilot demonstrate
how targeted web scraping, in this case of code repositories, can create powerful
domain-specific assistants (M. Chen et al. 2021).

Production ML systems often require continuous data collection to main-
tain relevance and performance. Web scraping facilitates this by gathering
structured data like stock prices, weather patterns, or product information for
analytical applications. However, this continuous collection introduces unique
challenges for ML systems. Data consistency becomes crucial, as variations
in website structure or content formatting can disrupt the data pipeline and
affect model performance. Proper data management through databases or
warehouses becomes essential not just for storage, but for maintaining data
quality and enabling model updates.

Despite its utility, web scraping presents several challenges that ML system
developers must carefully consider. Legal and ethical constraints can limit data
collection, as not all websites permit scraping, and violating these restrictions
can have serious consequences. When building ML systems with scraped
data, teams must carefully document data sources and ensure compliance
with terms of service and copyright laws. Privacy considerations become
particularly critical when dealing with user-generated content, often requiring
robust anonymization procedures.

Technical limitations also affect the reliability of web-scraped training data.
Rate limiting by websites can slow data collection, while the dynamic nature
of web content can introduce inconsistencies that impact model training. As
shown in Figure 6.7, web scraping can yield unexpected or irrelevant data, for
example, historical images appearing in contemporary image searches, that
can pollute training datasets and degrade model performance. These issues
highlight the importance of thorough data validation and cleaning processes
in ML pipelines built on web-scraped data.

6.4.3 Crowdsourcing
Crowdsourcing is a collaborative approach to data collection, leveraging the
collective efforts of distributed individuals via the internet to tackle tasks requir-
ing human judgment3. By engaging a global pool of contributors, this method
accelerates the creation of high-quality, labeled datasets for machine learning
systems, especially in scenarios where pre-existing data is scarce or domain-
specific. Platforms like Amazon Mechanical Turk exemplify how crowdsourcing
facilitates this process by distributing annotation tasks to a global workforce.
This enables the rapid collection of labels for complex tasks such as sentiment

https://people.csail.mit.edu/torralba/publications/labelmeApplications.pdf
https://hls.harvard.edu/today/does-chatgpt-violate-new-york-times-copyrights/
https://www.mturk.com/

6.4. Data Sources 182

Figure 6.7: A picture of old trafÏc
lights (1914). Source: Vox.

analysis, image recognition, and speech transcription, significantly expediting
the data preparation phase.

One of the most impactful examples of crowdsourcing in machine learning
is the creation of the ImageNet dataset. ImageNet, which revolutionized com-
puter vision, was built by distributing image labeling tasks to contributors via
Amazon Mechanical Turk. The contributors categorized millions of images into
thousands of classes, enabling researchers to train and benchmark models for a
wide variety of visual recognition tasks.

The dataset’s availability spurred advancements in deep learning, including
the breakthrough AlexNet model in 2012, which demonstrated how large-scale,
crowdsourced datasets could drive innovation. ImageNet’s success highlights
how leveraging a diverse group of contributors for annotation can enable ma-
chine learning systems to achieve unprecedented performance.

Another example of crowdsourcing’s potential is Google’s Crowdsource, a
platform where volunteers contribute labeled data to improve AI systems in
applications like language translation, handwriting recognition, and image
understanding. By gamifying the process and engaging global participants,
Google harnesses diverse datasets, particularly for underrepresented languages.
This approach not only enhances the quality of AI systems but also empow-
ers communities by enabling their contributions to influence technological
development.

Crowdsourcing has also been instrumental in applications beyond traditional
dataset annotation. For instance, the navigation app Waze uses crowdsourced
data from its users to provide real-time trafÏc updates, route suggestions, and
incident reporting. While this involves dynamic data collection rather than static
dataset labeling, it demonstrates how crowdsourcing can generate continuously
updated datasets essential for applications like mobile or edge ML systems.
These systems often require real-time input to maintain relevance and accuracy
in changing environments.

https://www.vox.com/2015/8/5/9097713/when-was-the-first-traffic-light-installed
https://image-net.org/
https://crowdsource.google.com/
https://www.waze.com/

Chapter 6. Data Engineering 183

One of the primary advantages of crowdsourcing is its scalability. By dis-
tributing microtasks to a large audience, projects can process enormous volumes
of data quickly and cost-effectively. This scalability is particularly beneficial
for machine learning systems that require extensive datasets to achieve high
performance. Additionally, the diversity of contributors introduces a wide
range of perspectives, cultural insights, and linguistic variations, enriching
datasets and improving models’ ability to generalize across populations.

Flexibility is a key benefit of crowdsourcing. Tasks can be adjusted dy-
namically based on initial results, allowing for iterative improvements in data
collection. For example, Google’s reCAPTCHA system uses crowdsourcing to
verify human users while simultaneously labeling datasets for training machine
learning models. Users identify objects in images, including street signs and
cars, contributing to the training of autonomous systems. This clever integra-
tion demonstrates how crowdsourcing can scale seamlessly when embedded
into everyday workflows.

Despite its advantages, crowdsourcing presents challenges that require care-
ful management. Quality control is a major concern, as the variability in contrib-
utors’ expertise and attention can lead to inconsistent or inaccurate annotations.
Providing clear instructions and training materials helps ensure participants
understand the task requirements. Techniques such as embedding known
test cases, leveraging consensus algorithms, or using redundant annotations
can mitigate quality issues and align the process with the problem definition
discussed earlier.

Ethical considerations are paramount in crowdsourcing, especially when
datasets are built at scale using global contributors. It is essential to ensure that
participants are fairly compensated for their work and that they are informed
about how their contributions will be used. Additionally, privacy concerns must
be addressed, particularly when dealing with sensitive or personal information.
Transparent sourcing practices, clear communication with contributors, and
robust auditing mechanisms are crucial for building trust and maintaining
ethical standards.

The issue of fair compensation and ethical data sourcing was brought into
sharp focus during the development of large-scale AI systems like OpenAI’s
ChatGPT. Reports revealed that OpenAI outsourced data annotation tasks to
workers in Kenya, employing them to moderate content and identify harmful or
inappropriate material that the model might generate. This involved reviewing
and labeling distressing content, such as graphic violence and explicit material,
to train the AI in recognizing and avoiding such outputs. While this approach
enabled OpenAI to improve the safety and utility of ChatGPT, significant ethical
concerns arose around the working conditions, the nature of the tasks, and the
compensation provided to Kenyan workers.

Many of the contributors were reportedly paid as little as $1.32 per hour
for reviewing and labeling highly traumatic material. The emotional toll of
such work, coupled with low wages, raised serious questions about the fairness
and transparency of the crowdsourcing process. This controversy highlights
a critical gap in ethical crowdsourcing practices. The workers, often from
economically disadvantaged regions, were not adequately supported to cope
with the psychological impact of their tasks. The lack of mental health resources

https://www.google.com/recaptcha/about/
https://time.com/6247678/openai-chatgpt-kenya-workers/
https://time.com/6247678/openai-chatgpt-kenya-workers/

6.4. Data Sources 184

and insufÏcient compensation underscored the power imbalances that can
emerge when outsourcing data annotation tasks to lower-income regions.

The challenges highlighted by the ChatGPT, particularly the Kenya contro-
versy, are not unique to OpenAI. Many organizations that rely on crowdsourc-
ing for data annotation face similar issues. As machine learning systems grow
more complex and require larger datasets, the demand for annotated data will
continue to increase. This shows the need for industry-wide standards and best
practices to ensure ethical data sourcing. This case emphasizes the importance
of considering the human labor behind AI systems. While crowdsourcing offers
scalability and diversity, it also brings ethical responsibilities that cannot be
overlooked. Organizations must prioritize the well-being and fair treatment of
contributors as they build the datasets that drive AI innovation.

Moreover, when dealing with specialized applications like mobile ML, edge
ML, or cloud ML, additional challenges may arise. These applications often
require data collected from specific environments or devices, which can be
difÏcult to gather through general crowdsourcing platforms. For example, data
for mobile applications utilizing smartphone sensors may necessitate partic-
ipants with specific hardware features or software versions. Similarly, edge
ML systems deployed in industrial settings may require data involving propri-
etary processes or secure environments, introducing privacy and accessibility
challenges.

Hybrid approaches that combine crowdsourcing with other data collection
methods can address these challenges. Organizations may engage specialized
communities, partner with relevant stakeholders, or create targeted initiatives
to collect domain-specific data. Additionally, synthetic data generation, as
discussed in the next section, can augment real-world data when crowdsourcing
falls short.

6.4.4 Anonymization Techniques
Protecting the privacy of individuals while still enabling data-driven insights is
a central challenge in the modern data landscape. As organizations collect and
analyze vast quantities of information, the risk of exposing sensitive details,
whether inadvertently or via intentional breaches, heightens. To mitigate these
risks, practitioners have developed a commonly used range of anonymization
techniques. These methods transform datasets such that individual identities
and sensitive attributes become difÏcult or nearly impossible to re-identify,
while preserving, to varying extents, the overall utility of the data for analysis.

Masking involves altering or obfuscating sensitive values so that they cannot
be directly traced back to the original data subject. For instance, digits in finan-
cial account numbers or credit card numbers can be replaced with asterisks, a
fixed set of dummy characters, or hashed values to protect sensitive information
during display or logging. This anonymization technique is straightforward to
implement and understand while clearly protecting identifiable values from be-
ing viewed, but may struggle with protecting broader context (e.g. relationships
between data points).

Generalization reduces the precision or granularity of data to decrease the
likelihood of re-identification. Instead of revealing an exact date of birth or

Chapter 6. Data Engineering 185

address, the data is aggregated into broader categories (e.g., age ranges, zip
code prefixes). For example, a user’s exact age of 37 might be generalized
to an age range of 30-39, while their exact address might be bucketed into a
city level granularity. This technique clearly reduces the risk of identifying an
individual by sharing data in aggregated form; however, we might consequently
lose analytical prediction. Furthermore, if granularity is not chosen correctly,
individuals may still be able to be identified under certain conditions.

Pseudonymization is the process of replacing direct identifiers (like names,
Social Security numbers, or email addresses) with artificial identifiers, or
“pseudonyms.” These pseudonyms must not reveal, or be easily traceable
to, the original data subject. This is commonly used in health records or in any
situation where datasets need personal identities removed, but maintain unique
entries. This approach allow maintaining individual-level data for analysis
(since records can be traced through pseudonyms), while reducing the risk of
direct identification. However, if the “key” linking the pseudonym to the real
identifier is compromised, re-identification becomes possible.𝑘-anonymity ensures that each record in a dataset is indistinguishable from
at least 𝑘 − 1 other records. This is achieved by suppressing or generalizing
quasi-identifiers, or attributes that, in combination, could be used to re-identify
an individual (e.g., zip code, age, gender). For example, if 𝑘 = 5, every record
in the dataset must share the same combination of quasi-identifiers with at
least four other records. Thus, an attacker cannot pinpoint a single individual
simply by looking at these attributes. This approach provides a formal privacy
guarantee that helps reduce chances of individual re-identification. However,
it is extremely high touch and may require a significant level of data distortion
and does not protect against things like homogeneity or background knowledge
attacks.

Differential privacy (DP) adds carefully calibrated “noise” or randomized
data perturbations to query results or datasets. The goal is to ensure that the
inclusion or exclusion of any single individual’s data does not significantly
affect the output, thereby concealing their presence. Introduced noise is con-
trolled by the 𝜖 parameter in 𝜖-Differential Privacy, balancing data utility and
privacy guarantees. The clear advantages this approach provides are strong
mathematical guarantees of privacy, and DP is widely used in academic and
industrial settings (e.g., large-scale data analysis). However, the added noise
can affect data accuracy and subsequent model performance; proper parameter
tuning is crucial to ensure both privacy and usefulness.

In summary, effective data anonymization is a balancing act between pri-
vacy and utility. Techniques such as masking, generalization, pseudonymiza-
tion, k-anonymity, and differential privacy each target different aspects of re-
identification risk. By carefully selecting and combining these methods, organi-
zations can responsibly derive value from sensitive datasets while respecting
the privacy rights and expectations of the individuals represented within them.

6.4.5 Synthetic Data Creation
Synthetic data generation has emerged as a powerful tool for addressing limita-
tions in data collection, particularly in machine learning applications where

https://en.wikipedia.org/wiki/K-anonymity#Attacks
https://en.wikipedia.org/wiki/K-anonymity#Attacks
https://digitalprivacy.ieee.org/publications/topics/what-is-differential-privacy#:~:text=At%20its%20roots%2C%20differential%20privacy,a%20result%20of%20providing%20data.
https://digitalprivacy.ieee.org/publications/topics/what-is-differential-privacy#:~:text=At%20its%20roots%2C%20differential%20privacy,a%20result%20of%20providing%20data.

6.4. Data Sources 186

4 Diffusion models use noise pre-
diction across time to simulate gen-
eration, while flow-matching algo-
rithms minimize the displacement
between source and target distribu-
tions.

5 Generative Adversarial Net-
works (GANs): Machine learning
models with a generator creating
data and a discriminator assessing
its realism.

6 Variational Autoencoders
(VAEs): Generative models that en-
code data into a latent space and de-
code it to generate new samples.

real-world data is scarce, expensive, or ethically challenging to obtain. This
approach involves creating artificial data using algorithms, simulations, or
generative models to mimic real-world datasets. The generated data can be
used to supplement or replace real-world data, expanding the possibilities for
training robust and accurate machine learning systems. Figure 6.8 illustrates
the process of combining synthetic data with historical datasets to create larger,
more diverse training sets.

Figure 6.8: Increasing training data
size with synthetic data generation.
Source: AnyLogic.

Advancements in generative modeling techniques, such as diffusion models
and flow-matching algorithms4, Generative Adversarial Networks (GANs)5,
and Variational Autoencoders (VAEs)6, have greatly enhanced the quality of
synthetic data. These techniques can produce data that closely resembles real-
world distributions, making it suitable for applications ranging from computer
vision to natural language processing. For example, GANs have been used to
generate synthetic images for object recognition tasks, creating diverse datasets
that are almost indistinguishable from real-world images. Similarly, synthetic
data has been leveraged to simulate speech patterns, enhancing the robustness
of voice recognition systems.

Synthetic data has become particularly valuable in domains where obtaining
real-world data is either impractical or costly. The automotive industry has
embraced synthetic data to train autonomous vehicle systems; there are only
so many cars you can physically crash to get crash-test data that might help
an ML system know how to avoid crashes in the first place. Capturing real-
world scenarios, especially rare edge cases such as near-accidents or unusual
road conditions, is inherently difÏcult. Synthetic data allows researchers to
simulate these scenarios in a controlled virtual environment, ensuring that
models are trained to handle a wide range of conditions. This approach has
proven invaluable for advancing the capabilities of self-driving cars.

Another important application of synthetic data lies in augmenting existing
datasets. Introducing variations into datasets enhances model robustness by
exposing the model to diverse conditions. For instance, in speech recognition,
data augmentation techniques like SpecAugment (Park et al. 2019) introduce
noise, shifts, or pitch variations, enabling models to generalize better across
different environments and speaker styles. This principle extends to other do-

https://www.anylogic.com/features/artificial-intelligence/synthetic-data/
https://www.nvidia.com/en-us/use-cases/autonomous-vehicle-simulation/

Chapter 6. Data Engineering 187

7 GDPR: General Data Protection
Regulation, a legal framework that
sets guidelines for the collection and
processing of personal information
in the EU.

8 HIPAA: Health Insurance Porta-
bility and Accountability Act, U.S.
legislation that provides data pri-
vacy and security provisions for
safeguarding medical information.

mains as well, where synthetic data can fill gaps in underrepresented scenarios
or edge cases.

In addition to expanding datasets, synthetic data addresses critical ethical
and privacy concerns. Unlike real-world data, synthetic data attempts to not
tie back to specific individuals or entities. This makes it especially useful in
sensitive domains such as finance, healthcare, or human resources, where data
confidentiality is paramount. The ability to preserve statistical properties while
removing identifying information allows researchers to maintain high ethical
standards without compromising the quality of their models. In healthcare,
privacy regulations such as GDPR7 and HIPAA8 limit the sharing of sensitive
patient information. Synthetic data generation enables the creation of realistic
yet anonymized datasets that can be used for training diagnostic models without
compromising patient privacy.

Poorly generated data can misrepresent underlying real-world distributions,
introducing biases or inaccuracies that degrade model performance. Validating
synthetic data against real-world benchmarks is essential to ensure its reliability.
Additionally, models trained primarily on synthetic data must be rigorously
tested in real-world scenarios to confirm their ability to generalize effectively.
Another challenge is the potential amplification of biases present in the original
datasets used to inform synthetic data generation. If these biases are not care-
fully addressed, they may be inadvertently reinforced in the resulting models.
A critical consideration is maintaining proper balance between synthetic and
real-world data during training - if models are overly trained on synthetic data,
their outputs may become nonsensical and model performance may collapse.

Synthetic data has revolutionized the way machine learning systems are
trained, providing flexibility, diversity, and scalability in data preparation.
However, as its adoption grows, practitioners must remain vigilant about its
limitations and ethical implications. By combining synthetic data with rigor-
ous validation and thoughtful application, machine learning researchers and
engineers can unlock its full potential while ensuring reliability and fairness in
their systems.

6.4.6 Continuing the KWS Example

KWS is an excellent case study of how different data collection approaches can
be combined effectively. Each method we’ve discussed plays a role in building
robust wake word detection systems, albeit with different trade-offs:

Pre-existing datasets like Google’s Speech Commands (Warden 2018) provide
a foundation for initial development, offering carefully curated voice samples
for common wake words. However, these datasets often lack diversity in ac-
cents, environments, and languages, necessitating additional data collection
strategies.

Web scraping can supplement these baseline datasets by gathering diverse
voice samples from video platforms, podcast repositories, and speech databases.
This helps capture natural speech patterns and wake word variations, though
careful attention must be paid to audio quality and privacy considerations
when scraping voice data.

https://gdpr.eu/
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html

6.5. Data Ingestion 188

Crowdsourcing becomes valuable for collecting specific wake word samples
across different demographics and environments. Platforms like Amazon Me-
chanical Turk can engage contributors to record wake words in various accents,
speaking styles, and background conditions. This approach is particularly
useful for gathering data for underrepresented languages or specific acoustic
environments.

Synthetic data generation helps fill remaining gaps by creating unlimited
variations of wake word utterances. Using speech synthesis (Werchniak et al.
2021) and audio augmentation techniques, developers can generate training
data that captures different acoustic environments (busy streets, quiet rooms,
moving vehicles), speaker characteristics (age, accent, gender), and background
noise conditions.

This multi-faceted approach to data collection enables the development of
KWS systems that perform robustly across diverse real-world conditions. The
combination of methods helps address the unique challenges of wake word
detection, from handling various accents and background noise to maintaining
consistent performance across different devices and environments.

6.5 Data Ingestion

The collected data must be reliably and efÏciently ingested into our ML systems
through well-designed data pipelines. This transformation presents several
challenges that ML engineers must address.

6.5.1 Ingestion Patterns

In ML systems, data ingestion typically follows two primary patterns: batch
ingestion and stream ingestion. Each pattern has distinct characteristics and
use cases that students should understand to design effective ML systems.

Batch ingestion involves collecting data in groups or batches over a specified
period before processing. This method is appropriate when real-time data
processing is not critical and data can be processed at scheduled intervals.
It’s also useful for loading large volumes of historical data. For example, a
retail company might use batch ingestion to process daily sales data overnight,
updating their ML models for inventory prediction each morning (Akidau et
al. 2015).

In contrast, stream ingestion processes data in real-time as it arrives. This
pattern is crucial for applications requiring immediate data processing, scenar-
ios where data loses value quickly, and systems that need to respond to events
as they occur. A financial institution, for instance, might use stream ingestion
for real-time fraud detection, processing each transaction as it occurs to flag
suspicious activity immediately (Kleppmann 2016).

Many modern ML systems employ a hybrid approach, combining both batch
and stream ingestion to handle different data velocities and use cases. This
flexibility allows systems to process both historical data in batches and real-time
data streams, providing a comprehensive view of the data landscape.

Chapter 6. Data Engineering 189

9 Schema-on-read: A flexible
approach where data structure is
defined at access time, not during
ingestion, enabling versatile use of
raw data.

6.5.2 ETL and ELT Comparison

When designing data ingestion pipelines for ML systems, it’s necessary to
understand the differences between Extract, Transform, Load (ETL) and Ex-
tract, Load, Transform (ELT) approaches, as illustrated in Figure 6.9. These
paradigms determine when data transformations occur relative to the loading
phase, significantly impacting the flexibility and efÏciency of your ML pipeline.

Figure 6.9: Key differences between
Extract, Transform, Load (ETL) ver-
sus Extract, Load, Transform (ELT).

Target

(MPP database)

Staging

tables
Final

tables

Source 1

Source 2

Source 3

Extract & Load Transform

E → L → T

Target

Source 1

Source 2

Source 3

Transform LoadExtract

E → T → L

ETL is a well-established paradigm in which data is first gathered from a
source, then transformed to match the target schema or model, and finally
loaded into a data warehouse or other repository. This approach typically
results in data being stored in a ready-to-query format, which can be advanta-
geous for ML systems that require consistent, pre-processed data. For instance,
an ML system predicting customer churn might use ETL to standardize and
aggregate customer interaction data from multiple sources before loading it
into a format suitable for model training (Inmon 2005).

However, ETL can be less flexible when schemas or requirements change
frequently, a common occurrence in evolving ML projects. This is where the
ELT approach comes into play. ELT reverses the order by first loading raw data
and then applying transformations as needed. This method is often seen in
modern data lake or schema-on-read9 environments, allowing for a more agile
approach when addressing evolving analytical needs in ML systems.

By deferring transformations, ELT can accommodate varying uses of the
same dataset, which is particularly useful in exploratory data analysis phases
of ML projects or when multiple models with different data requirements are
being developed simultaneously. However, it’s important to note that ELT
places greater demands on storage systems and query engines, which must
handle large amounts of unprocessed information.

In practice, many ML systems employ a hybrid approach, selecting ETL or
ELT on a case-by-case basis depending on the specific requirements of each data
source or ML model. For example, a system might use ETL for structured data
from relational databases where schemas are well-defined and stable, while
employing ELT for unstructured data like text or images where transformation
requirements may evolve as the ML models are refined.

6.5. Data Ingestion 190

6.5.3 Data Source Integration
Integrating diverse data sources is a key challenge in data ingestion for ML
systems. Data may come from various origins, including databases, APIs, file
systems, and IoT devices. Each source may have its own data format, access
protocol, and update frequency.

To effectively integrate these sources, ML engineers must develop robust
connectors or adapters for each data source. These connectors handle the
specifics of data extraction, including authentication, rate limiting, and error
handling. For example, when integrating with a REST API, the connector
would manage API keys, respect rate limits, and handle HTTP status codes
appropriately.

Furthermore, source integration often involves data transformation at the in-
gestion point. This might include parsing JSON or XML responses, converting
timestamps to a standard format, or performing basic data cleaning opera-
tions. The goal is to standardize the data format as it enters the ML pipeline,
simplifying downstream processing.

It’s also essential to consider the reliability and availability of data sources.
Some sources may experience downtime or have inconsistent data quality.
Implementing retry mechanisms, data quality checks, and fallback procedures
can help ensure a steady flow of reliable data into the ML system.

6.5.4 Validation Techniques
Data validation is an important step in the ingestion process, ensuring that
incoming data meets quality standards and conforms to expected schemas.
This step helps prevent downstream issues in ML pipelines caused by data
anomalies or inconsistencies.

At the ingestion stage, validation typically encompasses several key aspects.
First, it checks for schema conformity, ensuring that incoming data adheres
to the expected structure, including data types and field names. Next, it ver-
ifies data ranges and constraints, confirming that numeric fields fall within
expected ranges and that categorical fields contain valid values. Completeness
checks are also performed, looking for missing or null values in required fields.
Additionally, consistency checks ensure that related data points are logically
coherent (Gudivada, Rao, et al. 2017).

For example, in a healthcare ML system ingesting patient data, validation
might include checking that age values are positive integers, diagnosis codes
are from a predefined set, and admission dates are not in the future. By im-
plementing robust validation at the ingestion stage, ML engineers can detect
and handle data quality issues early, significantly reducing the risk of training
models on flawed or inconsistent data.

6.5.5 Error Management
Error handling in data ingestion is essential for building resilient ML systems.
Errors can occur at various points in the ingestion process, from source con-
nection issues to data validation failures. Effective error handling strategies
ensure that the ML pipeline can continue to operate even when faced with data
ingestion challenges.

Chapter 6. Data Engineering 191

10 Dead Letter Queues: Queues
that store unprocessed messages for
analysis or reprocessing.

A key concept in error handling is graceful degradation. This involves design-
ing systems to continue functioning, possibly with reduced capabilities, when
faced with partial data loss or temporary source unavailability. Implementing
intelligent retry logic for transient errors, such as network interruptions or tem-
porary service outages, is another important aspect of robust error handling.
Many ML systems employ the concept of dead letter queues10, using separate
storage for data that fails processing. This allows for later analysis and potential
reprocessing of problematic data (Kleppmann 2016).

For instance, in a financial ML system ingesting market data, error handling
might involve falling back to slightly delayed data sources if real-time feeds fail,
while simultaneously alerting the operations team to the issue. This approach
ensures that the system continues to function and that responsible parties are
aware of and can address the problem.

This ensures that downstream processes have access to reliable, high-quality
data for training and inference tasks, even in the face of ingestion challenges.
Understanding these concepts of data validation and error handling is essential
for students and practitioners aiming to build robust, production-ready ML
systems.

Once ingestion is complete and data is validated, it is typically loaded into a
storage environment suited to the organization’s analytical or machine learn-
ing needs. Some datasets flow into data warehouses for structured queries,
whereas others are retained in data lakes for exploratory or large-scale analyses.
Advanced systems may also employ feature stores to provide standardized
features for machine learning.

6.5.6 Continuing the KWS Example
A production KWS system typically employs both streaming and batch inges-
tion patterns. The streaming pattern handles real-time audio data from active
devices, where wake words must be detected with minimal latency. This re-
quires careful implementation of pub/sub mechanisms—for example, using
Apache Kafka-like streams to buffer incoming audio data and enable parallel
processing across multiple inference servers.

Simultaneously, the system processes batch data for model training and up-
dates. This includes ingesting new wake word recordings from crowdsourcing
efforts, synthetic data from voice generation systems, and validated user inter-
actions. The batch processing typically follows an ETL pattern, where audio
data is preprocessed (normalized, filtered, segmented) before being stored in a
format optimized for model training.

KWS systems must integrate data from diverse sources, such as real-time
audio streams from deployed devices, crowdsourced recordings from data
collection platforms etc. Each source presents unique challenges. Real-time
audio streams require rate limiting to prevent system overload during usage
spikes. Crowdsourced data needs robust validation to ensure recording quality
and correct labeling. Synthetic data must be verified for realistic representation
of wake word variations.

KWS systems employ sophisticated error handling mechanisms due to the
nature of voice interaction. When processing real-time audio, dead letter queues

6.6. Data Processing 192

store failed recognition attempts for analysis, helping identify patterns in false
negatives or system failures. Data validation becomes particularly important for
maintaining wake word detection accuracy—incoming audio must be checked
for quality issues like clipping, noise levels, and appropriate sampling rates.

For example, consider a smart home device processing the wake word “Alexa.”
The ingestion pipeline must validate:

• Audio quality metrics (signal-to-noise ratio, sample rate, bit depth)
• Recording duration (typically 1-2 seconds for wake words)
• Background noise levels
• Speaker proximity indicators

Invalid samples are routed to dead letter queues for analysis, while valid
samples are processed in real-time for wake word detection.

This case study illustrates how real-world ML systems must carefully balance
different ingestion patterns, handle multiple data sources, and maintain robust
error handling—all while meeting strict latency and reliability requirements.
The lessons from KWS systems apply broadly to other ML applications requiring
real-time processing capabilities alongside continuous model improvement.

6.6 Data Processing
Data processing is a stage in the machine learning pipeline that transforms
raw data into a format suitable for model training and inference. This stage
encompasses several key activities, each playing a role in preparing data for
effective use in ML systems. The approach to data processing is closely tied to
the ETL (Extract, Transform, Load) or ELT (Extract, Load, Transform) paradigms
discussed earlier.

In traditional ETL workflows, much of the data processing occurs before
the data is loaded into the target system. This approach front-loads the clean-
ing, transformation, and feature engineering steps, ensuring that data is in a
ready-to-use state when it reaches the data warehouse or ML pipeline. ETL is
often preferred when dealing with structured data or when there’s a need for
significant data cleansing before analysis.

Conversely, in ELT workflows, raw data is first loaded into the target system,
and transformations are applied afterwards. This approach, often used with
data lakes, allows for more flexibility in data processing. It’s particularly useful
when dealing with unstructured or semi-structured data, or when the exact
transformations needed are not known in advance. In ELT, many of the data
processing steps we’ll discuss might be performed on-demand or as part of the
ML pipeline itself.

The choice between ETL and ELT can impact how and when data processing
occurs in an ML system. For instance, in an ETL-based system, data cleaning
and initial transformations might happen before the data even reaches the ML
team. In contrast, an ELT-based system might require ML engineers to handle
more of the data processing tasks as part of their workflow.

Regardless of whether an organization follows an ETL or ELT approach, un-
derstanding the following data processing steps is crucial for ML practitioners.

Chapter 6. Data Engineering 193

These processes ensure that data is clean, relevant, and optimally formatted for
machine learning algorithms.

6.6.1 Cleaning Techniques
Data cleaning involves identifying and correcting errors, inconsistencies, and
inaccuracies in datasets. Raw data frequently contains issues such as missing
values, duplicates, or outliers that can significantly impact model performance
if left unaddressed.

In practice, data cleaning might involve removing duplicate records, han-
dling missing values through imputation or deletion, and correcting formatting
inconsistencies. For instance, in a customer database, names might be incon-
sistently capitalized or formatted. A data cleaning process would standardize
these entries, ensuring that “John Doe,” “john doe,” and “DOE, John” are all
treated as the same entity.

Outlier detection and treatment is another important aspect of data cleaning.
Outliers can sometimes represent valuable information about rare events, but
they can also be the result of measurement errors or data corruption. ML prac-
titioners must carefully consider the nature of their data and the requirements
of their models when deciding how to handle outliers.

6.6.2 Data Quality Assessment
Quality assessment goes hand in hand with data cleaning, providing a sys-
tematic approach to evaluating the reliability and usefulness of data. This
process involves examining various aspects of data quality, including accuracy,
completeness, consistency, and timeliness.

Tools and techniques for quality assessment range from simple statistical
measures to more complex machine learning-based approaches. For example,
data profiling tools can provide summary statistics and visualizations that help
identify potential quality issues. More advanced techniques might involve
using unsupervised learning algorithms to detect anomalies or inconsistencies
in large datasets.

Establishing clear quality metrics and thresholds is essential for maintaining
data quality over time. These metrics might include the percentage of missing
values, the frequency of outliers, or measures of data freshness. Regular quality
assessments help ensure that data entering the ML pipeline meets the necessary
standards for reliable model training and inference.

6.6.3 Transformation Techniques
Data transformation converts the data from its raw form into a format more
suitable for analysis and modeling. This process can include a wide range of
operations, from simple conversions to complex mathematical transformations.

Common transformation tasks include normalization and standardization,
which scale numerical features to a common range or distribution. For example,
in a housing price prediction model, features like square footage and number of
rooms might be on vastly different scales. Normalizing these features ensures
that they contribute more equally to the model’s predictions (Bishop 2006).

6.6. Data Processing 194

11 One-Hot Encoding: Converts
categorical variables into binary vec-
tors, where each category is repre-
sented by a unique vector with one
element set to 1 and the rest to 0.
This allows categorical data to be
used in ML models requiring nu-
merical input.

Other transformations might involve encoding categorical variables, han-
dling date and time data, or creating derived features. For instance, one-hot
encoding11 is often used to convert categorical variables into a format that can
be readily understood by many machine learning algorithms.

6.6.4 Feature Engineering
Feature engineering is the process of using domain knowledge to create new
features that make machine learning algorithms work more effectively. This
step is often considered more of an art than a science, requiring creativity and
deep understanding of both the data and the problem at hand.

Feature engineering might involve combining existing features, extracting
information from complex data types, or creating entirely new features based
on domain insights. For example, in a retail recommendation system, engineers
might create features that capture the recency, frequency, and monetary value
of customer purchases, known as RFM analysis (Kuhn and Johnson 2013).

The importance of feature engineering cannot be overstated. Well-engineered
features can often lead to significant improvements in model performance,
sometimes outweighing the impact of algorithm selection or hyperparameter
tuning.

6.6.5 Processing Pipeline Design
Processing pipelines bring together the various data processing steps into a co-
herent, reproducible workflow. These pipelines ensure that data is consistently
prepared across training and inference stages, reducing the risk of data leakage
and improving the reliability of ML systems.

Modern ML frameworks and tools often provide capabilities for building
and managing data processing pipelines. For instance, Apache Beam and
TensorFlow Transform allow developers to define data processing steps that
can be applied consistently during both model training and serving.

Effective pipeline design involves considerations such as modularity, scal-
ability, and version control. Modular pipelines allow for easy updates and
maintenance of individual processing steps. Version control for pipelines is
crucial, ensuring that changes in data processing can be tracked and correlated
with changes in model performance. This modular breakdown of pipeline
components is well illustrated by TensorFlow Extended in Figure 6.10, which
shows the complete flow from initial data ingestion through to final model
deployment.

6.6.6 Scalability Considerations
As datasets grow larger and ML systems become more complex, the scalability
of data processing becomes increasingly important. Processing large volumes
of data efÏciently often requires distributed computing approaches and careful
consideration of computational resources.

Techniques for scaling data processing include parallel processing, where
data is divided across multiple machines or processors for simultaneous pro-
cessing. Distributed frameworks like Apache Spark are commonly used for this

Chapter 6. Data Engineering 195

Figure 6.10: Example breakdown of
the entire data to model processing
pipeline for TensorFlow Extended.

ExampleGen

StatisticsGen

SchemaGenExample Validator Transform

Tuner Trainer

Evaluator Infra Validator

Pusher

Tensorflow

serving

Tensorflow

JS

Tensorflow

Lite

purpose, allowing data processing tasks to be scaled across large clusters of
computers.

Another important consideration is the balance between preprocessing and
on-the-fly computation. While extensive preprocessing can speed up model
training and inference, it can also lead to increased storage requirements and
potential data staleness. Some ML systems opt for a hybrid approach, pre-
processing certain features while computing others on-the-fly during model
training or inference.

Effective data processing is fundamental to the success of ML systems. By
carefully cleaning, transforming, and engineering data, practitioners can signif-
icantly improve the performance and reliability of their models. As the field
of machine learning continues to evolve, so too do the techniques and tools
for data processing, making this an exciting and dynamic area of study and
practice.

6.6.7 Continuing the KWS Example
A KWS system requires careful cleaning of audio recordings to ensure reliable
wake word detection. Raw audio data often contains various imperfections—
background noise, clipped signals, varying volumes, and inconsistent sampling
rates. For example, when processing the wake word “Alexa,” the system must
clean recordings to standardize volume levels, remove ambient noise, and en-
sure consistent audio quality across different recording environments, all while
preserving the essential characteristics that make the wake word recognizable.

Building on clean data, quality assessment becomes important for KWS
systems. Quality metrics for KWS data are uniquely focused on audio character-

6.6. Data Processing 196

12 Spectrogram: A visual rep-
resentation of the spectrum of fre-
quencies in a signal as it varies over
time, commonly used in audio pro-
cessing.

13 Mel-Frequency Cepstral Co-
efÏcients (MFCCs): Features ex-
tracted from audio signals that rep-
resent the short-term power spec-
trum, widely used in speech and au-
dio analysis.

istics, including signal-to-noise ratio (SNR), audio clarity scores, and speaking
rate consistency. For instance, a KWS quality assessment pipeline might auto-
matically flag recordings where background noise exceeds acceptable thresh-
olds or where the wake word is spoken too quickly or unclearly, ensuring only
high-quality samples are used for model training.

These quality metrics must be carefully calibrated to reflect real-world operat-
ing conditions. A robust training dataset incorporates both pristine recordings
and samples containing controlled levels of environmental variations. For in-
stance, while recordings with signal-masking interference are excluded, the
dataset should include samples with measured background acoustics, variable
speaker distances, and concurrent speech or other forms of audio signals. This
approach to data diversity ensures the model maintains wake word detection
reliability across the full spectrum of deployment environments and acoustic
conditions.

Once quality is assured, transforming audio data for KWS involves converting
raw waveforms into formats suitable for ML models. The typical transformation
pipeline converts audio signals into spectrograms12 or mel-frequency cepstral
coefÏcients (MFCCs)13, standardizing the representation across different record-
ing conditions. This transformation must be consistently applied across both
training and inference, often with additional considerations for real-time pro-
cessing on edge devices.

Figure 6.11 illustrates this transformation process. The top panel is a raw
waveform of a simulated audio signal, which consists of a sine wave mixed
with noise. This time-domain representation highlights the challenges posed
by real-world recordings, where noise and variability must be addressed. The
middle panel shows the spectrogram of the signal, which maps its frequency
content over time. The spectrogram provides a detailed view of how energy is
distributed across frequencies, making it easier to analyze patterns that could
influence wake word recognition, such as the presence of background noise
or signal distortions The bottom panel shows the MFCCs, derived from the
spectrogram. These coefÏcients compress the audio information into a format
that emphasizes speech-related characteristics, making them well-suited for
KWS tasks.

With transformed data in hand, feature engineering for KWS focuses on
extracting characteristics that help distinguish wake words from background
speech. Engineers might create features capturing tonal variations, speech
energy patterns, or temporal characteristics. For the wake word “Alexa,” fea-
tures might include energy distribution across frequency bands, pitch con-
tours, and duration patterns that characterize typical pronunciations. While
hand-engineered speech features have seen much success, learned features
(Zeghidour et al. 2021) are increasingly common.

In practice, bringing all these elements together, KWS processing pipelines
must handle both batch processing for training and real-time processing for in-
ference. The pipeline typically includes stages for audio preprocessing, feature
extraction, and quality filtering. Importantly, these pipelines must be designed
to operate efÏciently on edge devices while maintaining consistent processing
steps between training and deployment.

Chapter 6. Data Engineering 197

Figure 6.11: KWS data processing
of an audio signal (top panel) rep-
resented in a spectrogram (mid-
dle panel) showing the energy
distribution across time and fre-
quency, along with the correspond-
ing MFCCs (bottom panel) that cap-
ture perceptually relevant features.

14 Modern ML models often con-
tain millions or billions of param-
eters to capture complex data pat-
terns. A general rule of thumb in
ML is to have a training dataset that
is at least 10 times larger than the
model’s parameter count to ensure
robust learning and avoid overfit-
ting.

6.7 Data Labeling
While data engineering encompasses many aspects of preparing data for ma-
chine learning systems, data labeling represents a particularly complex systems
challenge. As training datasets grow to millions or billions of examples,14 the
infrastructure supporting labeling operations becomes increasingly critical to
system performance.

Modern machine learning systems must efÏciently handle the creation, stor-
age, and management of labels across their data pipeline. The systems ar-
chitecture must support various labeling workflows while maintaining data
consistency, ensuring quality, and managing computational resources effec-
tively. These requirements compound when dealing with large-scale datasets
or real-time labeling needs.

The systematic challenges extend beyond just storing and managing labels.
Production ML systems need robust pipelines that integrate labeling workflows
with data ingestion, preprocessing, and training components. These pipelines
must maintain high throughput while ensuring label quality and adapting
to changing requirements. For instance, a speech recognition system might
need to continuously update its training data with new audio samples and
corresponding transcription labels, requiring careful coordination between data
collection, labeling, and training subsystems.

Infrastructure requirements vary significantly based on labeling approach
and scale. Manual expert labeling may require specialized interfaces and se-

6.7. Data Labeling 198

curity controls, while automated labeling systems need substantial compute
resources for inference. Organizations must carefully balance these require-
ments against performance needs and resource constraints.

We explore how data labeling fundamentally shapes machine learning system
design. From storage architectures to quality control pipelines, each aspect of
the labeling process introduces unique technical challenges that ripple through-
out the ML infrastructure. Understanding these systems-level implications is
essential for building robust, scalable labeling solutions which are an integral
part of data negineering.

6.7.1 Types of Labels

To build effective machine learning systems, we must first understand how dif-
ferent types of labels affect our system architecture and resource requirements.
Let’s explore this through a practical example: imagine building a smart city
system that needs to detect and track various objects like vehicles, pedestrians,
and trafÏc signs from video feeds. Labels capture information about key tasks
or concepts.

• Classification labels are the simplest form, categorizing images with a
specific tag or (in multi-label classification) tags (e.g., labeling an image as
“car” or “pedestrian”). While conceptually straightforward, a production
system processing millions of video frames must efÏciently store and
retrieve these labels.

• Bounding boxes go further by identifying object locations, drawing a
box around each object of interest. Our system now needs to track not
just what objects exist, but where they are in each frame. This spatial
information introduces new storage and processing challenges, especially
when tracking moving objects across video frames.

• Segmentation maps provide the most detailed information by classifying
objects at the pixel level, highlighting each object in a distinct color. For
our trafÏc monitoring system, this might mean precisely outlining each ve-
hicle, pedestrian, and road sign. These detailed annotations significantly
increase our storage and processing requirements.

Figure 6.12 illustrates the common label types:
The choice of label format depends heavily on our system requirements and

resource constraints (Johnson-Roberson et al. 2017). While classification labels
might sufÏce for simple trafÏc counting, autonomous vehicles need detailed
segmentation maps to make precise navigation decisions. Leading autonomous
vehicle companies often maintain hybrid systems that store multiple label types
for the same data, allowing flexible use across different applications.

Beyond the core labels, production systems must also handle rich metadata.
The Common Voice dataset (Ardila et al. 2020), for instance, exemplifies this
in its management of audio data for speech recognition. The system tracks
speaker demographics for model fairness, recording quality metrics for data
filtering, validation status for label reliability, and language information for
multilingual support.

Chapter 6. Data Engineering 199

Figure 6.12: An overview of com-
mon label types.

Modern labeling platforms have built sophisticated metadata management
systems to handle these complex relationships. This metadata becomes impor-
tant for maintaining and managing data quality and debugging model behavior.
If our trafÏc monitoring system performs poorly in rainy conditions, having
metadata about weather conditions during data collection helps identify and
address the issue. The infrastructure must efÏciently index and query this
metadata alongside the primary labels.

The choice of label type cascades through our entire system design. A system
built for simple classification labels would need significant modifications to
handle segmentation maps efÏciently. The infrastructure must optimize storage
systems for the chosen label format, implement efÏcient data retrieval patterns
for training, maintain quality control pipelines for validation, and manage
version control for label updates. Resource allocation becomes particularly
critical as data volume grows, requiring careful capacity planning across storage,
compute, and networking components.

6.7.2 Annotation Techniques
Manual labeling by experts is the primary approach in many annotation pipelines.
This method produces high-quality results but also raises considerable sys-
tem design challenges. For instance, in medical imaging systems, experienced
radiologists offer essential annotations. Such systems necessitate specialized
interfaces for accurate labeling, secure data access controls to protect patient
privacy, and reliable version control mechanisms to monitor annotation revi-
sions. Despite the dependable outcomes of expert labeling, the scarcity and
high expenses of specialists render it challenging to implement on a large scale
for extensive datasets.

As we discussed earlier, crowdsourcing offers a path to greater scalability
by distributing annotation tasks across many annotators (Sheng and Zhang
2019). Crowdsourcing enables non-experts to distribute annotation tasks, often
through dedicated platforms (Sheng and Zhang 2019). Several companies have
emerged as leaders in this space, building sophisticated platforms for large-scale

6.7. Data Labeling 200

annotation. For instance, companies such as Scale AI specialize in managing
thousands of concurrent annotators through their platform. Appen focuses on
linguistic annotation and text data, while Labelbox has developed specialized
tools for computer vision tasks. These platforms allow dataset creators to access
a large pool of annotators, making it possible to label vast amounts of data
relatively quickly.

Weakly supervised and programmatic methods represent a third approach,
using automation to reduce manual effort (Ratner et al. 2018). These systems
leverage existing knowledge bases and heuristics to automatically generate
labels. For example, distant supervision techniques might use a knowledge
base to label mentions of companies in text data. While these methods can
rapidly label large datasets, they require substantial compute resources for
inference, sophisticated caching systems to avoid redundant computation, and
careful monitoring to manage potential noise and bias.

Most production systems combine multiple annotation approaches to balance
speed, cost, and quality. A common pattern employs programmatic labeling
for initial coverage, followed by crowdsourced verification and expert review
of uncertain cases. This hybrid approach requires careful system design to
manage the flow of data between different annotation stages. The infrastructure
must track label provenance, manage quality control at each stage, and ensure
consistent data access patterns across different annotator types.

The choice of annotation method significantly impacts system architecture.
Expert-only systems might employ centralized architectures with high-speed
access to a single data store. Crowdsourcing demands distributed architectures
to handle concurrent annotators. Automated systems need substantial compute
resources and caching infrastructure. Many organizations implement tiered
architectures where different annotation methods operate on different subsets
of data based on complexity and criticality.

Clear guidelines and thorough training remain essential regardless of the cho-
sen architecture. The system must provide consistent interfaces, documentation,
and quality metrics across all annotation methods. This becomes particularly
challenging when managing diverse annotator pools with varying levels of
expertise. Some platforms address this by offering access to specialized annota-
tors. For instance, providing medical professionals for healthcare datasets or
domain experts for technical content.

6.7.3 Label Quality Assessment

Label quality is extremely important for machine learning system performance.
A model can only be as good as its training data. However, ensuring quality
at scale presents significant systems challenges. The fundamental challenge
stems from label uncertainty.

Figure 6.13 illustrates common failure modes in labeling systems: some errors
arise from data quality issues (like the blurred frog image), while others require
deep domain expertise (as with the black stork identification). Even with clear
instructions and careful system design, some fraction of labels will inevitably
be incorrect Thyagarajan et al. (2022).

https://scale.com/
https://www.appen.com/
https://labelbox.com/

Chapter 6. Data Engineering 201

Figure 6.13: Some examples of hard
labeling cases. Source: Northcutt,
Athalye, and Mueller (2021)

Production ML systems implement multiple layers of quality control to ad-
dress these challenges. Typically, systematic quality checks continuously mon-
itor the labeling pipeline. These systems randomly sample labeled data for
expert review and employ statistical methods to flag potential errors. The in-
frastructure must efÏciently process these checks across millions of examples
without creating bottlenecks in the labeling pipeline.

Collecting multiple labels per data point, often referred to as “consensus
labeling,” can help identify controversial or ambiguous cases. Professional
labeling companies have developed sophisticated infrastructure for this process.
For example, Labelbox has consensus tools that track inter-annotator agreement
rates and automatically route controversial cases for expert review. Scale AI
implements tiered quality control, where experienced annotators verify the
work of newer team members.

Beyond technical infrastructure, successful labeling systems must consider
human factors. When working with annotators, organizations need robust
systems for training and guidance. This includes good documentation, clear
examples of correct labeling, and regular feedback mechanisms. For complex or
domain-specific tasks, the system might implement tiered access levels, routing
challenging cases to annotators with appropriate expertise.

Ethical considerations also significantly impact system design. For datasets
containing potentially disturbing content, systems should implement protective
features like grayscale viewing options (Blackwood et al. 2019). This requires
additional image processing pipelines and careful interface design. We need
to develop workload management systems that track annotator exposure to
sensitive content and enforce appropriate limits.

The quality control system itself generates substantial data that must be efÏ-
ciently processed and monitored. Organizations typically track inter-annotator
agreement rates, label confidence scores, time spent per annotation, error pat-
terns and types, annotator performance metrics, and bias indicators. These
metrics must be computed and updated efÏciently across millions of examples,
often requiring dedicated analytics pipelines.

Regular bias audits are another critical component of quality control. Systems
must monitor for cultural, personal, or professional biases that could skew the
labeled dataset. This requires infrastructure for collecting and analyzing demo-
graphic information, measuring label distributions across different annotator
groups, identifying systematic biases in the labeling process, and implementing
corrective measures when biases are detected.

Perhaps the most important aspect is that the process must remain iterative.
As new challenges emerge, quality control systems must adapt and evolve.

https://labelbox.com/
https://scale.com

6.7. Data Labeling 202

Through careful system design and implementation of these quality control
mechanisms, organizations can maintain high label quality even at a massive
scale.

6.7.4 AI in Annotation
As machine learning systems grow in scale and complexity, organizations in-
creasingly leverage AI to accelerate and enhance their labeling pipelines. This
approach introduces new system design considerations around model deploy-
ment, resource management, and human-AI collaboration. The fundamental
challenge stems from data volume. Manual annotation alone cannot keep pace
with modern ML systems’ data needs. As illustrated in Figure 6.14, AI assis-
tance offers several paths to scale labeling operations, each requiring careful
system design to balance speed, quality, and resource usage.

Figure 6.14: Strategies for acquir-
ing additional labeled training data.
Source: Stanford AI Lab.

How to get more labeled training data?

Traditional Supervision: Have

subject matter experts (SMEs)

hand-label more training data

Semi-supervised Learning: Use

structural assumptions to automatically

leverage unlabeled data

Weak Supervision:

Get lower-quality labels more efficiently

and/or at a higher abstraction level

Transfer Learning:

Use models already trained on a

different task

Too expensive!

Active Learning: Estimate

which points are most

valuable to solicit labels for

Get cheaper, lower-quality

labels from non-experts

Get higher-level supervision

over unlabeled data from

SMEs

Use one or more

(noisy/biased) pre-trained

models to provide supervision

Heuristics

Distant Supervision

Constraints

Expected distributions

Invariances

Modern AI-assisted labeling typically employs a combination of approaches.
Pre-annotation involves using AI models to generate preliminary labels for
a dataset, which humans can then review and correct. Major labeling plat-
forms have made significant investments in this technology. Snorkel AI uses
programmatic labeling to automatically generate initial labels at scale. Scale
AI deploys pre-trained models to accelerate annotation in specific domains
like autonomous driving, while manycompanies like SuperAnnotate provide
automated pre-labeling tools that can reduce manual effort drastically. This
method, which often employs semi-supervised learning techniques (Chapelle,
Scholkopf, and Zien 2009), can save a significant amount of time, especially for
extremely large datasets.

The emergence of Large Language Models (LLMs) like ChatGPT has further
transformed labeling pipelines. Beyond simple classification, LLMs can gen-
erate rich text descriptions, create labeling guidelines, and even explain their
reasoning. For instance, content moderation systems use LLMs to perform
initial content classification and generate explanations for policy violations.
However, integrating LLMs introduces new system challenges around inference

https://ai.stanford.edu/blog/weak-supervision/
https://snorkel.ai/
https://www.superannotate.com/

Chapter 6. Data Engineering 203

15 A machine learning approach
where the model selects the most
informative data points for labeling
to improve learning efÏciency.

16 When involving human an-
notators in data labeling, organiza-
tions must protect individual pri-
vacy through robust anonymization,
sanitization of identifying informa-
tion, and secure data handling prac-
tices. Additionally, annotators them-
selves should be protected from ex-
posure to potentially harmful con-
tent through appropriate content fil-
tering and support systems.

costs, rate limiting, and output validation. Many organizations adopt a tiered
approach, using smaller specialized models for routine cases while reserving
larger LLMs for complex scenarios.

Methods such as active learning15 complement these approaches by intelli-
gently prioritizing which examples need human attention (Coleman et al. 2022).
These systems continuously analyze model uncertainty to identify valuable
labeling candidates for humans to label. The infrastructure must efÏciently
compute uncertainty metrics, maintain task queues, and adapt prioritization
strategies based on incoming labels. Consider a medical imaging system: active
learning might identify unusual pathologies for expert review while handling
routine cases automatically.

Quality control becomes increasingly crucial as these AI components interact.
The system must monitor both AI and human performance, detect potential
errors, and maintain clear label provenance. This requires dedicated infrastruc-
ture tracking metrics like model confidence and human-AI agreement rates.
In safety-critical domains like self-driving cars, these systems must maintain
particularly rigorous standards while processing massive streams of sensor
data.

Real-world deployments demonstrate these principles at scale. Medical imag-
ing systems (Krishnan, Rajpurkar, and Topol 2022) combine pre-annotation for
common conditions with active learning for unusual cases, all while maintain-
ing strict patient privacy.

Self-driving vehicle systems coordinate multiple AI models to label diverse
sensor data in real-time. Social media platforms process millions of items
hourly, using tiered approaches where simpler models handle clear cases while
complex content routes to more sophisticated models or human reviewers.

While AI assistance offers clear benefits, it also introduces new failure modes.
Systems must guard against bias amplification, where AI models trained on
biased data perpetuate those biases in new labels. The infrastructure needs
robust monitoring to detect such issues and mechanisms to break problematic
feedback loops. Human oversight remains essential, requiring careful interface
design to help annotators effectively supervise and correct AI output.

6.7.5 Labeling Challenges
While data labeling is essential for the development of supervised machine
learning models, it comes with its own set of challenges and limitations that
practitioners must be aware of and address. One of the primary challenges
in data labeling is the inherent subjectivity in many labeling tasks. Even with
clear guidelines, human annotators16 may interpret data differently, leading
to inconsistencies in labeling. This is particularly evident in tasks involving
sentiment analysis, image classification of ambiguous objects, or labeling of
complex medical conditions. For instance, in a study of medical image annota-
tion, Oakden-Rayner et al. (2020) found significant variability in labels assigned
by different radiologists, highlighting the challenge of obtaining “ground truth”
in inherently subjective tasks.

Scalability presents another significant challenge, especially as datasets grow
larger and more complex. Manual labeling is time-consuming and expensive,

6.7. Data Labeling 204

17 Forced Alignment: A tech-
nique in audio processing that
synchronizes spoken words in an
audio file with their correspond-
ing text transcription by analyzing
phoneme-level timing.

often becoming a bottleneck in the machine learning pipeline. While crowd-
sourcing and AI-assisted methods can help address this issue to some extent,
they introduce their own complications in terms of quality control and potential
biases.

The issue of bias in data labeling is particularly concerning. Annotators bring
their own cultural, personal, and professional biases to the labeling process,
which can be reflected in the resulting dataset. For example, T. Wang et al.
(2019) found that image datasets labeled predominantly by annotators from one
geographic region showed biases in object recognition tasks, performing poorly
on images from other regions. This highlights the need for diverse annotator
pools and careful consideration of potential biases in the labeling process.

Data privacy and ethical considerations also pose challenges in data labeling.
Leading data labeling companies have developed specialized solutions for
these challenges. Scale AI, for instance, maintains dedicated teams and secure
infrastructure for handling sensitive data in healthcare and finance. Appen
implements strict data access controls and anonymization protocols, while
Labelbox offers private cloud deployments for organizations with strict security
requirements. When dealing with sensitive data, such as medical records or
personal communications, ensuring annotator access while maintaining data
privacy can be complex.

The dynamic nature of real-world data presents another limitation. Labels
that are accurate at the time of annotation may become outdated or irrelevant
as the underlying distribution of data changes over time. This concept, known
as concept drift, necessitates ongoing labeling efforts and periodic re-evaluation
of existing labels.

Lastly, the limitations of current labeling approaches become apparent when
dealing with edge cases or rare events. In many real-world applications, it’s
the unusual or rare instances that are often most critical (e.g., rare diseases
in medical diagnosis, or unusual road conditions in autonomous driving).
However, these cases are, by definition, underrepresented in most datasets and
may be overlooked or mislabeled in large-scale annotation efforts.

6.7.6 Continuing the KWS Example
The complex requirements of KWS reveal the role of automated data labeling
in modern machine learning. The Multilingual Spoken Words Corpus (MSWC)
(Mazumder et al. 2021) illustrates this through its innovative approach to
generating labeled wake word data at scale. MSWC is large, containing over 23.4
million one-second spoken examples across 340,000 keywords in 50 different
languages.

The core of this system, as illustrated in Figure 6.15, begins with paired
sentence audio recordings and corresponding transcriptions, which can be
sourced from projects like Common Voice or multilingual captioned content
platforms such as YouTube. The system processes paired audio-text inputs
through forced alignment17 to identify word boundaries, extracts individual
keywords as one-second segments, and generates a large-scale multilingual
dataset suitable for training keyword spotting models. For example, when a
speaker says, “He gazed up the steep bank,” their voice generates a complex

https://commonvoice.mozilla.org/en

Chapter 6. Data Engineering 205

acoustic signal that conveys more than just the words themselves. This signal
encapsulates subtle transitions between words, variations in pronunciation,
and the natural rhythm of speech. The primary challenge lies in accurately
pinpointing the exact location of each word within this continuous audio stream.

Figure 6.15: MSWC’s automated
data labeling pipeline.

This is where automated forced alignment proves useful. Tools such as the
Montreal Forced Aligner (McAuliffe et al. 2017) analyze both the audio and
its transcription, mapping the timing relationship between written words and
spoken sounds, and attempts to mark the boundaries of when each word begins
and ends in a speech recording at millisecond-level precision. For high-resource
languages such as English, high-quality automated alignments are available
“out-of-box” while alignments for low-resource languages must be bootstrapped
on the speech data and transcriptions themselves, which can negatively impact
timing quality.

With these precise timestamps, the extraction system can generate clean,
one-second samples of individual keywords. However, this process requires
careful engineering decisions. Background noise might interfere with detecting
word boundaries. Speakers may stretch, compress, or mispronounce words
in unexpected ways. Longer words may not fit within the default 1-second
boundary. In order to aid ML practitioners in filtering out lower-quality samples
in an automated fashion, MSWC provides a self-supervised anomaly detection
algorithm, using acoustic embeddings to identify potential issues based on
embedding distances to k-means clusters. This automated validation becomes
particularly crucial given the scale of the dataset, which includes over 23 million
samples across more than 340,000 words in 50+ languages. Traditional manual
review could not maintain consistent standards across such volume without
significant expense.

Modern voice assistant developers often build upon this type of labeling
foundation. An automated corpus like MSWC may not contain the specific key-
words an application developer wishes to use for their envisioned KWS system,
but the corpus can provide a starting point for KWS prototyping in many under-
served languages spoken around the world. While MSWC provides automated
labeling at scale, production systems may add targeted human recording and
verification for challenging cases, rare words, or difÏcult acoustic environments.

6.8. Data Storage 206

The infrastructure must gracefully coordinate between automated processing
and human expertise.

The impact of this careful engineering extends far beyond the dataset it-
self. Automated labeling pipelines open new avenues to how we approach
wake word detection and other ML tasks across languages or other demo-
graphic boundaries. Where manual collection and annotation might yield
thousands of examples, automated dataset generation can yield millions while
maintaining consistent quality. This enables voice interfaces to understand an
ever-expanding vocabulary across the world’s languages.

Through this approach to data labeling, MSWC demonstrates how thoughtful
data engineering directly impacts production machine learning systems. The
careful orchestration of forced alignment, extraction, and quality control creates
a foundation for reliable voice interaction across languages. When a voice
assistant responds to its wake word, it draws upon this sophisticated labeling
infrastructure, which is a testament to the power of automated data processing
in modern machine learning systems.

6.8 Data Storage
Machine learning workloads have data access patterns that differ markedly
from those of traditional transactional systems or routine analytics. Whereas
transactional databases optimize for frequent writes and row-level updates,
most ML pipelines rely on high-throughput reads, large-scale data scans, and
evolving schemas. This difference reflects the iterative nature of model devel-
opment: data scientists repeatedly load and transform vast datasets to engineer
features, test new hypotheses, and refine models.

Additionally, ML pipelines must accommodate real-world considerations
such as evolving business requirements, new data sources, and changes in
data availability. These realities push storage solutions to be both scalable and
flexible, ensuring that organizations can manage data collected from diverse
channels, ranging from sensor feeds to social media text, without constantly
retooling the entire infrastructure. In this section, we will compare the practical
use of databases, data warehouses, and data lakes for ML projects, then delve
into how specialized services, metadata, and governance practices unify these
varied systems into a coherent strategy.

6.8.1 Storage System Types
All raw and labeled data needs to be stored and accessed efÏciently. When
considering storage systems for ML, it is essential to understand the differences
among different storage systems: databases, data warehouses, and data lakes.
Each system has its strengths and is suited to different aspects of ML workflows.

Table 6.1 provides an overview of these storage systems. Databases usually
support operational and transactional purposes. They work well for smaller,
well-structured datasets, but can become cumbersome and expensive when
applied to large-scale ML contexts involving unstructured data (such as images,
audio, or free-form text).

Chapter 6. Data Engineering 207

18 Schema-on-read: A data
management approach where data
schema definitions are applied at
the time of query or analysis rather
than during initial data storage.

Table 6.1: Comparative overview of the database, data warehouse, and data
lake.

Attribute Conventional Database Data Warehouse Data Lake

Purpose Operational and
transactional

Analytical and reporting Storage for raw and diverse
data for future processing

Data type Structured Structured Structured, semi-structured,
and unstructured

Scale Small to medium
volumes

Medium to large volumes Large volumes of diverse
data

Performance
Optimization

Optimized for
transactional queries
(OLTP)

Optimized for analytical
queries (OLAP)

Optimized for scalable
storage and retrieval

Examples MySQL, PostgreSQL,
Oracle DB

Google BigQuery,
Amazon Redshift,
Microsoft Azure Synapse

Google Cloud Storage, AWS
S3, Azure Data Lake Storage

Data warehouses, by contrast, are optimized for analytical queries across
integrated datasets that have been transformed into a standardized schema. As
indicated in the table, they handle large volumes of integrated data. Many ML
systems successfully draw on data warehouses to power model training because
the structured environment simplifies data exploration and feature engineering.
Yet one limitation remains: a data warehouse may not accommodate truly
unstructured data or rapidly changing data formats, particularly if the data
originates from web scraping or Internet of Things (IoT) sensors.

Data lakes address this gap by storing structured, semi-structured, and un-
structured data in its native format, deferring schema definitions until the point
of reading or analysis (sometimes called schema-on-read)18. As Table 6.1 shows,
data lakes can handle large volumes of diverse data types. This approach
grants data scientists tremendous latitude when dealing with experimental use
cases or novel data types. However, data lakes also demand careful cataloging
and metadata management. Without sufÏcient governance, these expansive
repositories risk devolving into unsearchable, disorganized silos.

The examples provided in Table 6.1 illustrate the range of technologies avail-
able for each storage system type. For instance, MySQL represents a traditional
database system, while solutions like Google BigQuery and Amazon Redshift
are examples of modern, cloud-based data warehouses. For data lakes, cloud
storage solutions such as Google Cloud Storage, AWS S3, and Azure Data Lake
Storage are commonly used due to their scalability and flexibility.

6.8.2 Storage Considerations
While traditional storage systems provide a foundation for ML workflows, the
unique characteristics of machine learning workloads necessitate additional
considerations. These ML-specific storage needs stem from the nature of ML
development, training, and deployment processes, and addressing them is
necessary for building efÏcient and scalable ML systems.

One of the primary challenges in ML storage is handling large model weights.
Modern ML models, especially deep learning models, can have millions or even
billions of parameters. For instance, GPT-3, a large language model, has 175
billion parameters, requiring approximately 350 GB of storage just for the model
weights (T. B. Brown, Mann, Ryder, Subbiah, Kaplan, and al. 2020). Storage

6.8. Data Storage 208

systems need to be capable of handling these large, often dense, numerical
arrays efÏciently, both in terms of storage capacity and access speed. This
requirement goes beyond traditional data storage and enters the realm of high-
performance computing storage solutions.

The iterative nature of ML development introduces another critical storage
consideration: versioning for both datasets and models. Unlike traditional soft-
ware version control, ML versioning needs to track large binary files efÏciently.
As data scientists experiment with different model architectures and hyperpa-
rameters, they generate numerous versions of models and datasets. Effective
storage systems for ML must provide mechanisms to track these changes, revert
to previous versions, and maintain reproducibility throughout the ML lifecycle.
This capability is essential not only for development efÏciency but also for
regulatory compliance and model auditing in production environments.

Distributed training, often necessary for large models or datasets, generates
substantial intermediate data, including partial model updates, gradients, and
checkpoints. Storage systems for ML need to handle frequent, possibly con-
current, read and write operations of these intermediate results. Moreover,
they should provide low-latency access to support efÏcient synchronization be-
tween distributed workers. This requirement pushes storage systems to balance
between high throughput for large data transfers and low latency for quick
synchronization operations.

The diversity of data types in ML workflows presents another unique chal-
lenge. ML systems often work with a wide variety of data, ranging from
structured tabular data to unstructured images, audio, and text. Storage sys-
tems need to efÏciently handle this diversity, often requiring a combination of
different storage technologies optimized for specific data types. For instance, a
single ML project might need to store and process tabular data in a columnar
format for efÏcient feature extraction, while also managing large volumes of
image data for computer vision tasks.

As organizations collect more data and create more sophisticated models,
storage systems need to scale seamlessly. This scalability should support not just
growing data volumes, but also increasing concurrent access from multiple data
scientists and ML models. Cloud-based object storage systems have emerged as
a popular solution due to their virtually unlimited scalability, but they introduce
their own challenges in terms of data access latency and cost management.

The tension between sequential read performance for training and random ac-
cess for inference is another key consideration. While training on large datasets
benefits from high-throughput sequential reads, many ML serving scenarios
require fast random access to individual data points or features. Storage sys-
tems for ML need to balance these potentially conflicting requirements, often
leading to tiered storage architectures where frequently accessed data is kept in
high-performance storage while less frequently used data is moved to cheaper,
higher-latency storage.

The choice and configuration of storage systems can significantly impact the
performance, cost-effectiveness, and overall success of ML initiatives. As the
field of machine learning continues to evolve, storage solutions will need to
adapt to meet the changing demands of increasingly sophisticated ML work-
flows.

Chapter 6. Data Engineering 209

19 Parquet and ORC: Colum-
nar storage formats optimized for
analytical workloads and machine
learning pipelines. They store data
by columns rather than rows, en-
abling selective retrieval of specific
features and reducing I/O overhead
for large datasets.

6.8.3 Performance Factors

The performance of storage systems is critical in ML workflows, directly im-
pacting the efÏciency of model training, the responsiveness of inference, and
the overall productivity of data science teams. Understanding and optimizing
storage performance requires a focus on several key metrics and strategies
tailored to ML workloads.

One of the primary performance metrics for ML storage is throughput, partic-
ularly for large-scale data processing and model training. High throughput is
essential when ingesting and preprocessing vast datasets or when reading large
batches of data during model training. For instance, distributed training of
deep learning models on large datasets may require sustained read throughput
of several gigabytes per second to keep GPU accelerators fully utilized.

Latency is another metric, especially for online inference and interactive data
exploration. Low latency access to individual data points or small batches
of data is vital for maintaining responsive ML services. In recommendation
systems or real-time fraud detection, for example, storage systems must be able
to retrieve relevant features or model parameters within milliseconds to meet
strict service level agreements (SLAs).

The choice of file format can significantly impact both throughput and latency.
Columnar storage formats such as Parquet or ORC19 are particularly well-
suited for ML workloads. These formats allow for efÏcient retrieval of specific
features without reading entire records, substantially reducing I/O operations
and speeding up data loading for model training and inference. For example,
when training a model that only requires a subset of features from a large
dataset, columnar formats can reduce data read times by an order of magnitude
compared to row-based formats.

Compression is another key factor in storage performance optimization.
While compression reduces storage costs and can improve read performance
by reducing the amount of data transferred from disk, it also introduces com-
putational overhead for decompression. The choice of compression algorithm
often involves a trade-off between compression ratio and decompression speed.
For ML workloads, fast decompression is usually prioritized over maximum
compression, with algorithms like Snappy or LZ4 being popular choices.

Data partitioning strategies play a role in optimizing query performance for
ML workloads. By intelligently partitioning data based on frequently used
query parameters (such as date ranges or categorical variables), systems can
dramatically improve the efÏciency of data retrieval operations. For instance,
in a recommendation system processing user interactions, partitioning data by
user demographic attributes and time periods can significantly speed up the
retrieval of relevant training data for personalized models.

To handle the scale of data in modern ML systems, distributed storage archi-
tectures are often employed. These systems, such as HDFS (Hadoop Distributed
File System) or cloud-based object stores like Amazon S3, distribute data across
multiple machines or data centers. This approach not only provides scalability
but also enables parallel data access, which can substantially improve read
performance for large-scale data processing tasks common in ML workflows.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://aws.amazon.com/s3/

6.8. Data Storage 210

Caching strategies are also vital for optimizing storage performance in ML
systems. In-memory caching of frequently accessed data or computed features
can significantly reduce latency and computational overhead. Distributed
caching systems like Redis or Memcached are often used to scale caching
capabilities across clusters of machines, providing low-latency access to hot
data for distributed training or serving systems.

As ML workflows increasingly span from cloud to edge devices, storage
performance considerations must extend to these distributed environments.
Edge caching and intelligent data synchronization strategies become needed
for maintaining performance in scenarios where network connectivity may be
limited or unreliable. In the end, the goal is to create a storage infrastructure that
can handle the volume and velocity of data in ML workflows while providing
the low-latency access needed for responsive model training and inference.

6.8.4 Storage in ML Lifecycle
The storage needs of machine learning systems evolve significantly across dif-
ferent phases of the ML lifecycle. Understanding these changing requirements
is important for designing effective and efÏcient ML data infrastructures.

6.8.4.1 Development Phase

In the development phase, storage systems play a critical role in supporting
exploratory data analysis and iterative model development. This stage demands
flexibility and collaboration, as data scientists often work with various datasets,
experiment with feature engineering techniques, and rapidly iterate on model
designs to refine their approaches.

One of the key challenges at this stage is managing the versions of datasets
used in experiments. While traditional version control systems like Git excel
at tracking code changes, they fall short when dealing with large datasets.
This gap has led to the emergence of specialized tools like DVC (Data Version
Control), which enable data scientists to efÏciently track dataset changes, revert
to previous versions, and share large files without duplication. These tools
ensure that teams can maintain reproducibility and transparency throughout
the iterative development process.

Balancing data accessibility and security further complicates the storage re-
quirements in this phase. Data scientists require seamless access to datasets
for experimentation, but organizations must simultaneously safeguard sensi-
tive data. This tension often results in the implementation of sophisticated
access control mechanisms, ensuring that datasets remain both accessible and
protected. Secure data sharing systems enhance collaboration while adhering
to strict organizational and regulatory requirements, enabling teams to work
productively without compromising data integrity.

6.8.4.2 Training Phase

The training phase presents unique storage challenges due to the sheer volume
of data processed and the computational intensity of model training. At this
stage, the interplay between storage performance and computational efÏciency

https://dvc.org/
https://dvc.org/

Chapter 6. Data Engineering 211

20 Burst Buffers: High-speed
storage layers used to absorb large,
temporary I/O demands in high-
performance computing, smoothing
performance during data-intensive
operations.

becomes critical, as modern ML algorithms demand seamless integration be-
tween data access and processing.

To meet these demands, high-performance storage systems must provide
the throughput required to feed data to multiple GPU or TPU accelerators si-
multaneously. Distributed training scenarios amplify this need, often requiring
data transfer rates in the gigabytes per second range to ensure that accelerators
remain fully utilized. This highlights the importance of optimizing storage for
both capacity and speed.

Beyond data ingestion, managing intermediate results and checkpoints is
another critical challenge in the training phase. Long-running training jobs
frequently save intermediate model states to allow for resumption in case of
interruptions. These checkpoints can grow significantly in size, especially for
large-scale models, necessitating storage solutions that enable efÏcient saving
and retrieval without impacting overall performance.

Complementing these systems is the concept of burst buffers20, borrowed
from high-performance computing. These high-speed, temporary storage layers
are particularly valuable during training, as they can absorb large, bursty I/O
operations. By buffering these spikes in demand, burst buffers help smooth
out performance fluctuations and reduce the load on primary storage systems,
ensuring that training pipelines remain efÏcient and reliable.

6.8.4.3 Deployment Phase

In the deployment and serving phase, the focus shifts from high-throughput
batch operations during training to low-latency, often real-time, data access.
This transition highlights the need to balance conflicting requirements, where
storage systems must simultaneously support responsive model serving and
enable continued learning in dynamic environments.

Real-time inference demands storage solutions capable of extremely fast
access to model parameters and relevant features. To achieve this, systems
often rely on in-memory databases or sophisticated caching strategies, ensuring
that predictions can be made within milliseconds. These requirements become
even more challenging in edge deployment scenarios, where devices operate
with limited storage resources and intermittent connectivity to central data
stores.

Adding to this complexity is the need to manage model updates in production
environments. Storage systems must facilitate smooth transitions between
model versions, ensuring minimal disruption to ongoing services. Techniques
like shadow deployment, where new models run alongside existing ones for
validation, allow organizations to iteratively roll out updates while monitoring
their performance in real-world conditions.

6.8.4.4 Maintenance Phase

The monitoring and maintenance phase brings its own set of storage challenges,
centered on ensuring the long-term reliability and performance of ML systems.
At this stage, the focus shifts to capturing and analyzing data to monitor model
behavior, detect issues, and maintain compliance with regulatory requirements.

6.8. Data Storage 212

A critical aspect of this phase is managing data drift, where the characteristics
of incoming data change over time. Storage systems must efÏciently capture and
store incoming data along with prediction results, enabling ongoing analysis
to detect and address shifts in data distributions. This ensures that models
remain accurate and aligned with their intended use cases.

The sheer volume of logging and monitoring data generated by high-trafÏc
ML services introduces questions of data retention and accessibility. Organiza-
tions must balance the need to retain historical data for analysis against the cost
and complexity of storing it. Strategies such as tiered storage and compression
can help manage costs while ensuring that critical data remains accessible when
needed.

Regulated industries often require immutable storage to support auditing
and compliance efforts. Storage systems designed for this purpose guarantee
data integrity and non-repudiability, ensuring that stored data cannot be altered
or deleted. Blockchain-inspired solutions and write-once-read-many (WORM)
technologies are commonly employed to meet these stringent requirements.

6.8.5 Feature Storage
Feature stores are a centralized repository that stores and serves pre-computed
features for machine learning models, ensuring consistency between training
and inference workflows. They have emerged as a critical component in the
ML infrastructure stack, addressing the unique challenges of managing and
serving features for machine learning models. They act as a central repository
for storing, managing, and serving machine learning features, bridging the gap
between data engineering and machine learning operations.

What makes feature stores particularly interesting is their role in solving
several key challenges in ML pipelines. First, they address the problem of
feature consistency between training and serving environments. In traditional
ML workflows, features are often computed differently in ofÒine (training)
and online (serving) environments, leading to discrepancies that can degrade
model performance. Feature stores provide a single source of truth for feature
definitions, ensuring consistency across all stages of the ML lifecycle.

Another fascinating aspect of feature stores is their ability to promote feature
reuse across different models and teams within an organization. By centralizing
feature computation and storage, feature stores can significantly reduce redun-
dant work. For instance, if multiple teams are working on different models that
require similar features (e.g., customer lifetime value in a retail context), these
features can be computed once and reused across projects, improving efÏciency
and consistency.

Feature stores also play a role in managing the temporal aspects of features.
Many ML use cases require correct point-in-time feature values, especially in
scenarios involving time-series data or where historical context is important.
Feature stores typically offer time-travel capabilities, allowing data scientists
to retrieve feature values as they were at any point in the past. This is crucial
for training models on historical data and for ensuring consistency between
training and serving environments, as illustrated in Figure 6.16 which shows
how data flows through these systems to eventually yield a model.

Chapter 6. Data Engineering 213

Figure 6.16: High-level overview
of feature stores interact with data,
users and model training and de-
ployment.

Monitoring

Transformations ServingStorage

Registry

Feature Store

Model training

Model serving

Define feature
Search and

discover features

Ingest data
Fetch feature

vectors

Fetch training

dataset

Data Scientist

Batch data

Streaming data

The performance characteristics of feature stores are particularly intriguing
from a storage perspective. They need to support both high-throughput batch
retrieval for model training and low-latency lookups for online inference. This
often leads to hybrid architectures where feature stores maintain both an of-
fline store (optimized for batch operations) and an online store (optimized for
real-time serving). Synchronization between these stores becomes a critical
consideration.

Feature stores also introduce interesting challenges in terms of data freshness
and update strategies. Some features may need to be updated in real-time (e.g.,
current user session information), while others might be updated on a daily
or weekly basis (e.g., aggregated customer behavior metrics). Managing these
different update frequencies and ensuring that the most up-to-date features are
always available for inference can be complex.

From a storage perspective, feature stores often leverage a combination of
different storage technologies to meet their diverse requirements. This might
include columnar storage formats like Parquet for the ofÒine store, in-memory
databases or key-value stores for the online store, and streaming platforms like
Apache Kafka for real-time feature updates.

6.8.6 Caching Techniques
Caching plays a role in optimizing the performance of ML systems, particularly
in scenarios involving frequent data access or computation-intensive operations.
In the context of machine learning, caching strategies extend beyond traditional
web or database caching, addressing unique challenges posed by ML workflows.

One of the primary applications of caching in ML systems is in feature com-
putation and serving. Many features used in ML models are computationally
expensive to calculate, especially those involving complex aggregations or
time-window operations. By caching these computed features, systems can sig-
nificantly reduce latency in both training and inference scenarios. For instance,
in a recommendation system, caching user embedding vectors can dramatically
speed up the generation of personalized recommendations.

Caching strategies in ML systems often need to balance between memory
usage and computation time. This trade-off is particularly evident in large-scale

6.8. Data Storage 214

21 Semantic Caching: A caching
technique that reuses results of pre-
vious computations for semantically
similar queries, reducing redun-
dancy in data processing.

distributed training scenarios. Caching frequently accessed data shards or
mini-batches in memory can significantly reduce I/O overhead, but it requires
careful memory management to avoid out-of-memory errors, especially when
working with large datasets or models.

Another interesting application of caching in ML systems is model caching. In
scenarios where multiple versions of a model are deployed (e.g., for A/B testing
or gradual rollout), caching the most frequently used model versions in memory
can significantly reduce inference latency. This becomes especially important
in edge computing scenarios, where storage and computation resources are
limited.

Caching also plays a vital role in managing intermediate results in ML
pipelines. For instance, in feature engineering pipelines that involve multiple
transformation steps, caching intermediate results can prevent redundant com-
putations when rerunning pipelines with minor changes. This is particularly
useful during the iterative process of model development and experimentation.

One of the challenges in implementing effective caching strategies for ML
is managing cache invalidation and updates. ML systems often deal with
dynamic data where feature values or model parameters may change over
time. Implementing efÏcient cache update mechanisms that balance between
data freshness and system performance is an ongoing area of research and
development.

Distributed caching becomes particularly important in large-scale ML sys-
tems. Technologies like Redis or Memcached are often employed to create
distributed caching layers that can serve multiple training or inference nodes.
These distributed caches need to handle challenges like maintaining consistency
across nodes and managing failover scenarios.

Edge caching is another fascinating area in ML systems, especially with the
growing trend of edge AI. In these scenarios, caching strategies need to account
for limited storage and computational resources on edge devices, as well as
potentially intermittent network connectivity. Intelligent caching strategies that
prioritize the most relevant data or model components for each edge device
can significantly improve the performance and reliability of edge ML systems.

Lastly, the concept of semantic caching21 is gaining traction in ML systems.
Unlike traditional caching that operates on exact matches, semantic caching
attempts to reuse cached results for semantically similar queries. This can be
particularly useful in ML systems where slight variations in input may not
significantly change the output, potentially leading to substantial performance
improvements.

6.8.7 Data Access Patterns
Understanding the access patterns in ML systems is useful for designing ef-
ficient storage solutions and optimizing the overall system performance. ML
workloads exhibit distinct data access patterns that often differ significantly
from traditional database or analytics workloads.

One of the most prominent access patterns in ML systems is sequential
reading of large datasets during model training. Unlike transactional systems
that typically access small amounts of data randomly, ML training often involves

Chapter 6. Data Engineering 215

reading entire datasets multiple times (epochs) in a sequential manner. This
pattern is particularly evident in deep learning tasks, where large volumes of
data are fed through neural networks repeatedly. Storage systems optimized
for high-throughput sequential reads, such as distributed file systems or object
stores, are well-suited for this access pattern.

However, the sequential read pattern is often combined with random shuf-
fling between epochs to prevent overfitting and improve model generalization.
This introduces an interesting challenge for storage systems, as they need to
efÏciently support both sequential and random access patterns, often within
the same training job.

In contrast to the bulk sequential reads common in training, inference work-
loads often require fast random access to specific data points or features. For ex-
ample, a recommendation system might need to quickly retrieve user and item
features for real-time personalization. This necessitates storage solutions with
low-latency random read capabilities, often leading to the use of in-memory
databases or caching layers.

Feature stores, which we discussed earlier, introduce their own unique access
patterns. They typically need to support both high-throughput batch reads
for ofÒine training and low-latency point lookups for online inference. This
dual-nature access pattern often leads to the implementation of separate ofÒine
and online storage layers, each optimized for its specific access pattern.

Time-series data, common in many ML applications such as financial fore-
casting or IoT analytics, presents another interesting access pattern. These
workloads often involve reading contiguous blocks of time-ordered data, but
may also require efÏcient retrieval of specific time ranges or periodic patterns.
Specialized time-series databases or carefully designed partitioning schemes
in general-purpose databases are often employed to optimize these access pat-
terns.

Another important consideration is the write access pattern in ML systems.
While training workloads are often read-heavy, there are scenarios that involve
significant write operations. For instance, continual learning systems may
frequently update model parameters, and online learning systems may need to
efÏciently append new training examples to existing datasets.

Understanding these diverse access patterns is helpful in designing and op-
timizing storage systems for ML workloads. It often leads to hybrid storage
architectures that combine different technologies to address various access pat-
terns efÏciently. For example, a system might use object storage for large-scale
sequential reads during training, in-memory databases for low-latency random
access during inference, and specialized time-series storage for temporal data
analysis.

As ML systems continue to evolve, new access patterns are likely to emerge,
driving further innovation in storage technologies and architectures. The chal-
lenge lies in creating flexible, scalable storage solutions that can efÏciently
support the diverse and often unpredictable access patterns of modern ML
workloads.

6.9. Data Governance 216

22 Differential Privacy: A tech-
nique that adds randomness to
dataset queries to protect individ-
ual data privacy while maintaining
overall data utility.

6.8.8 Continuing the KWS Example
During development and training, KWS systems must efÏciently store and
manage large collections of audio data. This includes raw audio recordings from
various sources (crowd-sourced, synthetic, and real-world captures), processed
features (like spectrograms or MFCCs), and model checkpoints. A typical
architecture might use a data lake for raw audio files, allowing flexible storage of
diverse audio formats, while processed features are stored in a more structured
data warehouse for efÏcient access during training.

KWS systems benefit significantly from feature stores, particularly for man-
aging pre-computed audio features. For example, commonly used spectrogram
representations or audio embeddings can be computed once and stored for
reuse across different experiments or model versions. The feature store must
handle both batch access for training and real-time access for inference, often
implementing a dual storage architecture, which includes an ofÒine store for
training data and an online store for low-latency inference.

In production, KWS systems require careful consideration of edge storage re-
quirements. The models must be compact enough to fit on resource-constrained
devices while maintaining quick access to necessary parameters for real-time
wake word detection. This often involves optimized storage formats and careful
caching strategies to balance between memory usage and inference speed.

6.9 Data Governance
Data governance is a significant component in the development and deployment
of ML systems. It encompasses a set of practices and policies that ensure data
is accurate, secure, compliant, and ethically used throughout the ML lifecycle.
As ML systems become increasingly integral to decision-making processes
across various domains, the importance of robust data governance has grown
significantly.

One of the central challenges of data governance is addressing the unique
complexities posed by ML workflows. These workflows often involve opaque
processes, such as feature engineering and model training, which can obscure
how data is being used. As shown in Figure 6.17, governance practices aim to
tackle these issues by focusing on maintaining data privacy, ensuring fairness,
and providing transparency in decision-making processes. These practices
go beyond traditional data management to address the evolving needs of ML
systems.

Security and access control form an essential aspect of data governance. Im-
plementing measures to protect data from unauthorized access or breaches is
critical in ML systems, which often deal with sensitive or proprietary informa-
tion. For instance, a healthcare application may require granular access controls
to ensure that only authorized personnel can view patient data. Encrypting
data both at rest and in transit is another common approach to safeguarding
information while enabling secure collaboration among ML teams.

Privacy protection is another key pillar of data governance. As ML models
often rely on large-scale datasets, there is a risk of infringing on individual pri-
vacy rights. Techniques such as differential privacy22 can address this concern

Chapter 6. Data Engineering 217

Figure 6.17: The many pillars of data
governance.

Data

Governance

X�

�X

X�

�

�

Organization

Data Security

Data Operations

Data quality &

master Data

Data Sourcing

Data &

analytic definitions

Data catalogs

Policies

by adding carefully calibrated noise to the data. This ensures that individual
identities are protected while preserving the statistical patterns necessary for
model training. These techniques allow ML systems to benefit from data-driven
insights without compromising ethical considerations (Dwork, n.d.), which we
will learn more about in the Responsible AI chapter.

Regulatory compliance is a critical area where data governance plays a cen-
tral role. Laws such as the GDPR in Europe and the HIPAA in the United
States impose strict requirements on data handling. Compliance with these
regulations often involves implementing features like the ability to delete data
upon request or providing individuals with copies of their data, and a “right
to explanation” on decisions made by algorithms (Wachter, Mittelstadt, and
Russell 2017). These measures not only protect individuals but also ensure
organizations avoid legal and reputational risks.

Documentation and metadata management, which are often less discussed,
are just as important for transparency and reproducibility in ML systems. Clear
records of data lineage, including how data flows and transforms throughout
the ML pipeline, are essential for accountability. Standardized documenta-
tion frameworks, such as Data Cards proposed by Pushkarna, Zaldivar, and
Kjartansson (2022), offer a structured way to document the characteristics, limi-
tations, and potential biases of datasets. For example, as shown in Figure 6.18,
the Open Images Extended, More Inclusively Annotated People (MIAP) dataset,
uses a data card to provide detailed information about its motivations, intended
use cases, and known risks. This type of documentation enables developers to
evaluate datasets effectively and promotes responsible use.

https://storage.googleapis.com/openimages/web/extended.html

6.9. Data Governance 218

Figure 6.18: Data card example for
the Open Images Extended dataset.

Audit trails are another important component of data governance. These
detailed logs track data access and usage throughout the lifecycle of ML models,
from collection to deployment. Comprehensive audit trails are invaluable for
troubleshooting and accountability, especially in cases of data breaches or
unexpected model behavior. They help organizations understand what actions
were taken and why, providing a clear path for resolving issues and ensuring
compliance.

Consider a hypothetical ML system designed to predict patient outcomes in
a hospital. Such a system would need to address several governance challenges.
It would need to ensure that patient data is securely stored and accessed only by
authorized personnel, with privacy-preserving techniques in place to protect
individual identities. The system would also need to comply with healthcare
regulations governing the use of patient data, including detailed documentation
of how data is processed and transformed. Comprehensive audit logs would
be necessary to track data usage and ensure accountability.

As ML systems grow more complex and influential, the challenges of data gov-
ernance will continue to evolve. Emerging trends, such as blockchain-inspired

Chapter 6. Data Engineering 219

technologies for tamper-evident logs and automated governance tools, offer
promising solutions for real-time monitoring and issue detection. By adopting
robust data governance practices, including tools like Data Cards, organizations
can build ML systems that are transparent, ethical, and trustworthy.

6.10 Conclusion
Data engineering is the backbone of any successful ML system. By thoughtfully
defining problems, designing robust pipelines, and practicing rigorous data
governance, teams establish a foundation that directly influences model per-
formance, reliability, and ethical standing. Effective data acquisition strategies,
whether by utilizing existing datasets, employing web scraping techniques, or
engaging in crowdsourcing, must balance the realities of domain constraints,
privacy obligations, and labeling complexities. Likewise, decisions around data
ingestion (batch or streaming) and transformation (ETL or ELT) affect both cost
and throughput, with monitoring and observability essential to detect shifting
data quality.

Throughout this chapter, we saw how critical it is to prepare data well in
advance of modeling. Data labeling emerges as a particularly delicate phase:
it involves human effort, requires strong quality control practices, and has
ethical ramifications. Storage choices, such as relational databases, data ware-
houses, data lakes, or specialized systems, must align with both the volume
and velocity of ML workloads. Feature stores and caching strategies support
efÏcient retrieval across training and serving pipelines, while good data gover-
nance ensures adherence to legal regulations, protects privacy, and maintains
stakeholder trust.

All these elements interlock to create an ecosystem that reliably supplies ML
models with the high-quality data they need. When done well, data engineering
empowers teams to iterate faster, confidently deploy new features, and build
systems capable of adapting to real-world complexity. The next chapters will
build on these foundations, exploring how optimized training, robust model
operations, and security considerations together form a holistic approach to
delivering AI solutions that perform reliably and responsibly at scale.

6.11 Resources

�� Slides

• Data Engineering: Overview.
• Feature engineering.
• Data Standards: Speech Commands.
• Crowdsourcing Data for the Long Tail.
• Reusing and Adapting Existing Datasets.
• Responsible Data Collection.
• Data Anomaly Detection:

https://docs.google.com/presentation/d/1jlIfD6RtQWG8314jCAu1qdnG7YyESy60Yt5-zXhEsVA/edit#slide=id.g202a7c05d1a_0_0
https://docs.google.com/presentation/d/1AIM1H-GfvjNPHQw9urxJz3vtMgb_9kizfthbymISPR4/edit#slide=id.g202a83498d1_0_0
https://docs.google.com/presentation/d/1qDoHc7yzZ2lEha9NTMZ07Ls4tkIz-1f7kUYRlvjzsI4/edit?usp=drive_link&resourcekey=0-ol4Oqk_y706P_zIB5mbu7Q
https://docs.google.com/presentation/d/1d3KUit64L-4dXecCNBpikCxx7VO0xIJ13r9v1Ad22S4/edit#slide=id.ga4ca29c69e_0_179
https://docs.google.com/presentation/d/1mHecDoCYHQD9nWSRYCrXXG0IOp9wYQk-fbxhoNIsGMY/edit#slide=id.ga4ca29c69e_0_206
https://docs.google.com/presentation/d/1vcmuhLVNFT2asKSCSGh_Ix9ht0mJZxMii8MufEMQhFA/edit?resourcekey=0-_pYLcW5aF3p3Bvud0PPQNg#slide=id.ga4ca29c69e_0_195

6.11. Resources 220

– Anomaly Detection: Overview.
– Anomaly Detection: Challenges.
– Anomaly Detection: Datasets.
– Anomaly Detection: using Autoencoders.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

https://docs.google.com/presentation/d/1R8A_5zKDZDZOdAb1XF9ovIOUTLWSIuFWDs20-avtxbM/edit?resourcekey=0-pklEaPv8PmLQ3ZzRYgRNxw#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1JZxx2kLaO1a8O6z6rRVFpK0DN-8VMkaSrNnmk_VGbI4/edit#slide=id.g53eb988857_0_91
https://docs.google.com/presentation/d/1wPDhp4RxVrOonp6pU0Capk0LWXZOGZ3x9BzW_VjpTQw/edit?resourcekey=0-y6wKAnuxrLWqhleq9ruLOA#slide=id.g53eb988857_0_91
https://docs.google.com/presentation/d/1Q4h7XrayNRIP0r52Hlk5VjxRcli-GY2xmyZ53nCd6CI/edit#slide=id.g53eb988857_0_91

Chapter 7

AI Frameworks

Figure 7.1: DALL·E 3 Prompt: Illustra-
tion in a rectangular format, designed
for a professional textbook, where the
content spans the entire width. The vi-
brant chart represents training and in-
ference frameworks for ML. Icons for
TensorFlow, Keras, PyTorch, ONNX,
and TensorRT are spread out, filling
the entire horizontal space, and aligned
vertically. Each icon is accompanied
by brief annotations detailing their fea-
tures. The lively colors like blues,
greens, and oranges highlight the icons
and sections against a soft gradient
background. The distinction between
training and inference frameworks is ac-
centuated through color-coded sections,
with clean lines and modern typography
maintaining clarity and focus.

Purpose
How do AI frameworks bridge the gap between theoretical design and practical im-
plementation, and what role do they play in enabling scalable and efÏicent machine
learning systems?

AI frameworks are the middleware software layer that transforms abstract
model specifications into executable implementations. The evolution of these
frameworks reveals fundamental patterns for translating high-level designs into
efÏcient computational workflows and system execution. Their architecture
shines light on the essential trade-offs between abstraction, performance, and
portability, providing systematic approaches to managing complexity in ma-
chine learning systems. Understanding framework capabilities and constraints
offers insights into the engineering decisions that shape system scalability,
enabling the development of robust, deployable solutions across diverse com-
puting environments.

221

7.1. Overview 222

L� Learning Objectives

• Trace the evolution of machine learning frameworks from early
numerical libraries to modern deep learning systems

• Analyze framework fundamentals including tensor data structures,
computational graphs, execution models, and memory manage-
ment

• Differentiate between machine learning frameworks architectures,
execution strategies, and development tools

• Compare framework specializations across cloud, edge, mobile,
and TinyML applications

7.1 Overview
Modern machine learning development relies fundamentally on machine learn-
ing frameworks, which are comprehensive software libraries or platforms de-
signed to simplify the development, training, and deployment of machine
learning models. These frameworks play multiple roles in ML systems, much
like operating systems are the foundation of computing systems. Just as operat-
ing systems abstract away the complexity of hardware resources and provide
standardized interfaces for applications, ML frameworks abstract the intricacies
of mathematical operations and hardware acceleration, providing standardized
APIs for ML development.

The capabilities of ML frameworks are diverse and continuously evolving.
They provide efÏcient implementations of mathematical operations, automatic
differentiation capabilities, and tools for managing model development, hard-
ware acceleration, and memory utilization. For production systems, they offer
standardized approaches to model deployment, versioning, and optimization.
However, due to their diversity, there is no universally agreed-upon definition
of an ML framework. To establish clarity for this chapter, we adopt the following
definition:

�� Framework Definition

A Machine Learning Framework (ML Framework) is a software plat-
form that provides tools and abstractions for designing, training, and
deploying machine learning models. It bridges user applications with
infrastructure, enabling algorithmic expressiveness through computational
graphs and operators, workflow orchestration across the machine learning
lifecycle, hardware optimization with schedulers and compilers, scalability
for distributed and edge systems, and extensibility to support diverse use
cases. ML frameworks form the foundation of modern machine learning
systems by simplifying development and deployment processes.

The landscape of ML frameworks continues to evolve with the field itself.
Today’s frameworks must address diverse requirements: from training large

Chapter 7. AI Frameworks 223

0 TensorFlow and PyTorch:
TensorFlow, developed by Google,
excels in production deployment
and offers TensorFlow Lite for mo-
bile/embedded applications. Py-
Torch, developed by Meta AI, is
widely adopted in research settings
due to its dynamic computation
model and developer-friendly fea-
tures. Together they represent the
two most prevalent deep learning
frameworks.

language models on distributed systems to deploying compact neural networks
on tiny IoT devices. Popular frameworks like PyTorch and TensorFlow0 have
developed rich ecosystems that extend far beyond basic model implementation,
encompassing tools for data preprocessing, model optimization, and deploy-
ment.

As we progress into examining training, optimization, and deployment,
understanding ML frameworks becomes necessary as they orchestrate the entire
machine learning lifecycle. These frameworks provide the architecture that
connects all aspects of ML systems, from data ingestion to model deployment.
Just as understanding a blueprint is important before studying construction
techniques, grasping framework architecture is vital before diving into training
methodologies and deployment strategies. Modern frameworks encapsulate
the complete ML workflow, and their design choices influence how we approach
training, optimization, and inference.

This chapter helps us learn how these complex frameworks function, their
architectural principles, and their role in modern ML systems. Understanding
these concepts will provide the necessary context as we explore specific aspects
of the ML lifecycle in subsequent chapters.

7.2 Evolution History
The evolution of machine learning frameworks mirrors the broader develop-
ment of artificial intelligence and computational capabilities. This section ex-
plores the distinct phases that reflect both technological advances and changing
requirements of the AI community, from early numerical computing libraries
to modern deep learning frameworks.

7.2.1 Evolution Timeline
The development of machine learning frameworks has been built upon decades
of foundational work in computational libraries. From the early building blocks
of BLAS and LAPACK to today’s cutting-edge frameworks like TensorFlow,
PyTorch, and JAX, this journey represents a steady progression toward higher-
level abstractions that make machine learning more accessible and powerful.

Looking at Figure 7.2, we can trace how these fundamental numerical com-
puting libraries laid the groundwork for modern ML development. The mathe-
matical foundations established by BLAS and LAPACK enabled the creation of
more user-friendly tools like NumPy and SciPy, which in turn set the stage for
today’s sophisticated deep learning frameworks.

This evolution reflects a clear trend: each new layer of abstraction has made
complex computational tasks more approachable while building upon the
robust foundations of its predecessors. Let us examine how these systems built
on top of one another.

7.2.2 Early Numerical Libraries
The foundation for modern ML frameworks begins at the most fundamental
level of computation: matrix operations. Machine learning computations are
primarily matrix-matrix and matrix-vector multiplications. The Basic Linear

7.2. Evolution History 224

Figure 7.2: Timeline of major devel-
opments in computational libraries
and machine learning frameworks.

1979 1992 2006 2007 2015 2016 2018

BLAS introduced
LAPACK extends

BLAS

NumPy becomes

Python’s numerical

backbone

SciPy adds

advanced

computations

Theano introduces

computational

graphs

TensorFlow

revolutionizes

distributed ML

PyTorch introduces

dynamic graphs

JAX introduces

functional

paradigms

Algebra Subprograms (BLAS), developed in 1979, provided these essential
matrix operations that would become the computational backbone of machine
learning (H. T. Kung and Leiserson 1979). These low-level operations, when
combined and executed efÏciently, enable the complex calculations required
for training neural networks and other ML models.

Building upon BLAS, the Linear Algebra Package (LAPACK) emerged in
1992, extending these capabilities with more sophisticated linear algebra opera-
tions such as matrix decompositions, eigenvalue problems, and linear system
solutions. This layered approach of building increasingly complex operations
from fundamental matrix computations became a defining characteristic of ML
frameworks.

The development of NumPy in 2006 marked an important milestone in this
evolution, building upon its predecessors Numeric and Numarray to become the
fundamental package for numerical computation in Python. NumPy introduced
n-dimensional array objects and essential mathematical functions, but more
importantly, it provided an efÏcient interface to these underlying BLAS and
LAPACK operations. This abstraction allowed developers to work with high-
level array operations while maintaining the performance of optimized low-
level matrix computations.

In 2001, SciPy emerged as a powerful extension built on top of NumPy, adding
specialized functions for optimization, linear algebra, and signal processing.
This further exemplified the pattern of progressive abstraction in ML frame-
works: from basic matrix operations to sophisticated numerical computations,
and eventually to high-level machine learning algorithms. This layered archi-
tecture, starting from fundamental matrix operations and building upward,
would become a blueprint for future ML frameworks, as we will see in this
chapter.

7.2.3 First-Generation Frameworks
The transition from numerical libraries to dedicated machine learning frame-
works marked an important evolution in abstraction. While the underlying
computations remained rooted in matrix operations, frameworks began to en-
capsulate these operations into higher-level machine learning primitives. The
University of Waikato introduced Weka in 1993 (Witten and Frank 2002), one
of the earliest ML frameworks, which abstracted matrix operations into data
mining tasks, though it was limited by its Java implementation and focus on
smaller-scale computations.

https://www.netlib.org/blas/
https://www.netlib.org/lapack/
https://numpy.org/
https://scipy.org/

Chapter 7. AI Frameworks 225

1 Computational Graph: A rep-
resentation of mathematical compu-
tations as a directed graph, where
nodes represent operations and
edges represent data dependencies,
used to enable automatic differenti-
ation.

Scikit-learn, emerging in 2007, was a significant advancement in this abstrac-
tion. Building upon the NumPy and SciPy foundation, it transformed basic
matrix operations into intuitive ML algorithms. For example, what was funda-
mentally a series of matrix multiplications and gradient computations became
a simple fit() method call in a logistic regression model. This abstraction
pattern - hiding complex matrix operations behind clean APIs - would become
a defining characteristic of modern ML frameworks.

Theano, which appeared in 2007, was a major advancement, which was
developed at the Montreal Institute for Learning Algorithms, MILA, Theano
introduced two revolutionary concepts: computational graphs and GPU accel-
eration (Team et al. 2016). Computational graphs represented mathematical
operations as directed graphs, with matrix operations as nodes and data flowing
between them. This graph-based approach allowed for automatic differentia-
tion and optimization of the underlying matrix operations. More importantly,
it enabled the framework to automatically route these operations to GPU hard-
ware, dramatically accelerating matrix computations.

Meanwhile, Torch, created at NYU in 2002, took a different approach to
handling matrix operations. It emphasized immediate execution of operations
(eager execution) and provided a flexible interface for neural network imple-
mentations. Torch’s design philosophy of prioritizing developer experience
while maintaining high performance influenced many subsequent frameworks.
Its architecture demonstrated how to balance high-level abstractions with efÏ-
cient low-level matrix operations, establishing design patterns that would later
influence frameworks like PyTorch.

7.2.4 Emergence of Deep Learning Frameworks
The deep learning revolution demanded a fundamental shift in how frameworks
handled matrix operations, primarily due to three factors: the massive scale of
computations, the complexity of gradient calculations through deep networks,
and the need for distributed processing. Traditional frameworks, designed for
classical machine learning algorithms, could not efÏciently handle the billions
of matrix operations required for training deep neural networks.

The foundations for modern deep learning frameworks emerged from aca-
demic research. The University of Montreal’s Theano, released in 2007, estab-
lished the concepts that would shape future frameworks (Bergstra et al. 2010).
It introduced key concepts such as computational graphs1 for automatic differ-
entiation and GPU acceleration, which we will explore in more detail later in
this chapter, demonstrating how to efÏciently organize and optimize complex
neural network computations.

Caffe, released by UC Berkeley in 2013, advanced this evolution by introduc-
ing specialized implementations of convolutional operations (Y. Jia et al. 2014).
While convolutions are mathematically equivalent to specific patterns of matrix
multiplication, Caffe optimized these patterns specifically for computer vision
tasks, demonstrating how specialized matrix operation implementations could
dramatically improve performance for specific network architectures.

Google’s TensorFlow, introduced in 2015, revolutionized the field by treating
matrix operations as part of a distributed computing problem (Jeffrey Dean

https://scikit-learn.org/stable/
https://github.com/Theano/Theano
http://torch.ch/
https://github.com/Theano/Theano
https://caffe.berkeleyvision.org/
https://www.tensorflow.org/

7.2. Evolution History 226

2 GPUs are designed for ren-
dering graphics and is heavily used
for parallel processing. TPUs were
developed by Google for fast ma-
trix multiplication and deep learn-
ing tasks.

and Ghemawat 2008). It represented all computations, from individual ma-
trix multiplications to entire neural networks, as a static computational graph
that could be split across multiple devices. This approach enabled training of
unprecedented model sizes by distributing matrix operations across clusters
of computers and specialized hardware. TensorFlow’s static graph approach,
while initially constraining, allowed for aggressive optimization of matrix opera-
tions through techniques like kernel fusion (combining multiple operations into
a single kernel for efÏciency) and memory planning (pre-allocating memory
for operations).

Microsoft’s CNTK entered the landscape in 2016, bringing robust implemen-
tations for speech recognition and natural language processing tasks (Seide
and Agarwal 2016). Its architecture emphasized scalability across distributed
systems while maintaining efÏcient computation for sequence-based models.

Facebook’s PyTorch, also launched in 2016, took a radically different approach
to handling matrix computations. Instead of static graphs, PyTorch introduced
dynamic computational graphs that could be modified on the fly (Paszke et al.
2019). This dynamic approach, while potentially sacrificing some optimization
opportunities, made it much easier for researchers to debug and understand
the flow of matrix operations in their models. PyTorch’s success demonstrated
that the ability to introspect and modify computations dynamically was as
important as raw performance for many applications.

Amazon’s MXNet approached the challenge of large-scale matrix operations
by focusing on memory efÏciency and scalability across different hardware
configurations. It introduced a hybrid approach that combined aspects of both
static and dynamic graphs, allowing for flexible model development while still
enabling aggressive optimization of the underlying matrix operations.

As deep learning applications grew more diverse, the need for specialized and
higher-level abstractions became apparent. Keras emerged in 2015 to address
this need, providing a unified interface that could run on top of multiple lower-
level frameworks (Chollet et al. 2015).

Google’s JAX, introduced in 2018, brought functional programming princi-
ples to deep learning computations, enabling new patterns of model develop-
ment (Bradbury et al. 2018). FastAI built upon PyTorch to package common
deep learning patterns into reusable components, making advanced techniques
more accessible to practitioners (J. Howard and Gugger 2020). These higher-
level frameworks demonstrated how abstraction could simplify development
while maintaining the performance benefits of their underlying implementa-
tions.

7.2.5 Hardware Impact on Design

Hardware developments have fundamentally reshaped how frameworks im-
plement and optimize matrix operations. The introduction of NVIDIA’s CUDA
platform in 2007 marked a pivotal moment in framework design by enabling
general-purpose computing on GPUs.2 This was transformative because GPUs
excel at parallel matrix operations, offering orders of magnitude speedup for
the computations in deep learning. While a CPU might process matrix ele-

https://learn.microsoft.com/en-us/cognitive-toolkit/
https://pytorch.org/
https://mxnet.apache.org/
https://keras.io/
https://github.com/google/jax
https://www.fast.ai/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

Chapter 7. AI Frameworks 227

3 Systolic Array: A hardware
architecture designed to perform a
series of parallel computations in
a time-synchronized manner, opti-
mizing the flow of data through a
grid of processors for tasks like ma-
trix multiplication.

4 Hardware accelerators are
specialized systems that perform
computing tasks more efÏciently
than central processing units
(CPUs). These accelerators speed
up the computation by allowing
greater concurrency, optimized
matrix operations, simpler control
logic, and dedicated memory
architecture. Each processing unit
is more specialized than a CPU
core, so more units can be fit on a
chip and run in unison.

5 Operation fusion: A technique
that combines multiple consecutive
operations into a single kernel to re-
duce memory bandwidth usage and
improve computational efÏciency,
particularly for element-wise opera-
tions.

6 Application-Specific Integrated
Circuit (ASIC): is a custom-built
hardware chip optimized for spe-
cific tasks, such as matrix com-
putations in deep learning, offer-
ing superior performance and en-
ergy efÏciency compared to general-
purpose processors.

ments sequentially, a GPU can process thousands of elements simultaneously,
fundamentally changing how frameworks approach computation scheduling.

The development of hardware-specific accelerators further revolutionized
framework design. Google’s Tensor Processing Units (TPUs), first deployed in
2016, were purpose-built for tensor operations, the fundamental building blocks
of deep learning computations. TPUs introduced systolic array architectures3,
which are particularly efÏcient for matrix multiplication and convolution oper-
ations. This hardware architecture prompted frameworks like TensorFlow to
develop specialized compilation strategies that could map high-level operations
directly to TPU instructions, bypassing traditional CPU-oriented optimizations.

Mobile hardware accelerators,4 such as Apple’s Neural Engine (2017) and
Qualcomm’s Neural Processing Units, brought new constraints and opportu-
nities to framework design. These devices emphasized power efÏciency over
raw computational speed, requiring frameworks to develop new strategies for
quantization and operator fusion5. Mobile frameworks like TensorFlow Lite
(more recently rebraneded to LiteRT) and PyTorch Mobile needed to balance
model accuracy with energy consumption, leading to innovations in how matrix
operations are scheduled and executed.

The emergence of custom ASIC (Application-Specific Integrated Circuit)6

solutions has further diversified the hardware landscape. Companies like
Graphcore, Cerebras, and SambaNova have developed unique architectures for
matrix computation, each with different strengths and optimization opportuni-
ties. This proliferation of specialized hardware has pushed frameworks to adopt
more flexible intermediate representations of matrix operations, allowing for
target-specific optimization while maintaining a common high-level interface.

Field Programmable Gate Arrays (FPGAs) introduced yet another dimension
to framework optimization. Unlike fixed-function ASICs, FPGAs allow for
reconfigurable circuits that can be optimized for specific matrix operation
patterns. Frameworks responding to this capability developed just-in-time
compilation strategies that could generate optimized hardware configurations
based on the specific needs of a model.

7.3 Fundamental Concepts
Modern machine learning frameworks operate through the integration of four
key layers: Fundamentals, Data Handling, Developer Interface, and Execution
and Abstraction. These layers function together to provide a structured and
efÏcient foundation for model development and deployment, as illustrated in
Figure 7.3.

The Fundamentals layer establishes the structural basis of these frameworks
through computational graphs. These graphs represent the operations within a
model as directed acyclic graphs (DAGs), enabling automatic differentiation and
optimization. By organizing operations and data dependencies, computational
graphs provide the framework with the ability to distribute workloads and
execute computations efÏciently across a variety of hardware platforms.

The Data Handling layer manages numerical data and parameters essential
for machine learning workflows. Central to this layer are specialized data struc-
tures, such as tensors, which handle high-dimensional arrays while optimizing

https://cloud.google.com/tpu/
https://machinelearning.apple.com/research/neural-engine-transformers
https://ai.google.dev/edge/litert
https://pytorch.org/mobile/home/
https://www.graphcore.ai/
https://www.cerebras.net/
https://sambanova.ai/

7.3. Fundamental Concepts 228

Figure 7.3: Framework component
interaction.

Execution Models Programming Models

Developer Interface

Computational Graphs

Fundamentals

Memory Management

and Device Placement

Specialized Data

Structures

Data Handling

Core Operations

Execution and Abstraction

Generates

Defines

Optimizes Execution

Shapes Execution
Behavior

Influences
Data Flow

Provides
Structure For

Coordinates
with

Feeds
Data Into

memory usage and device placement. Additionally, memory management
and data movement strategies ensure that computational workloads are exe-
cuted efÏciently, particularly in environments with diverse or limited hardware
resources.

The Developer Interface layer provides the tools and abstractions through
which users interact with the framework. Programming models allow de-
velopers to define machine learning algorithms in a manner suited to their
specific needs. These are categorized as either imperative or symbolic. Imper-
ative models offer flexibility and ease of debugging, while symbolic models
prioritize performance and deployment efÏciency. Execution models further
shape this interaction by defining whether computations are carried out eagerly
(immediately) or as pre-optimized static graphs.

The Execution and Abstraction layer transforms these high-level representa-
tions into efÏcient hardware-executable operations. Core operations, encom-
passing everything from basic linear algebra to complex neural network layers,
are highly optimized for diverse hardware platforms. This layer also includes
mechanisms for allocating resources and managing memory dynamically, en-
suring robust and scalable performance in both training and inference settings.

Understanding these interconnected layers is essential for leveraging machine
learning frameworks effectively. Each layer plays a distinct yet interdependent
role in facilitating experimentation, optimization, and deployment. By master-
ing these concepts, practitioners can make informed decisions about resource
utilization, scaling strategies, and the suitability of specific frameworks for
various tasks.

Chapter 7. AI Frameworks 229

7 Computation graphs are used
to visualize the sequence of opera-
tions in a given model and to facili-
tate automatic differentiation which
trains models through backpropa-
gation.

7.3.1 Computational Graphs
Machine learning frameworks must efÏciently translate high-level model de-
scriptions into executable computations across diverse hardware platforms.
At the center of this translation lies the computational graph, a powerful ab-
straction that represents mathematical operations and their dependencies. We
begin by examining the fundamental structure of computational graphs, then
investigate their implementation in modern frameworks, and analyze their
implications for system design and performance.

7.3.1.1 Basic Concepts

Computational graphs emerged as a fundamental abstraction in machine learn-
ing frameworks to address the growing complexity of deep learning models.
As models grew larger and more sophisticated, the need for efÏcient execution
across diverse hardware platforms became crucial. The computational graph
bridges the gap between high-level model descriptions and low-level hardware
execution (Baydin et al. 2017a), representing a machine learning model as
a directed acyclic graph (DAG) where nodes represent operations and edges
represent data flow.

For example, a node might represent a matrix multiplication operation, taking
two input matrices (or tensors) and producing an output matrix (or tensor). To
visualize this, consider the simple example in Figure 7.4. The directed acyclic
graph computes 𝑧 = 𝑥×𝑦, where each variable is just numbers.

Figure 7.4: Basic example of a com-
putational graph.f(x, y) z

x

y

As shown in Figure 7.5, the structure of the computation graph7 involves
defining interconnected layers, such as convolution, activation, pooling, and
normalization, which are optimized before execution. The figure also demon-
strates key system-level interactions, including memory management and de-
vice placement, showing how the static graph approach enables comprehensive
pre-execution analysis and resource allocation.

Layers and Tensors. Modern machine learning frameworks implement neu-
ral network computations through two key abstractions: layers and tensors.
Layers represent computational units that perform operations like convolution,
pooling, or dense transformations. Each layer maintains internal states, includ-
ing weights and biases, that evolve during model training. When data flows
through these layers, it takes the form of tensors—immutable mathematical
objects that hold and transmit numerical values.

The relationship between layers and tensors mirrors the distinction between
operations and data in traditional programming. A layer defines how to trans-
form input tensors into output tensors, much like a function defines how to

7.3. Fundamental Concepts 230

Figure 7.5: Example of a computa-
tional graph.

Operation Node 1

Operation Node 2

Operation Node 3 Operation Node 4

Operation Node 5 Operation Node 6

Computational Graph

Memory

Management

Device Placement

System Components
Data Flow

Data Flow Data Flow

Data Flow Data Flow

Interacts with

Interacts with

transform its inputs into outputs. However, layers add an extra dimension:
they maintain and update internal parameters during training. For example, a
convolutional layer not only specifies how to perform convolution operations
but also learns and stores the optimal convolution filters for a given task.

Frameworks like TensorFlow and PyTorch leverage this abstraction to simplify
model implementation. When a developer writes tf.keras.layers. Conv2D,
the framework constructs the necessary graph nodes for convolution opera-
tions, parameter management, and data flow. This high-level interface shields
developers from the complexities of implementing convolution operations,
managing memory, or handling parameter updates during training.

Neural Network Construction. The power of computational graphs extends
beyond basic layer operations. Activation functions, essential for introducing
non-linearity in neural networks, become nodes in the graph. Functions like
ReLU, sigmoid, and tanh transform the output tensors of layers, enabling net-
works to approximate complex mathematical functions. Frameworks provide
optimized implementations of these activation functions, allowing developers
to experiment with different non-linearities without worrying about implemen-
tation details.

Modern frameworks further extend this abstraction by providing complete
model architectures as pre-configured computational graphs. Models like
ResNet and MobileNet, which have proven effective across many tasks, come
ready to use. Developers can start with these architectures, customize spe-
cific layers for their needs, and leverage transfer learning from pre-trained
weights. This approach accelerates development while maintaining the benefits
of carefully optimized implementations.

System-Level Consequences. The computational graph abstraction funda-
mentally shapes how machine learning frameworks operate. By representing
computations as a directed acyclic graph, frameworks gain the ability to analyze
and optimize the entire computation before execution begins. The explicit rep-

Chapter 7. AI Frameworks 231

8 A computational technique that
systematically computes derivatives
of functions using the chain rule,
crucial for training machine learn-
ing models through gradient-based
optimization.

resentation of data dependencies enables automatic differentiation—a crucial
capability for training neural networks through gradient-based optimization.

This graph structure also provides flexibility in execution. The same model
definition can run efÏciently across different hardware platforms, from CPUs
to GPUs to specialized accelerators. The framework handles the complexity
of mapping operations to specific hardware capabilities, optimizing memory
usage, and coordinating parallel execution. Moreover, the graph structure
enables model serialization, allowing trained models to be saved, shared, and
deployed across different environments.

While neural network diagrams help visualize model architecture, computa-
tional graphs serve a deeper purpose. They provide the precise mathematical
representation needed to bridge the gap between intuitive model design and
efÏcient execution. Understanding this representation reveals how frameworks
transform high-level model descriptions into optimized, hardware-specific
implementations, making modern deep learning practical at scale.

It is important to differentiate computational graphs from neural network
diagrams, such as those for multilayer perceptrons (MLPs), which depict nodes
and layers. Neural network diagrams visualize the architecture and flow of data
through nodes and layers, providing an intuitive understanding of the model’s
structure. In contrast, computational graphs provide a low-level representation
of the underlying mathematical operations and data dependencies required to
implement and train these networks.

From a systems perspective, computational graphs provide several key ca-
pabilities that influence the entire machine learning pipeline. They enable
automatic differentiation8, which we will discuss later, provide clear struc-
ture for analyzing data dependencies and potential parallelism, and serve as
an intermediate representation that can be optimized and transformed for
different hardware targets. Understanding this architecture is essential for
comprehending how frameworks translate high-level model descriptions into
efÏcient executable code.

7.3.1.2 Static Graphs
Static computation graphs, pioneered by early versions of TensorFlow, im-
plement a “define-then-run” execution model. In this approach, developers
must specify the entire computation graph before execution begins. This archi-
tectural choice has significant implications for both system performance and
development workflow, as we will examine later.

A static computation graph implements a clear separation between the def-
inition of operations and their execution. During the definition phase, each
mathematical operation, variable, and data flow connection is explicitly de-
clared and added to the graph structure. This graph is a complete specification
of the computation but does not perform any actual calculations. Instead, the
framework constructs an internal representation of all operations and their
dependencies, which will be executed in a subsequent phase.

This upfront definition enables powerful system-level optimizations. The
framework can analyze the complete structure to identify opportunities for
operation fusion, eliminating unnecessary intermediate results. Memory re-
quirements can be precisely calculated and optimized in advance, leading to

7.3. Fundamental Concepts 232

9 Memory Fragmentation: The
inefÏcient use of memory caused
by small, unused gaps between allo-
cated memory blocks, often result-
ing in wasted memory or reduced
performance.

efÏcient allocation strategies. Furthermore, static graphs can be compiled into
highly optimized executable code for specific hardware targets, taking full
advantage of platform-specific features. Once validated, the same computation
can be run repeatedly with high confidence in its behavior and performance
characteristics.

Figure 7.6 illustrates this fundamental two-phase approach: first, the com-
plete computational graph is constructed and optimized; then, during the
execution phase, actual data flows through the graph to produce results. This
separation enables the framework to perform comprehensive analysis and opti-
mization of the entire computation before any execution begins.

Figure 7.6: The two-phase execution
model of static computation graphs.

Define

Operations
Declare

Variables
Build Graph

Definition Phase

Load Data Run Graph Get Results

Execution Phase

7.3.1.3 Dynamic Graphs

Dynamic computation graphs, popularized by PyTorch, implement a “define-
by-run” execution model. This approach constructs the graph during execution,
offering greater flexibility in model definition and debugging. Unlike static
graphs, which rely on predefined memory allocation, dynamic graphs allocate
memory as operations execute, making them susceptible to memory fragmen-
tation9 in long-running tasks.

As shown in Figure 7.7, each operation is defined, executed, and completed
before moving on to define the next operation. This contrasts sharply with
static graphs, where all operations must be defined upfront. When an operation
is defined, it is immediately executed, and its results become available for
subsequent operations or for inspection during debugging. This cycle continues
until all operations are complete.

Figure 7.7: Dynamic graph exe-
cution model, illustrating runtime
graph construction and immediate
execution. Start Operation 1

Operation 1

Executed
Operation 2

Operation 2

Executed
End

Define
Operation

Execute
Operation

Define Next
Operation

Execute
Operation

Repeat
Until Done

Runtime Execution

Dynamic graphs excel in scenarios that require conditional execution or
dynamic control flow, such as when processing variable-length sequences or
implementing complex branching logic. They provide immediate feedback
during development, making it easier to identify and fix issues in the computa-
tional pipeline. This flexibility aligns naturally with imperative programming
patterns familiar to most developers, allowing them to inspect and modify com-
putations at runtime. These characteristics make dynamic graphs particularly
valuable during the research and development phase of ML projects.

Chapter 7. AI Frameworks 233

7.3.1.4 System Consequences

The architectural differences between static and dynamic computational graphs
have multiple implications for how machine learning systems are designed and
executed. These implications touch on various aspects of memory usage, device
utilization, execution optimization, and debugging, all of which play crucial
roles in determining the efÏciency and scalability of a system. Here, we start
with a focus on memory management and device placement as foundational
concepts, leaving more detailed discussions for later chapters. This allows
us to build a clear understanding before exploring more complex topics like
optimization and fault tolerance.

Memory Management. Memory management occurs when executing compu-
tational graphs. Static graphs benefit from their predefined structure, allowing
for precise memory planning before execution. Frameworks can calculate mem-
ory requirements in advance, optimize allocation, and minimize overhead
through techniques like memory reuse. This structured approach helps ensure
consistent performance, particularly in resource-constrained environments,
such as Mobile and Tiny ML systems.

Dynamic graphs, by contrast, allocate memory dynamically as operations
are executed. While this flexibility is invaluable for handling dynamic control
flows or variable input sizes, it can result in higher memory overhead and
fragmentation. These trade-offs are often most apparent during development,
where dynamic graphs enable rapid iteration and debugging but may require
additional optimization for production deployment.

Device Placement. Device placement, the process of assigning operations to
hardware resources such as CPUs, GPUs, or specialized ASICS like TPUs,
is another system-level consideration. Static graphs allow for detailed pre-
execution analysis, enabling the framework to map computationally intensive
operations efÏciently to devices while minimizing communication overhead.
This capability makes static graphs well-suited for optimizing execution on
specialized hardware, where performance gains can be significant.

Dynamic graphs, in contrast, handle device placement at runtime. This
allows them to adapt to changing conditions, such as hardware availability or
workload demands. However, the lack of a complete graph structure before
execution can make it challenging to optimize device utilization fully, potentially
leading to inefÏciencies in large-scale or distributed setups.

Broader Perspective. The trade-offs between static and dynamic graphs extend
well beyond memory and device considerations. As shown in Table 7.1, these
architectures influence optimization potential, debugging capabilities, scalabil-
ity, and deployment complexity. While these broader implications are not the
focus of this section, they will be explored in detail in later chapters, particularly
in the context of training workflows and system-level optimizations.

These hybrid solutions aim to provide the flexibility of dynamic graphs
during development while enabling the performance optimizations of static
graphs in production environments. The choice between static and dynamic
graphs often depends on specific project requirements, balancing factors like
development speed, production performance, and system complexity.

7.3. Fundamental Concepts 234

Table 7.1: Comparison of static and dynamic computational graphs.

Aspect Static Graphs Dynamic Graphs

Memory Management Precise allocation planning, optimized
memory usage

Flexible but potentially less efÏcient
allocation

Optimization Potential Comprehensive graph-level
optimizations possible

Limited to local optimizations due to
runtime construction

Hardware Utilization Can generate highly optimized
hardware-specific code

May sacrifice some hardware-specific
optimizations

Development Experience Requires more upfront planning,
harder to debug

Better debugging, faster iteration cycles

Runtime Flexibility Fixed computation structure Can adapt to runtime conditions
Production Performance Generally better performance at scale May have overhead from runtime graph

construction
Integration with
Traditional Code

More separation between definition
and execution

Natural integration with imperative code

Memory Overhead Lower memory overhead due to
planned allocations

Higher memory overhead due to dynamic
allocations

Debugging Capability Limited to pre-execution analysis Runtime inspection and modification
possible

Deployment Complexity Simpler deployment due to fixed
structure

May require additional runtime support

7.3.2 Automatic Differentiation
Machine learning frameworks must solve a fundamental computational chal-
lenge: calculating derivatives through complex chains of mathematical opera-
tions efÏciently and accurately. This capability enables the training of neural
networks by computing how millions of parameters should be adjusted to
improve the model’s performance (Baydin et al. 2017b).

Listing 7.1 shows a simple computation that illustrates this challenge.

Listing 7.1: Illustrating the need for automatic differentiation

def f(x):
a = x * x # Square
b = sin(x) # Sine
return a * b # Product

Even in this basic example, computing derivatives manually would require
careful application of calculus rules - the product rule, the chain rule, and
derivatives of trigonometric functions. Now imagine scaling this to a neural
network with millions of operations. This is where automatic differentiation
(AD) becomes essential.

Automatic differentiation calculates derivatives of functions implemented as
computer programs by decomposing them into elementary operations. In our
example, AD breaks down f(x) into three basic steps:

1. Computing a = x * x (squaring)
2. Computing b = sin(x) (sine function)
3. Computing the final product a * b

For each step, AD knows the basic derivative rules:
• For squaring: d(x²)/dx = 2x

Chapter 7. AI Frameworks 235

10 Automatic differentiation
(AD) benefits diverse fields beyond
machine learning, including physics
simulations, design optimization,
and financial risk analysis, by efÏ-
ciently and accurately computing
derivatives for complex processes
[@paszke2019].

• For sine: d(sin(x))/dx = cos(x)
• For products: d(uv)/dx = u(dv/dx) + v(du/dx)

By tracking how these operations combine and systematically applying the
chain rule, AD computes exact derivatives through the entire computation.
When implemented in frameworks like PyTorch or TensorFlow, this enables
automatic computation of gradients through arbitrary neural network architec-
tures.10 This fundamental understanding of how AD decomposes and tracks
computations sets the foundation for examining its implementation in machine
learning frameworks. We will explore its mathematical principles, system ar-
chitecture implications, and performance considerations that make modern
machine learning possible.

7.3.2.1 Computational Methods

Forward Mode. Forward mode automatic differentiation computes derivatives
alongside the original computation, tracking how changes propagate from input
to output. This approach mirrors how we might manually compute deriva-
tives, making it intuitive to understand and implement in machine learning
frameworks.

Consider our previous example with a slight modification to show how
forward mode works (see Listing 7.2).

Listing 7.2: Forward mode automatic differentiation in practice

def f(x): # Computing both value and derivative
Step 1: x -> x²
a = x * x # Value: x²
da = 2 * x # Derivative: 2x

Step 2: x -> sin(x)
b = sin(x) # Value: sin(x)
db = cos(x) # Derivative: cos(x)

Step 3: Combine using product rule
result = a * b # Value: x² * sin(x)
dresult = a * db + b * da # Derivative:

x²*cos(x) + sin(x)*2x

return result, dresult

Forward mode achieves this systematic derivative computation by augment-
ing each number with its derivative value, creating what mathematicians call a
“dual number.” The example in Listing 7.3 shows how this works numerically
when x = 2.0, the computation tracks both values and derivatives:

Implementation Structure. Forward mode AD structures computations to track
both values and derivatives simultaneously through programs. The structure

7.3. Fundamental Concepts 236

Listing 7.3: Forward mode with dual numbers

x = 2.0 # Initial value
dx = 1.0 # We're tracking derivative with respect to x

Step 1: x²
a = 4.0 # (2.0)²
da = 4.0 # 2 * 2.0

Step 2: sin(x)
b = 0.909 # sin(2.0)
db = -0.416 # cos(2.0)

Final result
result = 3.637 # 4.0 * 0.909
dresult = 2.805 # 4.0 * (-0.416) + 0.909 * 4.0

of such computations can be seen again in Listing 7.4, where each intermediate
operation is made explicit.

Listing 7.4: Structured view of a computation for forward mode AD

def f(x):
a = x * x
b = sin(x)
return a * b

When a framework executes this function in forward mode, it augments each
computation to carry two pieces of information: the value itself and how that
value changes with respect to the input. This paired movement of value and
derivative mirrors how we think about rates of change as shown in Listing 7.5.

Listing 7.5: Dual tracking of values and derivatives in forward mode AD

Conceptually, each computation tracks (value, derivative)
x = (2.0, 1.0) # Input value and its derivative
a = (4.0, 4.0) # x² and its derivative 2x
b = (0.909, -0.416) # sin(x) and its derivative cos(x)
result = (3.637, 2.805) # Final value and derivative

This forward propagation of derivative information happens automatically
within the framework’s computational machinery. The framework: 1. Enriches
each value with derivative information 2. Transforms each basic operation

Chapter 7. AI Frameworks 237

to handle both value and derivative 3. Propagates this information forward
through the computation

The beauty of this approach is that it follows the natural flow of computation
- as values move forward through the program, their derivatives move with
them. This makes forward mode particularly well-suited for functions with
single inputs and multiple outputs, as the derivative information follows the
same path as the regular computation.

Performance Characteristics. Forward mode AD exhibits distinct performance
patterns that influence when and how frameworks employ it. Understand-
ing these characteristics helps explain why frameworks choose different AD
approaches for different scenarios.

Forward mode performs one derivative computation alongside each original
operation. For a function with one input variable, this means roughly doubling
the computational work - once for the value, once for the derivative. The
cost scales linearly with the number of operations in the program, making it
predictable and manageable for simple computations.

However, consider a neural network layer computing derivatives for matrix
multiplication between weights and inputs. To compute derivatives with respect
to all weights, forward mode would need to perform the computation once
for each weight parameter - potentially thousands of times. This reveals an
important characteristic: forward mode’s efÏciency depends on the number of
input variables we need derivatives for.

Forward mode’s memory requirements are relatively modest. It needs to
store the original value, a single derivative value, and temporary results during
computation. The memory usage stays constant regardless of how complex the
computation becomes. This predictable memory pattern makes forward mode
particularly suitable for embedded systems with limited memory, real-time
applications requiring consistent memory use, and systems where memory
bandwidth is a bottleneck.

This combination of computational scaling with input variables but con-
stant memory usage creates specific trade-offs that influence framework design
decisions. Forward mode shines in scenarios with few inputs but many out-
puts, where its straightforward implementation and predictable resource usage
outweigh the computational cost of multiple passes.

Use Cases. While forward mode automatic differentiation isn’t the primary
choice for training full neural networks, it plays several important roles in
modern machine learning frameworks. Its strength lies in scenarios where we
need to understand how small changes in inputs affect a network’s behavior.
Consider a data scientist trying to understand why their model makes certain
predictions. They might want to analyze how changing a single pixel in an
image or a specific feature in their data affects the model’s output, as illustrated
in Listing 7.6.

As the computation moves through each layer, forward mode carries both
values and derivatives, making it straightforward to see how input perturba-
tions ripple through to the final prediction. For each operation, we can track
exactly how small changes propagate forward.

7.3. Fundamental Concepts 238

Listing 7.6: Sensitivity analysis using forward mode AD in a neural network

def analyze_image_sensitivity(model, image):
Forward mode tracks how changing one pixel
affects the final classification
layer1 = relu(W1 @ image + b1)
layer2 = relu(W2 @ layer1 + b2)
predictions = softmax(W3 @ layer2 + b3)
return predictions

Neural network interpretation presents another compelling application. When
researchers want to generate saliency maps or attribution scores, they often
need to compute how each input element influences the output as shown in
Listing 7.7.

Listing 7.7: Feature importance analysis using forward mode AD

def compute_feature_importance(model, input_features):
Track influence of each input feature
through the network's computation
hidden = tanh(W1 @ input_features + b1)
logits = W2 @ hidden + b2
Forward mode efficiently computes d(logits)/d(input)
return logits

In specialized training scenarios, particularly those involving online learning
where models update on individual examples, forward mode offers advantages.
The framework can track derivatives for a single example through the network
efÏciently, though this approach becomes less practical when dealing with
batch training or updating multiple model parameters simultaneously.

Understanding these use cases helps explain why machine learning frame-
works maintain forward mode capabilities alongside other differentiation strate-
gies. While reverse mode handles the heavy lifting of full model training, for-
ward mode provides an elegant solution for specific analytical tasks where its
computational pattern matches the problem structure.

Reverse Mode. Reverse mode automatic differentiation forms the computa-
tional backbone of modern neural network training. This isn’t by accident -
reverse mode’s structure perfectly matches what we need for training neural
networks. During training, we have one scalar output (the loss function) and
need derivatives with respect to millions of parameters (the network weights).
Reverse mode is exceptionally efÏcient at computing exactly this pattern of
derivatives.

A closer look at Listing 7.8 reveals how reverse mode differentiation is struc-
tured.

Chapter 7. AI Frameworks 239

Listing 7.8: Basic example of reverse mode automatic differentiation

def f(x):
a = x * x # First operation: square x
b = sin(x) # Second operation: sine of x
c = a * b # Third operation: multiply results
return c

In this function shown in Listing 7.8, we have three operations that create
a computational chain. Notice how ‘x’ influences the final result ‘c’ through
two different paths: once through squaring (a = x²) and once through sine (b =
sin(x)). We’ll need to account for both paths when computing derivatives.

First, the forward pass computes and stores values, as illustrated in Listing 7.9.

Listing 7.9: Forward pass: computing and storing each intermediate value

x = 2.0 # Our input value
a = 4.0 # x * x = 2.0 * 2.0 = 4.0
b = 0.909 # sin(2.0) � 0.909
c = 3.637 # a * b = 4.0 * 0.909 � 3.637

Then comes the backward pass. This is where reverse mode shows its ele-
gance. This process is demonstrated in Listing 7.10, where we compute the
gradient starting from the output.

Listing 7.10: Backward pass: computing gradients through multiple paths

dc/dc = 1.0 # Derivative of output with respect
to itself is 1

Moving backward through multiplication c = a * b
dc/da = b # �(a*b)/�a = b = 0.909
dc/db = a # �(a*b)/�b = a = 4.0

Finally, combining derivatives for x through both paths
Path 1: x -> x² -> c contribution: 2x * dc/da
Path 2: x -> sin(x) -> c contribution: cos(x) * dc/db
dc/dx = (2 * x * dc/da) + (cos(x) * dc/db)

= (2 * 2.0 * 0.909) + (cos(2.0) * 4.0)
= 3.636 + (-0.416 * 4.0)
= 2.805

The power of reverse mode becomes clear when we consider what would
happen if we added more operations that depend on x. Forward mode would

7.3. Fundamental Concepts 240

need to track derivatives through each new path, but reverse mode efÏciently
handles all paths in a single backward pass. This is exactly the scenario in
neural networks, where each weight can affect the final loss through multiple
paths in the network.

Implementation Structure. The implementation of reverse mode in machine learn-
ing frameworks requires careful orchestration of computation and memory.
While forward mode simply augments each computation, reverse mode needs
to maintain a record of the forward computation to enable the backward pass.
Modern frameworks accomplish this through computational graphs and auto-
matic gradient accumulation.

Let’s extend our previous example to a small neural network computation —
see Listing 7.11 for the code structure.

Listing 7.11: Reverse mode applied to a simple neural network computation

def simple_network(x, w1, w2):
Forward pass
hidden = x * w1 # First layer multiplication
activated = max(0, hidden) # ReLU activation
output = activated * w2 # Second layer multiplication
return output # Final output (before loss)

During the forward pass, the framework doesn’t just compute values — it
builds a graph of operations while tracking intermediate results, as illustrated
in Listing 7.12.

Listing 7.12: Tracked forward pass

x = 1.0
w1 = 2.0
w2 = 3.0

hidden = 2.0 # x * w1 = 1.0 * 2.0
activated = 2.0 # max(0, 2.0) = 2.0
output = 6.0 # activated * w2 = 2.0 * 3.0

Refer to Listing 7.13 for a step-by-step breakdown of gradient computation
during the backward pass.

This example illustrates several key implementation considerations: 1. The
framework must track dependencies between operations 2. Intermediate values
must be stored for the backward pass 3. Gradient computations follow the
reverse topological order of the forward computation 4. Each operation needs
both forward and backward implementations

Memory Management Strategies. Memory management represents one of the key
challenges in implementing reverse mode differentiation in machine learning

Chapter 7. AI Frameworks 241

Listing 7.13: Backward pass using stored values

d_output = 1.0 # Start with derivative of output

d_w2 = activated # d_output * d(output)/d_w2
= 1.0 * 2.0 = 2.0

d_activated = w2 # d_output * d(output)/d_activated
= 1.0 * 3.0 = 3.0

ReLU gradient: 1 if input was > 0, 0 otherwise
d_hidden = d_activated * (1 if hidden > 0 else 0)
3.0 * 1 = 3.0

d_w1 = x * d_hidden # 1.0 * 3.0 = 3.0
d_x = w1 * d_hidden # 2.0 * 3.0 = 6.0

frameworks. Unlike forward mode where we can discard intermediate values as
we go, reverse mode requires storing results from the forward pass to compute
gradients during the backward pass.

This requirement is illustrated in Listing 7.14, which extends our neural
network example to highlight how intermediate activations must be preserved
for use during backpropagation.

Listing 7.14: Tracking intermediate values in reverse mode

def deep_network(x, w1, w2, w3):
Forward pass - must store intermediates
hidden1 = x * w1
activated1 = max(0, hidden1) # Store for backward
hidden2 = activated1 * w2
activated2 = max(0, hidden2) # Store for backward
output = activated2 * w3
return output

Each intermediate value needed for gradient computation must be kept in
memory until its backward pass completes. As networks grow deeper, this
memory requirement grows linearly with network depth. For a typical deep
neural network processing a batch of images, this can mean gigabytes of stored
activations.

Frameworks employ several strategies to manage this memory burden. One
such approach is illustrated in Listing 7.15.

Modern frameworks automatically balance memory usage and computation
speed. They might recompute some intermediate values during the backward
pass rather than storing everything, particularly for memory-intensive oper-

7.3. Fundamental Concepts 242

Listing 7.15: Conceptual example of memory management

def training_step(model, input_batch):
Strategy 1: Checkpointing
with checkpoint_scope():

hidden1 = activation(layer1(input_batch))
Framework might free some memory here
hidden2 = activation(layer2(hidden1))
More selective memory management
output = layer3(hidden2)

Strategy 2: Gradient accumulation
loss = compute_loss(output)
Backward pass with managed memory
loss.backward()

ations. This trade-off between memory and computation becomes especially
important in large-scale training scenarios.

Optimization Techniques. Reverse mode automatic differentiation in machine
learning frameworks employs several key optimization techniques to enhance
training efÏciency. These optimizations become crucial when training large
neural networks where computational and memory resources are pushed to
their limits.

Modern frameworks implement gradient checkpointing, a technique that
strategically balances computation and memory. A simplified forward pass of
such a network is shown in Listing 7.16.

Listing 7.16: Simplified forward pass in a deep neural network

def deep_network(input_tensor):
A typical deep network computation
layer1 = large_dense_layer(input_tensor)
activation1 = relu(layer1)
layer2 = large_dense_layer(activation1)
activation2 = relu(layer2)
... many more layers
output = final_layer(activation_n)
return output

Instead of storing all intermediate activations, frameworks can strategically
recompute certain values during the backward pass. Listing 7.17 demonstrates
how frameworks achieve this memory saving. The framework might save
activations only every few layers.

Another crucial optimization involves operation fusion. Rather than treating
each mathematical operation separately, frameworks combine operations that

Chapter 7. AI Frameworks 243

Listing 7.17: Selective activation storage via checkpointing

Conceptual representation of checkpointing
checkpoint1 = save_for_backward(activation1)
Intermediate activations can be recomputed
checkpoint2 = save_for_backward(activation4)
Framework balances storage vs recomputation

commonly occur together. Matrix multiplication followed by bias addition, for
instance, can be fused into a single operation, reducing memory transfers and
improving hardware utilization.

The backward pass itself can be optimized by reordering computations to
maximize hardware efÏciency. Consider the gradient computation for a con-
volution layer - rather than directly translating the mathematical definition
into code, frameworks implement specialized backward operations that take
advantage of modern hardware capabilities.

These optimizations work together to make the training of large neural net-
works practical. Without them, many modern architectures would be pro-
hibitively expensive to train, both in terms of memory usage and computation
time.

7.3.2.2 Integration with Frameworks

The integration of automatic differentiation into machine learning frameworks
requires careful system design to balance flexibility, performance, and usabil-
ity. Modern frameworks like PyTorch and TensorFlow expose AD capabilities
through high-level APIs while maintaining the sophisticated underlying ma-
chinery.

Let’s examine how frameworks present AD to users. A typical example from
PyTorch is shown in Listing 7.18.

While this code appears straightforward, it masks considerable complexity.
The framework must:

1. Track all operations during the forward pass
2. Build and maintain the computational graph
3. Manage memory for intermediate values
4. Schedule gradient computations efÏciently
5. Interface with hardware accelerators

This integration extends beyond basic training. Frameworks must handle
complex scenarios like higher-order gradients, where we compute derivatives of
derivatives, and mixed-precision training. The ability to compute second-order
derivatives is demonstrated in Listing 7.19.

7.3.2.3 Memory Consequences

The memory demands of automatic differentiation stem from a fundamen-
tal requirement: to compute gradients during the backward pass, we must

7.3. Fundamental Concepts 244

Listing 7.18: Exposing automatic differentiation via high-level APIs in PyTorch

PyTorch-style automatic differentiation
def neural_network(x):

Framework transparently tracks operations
layer1 = nn.Linear(784, 256)
layer2 = nn.Linear(256, 10)

Each operation is automatically tracked
hidden = torch.relu(layer1(x))
output = layer2(hidden)
return output

Training loop showing AD integration
for batch_x, batch_y in data_loader:

optimizer.zero_grad() # Clear previous gradients
output = neural_network(batch_x)
loss = loss_function(output, batch_y)

Framework handles all AD machinery
loss.backward() # Automatic backward pass
optimizer.step() # Parameter updates

Listing 7.19: Computing higher-order gradients using PyTorch’s autograd

Computing higher-order gradients
with torch.set_grad_enabled(True):
First-order gradient computation
output = model(input)
grad_output = torch.autograd.grad(

output,
model.parameters())

Second-order gradient computation
grad2_output = torch.autograd.grad(

grad_output,
model.parameters())

remember what happened during the forward pass. This seemingly simple
requirement creates interesting challenges for machine learning frameworks.
Unlike traditional programs that can discard intermediate results as soon as
they’re used, AD systems must carefully preserve computational history.

This necessity is illustrated in Listing 7.20, which shows what happens during
a neural network’s forward pass.

Chapter 7. AI Frameworks 245

Listing 7.20: Forward pass operations recorded for backward computation

def neural_network(x):
Each operation creates values we need to remember
a = layer1(x) # Must store for backward pass
b = relu(a) # Must store input to relu
c = layer2(b) # Must store for backward pass
return c

When this network processes data, each operation creates not just its output,
but also a memory obligation. The multiplication in layer1 needs to remem-
ber its inputs because computing its gradient later will require them. Even
the seemingly simple relu function must track which inputs were negative
to correctly propagate gradients. As networks grow deeper, these memory
requirements accumulate — as seen in Listing 7.21.

This memory challenge becomes particularly interesting with deep neural
networks.

Listing 7.21: Memory accumulation in deeper neural networks

A deeper network shows the accumulating memory needs
hidden1 = large_matrix_multiply(input, weights1)
activated1 = relu(hidden1)
hidden2 = large_matrix_multiply(activated1, weights2)
activated2 = relu(hidden2)
output = large_matrix_multiply(activated2, weights3)

Each layer’s computation adds to our memory burden. The framework must
keep hidden1 in memory until we’ve computed gradients through hidden2, but
after that, we can safely discard it. This creates a wave of memory usage that
peaks when we start the backward pass and gradually recedes as we compute
gradients.

Modern frameworks handle this memory choreography automatically. They
track the lifetime of each intermediate value - how long it must remain in mem-
ory for gradient computation. When training large models, this careful memory
management becomes as crucial as the numerical computations themselves.
The framework frees memory as soon as it’s no longer needed for gradient com-
putation, ensuring that our memory usage, while necessarily large, remains as
efÏcient as possible.

7.3.2.4 System Considerations

Automatic differentiation’s integration into machine learning frameworks raises
important system-level considerations that affect both framework design and
training performance. These considerations become particularly apparent when
training large neural networks where efÏciency at every level matters.

7.3. Fundamental Concepts 246

As illustrated in Listing 7.22, a typical training loop handles both computation
and system-level interaction.

Listing 7.22: System-level operations in a typical training loop

def train_epoch(model, data_loader):
for batch_x, batch_y in data_loader:

Moving data between CPU and accelerator
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)

Forward pass builds computational graph
outputs = model(batch_x)
loss = criterion(outputs, batch_y)

Backward pass computes gradients
loss.backward()
optimizer.step()
optimizer.zero_grad()

This simple loop masks complex system interactions. The AD system must
coordinate with multiple framework components: the memory allocator, the
device manager, the operation scheduler, and the optimizer. Each gradient
computation potentially triggers data movement between devices, memory
allocation, and kernel launches on accelerators.

The scheduling of AD operations on modern hardware accelerators is illus-
trated in Listing 7.23.

Listing 7.23: Complex model with parallel computations

def parallel_network(x):
These operations could run concurrently
branch1 = conv_layer1(x)
branch2 = conv_layer2(x)

Must synchronize for combination
combined = branch1 + branch2
return final_layer(combined)

The AD system must track dependencies not just for correct gradient compu-
tation, but also for efÏcient hardware utilization. It needs to determine which
gradient computations can run in parallel and which must wait for others to
complete. This dependency tracking extends across both forward and backward
passes, creating a complex scheduling problem.

Modern frameworks handle these system-level concerns while maintaining a
simple interface for users. Behind the scenes, they make sophisticated decisions

Chapter 7. AI Frameworks 247

about operation scheduling, memory allocation, and data movement, all while
ensuring correct gradient computation through the computational graph.

7.3.2.5 Summary

Automatic differentiation systems represent an important computational ab-
straction in machine learning frameworks, transforming the mathematical
concept of derivatives into efÏcient implementations. Through our examination
of both forward and reverse modes, we’ve seen how frameworks balance math-
ematical precision with computational efÏciency to enable training of modern
neural networks.

The implementation of AD systems reveals key design patterns in machine
learning frameworks. One such pattern is shown in Listing 7.24.

Listing 7.24: Simple computation revealing AD mechanisms

def computation(x, w):
Framework tracks operations
hidden = x * w # Stored for backward pass
output = relu(hidden) # Tracks activation pattern
return output

This simple computation embodies several fundamental concepts:
1. Operation tracking for derivative computation
2. Memory management for intermediate values
3. System coordination for efÏcient execution

As shown in Listing 7.25, modern frameworks abstract these complexities
behind clean interfaces while maintaining high performance.

Listing 7.25: Minimal API for automatic differentiation

loss = model(input) # Forward pass tracks computation
loss.backward() # Triggers efficient reverse mode AD
optimizer.step() # Uses computed gradients

The effectiveness of automatic differentiation systems stems from their careful
balance of competing demands. They must maintain sufÏcient computational
history for accurate gradients while managing memory constraints, schedule
operations efÏciently while preserving correctness, and provide flexibility while
optimizing performance.

Understanding these systems proves essential for both framework developers
and practitioners. Framework developers must implement efÏcient AD to
enable modern deep learning, while practitioners benefit from understanding
AD’s capabilities and constraints when designing and training models.

7.3. Fundamental Concepts 248

While automatic differentiation provides the computational foundation for
gradient-based learning, its practical implementation depends heavily on how
frameworks organize and manipulate data. This brings us to our next topic:
the data structures that enable efÏcient computation and memory management
in machine learning frameworks. These structures must not only support AD
operations but also provide efÏcient access patterns for the diverse hardware
platforms that power modern machine learning.

Looking Forward. The automatic differentiation systems we’ve explored pro-
vide the computational foundation for neural network training, but they don’t
operate in isolation. These systems need efÏcient ways to represent and ma-
nipulate the data flowing through them. This brings us to our next topic: the
data structures that machine learning frameworks use to organize and process
information.

Consider how our earlier examples handled numerical values (Listing 7.26).

Listing 7.26: Interpreting numerical values in AD computations

def neural_network(x):
hidden = w1 * x # What exactly is x?
activated = relu(hidden) # How is hidden stored?
output = w2 * activated # What type of multiplication?
return output

These operations appear straightforward, but they raise important questions.
How do frameworks represent these values? How do they organize data to
enable efÏcient computation and automatic differentiation? Most importantly,
how do they structure data to take advantage of modern hardware?

The next section examines how frameworks answer these questions through
specialized data structures, particularly tensors, that form the basic building
blocks of machine learning computations.

7.3.3 Data Structures
Machine learning frameworks extend computational graphs with specialized
data structures, bridging high-level computations with practical implementa-
tions. These data structures have two essential purposes: they provide con-
tainers for the numerical data that powers machine learning models, and they
manage how this data is stored and moved across different memory spaces and
devices.

While computational graphs specify the logical flow of operations, data struc-
tures determine how these operations actually access and manipulate data in
memory. This dual role of organizing numerical data for model computations
while handling the complexities of memory management and device place-
ment shapes how frameworks translate mathematical operations into efÏcient
executions across diverse computing platforms.

The effectiveness of machine learning frameworks depends heavily on their
underlying data organization. While machine learning theory can be expressed

Chapter 7. AI Frameworks 249

through mathematical equations, turning these equations into practical imple-
mentations demands thoughtful consideration of data organization, storage,
and manipulation. Modern machine learning models must process enormous
amounts of data during training and inference, making efÏcient data access
and memory usage critical across diverse hardware platforms.

A framework’s data structures must excel in three key areas. First, they need
to deliver high performance, supporting rapid data access and efÏcient memory
use across different hardware. This includes optimizing memory layouts for
cache efÏciency and enabling smooth data transfer between memory hierarchies
and devices. Second, they must offer flexibility, accommodating various model
architectures and training approaches while supporting different data types
and precision requirements. Third, they should provide clear and intuitive
interfaces to developers while handling complex memory management and
device placement behind the scenes.

These data structures bridge mathematical concepts and practical computing
systems. The operations in machine learning, such as matrix multiplication,
convolution, and activation functions, set basic requirements for how data
must be organized. These structures must maintain numerical precision and
stability while enabling efÏcient implementation of common operations and
automatic gradient computation. However, they must also work within real-
world computing constraints, dealing with limited memory bandwidth, varying
hardware capabilities, and the needs of distributed computing.

The design choices made in implementing these data structures significantly
influence what machine learning frameworks can achieve. Poor decisions in
data structure design can result in excessive memory use, limiting model size
and batch capabilities. They might create performance bottlenecks that slow
down training and inference, or produce interfaces that make programming
error-prone. On the other hand, thoughtful design enables automatic opti-
mization of memory usage and computation, efÏcient scaling across hardware
configurations, and intuitive programming interfaces that support rapid imple-
mentation of new techniques.

As we explore specific data structures in the following sections, we’ll examine
how frameworks address these challenges through careful design decisions
and optimization approaches. This understanding proves essential for anyone
working with machine learning systems, whether developing new models, op-
timizing existing ones, or creating new framework capabilities. We begin with
tensor abstractions, the fundamental building blocks of modern machine learn-
ing frameworks, before exploring more specialized structures for parameter
management, dataset handling, and execution control.

7.3.3.1 Tensors
Machine learning frameworks process and store numerical data as tensors.
Every computation in a neural network, from processing input data to updating
model weights, operates on tensors. Training batches of images, activation maps
in convolutional networks, and parameter gradients during backpropagation
all take the form of tensors. This unified representation allows frameworks to
implement consistent interfaces for data manipulation and optimize operations
across different hardware architectures.

7.3. Fundamental Concepts 250

Structure and Dimensionality. A tensor is a mathematical object that general-
izes scalars, vectors, and matrices to higher dimensions. The dimensionality
forms a natural hierarchy: a scalar is a zero-dimensional tensor containing a sin-
gle value, a vector is a one-dimensional tensor containing a sequence of values,
and a matrix is a two-dimensional tensor containing values arranged in rows
and columns. Higher-dimensional tensors extend this pattern through nested
structures; for instance, as illustrated in Figure 7.8, a three-dimensional tensor
can be visualized as a stack of matrices. Therefore, vectors and matrices can be
considered special cases of tensors with 1D and 2D dimensions, respectively.

Figure 7.8: Visualization of a tensor
data structure.

Rank 3

1 . . . 2

3 . . . 5

5 3

.

.

.
.
.
.

3 3

Rank 2

1

3

5

.

.

.

3

Rank 1

0

Rank 0

In practical applications, tensors naturally arise when dealing with complex
data structures. As illustrated in Figure 7.9, image data exemplifies this concept
particularly well. Color images comprise three channels, where each channel
represents the intensity values of red, green, or blue as a distinct matrix. These
channels combine to create the full colored image, forming a natural 3D tensor
structure. When processing multiple images simultaneously, such as in batch
operations, a fourth dimension can be added to create a 4D tensor, where each
slice represents a complete three-channel image. This hierarchical organiza-
tion demonstrates how tensors efÏciently handle multidimensional data while
maintaining clear structural relationships.

Figure 7.9: Visualization of colored
image structure that can be eas-
ily stored as a 3D Tensor. Credit:
Niklas Lang

6 2 5

32 15 4

1 8 3

8 7 5

1

2

2 1 9

4

3

Width: 3 Pixel

Height: 3 Pixel

3 Color Channels

In machine learning frameworks, tensors take on additional properties be-
yond their mathematical definition to meet the demands of modern ML systems.
While mathematical tensors provide a foundation as multi-dimensional arrays
with transformation properties, machine learning introduces requirements for

https://towardsdatascience.com/what-are-tensors-in-machine-learning-5671814646ff

Chapter 7. AI Frameworks 251

11 Mixed-precision training: A
training approach that uses lower-
precision arithmetic for most cal-
culations while retaining higher-
precision for critical operations, bal-
ancing performance and numerical
stability.

practical computation. These requirements shape how frameworks balance
mathematical precision with computational performance.

Framework tensors combine numerical data arrays with computational meta-
data. The dimensional structure, or shape, ranges from simple vectors and
matrices to higher-dimensional arrays that represent complex data like image
batches or sequence models. This dimensional information plays a critical role
in operation validation and optimization. Matrix multiplication operations, for
example, depend on shape metadata to verify dimensional compatibility and
determine optimal computation paths.

Memory layout implementation introduces distinct challenges in tensor de-
sign. While tensors provide an abstraction of multi-dimensional data, physical
computer memory remains linear. Stride patterns address this disparity by
creating mappings between multi-dimensional tensor indices and linear mem-
ory addresses. These patterns significantly impact computational performance
by determining memory access patterns during tensor operations. Careful
alignment of stride patterns with hardware memory hierarchies maximizes
cache efÏciency and memory throughput.

Type Systems and Precision. Tensor implementations use type systems to
control numerical precision and memory consumption. The standard choice in
machine learning has been 32-bit floating-point numbers (float32), offering
a balance of precision and efÏciency. Modern frameworks extend this with
multiple numeric types for different needs. Integer types support indexing
and embedding operations. Reduced-precision types like 16-bit floating-point
numbers enable efÏcient mobile deployment. 8-bit integers allow fast inference
on specialized hardware.

The choice of numeric type affects both model behavior and computational
efÏciency. Neural network training typically requires float32 precision to main-
tain stable gradient computations. Inference tasks can often use lower precision
(int8 or even int4), reducing memory usage and increasing processing speed.
Mixed-precision training11 approaches combine these benefits by using float32
for critical accumulations while performing most computations at lower preci-
sion.

Type conversions between different numeric representations require careful
management. Operating on tensors with different types demands explicit con-
version rules to preserve numerical correctness. These conversions introduce
computational costs and risk precision loss. Frameworks provide type cast-
ing capabilities but rely on developers to maintain numerical precision across
operations.

Device Placement and Memory Management. The rise of heterogeneous com-
puting has transformed how machine learning frameworks manage tensor
operations. Modern frameworks must seamlessly operate across CPUs, GPUs,
TPUs, and various other accelerators, each offering different computational
advantages and memory characteristics. This diversity creates a fundamental
challenge: tensors must move efÏciently between devices while maintaining
computational coherency throughout the execution of machine learning work-
loads.

7.3. Fundamental Concepts 252

Device placement decisions significantly influence both computational per-
formance and memory utilization. Moving tensors between devices introduces
latency costs and consumes precious bandwidth on system interconnects. Keep-
ing multiple copies of tensors across different devices can accelerate computa-
tion by reducing data movement, but this strategy increases overall memory
consumption and requires careful management of consistency between copies.
Frameworks must therefore implement sophisticated memory management
systems that track tensor locations and orchestrate data movement while con-
sidering these tradeoffs.

These memory management systems maintain a dynamic view of available
device memory and implement strategies for efÏcient data transfer. When
operations require tensors that reside on different devices, the framework must
either move data or redistribute computation. This decision process integrates
deeply with the framework’s computational graph execution and operation
scheduling. Memory pressure on individual devices, data transfer costs, and
computational load all factor into placement decisions.

The interplay between device placement and memory management extends
beyond simple data movement. Frameworks must anticipate future computa-
tional needs to prefetch data efÏciently, manage memory fragmentation across
devices, and handle cases where memory demands exceed device capabilities.
This requires close coordination between the memory management system and
the operation scheduler, especially in scenarios involving parallel computation
across multiple devices or distributed training across machine boundaries.

7.3.3.2 Specialized Structures

While tensors are the building blocks of machine learning frameworks, they
are not the only structures required for effective system operation. Frameworks
rely on a suite of specialized data structures tailored to address the distinct
needs of data processing, model parameter management, and execution coor-
dination. These structures ensure that the entire workflow, ranging from raw
data ingestion to optimized execution on hardware, proceeds seamlessly and
efÏciently.

Dataset Structures. Dataset structures handle the critical task of transform-
ing raw input data into a format suitable for machine learning computations.
These structures bridge the gap between diverse data sources and the tensor
abstractions required by models, automating the process of reading, parsing,
and preprocessing data.

Dataset structures must support efÏcient memory usage while dealing with
input data far larger than what can fit into memory at once. For example, when
training on large image datasets, these structures load images from disk, decode
them into tensor-compatible formats, and apply transformations like normal-
ization or augmentation in real time. Frameworks implement mechanisms
such as data streaming, caching, and shufÒing to ensure a steady supply of
preprocessed batches without bottlenecks.

The design of dataset structures directly impacts training performance. Poorly
designed structures can create significant overhead, limiting data throughput
to GPUs or other accelerators. In contrast, well-optimized dataset handling can

Chapter 7. AI Frameworks 253

leverage parallelism across CPU cores, disk I/O, and memory transfers to feed
accelerators at full capacity.

In large, multi-system distributed training scenarios, dataset structures also
handle coordination between nodes, ensuring that each worker processes a
distinct subset of data while maintaining consistency in operations like shufÒing.
This coordination prevents redundant computation and supports scalability
across multiple devices and machines.

Parameter Structures. Parameter structures store the numerical values that
define a machine learning model. These include the weights and biases of
neural network layers, along with auxiliary data such as batch normalization
statistics and optimizer state. Unlike datasets, which are transient, parameters
persist throughout the lifecycle of model training and inference.

The design of parameter structures must balance efÏcient storage with rapid
access during computation. For example, convolutional neural networks re-
quire parameters for filters, fully connected layers, and normalization layers,
each with unique shapes and memory alignment requirements. Frameworks
organize these parameters into compact representations that minimize memory
consumption while enabling fast read and write operations.

A key challenge for parameter structures is managing memory efÏciently
across multiple devices (0003 et al. 2014). During distributed training, frame-
works may replicate parameters across GPUs for parallel computation while
keeping a synchronized master copy on the CPU. This strategy ensures consis-
tency while reducing the latency of gradient updates. Additionally, parameter
structures often leverage memory sharing techniques to minimize duplication,
such as storing gradients and optimizer states in place to conserve memory.

Parameter structures must also adapt to various precision requirements.
While training typically uses 32-bit floating-point precision for stability, reduced
precision such as 16-bit floating-point or even 8-bit integers is increasingly used
for inference and large-scale training. Frameworks implement type casting and
mixed-precision management to enable these optimizations without compro-
mising numerical accuracy.

Execution Structures. Execution structures coordinate how computations are
performed on hardware, ensuring that operations execute efÏciently while
respecting device constraints. These structures work closely with computational
graphs, determining how data flows through the system and how memory is
allocated for intermediate results.

One of the primary roles of execution structures is memory management.
During training or inference, intermediate computations such as activation
maps or gradients can consume significant memory. Execution structures
dynamically allocate and deallocate memory buffers to avoid fragmentation
and maximize hardware utilization. For example, a deep neural network might
reuse memory allocated for activation maps across layers, reducing the overall
memory footprint.

These structures also handle operation scheduling, ensuring that computa-
tions are performed in the correct order and with optimal hardware utilization.
On GPUs, for instance, execution structures can overlap computation and data
transfer operations, hiding latency and improving throughput. When running

7.3. Fundamental Concepts 254

on multiple devices, they synchronize dependent computations to maintain
consistency without unnecessary delays.

Distributed training introduces additional complexity, as execution struc-
tures must manage data and computation across multiple nodes. This includes
partitioning computational graphs, synchronizing gradients, and redistributing
data as needed. EfÏcient execution structures minimize communication over-
head, allowing distributed systems to scale linearly with additional hardware
(B. McMahan et al. 2017a). Figure 7.10 shows how distributed training can be
defined over a grid of accelerators to paralalize over multiple dimensions for
faster throughput.

Figure 7.10: Depiction of “3D paral-
lelism,” where models can be par-
allelized over dimensions of de-
vices corresponding to data repli-
cas, sequential pipeline stages, and
sharded model stages.

GPU 28

GPU 0 GPU 8 GPU 16 GPU 24

GPU 4 GPU 12 GPU 20

Pipeline Parallel

Z
e
ro

D
a
ta

P
a
ra

lle
l

M
od

el
Par

al
le
l

7.3.4 Programming Models
Programming models define how developers express computations in code.
In previous sections, we explored computational graphs and specialized data
structures, which together define the computational processes of machine
learning frameworks. Computational graphs outline the sequence of operations,
such as matrix multiplication or convolution, while data structures like tensors
store the numerical values that these operations manipulate. These models fall
into two categories: symbolic programming and imperative programming.

7.3.4.1 Symbolic Programming

Symbolic programming involves constructing abstract representations of com-
putations first and executing them later. This approach aligns naturally with
static computational graphs, where the entire structure is defined before any
computation occurs.

For instance, in symbolic programming, variables and operations are repre-
sented as symbols. These symbolic expressions are not evaluated until explicitly

Chapter 7. AI Frameworks 255

executed, allowing the framework to analyze and optimize the computation
graph before running it.

Consider the symbolic programming example in Listing 7.27.

Listing 7.27: Symbolic computation with delayed evaluation

Expressions are constructed but not evaluated
weights = tf.Variable(tf.random.normal([784, 10]))
input = tf.placeholder(tf.float32, [None, 784])
output = tf.matmul(input, weights)

Separate evaluation phase
with tf.Session() as sess:

sess.run(tf.global_variables_initializer())
result = sess.run(output, feed_dict={input: data})

This approach enables frameworks to apply global optimizations across the
entire computation, making it efÏcient for deployment scenarios. Additionally,
static graphs can be serialized and executed across different environments, en-
hancing portability. Predefined graphs also facilitate efÏcient parallel execution
strategies. However, debugging can be challenging because errors often surface
during execution rather than graph construction, and modifying a static graph
dynamically is cumbersome.

7.3.4.2 Imperative Programming

Imperative programming takes a more traditional approach, executing op-
erations immediately as they are encountered. This method corresponds to
dynamic computational graphs, where the structure evolves dynamically dur-
ing execution.

In this programming paradigm, computations are performed directly as the
code executes, closely resembling the procedural style of most general-purpose
programming languages. This is demonstrated in Listing 7.28, where each
operation is evaluated immediately.

Listing 7.28: Imperative programming with immediate execution

Each expression evaluates immediately
weights = torch.randn(784, 10)
input = torch.randn(32, 784)
output = input @ weights # Computation occurs now

The immediate execution model is intuitive and aligns with common pro-
gramming practices, making it easier to use. Errors can be detected and resolved
immediately during execution, simplifying debugging. Dynamic graphs allow
for adjustments on-the-fly, making them ideal for tasks requiring variable graph

7.3. Fundamental Concepts 256

structures, such as reinforcement learning or sequence modeling. However, the
creation of dynamic graphs at runtime can introduce computational overhead,
and the framework’s ability to optimize the entire computation graph is limited
due to the step-by-step execution process.

7.3.4.3 System Implementation Considerations

The choice between symbolic and imperative programming models fundamen-
tally influences how ML frameworks manage system-level features such as
memory management and optimization strategies.

Performance Trade-offs. In symbolic programming, frameworks can analyze
the entire computation graph upfront. This allows for efÏcient memory alloca-
tion strategies. For example, memory can be reused for intermediate results that
are no longer needed during later stages of computation. This global view also
enables advanced optimization techniques such as operation fusion, automatic
differentiation, and hardware-specific kernel selection. These optimizations
make symbolic programming highly effective for production environments
where performance is critical.

In contrast, imperative programming makes memory management and op-
timization more challenging since decisions must be made at runtime. Each
operation executes immediately, which prevents the framework from glob-
ally analyzing the computation. This trade-off, however, provides developers
with greater flexibility and immediate feedback during development. Beyond
system-level features, the choice of programming model also impacts the de-
veloper experience, particularly during model development and debugging.

Development and Debugging. Symbolic programming requires developers
to conceptualize their models as complete computational graphs. This often
involves extra steps to inspect intermediate values, as symbolic execution defers
computation until explicitly invoked. For example, in TensorFlow 1.x, develop-
ers need to use sessions and feed dictionaries to debug intermediate results,
which can slow down the development process.

Imperative programming offers a more straightforward debugging experi-
ence. Operations execute immediately, allowing developers to inspect tensor
values and shapes as the code runs. This immediate feedback simplifies ex-
perimentation and makes it easier to identify and fix issues in the model. As
a result, imperative programming is well-suited for rapid prototyping and
iterative model development.

Navigating Trade-offs. The choice between symbolic and imperative program-
ming models often depends on the specific needs of a project. Symbolic pro-
gramming excels in scenarios where performance and optimization are critical,
such as production deployments. In contrast, imperative programming pro-
vides the flexibility and ease of use necessary for research and development.

Modern frameworks have introduced hybrid approaches that combine the
strengths of both paradigms. For instance, TensorFlow 2.x allows developers to
write code in an imperative style while converting computations into optimized
graph representations for deployment. Similarly, PyTorch provides tools like
TorchScript to convert dynamic models into static graphs for production use.

Chapter 7. AI Frameworks 257

These hybrid approaches help bridge the gap between the flexibility of im-
perative programming and the efÏciency of symbolic programming, enabling
developers to navigate the trade-offs effectively.

7.3.5 Execution Models
Machine learning frameworks employ various execution paradigms to deter-
mine how computations are performed. These paradigms significantly influ-
ence the development experience, performance characteristics, and deployment
options of ML systems. Understanding the trade-offs between execution mod-
els is essential for selecting the right approach for a given application. Let’s
explore three key execution paradigms: eager execution, graph execution, and
just-in-time (JIT) compilation.

7.3.5.1 Eager Execution
Eager execution is the most straightforward and intuitive execution paradigm.
In this model, operations are executed immediately as they are called in the code.
This approach closely mirrors the way traditional imperative programming
languages work, making it familiar to many developers.

Listing 7.29 demonstrates eager execution, where operations are evaluated
immediately.

Listing 7.29: Eager execution in TensorFlow 2.x

import tensorflow as tf

x = tf.constant([[1., 2.], [3., 4.]])
y = tf.constant([[1, 2], [3, 4]])
z = tf.matmul(x, y)
print(z)

In this code snippet, each line is executed sequentially. When we create the
tensors x and y, they are immediately instantiated in memory. The matrix mul-
tiplication tf.matmul(x, y) is computed right away, and the result is stored
in z. When we print z, we see the output of the computation immediately.

Eager execution offers several advantages. It provides immediate feedback, al-
lowing developers to inspect intermediate values easily. This makes debugging
more straightforward and intuitive. It also allows for more dynamic and flexible
code structures, as the computation graph can change with each execution.

However, eager execution has its trade-offs. Since operations are executed
immediately, the framework has less opportunity to optimize the overall compu-
tation graph. This can lead to lower performance compared to more optimized
execution paradigms, especially for complex models or when dealing with large
datasets.

Eager execution is particularly well-suited for research, interactive devel-
opment, and rapid prototyping. It allows data scientists and researchers to
quickly iterate on their ideas and see results immediately. Many modern ML

7.3. Fundamental Concepts 258

frameworks, including TensorFlow 2.x and PyTorch, use eager execution as
their default mode due to its developer-friendly nature.

7.3.5.2 Graph Execution

Graph execution, also known as static graph execution, takes a different ap-
proach to computing operations in ML frameworks. In this paradigm, develop-
ers first define the entire computational graph, and then execute it as a separate
step.

Listing 7.30 illustrates an example in TensorFlow 1.x style, which employs
graph execution.

Listing 7.30: Graph execution in TensorFlow 1.x with session-based evaluation

import tensorflow.compat.v1 as tf
tf.disable_eager_execution()

Define the graph
x = tf.placeholder(tf.float32, shape=(2, 2))
y = tf.placeholder(tf.float32, shape=(2, 2))
z = tf.matmul(x, y)

Execute the graph
with tf.Session() as sess:

result = sess.run(z, feed_dict={
x: [[1., 2.], [3., 4.]],
y: [[1, 2], [3, 4]]

})
print(result)

In this code snippet, we first define the structure of our computation. The
placeholder operations create nodes in the graph for input data, while tf.matmul
creates a node representing matrix multiplication. Importantly, no actual com-
putation occurs during this definition phase.

The execution of the graph happens when we create a session and call
sess.run(). At this point, we provide the actual input data through the feed_-
dict parameter. The framework then has the complete graph and can perform
optimizations before running the computation.

Graph execution offers several advantages. It allows the framework to see
the entire computation ahead of time, enabling global optimizations that can
improve performance, especially for complex models. Once defined, the graph
can be easily saved and deployed across different environments, enhancing
portability. It’s particularly efÏcient for scenarios where the same computation
is repeated many times with different data inputs.

However, graph execution also has its trade-offs. It requires developers to
think in terms of building a graph rather than writing sequential operations,
which can be less intuitive. Debugging can be more challenging because errors

Chapter 7. AI Frameworks 259

often don’t appear until the graph is executed. Additionally, implementing
dynamic computations can be more difÏcult with a static graph.

Graph execution is well-suited for production environments where perfor-
mance and deployment consistency are crucial. It is commonly used in scenar-
ios involving large-scale distributed training and when deploying models for
predictions in high-throughput applications.

7.3.5.3 Just-In-Time Compilation
Just-In-Time compilation is a middle ground between eager execution and graph
execution. This paradigm aims to combine the flexibility of eager execution
with the performance benefits of graph optimization.

Listing 7.31 shows how scripted functions are compiled and reused in Py-
Torch.

Listing 7.31: PyTorch JIT compilation with scripted function

import torch

@torch.jit.script
def compute(x, y):

return torch.matmul(x, y)

x = torch.randn(2, 2)
y = torch.randn(2, 2)

First call compiles the function
result = compute(x, y)
print(result)

Subsequent calls use the optimized version
result = compute(x, y)
print(result)

In this code snippet, we define a function compute and decorate it with
@torch.jit.script. This decorator tells PyTorch to compile the function using
its JIT compiler. The first time compute is called, PyTorch analyzes the function,
optimizes it, and generates efÏcient machine code. This compilation process
occurs just before the function is executed, hence the term “Just-In-Time”.

Subsequent calls to compute use the optimized version, potentially offering
significant performance improvements, especially for complex operations or
when called repeatedly.

JIT compilation provides a balance between development flexibility and
runtime performance. It allows developers to write code in a natural, eager-
style manner while still benefiting from many of the optimizations typically
associated with graph execution.

This approach offers several advantages. It maintains the immediate feedback
and intuitive debugging of eager execution, as most of the code still executes

7.3. Fundamental Concepts 260

eagerly. At the same time, it can deliver performance improvements for critical
parts of the computation. JIT compilation can also adapt to the specific data
types and shapes being used, potentially resulting in more efÏcient code than
static graph compilation.

However, JIT compilation also has some considerations. The first execution
of a compiled function may be slower due to the overhead of the compilation
process. Additionally, some complex Python constructs may not be easily JIT-
compiled, requiring developers to be aware of what can be optimized effectively.

JIT compilation is particularly useful in scenarios where you need both the
flexibility of eager execution for development and prototyping, and the per-
formance benefits of compilation for production or large-scale training. It’s
commonly used in research settings where rapid iteration is necessary but
performance is still a concern.

Many modern ML frameworks incorporate JIT compilation to provide devel-
opers with a balance of ease-of-use and performance optimization, as shown in
Table 7.2. This balance manifests across multiple dimensions, from the learning
curve that gradually introduces optimization concepts to the runtime behavior
that combines immediate feedback with performance enhancements. The table
highlights how JIT compilation bridges the gap between eager execution’s pro-
gramming simplicity and graph execution’s performance benefits, particularly
in areas like memory usage and optimization scope.

Table 7.2: Comparison of execution models in machine learning frameworks.

Aspect Eager Execution Graph Execution JIT Compilation

Approach Computes each operation
immediately when
encountered

Builds entire computation
plan first, then executes

Analyzes code at runtime,
creates optimized version

Memory
Usage

Holds intermediate results
throughout computation

Optimizes memory by
planning complete data flow

Adapts memory usage based
on actual execution patterns

Optimiza-
tion Scope

Limited to local operation
patterns

Global optimization across
entire computation chain

Combines runtime analysis
with targeted optimizations

Debugging
Approach

Examine values at any point
during computation

Must set up specific
monitoring points in graph

Initial runs show original
behavior, then optimizes

Speed vs
Flexibility

Prioritizes flexibility over
speed

Prioritizes performance over
flexibility

Balances flexibility and
performance

7.3.5.4 Distributed Execution

As machine learning models continue to grow in size and complexity, training
them on a single device is often no longer feasible. Large models require sig-
nificant computational power and memory, while massive datasets demand
efÏcient processing across multiple machines. To address these challenges, mod-
ern AI frameworks provide built-in support for distributed execution, allowing
computations to be split across multiple GPUs, TPUs, or distributed clusters.
By abstracting the complexities of parallel execution, these frameworks enable
practitioners to scale machine learning workloads efÏciently while maintaining
ease of use.

At the essence of distributed execution are two primary strategies: data
parallelism and model parallelism. Data parallelism allows multiple devices to
train the same model on different subsets of data, ensuring faster convergence

Chapter 7. AI Frameworks 261

without increasing memory requirements. Model parallelism, on the other
hand, partitions the model itself across multiple devices, allowing the training
of architectures too large to fit into a single device’s memory. While model
parallelism comes in several variations, which will be explored in later chapters,
both techniques are essential for training modern machine learning models
efÏciently.

Data Parallelism. Data parallelism is the most widely used approach for dis-
tributed training, enabling machine learning models to scale across multiple
devices while maintaining efÏciency. In this method, each computing device
holds an identical copy of the model but processes a unique subset of the train-
ing data, as illustrated in Figure 8.15. Once the computations are complete,
the gradients computed on each device are synchronized before updating the
model parameters, ensuring consistency across all copies. This approach allows
models to learn from larger datasets in parallel without increasing memory
requirements per device.

Figure 7.11: Data parallelism.

Full Dataset

• • •

• • •

• • •

• • •

• • •

G
P

U
0

Neural

Network A

Output Output Output

Input Input Input

Batch Set 2

Hidden layer

Hidden layer

Hidden layer

Hidden layer

Input layer

Output layer

• • •

• • •

• • •

• • •

• • •

G
P

U
1

Neural

Network A

Output Output Output

Input Input Input

Batch Set 1

Hidden layer

Hidden layer

Hidden layer

Hidden layer

Input layer

Output layer

Data Parallelism

ML System

AI frameworks provide built-in mechanisms to manage the key challenges of
data parallel execution, including data distribution, gradient synchronization,
and performance optimization. In PyTorch, the DistributedDataParallel
(DDP) module automates these tasks, ensuring efÏcient training across multiple
GPUs or nodes. TensorFlow offers tf.distribute.MirroredStrategy, which
enables seamless gradient synchronization for multi-GPU training. Similarly,
JAX’s pmap() function facilitates parallel execution across multiple accelerators,
optimizing inter-device communication to reduce overhead.

By handling synchronization and communication automatically, these frame-
works make distributed training accessible to a wide range of users, from
researchers exploring novel architectures to engineers deploying large-scale AI
systems. The implementation details vary, but the fundamental goal remains
the same: enabling efÏcient multi-device training without requiring users to
manually manage low-level parallelization.

7.3. Fundamental Concepts 262

Model Parallelism. While data parallelism is effective for many machine learn-
ing workloads, some models are too large to fit within the memory of a single
device. Model parallelism addresses this limitation by partitioning the model
itself across multiple devices, allowing each to process a different portion of
the computation. Unlike data parallelism, where the entire model is replicated
on each device, model parallelism divides layers, tensors, or specific operations
among available hardware resources, as shown in Figure 8.16. This approach
enables training of large-scale models that would otherwise be constrained by
single-device memory limits.

Figure 7.12: Model parallelism.

• • •

• • •

• • •

• • •

• • •

G
P

U
0

G
P

U
1

Neural

Network A

Output Output Output

Input Input Input

Full Dataset

ML System

Model Parallelism

Hidden layer

Hidden layer

Hidden layer

Hidden layer

Input layer

Output layer

AI frameworks provide structured APIs to simplify model parallel execution,
abstracting away much of the complexity associated with workload distri-
bution and communication. PyTorch supports pipeline parallelism through
torch.distributed.pipeline.sync, enabling different GPUs to process se-
quential layers of a model while maintaining efÏcient execution flow. Tensor-
Flow’s TPUStrategy allows for automatic partitioning of large models across
TPU cores, optimizing execution for high-speed interconnects. Additionally,
frameworks like DeepSpeed and Megatron-LM extend PyTorch by implement-
ing advanced model sharding techniques, including tensor parallelism, which
splits model weights across multiple devices to reduce memory overhead.

There are multiple variations of model parallelism, each suited to different
architectures and hardware configurations. These include tensor parallelism,

Chapter 7. AI Frameworks 263

pipeline parallelism, and expert parallelism, among others. The specific trade-
offs and applications of these techniques will be explored in later chapters, and
Figure 7.13 shows some initial intuition in comparing parallelism strategies.
Regardless of the exact approach, AI frameworks play an important role in
managing workload partitioning, scheduling computations efÏciently, and
minimizing communication overhead—ensuring that even the largest models
can be trained at scale.

Figure 7.13: An example depiction
of tensor parallelism versus pipeline
parallelism. Note how the first
case shards each Linear layer across
GPUs, while the second assigns the
first Linear to the first GPU and the
second to the second GPU.

Input

1 × 4
Linear 4 × 4 Linear 4 × 2

Output

1 × 2

Tensor Parallelism (2 GPUs)

GPU 0 GPU 0GPU 1 GPU 1

Input

1 × 4
Linear 4 × 4 Linear 4 × 2

Output

1 × 2

GPU 0 GPU 1

Pipeline Parallelism (2 GPUs)

7.3.6 Core Operations
Machine learning frameworks employ multiple layers of operations that trans-
late high-level model descriptions into efÏcient computations on hardware.
These operations form a hierarchy: hardware abstraction operations manage
the complexity of diverse computing platforms, basic numerical operations
implement fundamental mathematical computations, and system-level opera-
tions coordinate resources and execution. This operational hierarchy is key to
understanding how frameworks transform mathematical models into practical
implementations. Figure 7.14 illustrates this hierarchy, showing the relationship
between the three layers and their respective subcomponents.

Figure 7.14: Hierarchical structure
of operations in machine learning
frameworks.

Scheduling

Memory Management

Resource Optimization

System-Level Operations

GEMM Operations

BLAS Operations

Element-wise

Operations

Basic Numerical Operations

Compute Kernel

Management

Memory Abstraction

Execution Control

Hardware Operations

7.3.6.1 Hardware Abstraction Operations
At the lowest level, hardware abstraction operations provide the foundation
for executing computations across diverse computing platforms. These oper-
ations isolate higher layers from hardware-specific details while maintaining
computational efÏciency. The abstraction layer must handle three fundamen-
tal aspects: compute kernel management, memory system abstraction, and
execution control.

7.3. Fundamental Concepts 264

12 A set of 512-bit single-
instruction, multiple-data (SIMD)
extensions to the x86 instruction set
architecture.

13 An optimization technique
where computations are performed
on submatrices (tiles) that fit into
cache memory, reducing memory
access overhead and improving
computational efÏciency.

14 A method of increas-
ing instruction-level parallelism by
manually replicating loop iterations
in the code, reducing branching
overhead and enabling better utiliza-
tion of CPU pipelines.

Compute Kernel Management. Compute kernel management involves select-
ing and dispatching optimal implementations of mathematical operations for
different hardware architectures. This requires maintaining multiple imple-
mentations of core operations and sophisticated dispatch logic. For example, a
matrix multiplication operation might be implemented using AVX-51212 vector
instructions on modern CPUs, cuBLAS on NVIDIA GPUs, or specialized tensor
processing instructions on AI accelerators. The kernel manager must consider
input sizes, data layout, and hardware capabilities when selecting implementa-
tions. It must also handle fallback paths for when specialized implementations
are unavailable or unsuitable.

Memory SystemAbstraction. Memory system abstractions manage data move-
ment through complex memory hierarchies. These abstractions must handle
various memory types (registered, pinned, unified) and their specific access pat-
terns. Data layouts often require transformation between hardware-preferred
formats - for instance, between row-major and column-major matrix layouts,
or between interleaved and planar image formats. The memory system must
also manage alignment requirements, which can vary from 4-byte alignment
on CPUs to 128-byte alignment on some accelerators. Additionally, it handles
cache coherency issues when multiple execution units access the same data.

ExecutionControl. Execution control operations coordinate computation across
multiple execution units and memory spaces. This includes managing exe-
cution queues, handling event dependencies, and controlling asynchronous
operations. Modern hardware often supports multiple execution streams that
can operate concurrently. For example, independent GPU streams or CPU
thread pools. The execution controller must manage these streams, handle
synchronization points, and ensure correct ordering of dependent operations.
It must also provide error handling and recovery mechanisms for hardware-
specific failures.

7.3.6.2 Basic Numerical Operations
Building upon hardware abstractions, frameworks implement fundamental
numerical operations that form the building blocks of machine learning compu-
tations. These operations must balance mathematical precision with computa-
tional efÏciency. General Matrix Multiply (GEMM) operations, which dominate
the computational cost of most machine learning workloads. GEMM operations
follow the pattern C = 𝛼AB + 𝛽C, where A, B, and C are matrices, and 𝛼 and 𝛽
are scaling factors.

The implementation of GEMM operations requires sophisticated optimiza-
tion techniques. These include blocking13 for cache efÏciency, where matrices
are divided into smaller tiles that fit in cache memory; loop unrolling14 to
increase instruction-level parallelism; and specialized implementations for dif-
ferent matrix shapes and sparsity patterns. For example, fully-connected neural
network layers typically use regular dense GEMM operations, while convolu-
tional layers often employ specialized GEMM variants that exploit input locality
patterns.

Beyond GEMM, frameworks must efÏciently implement BLAS operations
such as vector addition (AXPY), matrix-vector multiplication (GEMV), and

https://developer.nvidia.com/cublas

Chapter 7. AI Frameworks 265

15 Gradient checkpointing: A
memory-saving optimization tech-
nique that stores a limited set of in-
termediate activations during the
forward pass and recomputes the
others during the backward pass to
reduce memory usage.

various reduction operations. These operations require different optimization
strategies. AXPY operations are typically memory-bandwidth limited, while
GEMV operations must balance memory access patterns with computational
efÏciency.

Element-wise operations form another critical category, including both basic
arithmetic operations (addition, multiplication) and transcendental functions
(exponential, logarithm, trigonometric functions). While conceptually simpler
than GEMM, these operations present significant optimization opportunities
through vectorization and operation fusion. For example, multiple element-
wise operations can often be fused into a single kernel to reduce memory
bandwidth requirements. The efÏciency of these operations becomes particu-
larly important in neural network activation functions and normalization layers,
where they process large volumes of data.

Modern frameworks must also handle operations with varying numerical
precision requirements. For example, training often requires 32-bit floating-
point precision for numerical stability, while inference can often use reduced
precision formats like 16-bit floating-point or even 8-bit integers. Frameworks
must therefore provide efÏcient implementations across multiple numerical
formats while maintaining acceptable accuracy.

7.3.6.3 System-Level Operations

System-level operations build upon the previously discussed computational
graph abstractions, hardware abstractions, and numerical operations to manage
overall computation flow and resource utilization. These operations handle
three critical aspects: operation scheduling, memory management, and resource
optimization.

Operation scheduling leverages the computational graph structure discussed
earlier to determine execution ordering. Building on the static or dynamic
graph representation, the scheduler must identify parallelization opportunities
while respecting dependencies. The implementation challenges differ between
static graphs, where the entire dependency structure is known in advance, and
dynamic graphs, where dependencies emerge during execution. The scheduler
must also handle advanced execution patterns like conditional operations and
loops that create dynamic control flow within the graph structure.

Memory management implements sophisticated strategies for allocating and
deallocating memory resources across the computational graph. Different
data types require different management strategies. Model parameters typi-
cally persist throughout execution and may require specific memory types for
efÏcient access. Intermediate results have bounded lifetimes defined by the
operation graph. For example, activation values are needed only during the
backward pass. The memory manager employs techniques like reference count-
ing for automatic cleanup, memory pooling to reduce allocation overhead, and
workspace management for temporary buffers. It must also handle memory
fragmentation, particularly in long-running training sessions where allocation
patterns can change over time.

Resource optimization integrates scheduling and memory decisions to maxi-
mize performance within system constraints. A key optimization is gradient

7.4. Framework Components 266

checkpointing15, where some intermediate results are discarded and recom-
puted rather than stored, trading computation time for memory savings. The
optimizer must also manage concurrent execution streams, balancing load
across available compute units while respecting dependencies. For operations
with multiple possible implementations, it selects between alternatives based
on runtime conditions - for instance, choosing between matrix multiplication
algorithms based on matrix shapes and system load.

Together, these operational layers build upon the computational graph foun-
dation to execute machine learning workloads efÏciently while abstracting
implementation complexity from model developers. The interaction between
these layers determines overall system performance and sets the foundation
for advanced optimization techniques discussed in subsequent chapters.

7.4 Framework Components
Machine learning frameworks organize their fundamental capabilities into
distinct components that work together to provide a complete development and
deployment environment. These components create layers of abstraction that
make frameworks both usable for high-level model development and efÏcient
for low-level execution. Understanding how these components interact helps
developers choose and use frameworks effectively.

7.4.1 APIs and Abstractions
The API layer of machine learning frameworks provides the primary interface
through which developers interact with the framework’s capabilities. This layer
must balance multiple competing demands: it must be intuitive enough for
rapid development, flexible enough to support diverse use cases, and efÏcient
enough to enable high-performance implementations.

Modern framework APIs typically implement multiple levels of abstraction.
At the lowest level, they provide direct access to tensor operations and com-
putational graph construction. These low-level APIs expose the fundamental
operations discussed in the previous section, allowing fine-grained control over
computation. For example, frameworks like PyTorch and TensorFlow offer such
low-level interfaces, enabling researchers to define custom computations and
explore novel algorithms (Paszke et al. 2019; Martı́n Abadi, Barham, et al. 2016),
as illustrated in Listing 7.32.

Building on these primitives, frameworks implement higher-level APIs that
package common patterns into reusable components. Neural network layers
represent a classic example, although a convolution operation could be imple-
mented manually using basic tensor operations, frameworks provide pre-built
layer abstractions that handle the implementation details. This approach is
exemplified by libraries such as PyTorch’s torch.nn and TensorFlow’s Keras
API, which enable efÏcient and user-friendly model development (Chollet 2018),
as shown in Listing 7.33.

At the highest level (Listing 7.34), frameworks often provide model-level
abstractions that automate common workflows. For example, the Keras API
provides a highly abstract interface that hides most implementation details:

Chapter 7. AI Frameworks 267

Listing 7.32: Manual computation with PyTorch low-level API

import torch

Manual tensor operations
x = torch.randn(2, 3)
w = torch.randn(3, 4)
b = torch.randn(4)
y = torch.matmul(x, w) + b

Manual gradient computation
y.backward(torch.ones_like(y))

Listing 7.33: Mid-level abstraction using PyTorch modules

import torch.nn as nn

class SimpleNet(nn.Module):
def __init__(self):

super().__init__()
self.conv = nn.Conv2d(3, 64, kernel_size=3)
self.fc = nn.Linear(64, 10)

def forward(self, x):
x = self.conv(x)
x = torch.relu(x)
x = self.fc(x)
return x

The organization of these API layers reflects fundamental trade-offs in frame-
work design. Lower-level APIs provide maximum flexibility but require more
expertise to use effectively. Higher-level APIs improve developer productivity
but may constrain implementation choices. Framework APIs must therefore
provide clear paths between abstraction levels, allowing developers to mix dif-
ferent levels of abstraction as needed for their specific use cases.## Framework
Components

Machine learning frameworks organize their fundamental capabilities into
distinct components that work together to provide a complete development and
deployment environment. These components create layers of abstraction that
make frameworks both usable for high-level model development and efÏcient
for low-level execution. Understanding how these components interact helps
developers choose and use frameworks effectively.

7.4. Framework Components 268

Listing 7.34: High-level model definition and training with Keras

from tensorflow import keras

model = keras.Sequential([
keras.layers.Conv2D(

64,
3,
activation='relu',
input_shape=(32, 32, 3)),

keras.layers.Flatten(),
keras.layers.Dense(10)

])

Automated training workflow
model.compile(

optimizer='adam',
loss='sparse_categorical_crossentropy')

model.fit(train_data, train_labels, epochs=10)

7.4.2 Core Libraries

At the heart of every machine learning framework lies a set of core libraries,
forming the foundation upon which all other components are built. These
libraries provide the essential building blocks for machine learning operations,
implementing fundamental tensor operations that serve as the backbone of
numerical computations. Heavily optimized for performance, these operations
often leverage low-level programming languages and hardware-specific op-
timizations to ensure efÏcient execution of tasks like matrix multiplication, a
cornerstone of neural network computations.

Alongside these basic operations, core libraries implement automatic dif-
ferentiation capabilities, enabling the efÏcient computation of gradients for
complex functions. This feature is crucial for the backpropagation algorithm
that powers most neural network training. The implementation often involves
intricate graph manipulation and symbolic computation techniques, abstracting
away the complexities of gradient calculation from the end-user.

Building upon these fundamental operations, core libraries typically provide
pre-implemented neural network layers such as convolutional, recurrent, and
attention mechanisms. These ready-to-use components save developers from
reinventing the wheel for common model architectures, allowing them to focus
on higher-level model design rather than low-level implementation details.
Similarly, optimization algorithms like various flavors of gradient descent are
provided out-of-the-box, further streamlining the model development process.

A simplified example of how these components might be used in practice is
shown in Listing 7.35.

Chapter 7. AI Frameworks 269

Listing 7.35: Basic example of model training with gradient update

import torch
import torch.nn as nn

Create a simple neural network
model = nn.Sequential(

nn.Linear(10, 20),
nn.ReLU(),
nn.Linear(20, 1)

)

Define loss function and optimizer
loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

Forward pass, compute loss, and backward pass
x = torch.randn(32, 10)
y = torch.randn(32, 1)
y_pred = model(x)
loss = loss_fn(y_pred, y)
loss.backward()
optimizer.step()

This example demonstrates how core libraries provide high-level abstractions
for model creation, loss computation, and optimization, while handling low-
level details internally.

7.4.3 Extensions and Plugins

While core libraries offer essential functionality, the true power of modern
machine learning frameworks often lies in their extensibility. Extensions and
plugins expand the capabilities of frameworks, allowing them to address spe-
cialized needs and leverage cutting-edge research. Domain-specific libraries,
for instance, cater to particular areas like computer vision or natural language
processing, providing pre-trained models, specialized data augmentation tech-
niques, and task-specific layers.

Hardware acceleration plugins play an important role in performance opti-
mization as it enables frameworks to take advantage of specialized hardware
like GPUs or TPUs. These plugins dramatically speed up computations and
allow seamless switching between different hardware backends, a key feature
for scalability and flexibility in modern machine learning workflows.

As models and datasets grow in size and complexity, distributed computing
extensions also become important. These tools enable training across multiple
devices or machines, handling complex tasks like data parallelism, model
parallelism, and synchronization between compute nodes. This capability is

7.5. System Integration 270

essential for researchers and companies tackling large-scale machine learning
problems.

Complementing these computational tools are visualization and experiment
tracking extensions. Visualization tools provide invaluable insights into the
training process and model behavior, displaying real-time metrics and even
offering interactive debugging capabilities. Experiment tracking extensions
help manage the complexity of machine learning research, allowing systematic
logging and comparison of different model configurations and hyperparame-
ters.

7.4.4 Development Tools
The ecosystem of development tools surrounding a machine learning frame-
work further enhances its effectiveness and adoption. Interactive development
environments, such as Jupyter notebooks, have become nearly ubiquitous in
machine learning workflows, allowing for rapid prototyping and seamless in-
tegration of code, documentation, and outputs. Many frameworks provide
custom extensions for these environments to enhance the development experi-
ence.

Debugging and profiling tools address the unique challenges presented by
machine learning models. Specialized debuggers allow developers to inspect
the internal state of models during training and inference, while profiling
tools identify bottlenecks in model execution, guiding optimization efforts.
These tools are essential for developing efÏcient and reliable machine learning
systems.

As projects grow in complexity, version control integration becomes increas-
ingly important. Tools that allow versioning of not just code, but also model
weights, hyperparameters, and training data, help manage the iterative na-
ture of model development. This comprehensive versioning approach ensures
reproducibility and facilitates collaboration in large-scale machine learning
projects.

Finally, deployment utilities bridge the gap between development and pro-
duction environments. These tools handle tasks like model compression, con-
version to deployment-friendly formats, and integration with serving infras-
tructure, streamlining the process of moving models from experimental settings
to real-world applications.

7.5 System Integration
System integration is about implementing machine learning frameworks in
real-world environments. This section explores how ML frameworks integrate
with broader software and hardware ecosystems, addressing the challenges
and considerations at each level of the integration process.

7.5.1 Hardware Integration
Effective hardware integration is crucial for optimizing the performance of
machine learning models. Modern ML frameworks must adapt to a diverse

Chapter 7. AI Frameworks 271

range of computing environments, from high-performance GPU clusters to
resource-constrained edge devices.

For GPU acceleration, frameworks like TensorFlow and PyTorch provide
robust support, allowing seamless utilization of NVIDIA’s CUDA platform.
This integration enables significant speedups in both training and inference
tasks. Similarly, support for Google’s TPUs in TensorFlow allows for even
further acceleration of specific workloads.

In distributed computing scenarios, frameworks must efÏciently manage
multi-device and multi-node setups. This involves strategies for data paral-
lelism, where the same model is replicated across devices, and model paral-
lelism, where different parts of the model are distributed across hardware units.
Frameworks like Horovod have emerged to simplify distributed training across
different backend frameworks.

For edge deployment, frameworks are increasingly offering lightweight ver-
sions optimized for mobile and IoT devices. TensorFlow Lite and PyTorch
Mobile, for instance, provide tools for model compression and optimization,
ensuring efÏcient execution on devices with limited computational resources
and power constraints.

7.5.2 Software Stack
Integrating ML frameworks into existing software stacks presents unique chal-
lenges and opportunities. A key consideration is how the ML system interfaces
with data processing pipelines. Frameworks often provide connectors to popu-
lar big data tools like Apache Spark or Apache Beam, allowing seamless data
flow between data processing systems and ML training environments.

Containerization technologies like Docker have become essential in ML work-
flows, ensuring consistency between development and production environ-
ments. Kubernetes has emerged as a popular choice for orchestrating con-
tainerized ML workloads, providing scalability and manageability for complex
deployments.

ML frameworks must also interface with other enterprise systems such as
databases, message queues, and web services. For instance, TensorFlow Serving
provides a flexible, high-performance serving system for machine learning
models, which can be easily integrated into existing microservices architectures.

7.5.3 Deployment Considerations
Deploying ML models to production environments involves several critical
considerations. Model serving strategies must balance performance, scalability,
and resource efÏciency. Approaches range from batch prediction for large-scale
ofÒine processing to real-time serving for interactive applications.

Scaling ML systems to meet production demands often involves techniques
like horizontal scaling of inference servers, caching of frequent predictions, and
load balancing across multiple model versions. Frameworks like TensorFlow
Serving and TorchServe provide built-in solutions for many of these scaling
challenges.

Monitoring and logging are crucial for maintaining ML systems in production.
This includes tracking model performance metrics, detecting concept drift,

7.6. Major Frameworks 272

and logging prediction inputs and outputs for auditing purposes. Tools like
Prometheus and Grafana are often integrated with ML serving systems to
provide comprehensive monitoring solutions.

7.5.4 Workflow Orchestration
Managing end-to-end ML pipelines requires orchestrating multiple stages, from
data preparation and model training to deployment and monitoring. MLOps
practices have emerged to address these challenges, bringing DevOps principles
to machine learning workflows.

Continuous Integration and Continuous Deployment (CI/CD) practices are
being adapted for ML workflows. This involves automating model testing,
validation, and deployment processes. Tools like Jenkins or GitLab CI can be
extended with ML-specific stages to create robust CI/CD pipelines for machine
learning projects.

Automated model retraining and updating is another critical aspect of ML
workflow orchestration. This involves setting up systems to automatically
retrain models on new data, evaluate their performance, and seamlessly update
production models when certain criteria are met. Frameworks like Kubeflow
provide end-to-end ML pipelines that can automate many of these processes.
Figure 7.15 shows an example orchestration flow, where a user submitts DAGs,
or directed acyclic graphs of workloads to process and train to be executed.

Version control for ML assets, including data, model architectures, and hyper-
parameters, is essential for reproducibility and collaboration. Tools like DVC
(Data Version Control) and MLflow have emerged to address these ML-specific
version control needs.

Figure 7.15: Diagram showing how
a data engineer might interact with
AirFlow, an example orchestration
service, in scheduling tasks, execut-
ing them across distributed workers,
and visualizing the results.

Scheduler Execulor

WorkerWebserver

Monitors DAG runs

and results

Writes DAG

Visualizes runs and results

Reads DAGs

Tracks and syncs tasks

Stores resultsGets runs and results

Schedules tasks

Assigns tasks

Metadata database

DAG folderData engineer

Airflow UI

7.6 Major Frameworks
As we have seen earlier, machine learning frameworks are complicated. Over
the years, several machine learning frameworks have emerged, each with its

Chapter 7. AI Frameworks 273

16 A data flow graph is a directed
graph where nodes represent opera-
tions and edges represent data flow-
ing between operations.

17 In federated learning, mul-
tiple entities (referred to as clients)
train a model on their local datasets
which ensures their data remains de-
centralized. This technique in ML
is motivated by issues such as data
privacy and data minimization. The
assumption that the data is indepen-
dently and identically distributed is
no longer valid in federated learn-
ing which may cause biased local
models.

unique strengths and ecosystem, but few have remained as industry standards.
Here we examine the mature and major players in the field, starting with a
comprehensive look at TensorFlow, followed by PyTorch, JAX, and other notable
frameworks.

7.6.1 TensorFlow Ecosystem
TensorFlow was developed by the Google Brain team and was released as
an open-source software library on November 9, 2015. It was designed for
numerical computation using data flow graphs16 and has since become popular
for a wide range of machine learning applications.

TensorFlow is a training and inference framework that provides built-in
functionality to handle everything from model creation and training to deploy-
ment, as shown in Figure 7.16. Since its initial development, the TensorFlow
ecosystem has grown to include many different “varieties” of TensorFlow, each
intended to allow users to support ML on different platforms.

1. TensorFlow Core: primary package that most developers engage with. It
provides a comprehensive, flexible platform for defining, training, and
deploying machine learning models. It includes tf.keras as its high-level
API.

2. TensorFlow Lite: designed for deploying lightweight models on mobile,
embedded, and edge devices. It offers tools to convert TensorFlow mod-
els to a more compact format suitable for limited-resource devices and
provides optimized pre-trained models for mobile.

3. TensorFlow Lite Micro: designed for running machine learning models
on microcontrollers with minimal resources. It operates without the need
for operating system support, standard C or C++ libraries, or dynamic
memory allocation, using only a few kilobytes of memory.

4. TensorFlow.js: JavaScript library that allows training and deployment
of machine learning models directly in the browser or on Node.js. It
also provides tools for porting pre-trained TensorFlow models to the
browser-friendly format.

5. TensorFlow on Edge Devices (Coral): platform of hardware components
and software tools from Google that allows the execution of TensorFlow
models on edge devices, leveraging Edge TPUs for acceleration.

6. TensorFlow Federated (TFF): framework for machine learning and other
computations on decentralized data. TFF facilitates federated learning,17

allowing model training across many devices without centralizing the
data.

7. TensorFlow Graphics: library for using TensorFlow to carry out graphics-
related tasks, including 3D shapes and point clouds processing, using
deep learning.

8. TensorFlow Hub: repository of reusable machine learning model com-
ponents to allow developers to reuse pre-trained model components,
facilitating transfer learning and model composition.

9. TensorFlow Serving: framework designed for serving and deploying
machine learning models for inference in production environments. It

https://www.tensorflow.org/tutorials
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/js
https://developers.googleblog.com/2019/03/introducing-coral-our-platform-for.html
https://www.tensorflow.org/federated
https://www.tensorflow.org/graphics
https://www.tensorflow.org/hub
https://www.tensorflow.org/tfx/guide/serving

7.6. Major Frameworks 274

provides tools for versioning and dynamically updating deployed models
without service interruption.

10. TensorFlow Extended (TFX): end-to-end platform designed to deploy
and manage machine learning pipelines in production settings. TFX
encompasses data validation, preprocessing, model training, validation,
and serving components.

Figure 7.16: Architecture overview
of TensorFlow 2.0. Source: Tensor-
flow.

Read & Preprocess Data

tf.data, feature columns

tf.keras
Premade

Estimators

TensorFlow

Hub

Distribution Strategy

CPU TPUGPU

SavedMode

TensorFlow Serving

Cloud, on-prem

TensorFlow Lite

Android, iOS, Raspberry Pi

TensorFlow.js

Browser and Node Server

Other Language Bindings

C, Java, Go, C#, Rust, R,. . .

TRAINING DEPLOYMENT

7.6.2 PyTorch
PyTorch, developed by Facebook’s AI Research lab, has gained significant
traction in the machine learning community, particularly among researchers
and academics. Its design philosophy emphasizes ease of use, flexibility, and
dynamic computation, which aligns well with the iterative nature of research
and experimentation.

PyTorch’s architecture lies its dynamic computational graph system. Unlike
the static graphs used in earlier versions of TensorFlow, PyTorch builds the
computational graph on-the-fly during execution. This approach, often re-
ferred to as “define-by-run,” allows for more intuitive model design and easier
debugging that we discussed earlier. Moreover, developers can use standard
Python control flow statements within their models, and the graph structure
can change from iteration to iteration. This flexibility is particularly advanta-
geous when working with variable-length inputs or complex, dynamic neural
network architectures.

PyTorch’s eager execution mode is tightly coupled with its dynamic graph
approach. Operations are executed immediately as they are called, rather than
being deferred for later execution in a static graph. This immediate execu-
tion facilitates easier debugging and allows for more natural integration with
Python’s native debugging tools. The eager execution model aligns closely with
PyTorch’s imperative programming style, which many developers find more
intuitive and Pythonic.

PyTorch’s fundamental data structure is the tensor, similar to TensorFlow and
other frameworks discussed in earlier sections. PyTorch tensors are conceptually

https://www.tensorflow.org/tfx
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html

Chapter 7. AI Frameworks 275

equivalent to multi-dimensional arrays and can be manipulated using a rich set
of operations. The framework provides seamless integration with CUDA, much
like TensorFlow, enabling efÏcient GPU acceleration for tensor computations.
PyTorch’s autograd system automatically tracks all operations performed on
tensors, facilitating automatic differentiation for gradient-based optimization
algorithms.

7.6.3 JAX
JAX, developed by Google Research, is a newer entrant in the field of machine
learning frameworks. Unlike TensorFlow and PyTorch, which were primar-
ily designed for deep learning, JAX focuses on high-performance numerical
computing and advanced machine learning research. Its design philosophy
centers around functional programming principles and composition of trans-
formations, offering a fresh perspective on building and optimizing machine
learning systems.

JAX is built as a NumPy-like library with added capabilities for automatic
differentiation and just-in-time compilation. This foundation makes JAX feel
familiar to researchers accustomed to scientific computing in Python, while
providing powerful tools for optimization and acceleration. Where TensorFlow
uses static computational graphs and PyTorch employs dynamic ones, JAX takes
a different approach altogether, as it is a system for transforming numerical
functions.

One of JAX’s key features is its powerful automatic differentiation system.
Unlike TensorFlow’s static graph approach or PyTorch’s dynamic computation,
JAX can differentiate native Python and NumPy functions, including those with
loops, branches, and recursion. This capability extends beyond simple scalar-
to-scalar functions, allowing for complex transformations like vectorization
and JIT compilation. This flexibility is particularly valuable for researchers
exploring novel machine learning techniques and architectures.

JAX leverages XLA (Accelerated Linear Algebra) for just-in-time compilation,
similar to TensorFlow but with a more central role in its operation. This allows
JAX to optimize and compile Python code for various hardware accelerators,
including GPUs and TPUs. In contrast to PyTorch’s eager execution and Tensor-
Flow’s graph optimization, JAX’s approach can lead to significant performance
improvements, especially for complex computational patterns.

Where TensorFlow and PyTorch primarily use object-oriented and imperative
programming models, JAX embraces functional programming. This approach
encourages the use of pure functions and immutable data, which can lead to
more predictable and easier-to-optimize code. It’s a significant departure from
the stateful models common in other frameworks and can require a shift in
thinking for developers accustomed to TensorFlow or PyTorch.

JAX introduces a set of composable function transformations that set it apart
from both TensorFlow and PyTorch. These include automatic differentiation
(grad), just-in-time compilation, automatic vectorization (vmap), and paral-
lel execution across multiple devices (pmap). These transformations can be
composed, allowing for powerful and flexible operations that are not as straight-
forward in other frameworks.

7.7. Framework Specialization 276

7.6.4 Framework Comparison
Table 7.3 provides a concise comparison of three major machine learning frame-
works: TensorFlow, PyTorch, and JAX. These frameworks, while serving similar
purposes, exhibit fundamental differences in their design philosophies and
technical implementations.

Table 7.3: Core characteristics of major machine learning frameworks.

Aspect TensorFlow PyTorch JAX

Graph Type Static (1.x), Dynamic (2.x) Dynamic Functional
transformations

Programming Model Imperative (2.x), Symbolic
(1.x)

Imperative Functional

Core Data Structure Tensor (mutable) Tensor (mutable) Array (immutable)
Execution Mode Eager (2.x default), Graph Eager Just-in-time compilation
Automatic
Differentiation

Reverse mode Reverse mode Forward and Reverse
mode

Hardware Acceleration CPU, GPU, TPU CPU, GPU CPU, GPU, TPU

7.7 Framework Specialization
Machine learning frameworks have evolved significantly to meet the diverse
needs of different computational environments. As ML applications expand
beyond traditional data centers to encompass edge devices, mobile platforms,
and even tiny microcontrollers, the need for specialized frameworks has become
increasingly apparent.

Framework specialization refers to the process of tailoring ML frameworks to
optimize performance, efÏciency, and functionality for specific deployment en-
vironments. This specialization is crucial because the computational resources,
power constraints, and use cases vary dramatically across different platforms.

Machine learning frameworks have addressed interoperability challenges
through standardized model formats, with the Open Neural Network Exchange
(ONNX) emerging as a widely adopted solution. ONNX defines a common
representation for neural network models that enables seamless translation
between different frameworks and deployment environments.

The ONNX format serves two primary purposes. First, it provides a framework-
neutral specification for describing model architecture and parameters. Second,
it includes runtime implementations that can execute these models across di-
verse hardware platforms. This standardization eliminates the need to manually
convert or reimplement models when moving between frameworks.

In practice, ONNX facilitates important workflow patterns in production
machine learning systems. For example, a research team might develop and
train a model using PyTorch’s dynamic computation graphs, then export it
to ONNX for deployment using TensorFlow’s production-optimized serving
infrastructure. Similarly, models can be converted to ONNX format for exe-
cution on edge devices using specialized runtimes like ONNX Runtime. This
interoperability, illustrated in Figure 7.17, has become increasingly important as
the machine learning ecosystem has expanded. Organizations frequently need
to leverage different frameworks’ strengths at various stages of the machine
learning lifecycle, from research and development.

Chapter 7. AI Frameworks 277

Figure 7.17: Interoperability en-
abled by ONNX across major ML
frameworks.

Machine learning deployment environments shape how frameworks special-
ize and evolve. Cloud ML environments leverage high-performance servers
that offer abundant computational resources for complex operations. Edge
ML operates on devices with moderate computing power, where real-time
processing often takes priority. Mobile ML adapts to the varying capabilities
and energy constraints of smartphones and tablets. Tiny ML functions within
the strict limitations of microcontrollers and other highly constrained devices
that possess minimal resources.

Each of these environments presents unique challenges that influence frame-
work design. Cloud frameworks prioritize scalability and distributed com-
puting. Edge frameworks focus on low-latency inference and adaptability to
diverse hardware. Mobile frameworks emphasize energy efÏciency and integra-
tion with device-specific features. TinyML frameworks specialize in extreme
resource optimization for severely constrained environments.

In the following sections, we will explore how ML frameworks adapt to
each of these environments. We will examine the specific techniques and
design choices that enable frameworks to address the unique challenges of
each domain, highlighting the trade-offs and optimizations that characterize
framework specialization.

7.7.1 Cloud-Based Frameworks
Cloud ML frameworks are sophisticated software infrastructures designed to
leverage the vast computational resources available in cloud environments.

7.7. Framework Specialization 278

18 A process of adjusting
computations to use reduced nu-
merical precision, balancing perfor-
mance improvements with accept-
able losses in accuracy.

These frameworks specialize in three primary areas: distributed computing
architectures, management of large-scale data and models, and integration
with cloud-native services.

Distributed computing is a fundamental specialization of cloud ML frame-
works. These frameworks implement advanced strategies for partitioning and
coordinating computational tasks across multiple machines or graphics pro-
cessing units (GPUs). This capability is essential for training large-scale models
on massive datasets. Both TensorFlow and PyTorch, two leading cloud ML
frameworks, offer robust support for distributed computing. TensorFlow’s
graph-based approach (in its 1.x version) was particularly well-suited for dis-
tributed execution, while PyTorch’s dynamic computational graph allows for
more flexible distributed training strategies.

The ability to handle large-scale data and models is another key specializa-
tion. Cloud ML frameworks are optimized to work with datasets and models
that far exceed the capacity of single machines. This specialization is reflected
in the data structures of these frameworks. For instance, both TensorFlow
and PyTorch use mutable Tensor objects as their primary data structure, al-
lowing for efÏcient in-place operations on large datasets. JAX, a more recent
framework, uses immutable arrays, which can provide benefits in terms of func-
tional programming paradigms and optimization opportunities in distributed
settings.

Integration with cloud-native services is the third major specialization area.
This integration enables automated resource scaling, seamless access to cloud
storage, and incorporation of cloud-based monitoring and logging systems. The
execution modes of different frameworks play a role here. TensorFlow 2.x and
PyTorch both default to eager execution, which allows for easier integration with
cloud services and debugging. JAX’s just-in-time compilation offers potential
performance benefits in cloud environments by optimizing computations for
specific hardware.

Hardware acceleration is an important aspect of cloud ML frameworks. All
major frameworks support CPU and GPU execution, with TensorFlow and
JAX also offering native support for Google’s TPU. NVIDIA’s TensorRT is an
optimization tool dedicated for GPU-based inference, providing sophisticated
optimizations like layer fusion, precision calibration18, and kernel auto-tuning to
maximize throughput on NVIDIA GPUs. These hardware acceleration options
allow cloud ML frameworks to efÏciently utilize the diverse computational
resources available in cloud environments.

The automatic differentiation capabilities of these frameworks are particularly
important in cloud settings where complex models with millions of parameters
are common. While TensorFlow and PyTorch primarily use reverse-mode
differentiation, JAX’s support for both forward and reverse-mode differentiation
can offer advantages in certain large-scale optimization scenarios.

These specializations enable cloud ML frameworks to fully utilize the scalabil-
ity and computational power of cloud infrastructure. However, this capability
comes with increased complexity in deployment and management, often re-
quiring specialized knowledge to fully leverage these frameworks. The focus on
scalability and integration makes cloud ML frameworks particularly suitable

https://developer.nvidia.com/tensorrt

Chapter 7. AI Frameworks 279

for large-scale research projects, enterprise-level ML applications, and scenarios
requiring massive computational resources.

7.7.2 Edge-Based Frameworks

Edge ML frameworks are specialized software tools designed to facilitate ma-
chine learning operations in edge computing environments, characterized by
proximity to data sources, stringent latency requirements, and limited computa-
tional resources. Examples of popular edge ML frameworks include TensorFlow
Lite and Edge Impulse. The specialization of these frameworks addresses three
primary challenges: real-time inference optimization, adaptation to heteroge-
neous hardware, and resource-constrained operation.

Real-time inference optimization is a critical feature of edge ML frameworks.
This often involves leveraging different execution modes and graph types. For
instance, while TensorFlow Lite (the edge-focused version of TensorFlow) uses
a static graph approach to optimize inference, frameworks like PyTorch Mobile
maintain a dynamic graph capability, allowing for more flexible model struc-
tures at the cost of some performance. The choice between static and dynamic
graphs in edge frameworks often is a trade-off between optimization potential
and model flexibility.

Adaptation to heterogeneous hardware is crucial for edge deployments. Edge
ML frameworks extend the hardware acceleration capabilities of their cloud
counterparts but with a focus on edge-specific hardware. For instance, Ten-
sorFlow Lite supports acceleration on mobile GPUs and edge TPUs, while
frameworks like ARM’s Compute Library optimize for ARM-based proces-
sors. This specialization often involves custom operator implementations and
low-level optimizations specific to edge hardware.

Operating within resource constraints is another aspect of edge ML frame-
work specialization. This is reflected in the data structures and execution
models of these frameworks. For instance, many edge frameworks use quan-
tized tensors as their primary data structure, representing values with reduced
precision (e.g., 8-bit integers instead of 32-bit floats) to decrease memory usage
and computational demands. The automatic differentiation capabilities, while
crucial for training in cloud environments, are often stripped down or removed
entirely in edge frameworks to reduce model size and improve inference speed.

Edge ML frameworks also often include features for model versioning and
updates, allowing for the deployment of new models with minimal system
downtime. Some frameworks support limited on-device learning, enabling
models to adapt to local data without compromising data privacy.

The specializations of edge ML frameworks collectively enable high-performance
inference in resource-constrained environments. This capability expands the
potential applications of AI in areas with limited cloud connectivity or where
real-time processing is crucial. However, effective utilization of these frame-
works requires careful consideration of target hardware specifications and
application-specific requirements, necessitating a balance between model accu-
racy and resource utilization.

https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.edgeimpulse.com
https://pytorch.org/mobile/home/
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides

7.7. Framework Specialization 280

7.7.3 Mobile-Based Frameworks

Mobile ML frameworks are specialized software tools designed for deploying
and executing machine learning models on smartphones and tablets. Examples
include TensorFlow Lite and Apple’s Core ML. These frameworks address the
unique challenges of mobile environments, including limited computational re-
sources, constrained power consumption, and diverse hardware configurations.
The specialization of mobile ML frameworks primarily focuses on on-device
inference optimization, energy efÏciency, and integration with mobile-specific
hardware and sensors.

On-device inference optimization in mobile ML frameworks often involves a
careful balance between graph types and execution modes. For instance, Tensor-
Flow Lite, also a popular mobile ML framework, uses a static graph approach
to optimize inference performance. This contrasts with the dynamic graph
capability of PyTorch Mobile, which offers more flexibility at the cost of some
performance. The choice between static and dynamic graphs in mobile frame-
works is a trade-off between optimization potential and model adaptability,
crucial in the diverse and changing mobile environment.

The data structures in mobile ML frameworks are optimized for efÏcient
memory usage and computation. While cloud-based frameworks like Ten-
sorFlow and PyTorch use mutable tensors, mobile frameworks often employ
more specialized data structures. For example, many mobile frameworks use
quantized tensors, representing values with reduced precision (e.g., 8-bit inte-
gers instead of 32-bit floats) to decrease memory footprint and computational
demands. This specialization is critical given the limited RAM and processing
power of mobile devices.

Energy efÏciency, a paramount concern in mobile environments, influences
the design of execution modes in mobile ML frameworks. Unlike cloud frame-
works that may use eager execution for ease of development, mobile frameworks
often prioritize graph-based execution for its potential energy savings. For in-
stance, Apple’s Core ML uses a compiled model approach, converting ML
models into a form that can be efÏciently executed by iOS devices, optimizing
for both performance and energy consumption.

Integration with mobile-specific hardware and sensors is another key spe-
cialization area. Mobile ML frameworks extend the hardware acceleration
capabilities of their cloud counterparts but with a focus on mobile-specific
processors. For example, TensorFlow Lite can leverage mobile GPUs and neural
processing units (NPUs) found in many modern smartphones. Qualcomm’s
Neural Processing SDK is designed to efÏciently utilize the AI accelerators
present in Snapdragon SoCs. This hardware-specific optimization often in-
volves custom operator implementations and low-level optimizations tailored
for mobile processors.

Automatic differentiation, while crucial for training in cloud environments,
is often minimized or removed entirely in mobile frameworks to reduce model
size and improve inference speed. Instead, mobile ML frameworks focus on
efÏcient inference, with model updates typically performed off-device and then
deployed to the mobile application.

https://developer.apple.com/documentation/coreml/

Chapter 7. AI Frameworks 281

19 In 2015, Google released Ten-
sorFlow which was primarily de-
signed for the cloud. In response the
need for embedded ML frameworks,
they released TensorFlow Lite Micro
in 2019.

Mobile ML frameworks also often include features for model updating and
versioning, allowing for the deployment of improved models without requir-
ing full app updates. Some frameworks support limited on-device learning,
enabling models to adapt to user behavior or environmental changes without
compromising data privacy.

The specializations of mobile ML frameworks collectively enable the de-
ployment of sophisticated ML models on resource-constrained mobile devices.
This expands the potential applications of AI in mobile environments, ranging
from real-time image and speech recognition to personalized user experiences.
However, effectively utilizing these frameworks requires careful consideration
of the target device capabilities, user experience requirements, and privacy
implications, necessitating a balance between model performance and resource
utilization.

7.7.4 TinyML Frameworks
TinyML frameworks are specialized software infrastructures designed for de-
ploying machine learning models on extremely resource-constrained devices,
typically microcontrollers and low-power embedded systems. These frame-
works address the severe limitations in processing power, memory, and en-
ergy consumption characteristic of tiny devices. The specialization of TinyML
frameworks primarily focuses on extreme model compression, optimizations
for severely constrained environments, and integration with microcontroller-
specific architectures.

Extreme model compression in TinyML frameworks takes the quantization
techniques mentioned in mobile and edge frameworks to their logical conclu-
sion. While mobile frameworks might use 8-bit quantization, TinyML often
employs even more aggressive techniques, such as 4-bit, 2-bit, or even 1-bit
(binary) representations of model parameters. Frameworks like TensorFlow
Lite Micro19 exemplify this approach (David et al. 2021), pushing the bound-
aries of model compression to fit within the kilobytes of memory available on
microcontrollers.

The execution model in TinyML frameworks is highly specialized. Unlike
the dynamic graph capabilities seen in some cloud and mobile frameworks,
TinyML frameworks almost exclusively use static, highly optimized graphs. The
just-in-time compilation approach seen in frameworks like JAX is typically not
feasible in TinyML due to memory constraints. Instead, these frameworks often
employ ahead-of-time compilation techniques to generate highly optimized,
device-specific code.

Memory management in TinyML frameworks is far more constrained than
in other environments. While edge and mobile frameworks might use dynamic
memory allocation, TinyML frameworks like uTensor often rely on static mem-
ory allocation to avoid runtime overhead and fragmentation. This approach
requires careful planning of the memory layout at compile time, a stark contrast
to the more flexible memory management in cloud-based frameworks.

Hardware integration in TinyML frameworks is highly specific to microcon-
troller architectures. Unlike the general GPU support seen in cloud frameworks
or the mobile GPU/NPU support in mobile frameworks, TinyML frameworks

https://github.com/uTensor/uTensor

7.8. Framework Selection 282

often provide optimizations for specific microcontroller instruction sets. For
example, ARM’s CMSIS-NN (L. Lai, Suda, and Chandra 2018) provides opti-
mized neural network kernels for Cortex-M series microcontrollers, which are
often integrated into TinyML frameworks.

The concept of automatic differentiation, central to cloud-based frameworks
and present to some degree in edge and mobile frameworks, is typically absent
in TinyML frameworks. The focus is almost entirely on inference, with any
learning or model updates usually performed off-device due to the severe
computational constraints.

TinyML frameworks also specialize in power management to a degree not
seen in other ML environments. Features like duty cycling and ultra-low-power
wake-up capabilities are often integrated directly into the ML pipeline, enabling
always-on sensing applications that can run for years on small batteries.

The extreme specialization of TinyML frameworks enables ML deployments
in previously infeasible environments, from smart dust sensors to implantable
medical devices. However, this specialization comes with significant trade-
offs in model complexity and accuracy, requiring careful consideration of the
balance between ML capabilities and the severe resource constraints of target
devices.

7.8 Framework Selection
Framework selection builds on our understanding of framework specialization
across computing environments. Engineers must evaluate three interdepen-
dent factors when choosing a framework: model requirements, hardware con-
straints, and software dependencies. The TensorFlow ecosystem demonstrates
how these factors shape framework design through its variants: TensorFlow,
TensorFlow Lite, and TensorFlow Lite Micro.

Table 7.4 illustrates key differences between TensorFlow variants. Each vari-
ant represents specific trade-offs between computational capability and resource
requirements. These trade-offs manifest in supported operations, binary size,
and integration requirements.

Table 7.4: TensorFlow framework comparison - General.

Model

Training Yes No No
Inference Yes Yes Yes

(but inefÏcient on
edge)

(and efÏcient) (and even more
efÏcient)

How Many Ops ~1400 ~130 ~50
Native Quantization Tooling + Support No Yes Yes

Engineers analyze three primary aspects when selecting a framework:
1. Model requirements determine which operations and architectures the

framework must support
2. Software dependencies define operating system and runtime require-

ments

Chapter 7. AI Frameworks 283

3. Hardware constraints establish memory and processing limitations

This systematic analysis enables engineers to select frameworks that align
with their deployment requirements. As we examine the TensorFlow variants,
we will explore how each aspect influences framework selection and shapes
the capabilities of deployed machine learning systems.

7.8.1 Model Requirements
Model architecture capabilities vary significantly across TensorFlow variants,
with clear trade-offs between functionality and efÏciency. Table 7.4 quantifies
these differences across four key dimensions: training capability, inference
efÏciency, operation support, and quantization features.

TensorFlow supports approximately 1,400 operations and enables both train-
ing and inference. However, as Table 7.4 indicates, its inference capabilities are
inefÏcient for edge deployment. TensorFlow Lite reduces the operation count
to roughly 130 operations while improving inference efÏciency. It eliminates
training support but adds native quantization tooling. TensorFlow Lite Micro
further constrains the operation set to approximately 50 operations, achieving
even higher inference efÏciency through these constraints. Like TensorFlow
Lite, it includes native quantization support but removes training capabilities.

This progressive reduction in operations enables deployment on increasingly
constrained devices. The addition of native quantization in both TensorFlow
Lite and TensorFlow Lite Micro provides essential optimization capabilities ab-
sent in the full TensorFlow framework. Quantization transforms models to use
lower precision operations, reducing computational and memory requirements
for resource-constrained deployments.

7.8.2 Software Dependencies
Table 7.5 reveals three key software considerations that differentiate TensorFlow
variants: operating system requirements, memory management capabilities,
and accelerator support. These differences reflect each variant’s optimization
for specific deployment environments.

Table 7.5: TensorFlow framework comparison - Software.

Software

Needs an OS Yes Yes No
Memory Mapping of Models No Yes Yes
Delegation to accelerators Yes Yes No

Operating system dependencies mark a fundamental distinction between
variants. TensorFlow and TensorFlow Lite require an operating system, while
TensorFlow Lite Micro operates without OS support. This enables TensorFlow
Lite Micro to reduce memory overhead and startup time, though it can still
integrate with real-time operating systems like FreeRTOS, Zephyr, and Mbed
OS when needed.

7.8. Framework Selection 284

Memory management capabilities also distinguish the variants. TensorFlow
Lite and TensorFlow Lite Micro support model memory mapping, enabling
direct model access from flash storage rather than loading into RAM. Tensor-
Flow lacks this capability, reflecting its design for environments with abundant
memory resources. Memory mapping becomes increasingly important as de-
ployment moves toward resource-constrained devices.

Accelerator delegation capabilities further differentiate the variants. Both
TensorFlow and TensorFlow Lite support delegation to accelerators, enabling
efÏcient computation distribution. TensorFlow Lite Micro omits this feature,
acknowledging the limited availability of specialized accelerators in embedded
systems. This design choice maintains the framework’s minimal footprint while
matching typical embedded hardware configurations.

7.8.3 Hardware Constraints
Table 7.6 quantifies the hardware requirements across TensorFlow variants
through three metrics: base binary size, memory footprint, and processor
architecture support. These metrics demonstrate the progressive optimization
for constrained computing environments.

Table 7.6: TensorFlow framework comparison: Hardware.

Hardware

Base Binary Size 3 MB+ 100 KB ~10 KB
Base Memory Footprint ~5 MB 300 KB 20 KB
Optimized Architectures X86, TPUs, GPUs Arm Cortex A, x86 Arm Cortex M, DSPs, MCUs

Binary size requirements decrease significantly across variants. TensorFlow
requires over 3 MB for its base binary, reflecting its comprehensive feature set.
TensorFlow Lite reduces this to 100 KB by eliminating training capabilities and
unused operations. TensorFlow Lite Micro achieves a remarkable 10 KB binary
size through aggressive optimization and feature reduction.

Memory footprint follows a similar pattern of reduction. TensorFlow requires
approximately 5 MB of base memory, while TensorFlow Lite operates within
300 KB. TensorFlow Lite Micro further reduces memory requirements to 20 KB,
enabling deployment on highly constrained devices.

Processor architecture support aligns with each variant’s intended deploy-
ment environment. TensorFlow supports x86 processors and accelerators in-
cluding TPUs and GPUs, enabling high-performance computing in data centers.
TensorFlow Lite targets mobile and edge processors, supporting Arm Cortex-A
and x86 architectures. TensorFlow Lite Micro specializes in microcontroller
deployment, supporting Arm Cortex-M cores, digital signal processors (DSPs),
and various microcontroller units (MCUs) including STM32, NXP Kinetis, and
Microchip AVR.

7.8.4 Additional Selection Factors
Framework selection for embedded systems extends beyond technical specifica-
tions of model architecture, hardware requirements, and software dependencies.

Chapter 7. AI Frameworks 285

Additional factors affect development efÏciency, maintenance requirements,
and deployment success. These factors require systematic evaluation to ensure
optimal framework selection.

7.8.4.1 Performance Optimization

Performance in embedded systems encompasses multiple metrics beyond com-
putational speed. Framework evaluation must consider:

Inference latency determines system responsiveness and real-time process-
ing capabilities. Memory utilization affects both static storage requirements
and runtime efÏciency. Power consumption impacts battery life and thermal
management requirements. Frameworks must provide optimization tools for
these metrics, including quantization, operator fusion, and hardware-specific
acceleration.

7.8.4.2 Deployment Scalability

Scalability requirements span both technical capabilities and operational con-
siderations. Framework support must extend across deployment scales and
scenarios:

Device scaling enables consistent deployment from microcontrollers to more
powerful embedded processors. Operational scaling supports the transition
from development prototypes to production deployments. Version manage-
ment facilitates model updates and maintenance across deployed devices. The
framework must maintain consistent performance characteristics throughout
these scaling dimensions.

7.9 Conclusion
AI frameworks have evolved from basic numerical libraries into sophisticated
software systems that shape how we develop and deploy machine learning
applications. The progression from early numerical computing to modern deep
learning frameworks demonstrates the field’s rapid technological advancement.

Modern frameworks like TensorFlow, PyTorch, and JAX implement distinct
approaches to common challenges in machine learning development. Each
framework offers varying tradeoffs between ease of use, performance, and
flexibility. TensorFlow emphasizes production deployment, PyTorch focuses on
research and experimentation, while JAX prioritizes functional programming
patterns.

The specialization of frameworks into cloud, edge, mobile, and tiny ML imple-
mentations reflects the diverse requirements of machine learning applications.
Cloud frameworks optimize for scalability and distributed computing. Edge
and mobile frameworks prioritize model efÏciency and reduced resource con-
sumption. TinyML frameworks target constrained environments with minimal
computing resources.

Understanding framework architecture, from tensor operations to execution
models, enables developers to select appropriate tools for specific use cases,
optimize application performance, debug complex computational graphs, and
deploy models across different computing environments.

7.10. Resources 286

The continuing evolution of AI frameworks will likely focus on improving de-
veloper productivity, hardware acceleration, and deployment flexibility. These
advancements will shape how machine learning systems are built and deployed
across increasingly diverse computing environments.

7.10 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 8

AI Training

Figure 8.1: DALL·E 3 Prompt: An il-
lustration for AI training, depicting a
neural network with neurons that are
being repaired and firing. The scene in-
cludes a vast network of neurons, each
glowing and firing to represent activ-
ity and learning. Among these neurons,
small figures resembling engineers and
scientists are actively working, repair-
ing and tweaking the neurons. These
miniature workers symbolize the pro-
cess of training the network, adjust-
ing weights and biases to achieve con-
vergence. The entire scene is a visual
metaphor for the intricate and collabora-
tive effort involved in AI training, with
the workers representing the continu-
ous optimization and learning within
a neural network. The background is
a complex array of interconnected neu-
rons, creating a sense of depth and com-
plexity.Purpose

How do machine learning training workloads manifest as systems challenges, and what
architectural principles guide their efÏcient implementation?

Machine learning training is a unique class of computational workload that
demands careful orchestration of computation, memory, and data movement.
The process of transforming training algorithms into efÏcient system implemen-
tations requires understanding how mathematical operations map to hardware
resources, how data flows through memory hierarchies, and how system ar-
chitectures influence training performance. Investigating these system-level
considerations helps establish core principles for designing and optimizing
training infrastructure. By understanding and addressing these challenges,
we can develop more efÏcient and scalable solutions to meet the demands of
modern machine learning workloads.

287

8.1. Overview 288

0 Model sizes have grown expo-
nentially since AlexNet (60M param-
eters) in 2012, with modern large
language models like GPT-4 esti-
mated to have over 1 trillion param-
eters, which represents an increase
of over 16,000x in just over a decade.

L� Learning Objectives

• Explain the link between mathematical operations and system
trade-offs in AI training.

• Identify bottlenecks in training systems and their impact on perfor-
mance.

• Outline the key components of training pipelines and their roles in
model training.

• Determine appropriate optimization techniques to improve train-
ing efÏciency.

• Analyze training systems beyond a single machine, including dis-
tributed approaches.

• Evaluate and design training processes with a focus on efÏciency
and scalability.

8.1 Overview
Machine learning has revolutionized modern computing by enabling systems
to learn patterns from data, with training being its cornerstone. This compu-
tationally intensive process involves adjusting millions, and even billions, of
parameters to minimize errors on training examples while ensuring the model
generalizes effectively to unseen data. The success of machine learning models
hinges on this training phase.

The training process brings together algorithms, data, and computational re-
sources into an integrated workflow. Models, particularly deep neural networks
used in domains such as computer vision and natural language processing,
require significant computational effort due to their complexity and scale. Even
resource-constrained models, such as those used in Mobile ML or Tiny ML
applications, require careful tuning to achieve an optimal balance between
accuracy, computational efÏciency, and generalization.

As models have grown in size and complexity0, the systems that enable efÏ-
cient training have become increasingly sophisticated. Training systems must
coordinate computation across memory hierarchies, manage data movement,
and optimize resource utilization, all while maintaining numerical stability
and convergence properties. This intersection of mathematical optimization
with systems engineering creates unique challenges in maximizing training
throughput.

This chapter examines the key components and architecture of machine learn-
ing training systems. We discuss the design of training pipelines, memory and
computation systems, data management strategies, and advanced optimization
techniques. Additionally, we explore distributed training frameworks and their
role in scaling training processes. Real-world examples and case studies are
provided to connect theoretical principles to practical implementations, offer-
ing insight into the development of efÏcient, scalable, and effective training
systems.

Chapter 8. AI Training 289

8.2 Training Systems
Machine learning training systems represent a distinct class of computational
workload with unique demands on hardware and software infrastructure.
These systems must efÏciently orchestrate repeated computations over large
datasets while managing substantial memory requirements and data move-
ment patterns. Unlike traditional high-performance computing workloads,
training systems exhibit specific characteristics that influence their design and
implementation.

8.2.1 System Evolution
Computing system architectures have evolved through distinct generations,
with each new era building upon previous advances while introducing special-
ized optimizations for emerging application requirements (Figure 8.2). This pro-
gression demonstrates how hardware adaptation to application needs shapes
modern machine learning systems.

Figure 8.2: Timeline of major ad-
vancements in computing systems
for machine learning, showing the
evolution from mainframes to AI hy-
percomputing systems.

AI Hypercomputing
Era

Warehouse Scale
Computing

High-Performance
Computing

Mainframe

1950 1960 1970 1980 1990 2000 2010 2020

ENIAC

IBM
System/360

CDC 6600

Cray-1

Google Data
Centers

AWS

NVIDIA GPU

Google TPUs

Electronic computation began with the mainframe era. ENIAC (1945) estab-
lished the viability of electronic computation at scale, while the IBM System/360
(1964) introduced architectural principles of standardized instruction sets and
memory hierarchies. These fundamental concepts laid the groundwork for all
subsequent computing systems.

High-performance computing (HPC) systems (Thornton 1965) built upon
these foundations while specializing for scientific computation. The CDC 6600
and later systems like the CM-5 (T. M. Corporation 1992) optimized for dense
matrix operations and floating-point calculations.

HPC These systems implemented specific architectural features for scientific
workloads: high-bandwidth memory systems for array operations, vector pro-
cessing units for mathematical computations, and specialized interconnects for
collective communication patterns. Scientific computing demanded emphasis
on numerical precision and stability, with processors and memory systems
designed for regular, predictable access patterns. The interconnects supported
tightly synchronized parallel execution, enabling efÏcient collective operations
across computing nodes.

Warehouse-scale computing marked the next evolutionary step. Google’s
data center implementations (Barroso and Hölzle 2007a) introduced new opti-
mizations for internet-scale data processing. Unlike HPC systems focused on

8.2. Training Systems 290

tightly coupled scientific calculations, warehouse computing handled loosely
coupled tasks with irregular data access patterns.

WSC systems introduced architectural changes to support high throughput
for independent tasks, with robust fault tolerance and recovery mechanisms.
The storage and memory systems adapted to handle sparse data structures
efÏciently, moving away from the dense array optimizations of HPC. Resource
management systems evolved to support multiple applications sharing the com-
puting infrastructure, contrasting with HPC’s dedicated application execution
model.

Deep learning computation emerged as the next frontier, building upon
this accumulated architectural knowledge. AlexNet’s (Krizhevsky, Sutskever,
and Hinton 2017a) success in 2012 highlighted the need for further special-
ization. While previous systems focused on either scientific calculations or
independent data processing tasks, neural network training introduced new
computational patterns. The training process required continuous updates
to large sets of parameters, with complex data dependencies during model
optimization. These workloads demanded new approaches to memory man-
agement and inter-device communication that neither HPC nor warehouse
computing had fully addressed.

The AI hypercomputing era, beginning in 2015, represents the latest step in
this evolutionary chain. NVIDIA GPUs and Google TPUs introduced hard-
ware designs specifically optimized for neural network computations, moving
beyond adaptations of existing architectures. These systems implemented new
approaches to parallel processing, memory access, and device communication
to handle the distinct patterns of model training. The resulting architectures
balanced the numerical precision needs of scientific computing with the scale
requirements of warehouse systems, while adding specialized support for the
iterative nature of neural network optimization.

This architectural progression illuminates why traditional computing systems
proved insufÏcient for neural network training. As shown in Table 8.1, while
HPC systems provided the foundation for parallel numerical computation
and warehouse-scale systems demonstrated distributed processing at scale,
neither fully addressed the computational patterns of model training. Modern
neural networks combine intensive parameter updates, complex memory access
patterns, and coordinated distributed computation in ways that demanded
new architectural approaches.

Table 8.1: Comparison of computing system characteristics across different eras

Era Primary Workload Memory Patterns Processing Model System Focus

Mainframe Sequential batch
processing

Simple memory
hierarchy

Single instruction
stream

General-purpose
computation

HPC Scientific
simulation

Regular array
access

Synchronized
parallel

Numerical precision,
collective operations

Warehouse-
scale

Internet services Sparse, irregular
access

Independent
parallel tasks

Throughput, fault tolerance

AI Hyper-
computing

Neural network
training

Parameter-heavy,
mixed access

Hybrid parallel,
distributed

Training optimization,
model scale

Chapter 8. AI Training 291

Understanding these distinct characteristics and their evolution from previ-
ous computing eras explains why modern AI training systems require dedi-
cated hardware features and optimized system designs. This historical context
provides the foundation for examining machine learning training system archi-
tectures in detail.

8.2.2 System Role
The development of modern machine learning models relies critically on spe-
cialized systems for training and optimization. These systems are a complex
interplay of hardware and software components that must efÏciently handle
massive datasets while maintaining numerical precision and computational
stability. While there is no universally accepted definition of training systems
due to their rapid evolution and diverse implementations, they share com-
mon characteristics and requirements that distinguish them from traditional
computing infrastructures.

�� Definition of Training Systems

Machine Learning Training Systems refer to the specialized computa-
tional frameworks that manage and execute the iterative optimization of
machine learning models. These systems encompass the software and hard-
ware stack responsible for processing training data, computing gradients,
updating model parameters, and coordinating distributed computation.
Training systems operate at multiple scales, from single hardware ac-
celerators to distributed clusters, and incorporate components for data
management, computation scheduling, memory optimization, and performance
monitoring. They serve as the foundational infrastructure that enables
the systematic development and refinement of machine learning models
through empirical training on data.

These training systems constitute the fundamental infrastructure required
for developing predictive models. They execute the mathematical optimization
of model parameters, converting input data into computational representations
for tasks such as pattern recognition, language understanding, and decision
automation. The training process involves systematic iteration over datasets to
minimize error functions and achieve optimal model performance.

Training systems function as integral components within the broader machine
learning pipeline. They interface with preprocessing frameworks that standard-
ize and transform raw data, while connecting to deployment architectures that
enable model serving. The computational efÏciency and reliability of training
systems directly influence the development cycle, from initial experimentation
through model validation to production deployment.

The emergence of transformer architectures and large-scale models has intro-
duced new requirements for training systems. Contemporary implementations
must efÏciently process petabyte-scale datasets, orchestrate distributed train-
ing across multiple accelerators, and optimize memory utilization for models
containing billions of parameters. The management of data parallelism, model

8.2. Training Systems 292

parallelism, and inter-device communication presents significant technical
challenges in modern training architectures.

Training systems also significantly impact the operational considerations of
machine learning development. System design must address multiple tech-
nical constraints: computational throughput, energy consumption, hardware
compatibility, and scalability with increasing model complexity. These factors
determine both the technical feasibility and operational viability of machine
learning implementations across different scales and applications.

8.2.3 Systems Thinking

The practical execution of training models is deeply tied to system design. Train-
ing is not merely a mathematical optimization problem; it is a system-driven
process that requires careful orchestration of computing hardware, memory,
and data movement.

Training workflows consist of interdependent stages: data preprocessing,
forward and backward passes, and parameter updates. Each stage imposes
specific demands on system resources. For instance, data preprocessing relies
on storage and I/O subsystems to provide computing hardware with continu-
ous input. While traditional processors like CPUs handle many training tasks
effectively, increasingly complex models have driven the adoption of hardware
accelerators, such as Graphics Processing Units, GPUs, and specialized machine
learning processors, that can process mathematical operations in parallel. These
accelerators, alongside CPUs, handle operations like gradient computation and
parameter updates. The performance of these stages depends on how well the
system manages bottlenecks such as memory bandwidth and communication
latency.

System constraints often dictate the performance limits of training workloads.
Modern accelerators are frequently bottlenecked by memory bandwidth, as
data movement between memory hierarchies can be slower and more energy-
intensive than the computations themselves (D. A. Patterson and Hennessy
2021a). In distributed setups, synchronization across devices introduces addi-
tional latency, with the performance of interconnects (e.g., NVLink, InfiniBand)
playing a crucial role.

Optimizing training workflows is essential to overcoming these limitations.
Techniques like overlapping computation with data loading, mixed-precision
training (Kuchaiev et al. 2018), and efÏcient memory allocation can significantly
enhance performance. These optimizations ensure that accelerators are utilized
effectively, minimizing idle time and maximizing throughput.

Beyond training infrastructure, systems thinking has also informed model
architecture decisions. System-level constraints often guide the development
of new model architectures and training approaches. For example, memory
limitations have motivated research into more efÏcient neural network architec-
tures (M. X. Chen et al. 2018), while communication overhead in distributed
systems has influenced the design of optimization algorithms. These adapta-
tions demonstrate how practical system considerations shape the evolution of
machine learning approaches within given computational bounds.

Chapter 8. AI Training 293

1 Activation functions are non-
linear transformations applied to
neuron outputs that enable neu-
ral networks to learn complex pat-
terns. By introducing nonlinearity
between layers, they allow networks
to approximate arbitrary functions.
Without activation functions, neural
networks would collapse into sim-
ple linear models. Like biological
neurons that only fire above certain
thresholds, activation functions in-
troduce essential nonlinear behav-
ior.

For example, training large Transformer models requires partitioning data
and model parameters across multiple devices. This introduces synchroniza-
tion challenges, particularly during gradient updates. Communication libraries
such as NVIDIA’s Collective Communications Library (NCCL) enable efÏcient
gradient sharing, providing the foundation for more advanced techniques we
discuss in later sections. These examples illustrate how system-level considera-
tions influence the feasibility and efÏciency of modern training workflows.

8.3 Mathematical Foundations
Neural networks are grounded in mathematical principles that define their
structure and functionality. These principles encompass key operations essen-
tial for enabling networks to learn complex patterns from data. A thorough
understanding of the mathematical foundations underlying these operations is
vital, not only for comprehending the mechanics of neural network computation
but also for recognizing their broader implications at the system level.

Therefore, we need to connect the theoretical underpinnings of these op-
erations to their practical implementation, examining how modern systems
optimize these computations to address critical challenges such as memory
management, computational efÏciency, and scalability in training deep learning
models.

8.3.1 Neural Network Computation
We have previously introduced the basic operations involved in training a
neural network (see Chapter 3 and Chapter 4), such as forward propagation
and the use of loss functions to evaluate performance. Here, we build on those
foundational concepts to explore how these operations are executed at the
system level. Key mathematical operations such as matrix multiplications and
activation functions1 underpin the system requirements for training neural
networks. Foundational works by Rumelhart, Hinton, and Williams (1986) via
the introduction of backpropagation and the development of efÏcient matrix
computation libraries, e.g., BLAS (Dongarra et al. 1988), laid the groundwork
for modern training architectures.

8.3.1.1 Core Operations

At the heart of a neural network is the process of forward propagation, in
its simplest case, involves two primary operations: matrix multiplication and
the application of an activation function. Matrix multiplication forms the
basis of the linear transformation in each layer of the network. At layer 𝑙, the
computation can be described as:𝐴(𝑙) = 𝑓(𝑊 (𝑙)𝐴(𝑙−1) +𝑏(𝑙))
Where:

• 𝐴(𝑙−1) represents the activations from the previous layer (or the input
layer for the first layer),

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/overview.html

8.3. Mathematical Foundations 294

• 𝑊 (𝑙) is the weight matrix at layer 𝑙, which contains the parameters learned
by the network,

• 𝑏(𝑙) is the bias vector for layer 𝑙,
• 𝑓(⋅) is the activation function applied element-wise (e.g., ReLU, sigmoid)

to introduce non-linearity.

8.3.1.2 Matrix Operations

The computational patterns in neural networks revolve around various types of
matrix operations. Understanding these operations and their evolution reveals
the reasons why specific system designs and optimizations emerged in machine
learning training systems.

Dense Matrix-Matrix Multiplication. Matrix-matrix multiplication dominates
computation in neural networks, accounting for 60-90% of training time (K.
He et al. 2016b). Early neural network implementations relied on standard
CPU-based linear algebra libraries. The evolution of matrix multiplication
algorithms has closely followed advancements in numerical linear algebra.
From Strassen’s algorithm, which reduced the naive 𝑂(𝑛3) complexity to ap-
proximately 𝑂(𝑛2.81) (Strassen 1969), to contemporary hardware-accelerated
libraries like cuBLAS, these innovations have continually pushed the limits of
computational efÏciency.

Modern systems implement blocked matrix computations for parallel pro-
cessing across multiple units. As neural architectures grew in scale, these
multiplications began to demand significant memory resources, weight ma-
trices and activation matrices must both remain accessible for the backward
pass during training. Hardware designs adapted to optimize for these dense
multiplication patterns while managing growing memory requirements.

Matrix-Vector Operations. Matrix-vector multiplication became essential with
the introduction of normalization techniques in neural architectures. While
computationally simpler than matrix-matrix multiplication, these operations
present unique system challenges. They exhibit lower hardware utilization due
to their limited parallelization potential. This characteristic influences both
hardware design and model architecture decisions, particularly in networks
processing sequential inputs or computing layer statistics.

Batched Operations. The introduction of batching transformed matrix com-
putation in neural networks. By processing multiple inputs simultaneously,
training systems convert matrix-vector operations into more efÏcient matrix-
matrix operations. This approach improves hardware utilization but increases
memory demands for storing intermediate results. Modern implementations
must balance batch sizes against available memory, leading to specific optimiza-
tions in memory management and computation scheduling.

Hardware accelerators like Google’s TPU (Jouppi, Young, et al. 2017b) reflect
this evolution, incorporating specialized matrix units and memory hierarchies
for these diverse multiplication patterns. These hardware adaptations enable
training of large-scale models like GPT-3 (T. B. Brown, Mann, Ryder, Subbiah,
Kaplan, and al. 2020) through efÏcient handling of varied matrix operations.

https://developer.nvidia.com/cublas

Chapter 8. AI Training 295

8.3.1.3 Activation Functions
Activation functions are central to neural network operation. As shown in
Figure 8.3, these functions apply different non-linear transformations to input
values, which is essential for enabling neural networks to approximate complex
mappings between inputs and outputs. Without activation functions, neural
networks, regardless of depth, would collapse into linear systems, severely
limiting their representational power (I. J. Goodfellow, Courville, and Bengio
2013a).

Figure 8.3: Activation functions.
Note that the axes are different
across graphs.

While activation functions are applied element-wise to the outputs of each
neuron, their computational cost is significantly lower than that of matrix
multiplications. Typically, activation functions contribute to about 5-10% of
the total computation time. However, their impact on the learning process
is profound, influencing not only the network’s ability to learn but also its
convergence rate and gradient flow.

A careful understanding of activation functions and their computational
implications is vital for designing efÏcient machine learning pipelines. Selecting
the appropriate activation function can minimize computation time without
compromising the network’s ability to learn complex patterns, ensuring both
efÏciency and accuracy.

Sigmoid. The sigmoid function is one of the original activation functions in
neural networks. It maps input values to the range (0,1) through the following
mathematical expression:

sigmoid(𝑥) = 11+𝑒−𝑥
This function produces an S-shaped curve, where inputs far less than zero

approach an output of 0, and inputs much greater than zero approach 1. The

8.3. Mathematical Foundations 296

2 Vanishing gradients prevent
learning in deep layers as parame-
ter updates become negligible. Con-
versely, exploding gradients cause
rapid weight updates, leading to un-
stable training. Both issues can hin-
der convergence and degrade model
performance.

3 Stochastic Gradient Descent
(SGD): Unlike full gradient descent
which computes gradients over the
entire dataset, SGD estimates gra-
dients using small batches of data.
This reduces memory requirements
and enables frequent parameter up-
dates, though it introduces variance
in the optimization process. This
variance can help escape local min-
ima but results in less precise con-
vergence compared to full gradient
descent.

4 Batch Normalization: A tech-
nique that normalizes the input of
each layer by adjusting and scaling
the activations, reducing internal
covariate shift and enabling faster
training.

5 Popular deep learning frame-
works like PyTorch and Tensor-
Flow implement robust initializa-
tion schemes based on theoretical
principles and empirical research.
These defaults help prevent van-
ishing/exploding gradients and en-
sure stable training.

smooth transition between these bounds makes sigmoid particularly useful in
scenarios where outputs need to be interpreted as probabilities. It is therefore
commonly applied in the output layer of networks for binary classification
tasks.

The sigmoid function is differentiable and has a well-defined gradient, which
makes it suitable for use with gradient-based optimization methods. Its bounded
output ensures numerical stability, preventing excessively large activations that
might destabilize the training process. However, for inputs with very high
magnitudes (positive or negative), the gradient becomes negligible, which can
lead to the vanishing gradient problem.2 This issue is particularly detrimental
in deep networks, where gradients must propagate through many layers during
training (Hochreiter 1998).

Additionally, sigmoid outputs are not zero-centered, meaning that the func-
tion produces only positive values. This lack of symmetry can cause optimiza-
tion algorithms like stochastic gradient descent (SGD)3 to exhibit inefÏcient
updates, as gradients may introduce biases that slow convergence. To mitigate
these issues, techniques such as batch normalization4 or careful initialization
may be employed.5

Despite its limitations, sigmoid remains an effective choice in specific contexts.
It is often used in the final layer of binary classification models, where its output
can be interpreted directly as the probability of a particular class. For example,
in a network designed to classify emails as either spam or not spam, the sigmoid
function converts the network’s raw score into a probability, making the output
more interpretable.

Tanh. The hyperbolic tangent, or tanh, is a commonly used activation function
in neural networks. It maps input values through a nonlinear transformation
into the range (−1,1). The mathematical definition of the tanh function is:

tanh(𝑥) = 𝑒𝑥 −𝑒−𝑥𝑒𝑥 +𝑒−𝑥
This function produces an S-shaped curve, similar to the sigmoid function,

but with the important distinction that its output is centered around zero.
Negative inputs are mapped to values in the range [−1,0), while positive inputs
are mapped to values in the range (0,1]. This zero-centered property makes
tanh advantageous for hidden layers, as it reduces bias in weight updates and
facilitates faster convergence during optimization (Yann LeCun et al. 1998).

The tanh function is smooth and differentiable, with a gradient that is well-
defined for all input values. Its symmetry around zero helps balance the ac-
tivations of neurons, leading to more stable and efÏcient learning dynamics.
However, for inputs with very large magnitudes (positive or negative), the
function saturates, and the gradient approaches zero. This vanishing gradient
problem can impede training in deep networks.

The tanh function is often used in the hidden layers of neural networks,
particularly for tasks where the input data contains both positive and negative
values. Its symmetric range (−1,1) ensures balanced activations, making it
well-suited for applications such as sequence modeling and time series analysis.

Chapter 8. AI Training 297

For example, tanh is widely used in recurrent neural networks (RNNs), where
its bounded and symmetric properties help stabilize learning dynamics over
time. While tanh has largely been replaced by ReLU in many modern architec-
tures due to its computational inefÏciencies and vanishing gradient issues, it
remains a viable choice in scenarios where its range and symmetry are benefi-
cial.

ReLU. The Rectified Linear Unit (ReLU) is one of the most widely used activa-
tion functions in modern neural networks. Its simplicity and effectiveness have
made it the default choice for most machine learning architectures. The ReLU
function is defined as:

ReLU(𝑥) = max(0,𝑥)
This function outputs the input value if it is positive and zero otherwise.

Unlike sigmoid and tanh, which produce smooth, bounded outputs, ReLU
introduces sparsity in the network by setting all negative inputs to zero. This
sparsity can help reduce overfitting and improve computation efÏciency in
many scenarios.

ReLU is particularly effective in avoiding the vanishing gradient problem,
as it maintains a constant gradient for positive inputs. However, it introduces
another issue known as the dying ReLU problem, where neurons can become
permanently inactive if they consistently output zero. This occurs when the
weights cause the input to remain in the negative range. In such cases, the
neuron no longer contributes to learning.

ReLU is commonly used in the hidden layers of neural networks, particularly
in convolutional neural networks (CNNs) and machine learning models for
image and speech recognition tasks. Its computational simplicity and ability to
prevent vanishing gradients make it ideal for training deep architectures.

Softmax. The softmax function is a widely used activation function, primarily
applied in the output layer of classification models. It transforms raw scores
into a probability distribution, ensuring that the outputs sum to 1. This makes
it particularly suitable for multi-class classification tasks, where each output
represents the probability of the input belonging to a specific class.

The mathematical definition of the softmax function for a vector of inputs
z = [𝑧1,𝑧2,…,𝑧𝐾] is: 𝜎(𝑧𝑖) = 𝑒𝑧𝑖∑𝐾𝑗=1 𝑒𝑧𝑗 , 𝑖 = 1,2,…,𝐾
Here, 𝐾 is the number of classes, 𝑧𝑖 represents the raw score (logit) for the 𝑖-th
class, and 𝜎(𝑧𝑖) is the probability of the input belonging to that class.

Softmax has several desirable properties that make it essential for classifi-
cation tasks. It converts arbitrary real-valued inputs into probabilities, with
each output value in the range (0,1) and the sum of all outputs equal to 1. The
function is differentiable, which allows it to be used with gradient-based opti-
mization methods. Additionally, the probabilistic interpretation of its output is
crucial for tasks where confidence levels are needed, such as object detection or
language modeling.

8.3. Mathematical Foundations 298

However, softmax is sensitive to the magnitude of the input logits. Large
differences in logits can lead to highly peaked distributions, where most of
the probability mass is concentrated on a single class, potentially leading to
overconfidence in predictions.

Softmax finds extensive application in the final layer of neural networks for
multi-class classification tasks. For instance, in image classification, models
such as AlexNet and ResNet employ softmax in their final layers to assign prob-
abilities to different image categories. Similarly, in natural language processing
tasks like language modeling and machine translation, softmax is applied over
large vocabularies to predict the next word or token, making it an essential
component in understanding and generating human language.

Trade-offs. Activation functions in neural networks significantly impact both
mathematical properties and system-level performance. The selection of an
activation function directly influences training time, model scalability, and
hardware efÏciency through three primary factors: computational cost, gradient
behavior, and memory usage.

Benchmarking common activation functions on an Apple M2 single-threaded
CPU reveals meaningful performance differences, as illustrated in Figure 8.4.
The data demonstrates that Tanh and ReLU execute more efÏciently than Sig-
moid on CPU architectures, making them particularly suitable for real-time
applications and large-scale systems.

Figure 8.4: Activation function per-
formance.

Sigmoid Tanh ReLU Softmax

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

E
xe

c
u

ti
o

n
T

im
e

(s
e

c
o

n
d

s
)

While these benchmark results provide valuable insights, they represent CPU-
only performance without hardware acceleration. In production environments,
modern hardware accelerators like GPUs can substantially alter the relative
performance characteristics of activation functions. System architects must
therefore consider their specific hardware environment and deployment context
when evaluating computational efÏciency.

The selection of activation functions requires careful balancing of compu-
tational considerations against mathematical properties. Key factors include
the function’s ability to mitigate vanishing gradients and introduce beneficial
sparsity in neural activations. Each major activation function presents distinct
advantages and challenges:

Chapter 8. AI Training 299

Sigmoid. The sigmoid function has smooth gradients and a bounded output in
the range (0,1), making it useful in probabilistic settings. However, the compu-
tation of the sigmoid involves an exponential function, which becomes a key
consideration in both software and hardware implementations. In software, this
computation is expensive and inefÏcient, particularly for deep networks or large
datasets. Additionally, sigmoid suffers from vanishing gradients, especially for
large input values, which can hinder the learning process in deep architectures.
Its non-zero-centered output can also slow optimization, requiring more epochs
to converge.

These computational challenges are addressed differently in hardware. Mod-
ern accelerators like GPUs and TPUs typically avoid direct computation of the
exponential function, instead using lookup tables (LUTs) or piece-wise linear
approximations to balance accuracy with speed. While these hardware opti-
mizations help, the multiple memory lookups and interpolation calculations
still make sigmoid more resource-intensive than simpler functions like ReLU,
even on highly parallel architectures.

Tanh. The tanh function outputs values in the range (−1,1), making it zero-
centered and helping to stabilize gradient-based optimization algorithms. This
zero-centered output helps reduce biases in weight updates, an advantage
over sigmoid. Like sigmoid, however, tanh involves exponential computations
that impact both software and hardware implementations. In software, this
computational overhead can slow training, particularly when working with
large datasets or deep models. While tanh helps prevent some of the saturation
issues associated with sigmoid, it still suffers from vanishing gradients for large
inputs, especially in deep networks.

In hardware, tanh leverages its mathematical relationship with sigmoid
(being essentially a scaled and shifted version) to optimize implementation.
Modern hardware often implement tanh using a hybrid approach: lookup
tables for common input ranges combined with piece-wise approximations for
edge cases. This approach helps balance accuracy with computational efÏciency,
though tanh remains more resource-intensive than simpler functions. Despite
these challenges, tanh remains common in RNNs and LSTMs where balanced
gradients are crucial.

ReLU. The ReLU function stands out for its mathematical simplicity: it passes
positive values unchanged and sets negative values to zero. This straightfor-
ward behavior has profound implications for both software and hardware
implementations. In software, ReLU’s simple thresholding operation results in
faster computation compared to sigmoid or tanh. It also helps prevent vanish-
ing gradients and introduces beneficial sparsity in activations, as many neurons
output zero. However, ReLU can suffer from the “dying ReLU” problem in
deep networks, where neurons become permanently inactive and never update
their weights.

The hardware implementation of ReLU showcases why it has become the
dominant activation function in modern neural networks. Its simple max(0,𝑥)
operation requires just a single comparison and conditional set, translating to
minimal circuit complexity. Modern GPUs and TPUs can implement ReLU
using a simple multiplexer that checks the input’s sign bit, allowing for ex-

8.3. Mathematical Foundations 300

tremely efÏcient parallel processing. This hardware efÏciency, combined with
the sparsity it introduces, results in both reduced computation time and lower
memory bandwidth requirements.

Softmax. The softmax function transforms raw logits into a probability distri-
bution, ensuring outputs sum to 1, making it essential for classification tasks.
Its computation involves exponentiating each input value and normalizing by
their sum, a process that becomes increasingly complex with larger output
spaces. In software, this creates significant computational overhead for tasks
like natural language processing, where vocabulary sizes can reach hundreds
of thousands of terms. However this is typically not a significant issue since
it is often only used in the final layer. The function also requires keeping all
values in memory during computation, as each output probability depends on
the entire input.

At the hardware level, softmax faces unique challenges because it can’t pro-
cess each value independently like other activation functions. Unlike ReLU’s
simple threshold or even sigmoid’s per-value computation, softmax needs
access to all values to perform normalization. This becomes particularly de-
manding in modern transformer architectures, where softmax computations in
attention mechanisms process thousands of values simultaneously. To manage
these demands, hardware implementations often use approximation techniques
or simplified versions of softmax, especially when dealing with large vocabu-
laries or attention mechanisms.

Table 8.2 summarizes the trade-offs of these commonly used activation func-
tions and highlights how these choices affect system performance.

Table 8.2: Comparison of different actiation functions and their advances and
distagnets anad system implications.

Func-
tion Key Advantages Key Disadvantages System Implications

Sig-
moid

Smooth gradients;
bounded output in(0,1).

Vanishing gradients;
non-zero-centered
output.

Exponential computation adds overhead; limited
scalability for deep networks on modern
accelerators.

Tanh Zero-centered output in(−1,1); stabilizes
gradients.

Vanishing gradients
for large inputs.

More expensive than ReLU; effective for
RNNs/LSTMs but less common in CNNs and
Transformers.

ReLU Computationally
efÏcient; avoids
vanishing gradients;
introduces sparsity.

Dying neurons;
unbounded output.

Simple operations optimize well on GPUs/TPUs;
sparse activations reduce memory and
computation needs.

Soft-
max

Converts logits into
probabilities; sums to 1.

Computationally
expensive for large
outputs.

High cost for large vocabularies; hierarchical or
sampled softmax needed for scalability in NLP
tasks.

The choice of activation function should balance computational considera-
tions with their mathematical properties, such as handling vanishing gradients
or introducing sparsity in neural activations. This data emphasizes the impor-
tance of evaluating both theoretical and practical performance when designing
neural networks. For large-scale networks or real-time applications, ReLU is
often the best choice due to its efÏciency and scalability. However, for tasks
requiring probabilistic outputs, such as classification, softmax remains indis-

Chapter 8. AI Training 301

6 When training machine learn-
ing models, a portion of data should
remain completely isolated from
both training and validation to pro-
vide an unbiased assessment of final
model performance. This held-out
test set helps evaluate how well the
model generalizes to truly unseen
examples.

pensable despite its computational cost. Ultimately, the ideal activation function
depends on the specific task, network architecture, and hardware environment.

8.3.2 Optimization Algorithms
Optimization algorithms play an important role in neural network training
by guiding the adjustment of model parameters to minimize a loss function.
This process is fundamental to enabling neural networks to learn from data,
and it involves finding the optimal set of parameters that yield the best model
performance on a given task. Broadly, these algorithms can be divided into two
categories: classical methods, which provide the theoretical foundation, and
advanced methods, which introduce enhancements for improved performance
and efÏciency.

These algorithms are responsible for navigating the complex, high-dimensional
landscape of the loss function, identifying regions where the function achieves
its lowest values. This task is challenging because the loss function surface is
rarely smooth or simple, often characterized by local minima, saddle points,
and sharp gradients. Effective optimization algorithms are designed to over-
come these challenges, ensuring convergence to a solution that generalizes well
to unseen data.6

The selection and design of optimization algorithms have significant system-
level implications, such as computation efÏciency, memory requirements, and
scalability to large datasets or models. A deeper understanding of these algo-
rithms is essential for addressing the trade-offs between accuracy, speed, and
resource usage.

8.3.2.1 Classical Methods

Modern neural network training relies on variations of gradient descent for
parameter optimization. These approaches differ in how they process training
data, leading to distinct system-level implications.

Gradient Descent. Gradient descent is the mathematical foundation of neural
network training, iteratively adjusting parameters to minimize a loss function.
The basic gradient descent algorithm computes the gradient of the loss with
respect to each parameter, then updates parameters in the opposite direction of
the gradient: 𝜃𝑡+1 = 𝜃𝑡 −𝛼∇𝐿(𝜃𝑡)

In training systems, this mathematical operation translates into specific com-
putational patterns. For each iteration, the system must:

1. Compute forward pass activations
2. Calculate loss value
3. Compute gradients through backpropagation
4. Update parameters using the gradient values

The computational demands of gradient descent scale with both model size
and dataset size. Consider a neural network with 𝑀 parameters training on𝑁 examples. Computing gradients requires storing intermediate activations
during the forward pass for use in backpropagation. These activations consume

8.3. Mathematical Foundations 302

memory proportional to the depth of the network and the number of examples
being processed.

Traditional gradient descent processes the entire dataset in each iteration. For
a training set with 1 million examples, computing gradients requires evaluating
and storing results for each example before performing a parameter update.
This approach poses significant system challenges:

Memory Required = 𝑁 × (Activation Memory + Gradient Memory)

The memory requirements often exceed available hardware resources on
modern hardware. A ResNet-50 model processing ImageNet-scale datasets
would require hundreds of gigabytes of memory using this approach. Addi-
tionally, processing the full dataset before each update creates long iteration
times, reducing the rate at which the model can learn from the data.

Stochastic Descent. These system constraints led to the development of variants
that better align with hardware capabilities. The key insight was that exact
gradient computation, while mathematically appealing, is not necessary for
effective learning. This realization opened the door to methods that trade
gradient accuracy for improved system efÏciency.

These system limitations motivated the development of more efÏcient opti-
mization approaches. SGD is a big shift in the optimization strategy. Rather
than computing gradients over the entire dataset, SGD estimates gradients
using individual training examples:𝜃𝑡+1 = 𝜃𝑡 −𝛼∇𝐿(𝜃𝑡;𝑥𝑖,𝑦𝑖)
where (𝑥𝑖,𝑦𝑖) represents a single training example. This approach drastically
reduces memory requirements since only one example’s activations and gradi-
ents need storage at any time. The stochastic nature of these updates introduces
noise into the optimization process, but this noise often helps escape local
minima and reach better solutions.

However, processing single examples creates new system challenges. Modern
accelerators achieve peak performance through parallel computation, process-
ing multiple data elements simultaneously. Single-example updates leave most
computing resources idle, resulting in poor hardware utilization. The frequent
parameter updates also increase memory bandwidth requirements, as weights
must be read and written for each example rather than amortizing these opera-
tions across multiple examples.

Mini-batch Processing. Mini-batch gradient descent emerges as a practical
compromise between full-batch and stochastic methods. It computes gradients
over small batches of examples, enabling parallel computations that align well
with modern GPU architectures (Jeffrey Dean and Ghemawat 2008).𝜃𝑡+1 = 𝜃𝑡 −𝛼 1𝐵 𝐵∑𝑖=1 ∇𝐿(𝜃𝑡;𝑥𝑖,𝑦𝑖)

Mini-batch processing aligns well with modern hardware capabilities. Con-
sider a training system using GPU hardware. These devices contain thousands

Chapter 8. AI Training 303

7 Learning rate: A parameter
that controls the size of parameter
updates during training. A rate that
is too high can cause training to di-
verge, while one that is too low leads
to slow convergence. Finding the
optimal learning rate is critical for
efÏcient model training.

of cores designed for parallel computation. Mini-batch processing allows these
cores to simultaneously compute gradients for multiple examples, improv-
ing hardware utilization. The batch size B becomes a key system parameter,
influencing both computational efÏciency and memory requirements.

The relationship between batch size and system performance follows clear
patterns. Memory requirements scale linearly with batch size:

Memory Required = 𝐵 × (Activation Memory + Gradient Memory)

However, larger batches enable more efÏcient computation through improved
parallelism. This creates a trade-off between memory constraints and compu-
tational efÏciency. Training systems must select batch sizes that maximize
hardware utilization while fitting within available memory.

8.3.2.2 Advanced Optimization Algorithms

Advanced optimization algorithms introduce mechanisms like momentum and
adaptive learning rates7 to improve convergence. These methods have been
instrumental in addressing the inefÏciencies of classical approaches (Kingma
and Ba 2014).

Momentum-Based Methods. Momentum methods enhance gradient descent
by accumulating a velocity vector across iterations. The momentum update
equations introduce an additional term to track the history of parameter up-
dates: 𝑣𝑡+1 = 𝛽𝑣𝑡 +∇𝐿(𝜃𝑡)𝜃𝑡+1 = 𝜃𝑡 −𝛼𝑣𝑡+1
where 𝛽 is the momentum coefÏcient, typically set between 0.9 and 0.99. From a
systems perspective, momentum introduces additional memory requirements.
The training system must maintain a velocity vector with the same dimen-
sionality as the parameter vector, effectively doubling the memory needed for
optimization state.

Adaptive Learning Rate Methods. RMSprop modifies the basic gradient de-
scent update by maintaining a moving average of squared gradients for each
parameter: 𝑠𝑡 = 𝛾𝑠𝑡−1 +(1−𝛾)(∇𝐿(𝜃𝑡))2𝜃𝑡+1 = 𝜃𝑡 −𝛼∇𝐿(𝜃𝑡)√𝑠𝑡 +𝜖

This per-parameter adaptation requires storing the moving average 𝑠𝑡, cre-
ating memory overhead similar to momentum methods. The element-wise
operations in RMSprop also introduce additional computational steps com-
pared to basic gradient descent.

8.3. Mathematical Foundations 304

Adam Optimization. Adam combines concepts from both momentum and
RMSprop, maintaining two moving averages for each parameter:𝑚𝑡 = 𝛽1𝑚𝑡−1 +(1−𝛽1)∇𝐿(𝜃𝑡)𝑣𝑡 = 𝛽2𝑣𝑡−1 +(1−𝛽2)(∇𝐿(𝜃𝑡))2𝜃𝑡+1 = 𝜃𝑡 −𝛼 𝑚𝑡√𝑣𝑡 +𝜖

The system implications of Adam are more substantial than previous meth-
ods. The optimizer must store two additional vectors (𝑚𝑡 and 𝑣𝑡) for each
parameter, tripling the memory required for optimization state. For a model
with 100 million parameters using 32-bit floating-point numbers, the additional
memory requirement is approximately 800 MB.

8.3.2.3 System Implications

The practical implementation of both classical and advanced optimization
methods requires careful consideration of system resources and hardware
capabilities. Understanding these implications helps inform algorithm selection
and system design choices.

Trade-offs. The choice of optimization algorithm creates specific patterns of
computation and memory access that influence training efÏciency. Memory
requirements increase progressively from basic gradient descent to more so-
phisticated methods:

Memory
SGD

= Sizeparams

Memory
Momentum

= 2× Sizeparams

Memory
Adam

= 3× Sizeparams

These memory costs must be balanced against convergence benefits. While
Adam often requires fewer iterations to reach convergence, its per-iteration
memory and computation overhead may impact training speed on memory-
constrained systems.

Implementation Considerations. The efÏcient implementation of optimiza-
tion algorithms in training frameworks hinges on strategic system-level con-
siderations that directly influence performance. Key factors include memory
bandwidth management, operation fusion techniques, and numerical preci-
sion optimization. These elements collectively determine the computational
efÏciency, memory utilization, and scalability of optimizers across diverse
hardware architectures.

Memory bandwidth presents the primary bottleneck in optimizer imple-
mentation. Modern frameworks address this through operation fusion, which
reduces memory access overhead by combining multiple operations into a sin-
gle kernel. For example, the Adam optimizer’s memory access requirements can
grow linearly with parameter size when operations are performed separately:

Bandwidthseparate = 5× Sizeparams

Chapter 8. AI Training 305

However, fusing these operations into a single computational kernel signifi-
cantly reduces the bandwidth requirement:

Bandwidthfused = 2× Sizeparams

These techniques have been effectively demonstrated in systems like cuDNN
and other GPU-accelerated frameworks that optimize memory bandwidth
usage and operation fusion (Chetlur et al. 2014; Jouppi, Young, et al. 2017b).

Memory access patterns also play an important role in determining the
efÏciency of cache utilization. Sequential access to parameter and optimizer
state vectors maximizes cache hit rates and effective memory bandwidth. This
principle is evident in hardware such as GPUs and tensor processing units
(TPUs), where optimized memory layouts significantly improve performance
(Jouppi, Young, et al. 2017b).

Numerical precision represents another important tradeoff in implementa-
tion. Empirical studies have shown that optimizer states remain stable even
when reduced precision formats, such as 16-bit floating-point (FP16), are used.
Transitioning from 32-bit to 16-bit formats reduces memory requirements, as
illustrated for the Adam optimizer:

Memory
Adam-FP16

= 32 × Sizeparams

Mixed-precision training has been shown to achieve comparable accuracy
while significantly reducing memory consumption and computational overhead
(Kuchaiev et al. 2018; Krishnamoorthi 2018).

The above implementation factors determine the practical performance of
optimization algorithms in deep learning systems, emphasizing the importance
of tailoring memory, computational, and numerical strategies to the underlying
hardware architecture (T. Chen et al. 2015).

Optimizer Trade-offs. The evolution of optimization algorithms in neural net-
work training reveals an important intersection between algorithmic efÏciency
and system performance. While optimizers were primarily developed to im-
prove model convergence, their implementation significantly impacts memory
usage, computational requirements, and hardware utilization.

A deeper examination of popular optimization algorithms reveals their vary-
ing impacts on system resources. As shown in Table 8.3, each optimizer presents
distinct trade-offs between memory usage, computational patterns, and conver-
gence behavior. SGD maintains minimal memory overhead, requiring storage
only for model parameters and current gradients. This lightweight memory
footprint comes at the cost of slower convergence and potentially poor hardware
utilization due to its sequential update nature.

Table 8.3: Optimizer characteristics and system implications

Property SGD Momentum RMSprop Adam

Memory Overhead None Velocity
terms

Squared
gradients

Both velocity and squared
gradients

Memory Cost 1× 2× 2× 3×

8.3. Mathematical Foundations 306

Property SGD Momentum RMSprop Adam

Access Pattern Sequential Sequential Random Random
Operations/Parameter 2 3 4 5
Hardware EfÏciency Low Medium High Highest
Convergence Speed Slowest Medium Fast Fastest

Momentum methods introduce additional memory requirements by storing
velocity terms for each parameter, doubling the memory footprint compared
to SGD. This increased memory cost brings improved convergence through
better gradient estimation, while maintaining relatively efÏcient memory access
patterns. The sequential nature of momentum updates allows for effective
hardware prefetching and cache utilization.

RMSprop adapts learning rates per parameter by tracking squared gradient
statistics. Its memory overhead matches momentum methods, but its com-
putation patterns become more irregular. The algorithm requires additional
arithmetic operations for maintaining running averages and computing adap-
tive learning rates, increasing computational intensity from 3 to 4 operations
per parameter.

Adam combines the benefits of momentum and adaptive learning rates, but
at the highest system resource cost. Table 8.3 reveals that it maintains both ve-
locity terms and squared gradient statistics, tripling the memory requirements
compared to SGD. The algorithm’s computational patterns involve 5 operations
per parameter update, though these operations often utilize hardware more
effectively due to their regular structure and potential for parallelization.

Training system designers must balance these trade-offs when selecting opti-
mization strategies. Modern hardware architectures influence these decisions.
GPUs excel at the parallel computations required by adaptive methods, while
memory-constrained systems might favor simpler optimizers. The choice of
optimizer affects not only training dynamics but also maximum feasible model
size, achievable batch size, hardware utilization efÏciency, and overall training
time to convergence.

Modern training frameworks continue to evolve, developing techniques like
optimizer state sharding, mixed-precision storage, and fused operations to
better balance these competing demands. Understanding these system implica-
tions helps practitioners make informed decisions about optimization strategies
based on their specific hardware constraints and training requirements.

8.3.3 Backpropagation Mechanics
The backpropagation algorithm computes gradients by systematically moving
backward through a neural network’s computational graph. While earlier dis-
cussions introduced backpropagation’s mathematical principles, implementing
this algorithm in training systems requires careful management of memory,
computation, and data flow.

8.3.3.1 Basic Mechanics

During the forward pass, each layer in a neural network performs computations
and produces activations. These activations must be stored for use during the

Chapter 8. AI Training 307

backward pass: 𝑧(𝑙) = 𝑊 (𝑙)𝑎(𝑙−1) +𝑏(𝑙)𝑎(𝑙) = 𝑓(𝑧(𝑙))
where 𝑧(𝑙) represents the pre-activation values and 𝑎(𝑙) represents the activations
at layer 𝑙. The storage of these intermediate values creates specific memory
requirements that scale with network depth and batch size.

The backward pass computes gradients by applying the chain rule, starting
from the network’s output and moving toward the input:𝜕𝐿𝜕𝑧(𝑙) = 𝜕𝐿𝜕𝑎(𝑙) ⊙𝑓 ′(𝑧(𝑙))𝜕𝐿𝜕𝑊 (𝑙) = 𝜕𝐿𝜕𝑧(𝑙) (𝑎(𝑙−1))𝑇

Each gradient computation requires access to stored activations from the
forward pass, creating a specific pattern of memory access and computation
that training systems must manage efÏciently.

8.3.3.2 Backpropagation Mechanics

Neural networks learn by adjusting their parameters to reduce errors. Back-
propagation computes how much each parameter contributed to the error by
systematically moving backward through the network’s computational graph.
This process forms the computational core of the optimization algorithms dis-
cussed earlier.

For a network with parameters 𝑊𝑖 at each layer, we need to compute 𝜕𝐿𝜕𝑊𝑖 —how
much the loss L changes when we adjust each parameter. The computation
builds on the core operations covered earlier: matrix multiplications and ac-
tivation functions, but in reverse order. The chain rule provides a systematic
way to organize these computations:𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐿𝑖 = 𝜕𝐴𝑖𝜕𝐿𝑖 𝜕𝐿𝑖+1𝜕𝐴𝑖 ... 𝜕𝐴𝑛𝜕𝐿𝑛 𝜕𝐿𝑓𝑢𝑙𝑙𝜕𝐴𝑛

This equation reveals key requirements for training systems. Computing
gradients for early layers requires information from all later layers, creating
specific patterns in data storage and access. These patterns directly influence
the efÏciency of optimization algorithms like SGD or Adam discussed earlier.
Modern training systems use autodifferentiation to handle these computations
automatically, but the underlying system requirements remain the same.

8.3.3.3 Memory Requirements

Training systems must maintain intermediate values (activations) from the
forward pass to compute gradients during the backward pass. This requirement
compounds the memory demands we saw with optimization algorithms. For
each layer l, the system must store:

• Input activations from the forward pass

8.3. Mathematical Foundations 308

• Output activations after applying layer operations
• Layer parameters being optimized
• Computed gradients for parameter updates

Consider a batch of training examples passing through a network. The
forward pass computes and stores:𝑧(𝑙) = 𝑊 (𝑙)𝑎(𝑙−1) +𝑏(𝑙)𝑎(𝑙) = 𝑓(𝑧(𝑙))

Both 𝑧(𝑙) and 𝑎(𝑙) must be cached for the backward pass. This creates a
multiplicative effect on memory usage: each layer’s memory requirement is
multiplied by the batch size, and the optimizer’s memory overhead (discussed
in the previous section) applies to each parameter.

The total memory needed scales with:
• Network depth (number of layers)
• Layer widths (number of parameters per layer)
• Batch size (number of examples processed together)
• Optimizer state (additional memory for algorithms like Adam)

This creates a complex set of trade-offs. Larger batch sizes enable more
efÏcient computation and better gradient estimates for optimization, but re-
quire proportionally more memory for storing activations. More sophisticated
optimizers like Adam can achieve faster convergence but require additional
memory per parameter.

8.3.3.4 Memory-Computation Trade-offs

Training systems must balance memory usage against computational efÏciency.
Each forward pass through the network generates a set of activations that must
be stored for the backward pass. For a neural network with 𝐿 layers, processing
a batch of 𝐵 examples requires storing:

Memory per batch = 𝐵 × 𝐿∑𝑙=1 (𝑠𝑙 +𝑎𝑙)
where 𝑠𝑙 represents the size of intermediate computations (like 𝑧(𝑙)) and 𝑎𝑙
represents the activation outputs at layer l.

This memory requirement compounds with the optimizer’s memory needs
discussed in the previous section. The total memory consumption of a training
system includes both the stored activations and the optimizer state:

Total Memory = Memory per batch + Memory
optimizer

To manage these substantial memory requirements, training systems use
several sophisticated strategies. Gradient checkpointing is a basic approach,
strategically recomputing some intermediate values during the backward pass
rather than storing them. While this increases computational work, it can

Chapter 8. AI Training 309

significantly reduce memory usage, enabling training of deeper networks or
larger batch sizes on memory-constrained hardware (T. Chen et al. 2016).

The efÏciency of these memory management strategies depends heavily on
the underlying hardware architecture. GPU systems, with their high computa-
tional throughput but limited memory bandwidth, often encounter different
bottlenecks than CPU systems. Memory bandwidth limitations on GPUs mean
that even when sufÏcient storage exists, moving data between memory and
compute units can become the primary performance constraint (Jouppi, Young,
et al. 2017b).

These hardware considerations guide the implementation of backpropaga-
tion in modern training systems. Specialized memory-efÏcient algorithms for
operations like convolutions compute gradients in tiles or chunks, adapting
to available memory bandwidth. Dynamic memory management tracks the
lifetime of intermediate values throughout the computation graph, deallocating
memory as soon as tensors become unnecessary for subsequent computations
(Paszke et al. 2019).

8.3.4 System Implications
EfÏciently managing the forward pass, backward pass, and parameter updates
requires a holistic understanding of how these operations interact with data
loading, preprocessing pipelines, and hardware accelerators. For instance,
matrix multiplications shape decisions about batch size, data parallelism, and
memory allocation, while activation functions influence convergence rates
and require careful trade-offs between computational efÏciency and learning
dynamics.

These operations set the stage for addressing the challenges of training
pipeline architecture. From designing workflows for data preprocessing to
employing advanced techniques like mixed-precision training, gradient accu-
mulation, and checkpointing, their implications are far-reaching.

8.4 Pipeline Architecture
A training pipeline is the framework that governs how raw data is transformed
into a trained machine learning model. Within the confines of a single system,
it orchestrates the steps necessary for data preparation, computational execu-
tion, and model evaluation. The design of such pipelines is critical to ensure
that training is both efÏcient and reproducible, allowing machine learning
workflows to operate reliably.

As shown in Figure 8.5, the training pipeline consists of three main compo-
nents: the data pipeline for ingestion and preprocessing, the training loop that
handles model updates, and the evaluation pipeline for assessing performance.
These components work together in a coordinated manner, with processed
batches flowing from the data pipeline to the training loop, and evaluation
metrics providing feedback to guide the training process.

8.4.1 Architectural Overview
The architecture of a training pipeline is organized around three interconnected
components: the data pipeline, the training loop, and the evaluation pipeline.

8.4. Pipeline Architecture 310

Figure 8.5: Training pipeline show-
ing the three main components. The
arrows indicate the flow of data and
feedback between components.

Data Pipeline

Ingestion,

Preprocessing,

Batching

Training Loop

Forward Pass, Loss

Calculation,

Backward Pass

Evaluation Pipeline

Validation and

Metrics Computation

Processed
Batches

Evaluation
Metrics

Feedback

These components collectively process raw data, train the model, and assess its
performance, ensuring that the training process is efÏcient and effective.

The data pipeline initiates the process by ingesting raw data and transforming
it into a format suitable for the model. This data is passed to the training loop,
where the model performs its core computations to learn from the inputs.
Periodically, the evaluation pipeline assesses the model’s performance using
a separate validation dataset. This modular structure ensures that each stage
operates efÏciently while contributing to the overall workflow.

8.4.1.1 Data Pipeline

The data pipeline manages the ingestion, preprocessing, and batching of data
for training. Raw data is typically loaded from local storage and transformed
dynamically during training to avoid redundancy and enhance diversity. For
instance, image datasets may undergo preprocessing steps like normalization,
resizing, and augmentation to improve the robustness of the model. These
operations are performed in real time to minimize storage overhead and adapt to
the specific requirements of the task (Yann LeCun et al. 1998). Once processed,
the data is packaged into batches and handed off to the training loop.

8.4.1.2 Training Loop

The training loop is the computational core of the pipeline, where the model
learns from the input data. Figure 8.6 illustrates this process, highlighting the
forward pass, loss computation, and parameter updates on a single GPU:

Figure 8.6: Training loop on a single
GPU system.

GPU 1 GPU 1 GPU 1

Error

Compute

loss

function

Compare

predicted

label with

annotation

Optimizer

Step 2 – Compute gradients Step 3 – Update ParametersStep 1 – Predict a label

Data set Forward pass Backward pass

Each iteration of the training loop involves several key steps:
1. Step 1 – Forward Pass: A batch of data from the dataset is passed through

the neural network on the GPU to generate predictions. The model applies
matrix multiplications and activation functions to transform the input
into meaningful outputs.

2. Step 2 – ComputeGradients: The predicted values are compared with the
ground truth labels to compute the error using a loss function. The loss
function outputs a scalar value that quantifies the model’s performance.

Chapter 8. AI Training 311

This error signal is then propagated backward through the network us-
ing backpropagation, which applies the chain rule of differentiation to
compute gradients for each layer’s parameters. These gradients indicate
the necessary adjustments required to minimize the loss.

3. Step 3 – Update Parameters: The computed gradients are passed to an
optimizer, which updates the model’s parameters to minimize the loss.
Different optimization algorithms, such as SGD or Adam, influence how
the parameters are adjusted. The choice of optimizer impacts convergence
speed and stability.

This process repeats iteratively across multiple batches and epochs, gradually
refining the model to improve its predictive accuracy.

8.4.1.3 Evaluation Pipeline
The evaluation pipeline provides periodic feedback on the model’s performance
during training. Using a separate validation dataset, the model’s predictions
are compared against known outcomes to compute metrics such as accuracy or
loss. These metrics help to monitor progress and detect issues like overfitting
or underfitting. Evaluation is typically performed at regular intervals, such
as at the end of each epoch, ensuring that the training process aligns with the
desired objectives.

8.4.1.4 Component Integration
The data pipeline, training loop, and evaluation pipeline are tightly integrated
to ensure a smooth and efÏcient workflow. Data preparation often overlaps
with computation, such as when preprocessing the next batch while the current
batch is being processed in the training loop. Similarly, the evaluation pipeline
operates in tandem with training, providing insights that inform adjustments
to the model or training procedure. This integration minimizes idle time for the
system’s resources and ensures that training proceeds without interruptions.

8.4.2 Data Pipeline
The data pipeline moves data from storage to computational devices during
training. Like a highway system moving vehicles from neighborhoods to city
centers, the data pipeline transports training data through multiple stages to
reach computational resources.

The data pipeline running on the CPU serves as a bridge between raw data
storage and GPU computation. As shown in Figure 8.7, the pipeline consists of
three main zones: storage, CPU preprocessing, and GPU training. Each zone
plays a distinct role in preparing and delivering data for model training.

In the storage zone, raw data resides on disk, typically in formats like image
files for computer vision tasks or text files for natural language processing. The
CPU preprocessing zone handles the transformation of this raw data through
multiple stages. For example, in an image recognition model, these stages
include:

1. Format conversion: Reading image files and converting them to standard-
ized formats

8.4. Pipeline Architecture 312

Figure 8.7: Data pipeline architec-
ture illustrating the flow of data
from raw storage through CPU pre-
processing stages to GPU training
units. Raw Data Format Process Batch GPU 2

GPU 1

GPU 3

Storage Zone CPU Preprocessing Zone

GPU Training Zone

Data

Data

Data

2. Processing: Applying operations like resizing, normalization, and data
augmentation

3. Batching: Organizing processed examples into batches for efÏcient GPU
computation

The final zone shows multiple GPUs receiving preprocessed batches for train-
ing. This organization ensures that each GPU maintains a steady supply of data,
maximizing computational efÏciency and minimizing idle time. The effective-
ness of this pipeline directly impacts training performance, as any bottleneck
in data preparation can leave expensive GPU resources underutilized.

8.4.2.1 Core Components
The performance of machine learning systems is fundamentally constrained
by storage access speed, which determines the rate at which training data can
be retrieved. This access speed is governed by two primary hardware con-
straints: disk bandwidth and network bandwidth. The maximum theoretical
throughput is determined by the following relationship:𝑇storage = min(𝐵disk,𝐵network)
where 𝐵disk is the physical disk bandwidth (the rate at which data can be
read from storage devices) and 𝐵network represents the network bandwidth (the
rate of data transfer across distributed storage systems). Both quantities are
measured in bytes per second.

However, the actual throughput achieved during training operations typically
falls below this theoretical maximum due to non-sequential data access patterns.
The effective throughput can be expressed as:𝑇effective = 𝑇storage ×𝐹access

where 𝐹access represents the access pattern factor. In typical training scenarios,𝐹access approximates 0.1, indicating that effective throughput achieves only 10%
of the theoretical maximum. This significant reduction occurs because storage
systems are optimized for sequential access patterns rather than the random
access patterns common in training procedures.

This relationship between theoretical and effective throughput has important
implications for system design and training optimization. Understanding these
constraints allows practitioners to make informed decisions about data pipeline
architecture and training methodology.

Chapter 8. AI Training 313

8.4.2.2 Preprocessing

As the data becomes available, data preprocessing transforms raw input data
into a format suitable for model training. This process, traditionally imple-
mented through Extract-Transform-Load (ETL) or Extract-Load-Transform
(ELT) pipelines, is a critical determinant of training system performance. The
throughput of preprocessing operations can be expressed mathematically as:𝑇preprocessing = 𝑁workers𝑡transform

This equation captures two key factors:
• 𝑁workers represents the number of parallel processing threads
• 𝑡transform represents the time required for each transformation operation

Modern training architectures employ multiple processing threads to ensure
preprocessing keeps pace with the consumption rates. This parallel processing
approach is essential for maintaining efÏcient high processor utilization.

The final stage of preprocessing involves transferring the processed data to
computational devices (typically GPUs). The overall training throughput is
constrained by three factors, expressed as:𝑇training = min(𝑇preprocessing,𝐵GPU_transfer,𝐵GPU_compute)
where:

• 𝐵GPU_transfer represents GPU memory bandwidth
• 𝐵GPU_compute represents GPU computational throughput

This relationship illustrates a fundamental principle in training system de-
sign: the system’s overall performance is limited by its slowest component.
Whether preprocessing speed, data transfer rates, or computational capacity,
the bottleneck stage determines the effective training throughput of the en-
tire system. Understanding these relationships enables system architects to
design balanced training pipelines where preprocessing capacity aligns with
computational resources, ensuring optimal resource utilization.

8.4.2.3 System Implications

The relationship between data pipeline architecture and computational re-
sources fundamentally determines the performance of machine learning train-
ing systems. This relationship can be simply expressed through a basic through-
put equation: 𝑇system = min(𝑇pipeline,𝑇compute)
where 𝑇system represents the overall system throughput, constrained by both
pipeline throughput (𝑇pipeline) and computational speed (𝑇compute).

To illustrate these constraints, consider image classification systems. The
performance dynamics can be analyzed through two critical metrics. The GPU
Processing Rate (𝑅GPU) represents the maximum number of images a GPU can
process per second, determined by model architecture complexity and GPU

8.4. Pipeline Architecture 314

hardware capabilities. The Pipeline Delivery Rate (𝑅pipeline) is the rate at which
the data pipeline can deliver preprocessed images to the GPU.

In this case, at a high level, the system’s effective training speed is governed
by the lower of these two rates. When 𝑅pipeline is less than 𝑅GPU, the system
experiences underutilization of GPU resources. The degree of GPU utilization
can be expressed as:

GPU Utilization = 𝑅pipeline𝑅GPU
×100%

Let us consider an example. A ResNet-50 model implemented on modern
GPU hardware might achieve a processing rate of 1000 images per second.
However, if the data pipeline can only deliver 200 images per second, the
GPU utilization would be merely 20%, meaning the GPU remains idle 80%
of the time. This results in significantly reduced training efÏciency. Impor-
tantly, this inefÏciency persists even with more powerful GPU hardware, as the
pipeline throughput becomes the limiting factor in system performance. This
demonstrates why balanced system design, where pipeline and computational
capabilities are well-matched, is crucial for optimal training performance.

8.4.2.4 Data Flows

Machine learning systems manage complex data flows through multiple mem-
ory tiers while coordinating pipeline operations. The interplay between mem-
ory bandwidth constraints and pipeline execution directly impacts training
performance. The maximum data transfer rate through the memory hierarchy
is bounded by: 𝑇memory = min(𝐵storage,𝐵system,𝐵accelerator)
Where bandwidth varies significantly across tiers:

• Storage (𝐵storage): NVMe storage devices provide 1-2 GB/s
• System (𝐵system): Main memory transfers data at 50-100 GB/s
• Accelerator (𝐵accelerator): GPU memory achieves 900 GB/s or higher

These order-of-magnitude differences create distinct performance character-
istics that must be carefully managed. The total time required for each training
iteration comprises multiple pipelined operations:𝑡iteration = max(𝑡fetch, 𝑡process, 𝑡transfer)

This equation captures three components: storage read time (𝑡fetch?), prepro-
cessing time (𝑡process), and accelerator transfer time (𝑡transfer).

Modern training architectures optimize performance by overlapping these
operations. When one batch undergoes preprocessing, the system simulta-
neously fetches the next batch from storage while transferring the previously
processed batch to accelerator memory.

This coordinated movement requires precise management of system re-
sources, particularly memory buffers and processing units. The memory hier-
archy must account for bandwidth disparities while maintaining continuous

Chapter 8. AI Training 315

data flow. Effective pipelining minimizes idle time and maximizes resource
utilization through careful buffer sizing and memory allocation strategies. The
successful orchestration of these components enables efÏcient training across
the memory hierarchy while managing the inherent bandwidth constraints of
each tier.

8.4.2.5 Practical Architectures
The ImageNet dataset serves as a canonical example for understanding data
pipeline requirements in modern machine learning systems. This analysis
examines system performance characteristics when training vision models on
large-scale image datasets.

Storage performance in practical systems follows a defined relationship be-
tween theoretical and practical throughput:𝑇practical = 0.5×𝐵theoretical

To illustrate this relationship, consider an NVMe storage device with 3GB/s
theoretical bandwidth. Such a device achieves approximately 1.5GB/s sus-
tained read performance. However, the random access patterns required for
training data shufÒing further reduce this effective bandwidth by 90%. Sys-
tem designers must account for this reduction through careful memory buffer
design.

The total memory requirements for the system scale with batch size according
to the following relationship:𝑀required = (𝐵prefetch +𝐵processing +𝐵transfer)×𝑆batch

In this equation, 𝐵prefetch represents memory allocated for data prefetching,𝐵processing represents memory required for active preprocessing operations,𝐵transfer represents memory allocated for accelerator transfers, and 𝑆batch repre-
sents the training batch size.

Preprocessing operations introduce additional computational requirements.
Common operations such as image resizing, augmentation, and normaliza-
tion consume CPU resources. These preprocessing operations must satisfy a
fundamental time constraint:𝑡preprocessing < 𝑡GPU_compute

This inequality plays a crucial role in determining system efÏciency. When
preprocessing time exceeds GPU computation time, accelerator utilization
decreases proportionally. The relationship between preprocessing and compu-
tation time thus establishes fundamental efÏciency limits in training system
design.

8.4.3 Forward Pass
The forward pass is the phase where input data propagates through the model,
layer by layer, to generate predictions. Each layer performs mathematical opera-
tions such as matrix multiplications and activations, progressively transforming
the data into meaningful outputs. While the conceptual flow of the forward
pass is straightforward, it poses several system-level challenges that are critical
for efÏcient execution.

8.4. Pipeline Architecture 316

8.4.3.1 Compute Operations
The forward pass in deep neural networks orchestrates a diverse set of com-
putational patterns, each optimized for specific neural network operations.
Understanding these patterns and their efÏcient implementation is fundamen-
tal to machine learning system design.

At their core, neural networks rely heavily on matrix multiplications, particu-
larly in fully connected layers. The basic transformation follows the form:𝑧(𝑙) = 𝑊 (𝑙)𝑎(𝑙−1) +𝑏(𝑙)

Here, 𝑊 (𝑙) represents the weight matrix, 𝑎(𝑙−1) contains activations from the
previous layer, and 𝑏(𝑙) is the bias vector. For a layer with 𝑁 neurons in the
current layer and 𝑀 neurons in the previous layer, processing a batch of 𝐵
samples requires 𝑁 × 𝑀 × 𝐵 floating-point operations. A typical layer with
dimensions of 512 × 1024 processing a batch of 64 samples executes over 33
million operations.

Modern neural architectures extend beyond these basic matrix operations
to include specialized computational patterns. Convolutional networks, for
instance, perform systematic kernel operations across input tensors. Consider
a typical input tensor of dimensions 64 × 224 × 224 × 3 (batch size × height× width × channels) processed by 7 × 7 kernels. Each position requires 147
multiply-accumulate operations, and with 64 filters operating across 218×218
spatial dimensions, the computational demands become substantial.

Transformer architectures introduce attention mechanisms, which compute
similarity scores between sequences. These operations combine matrix mul-
tiplications with softmax normalization, requiring efÏcient broadcasting and
reduction operations across varying sequence lengths. The computational pat-
tern here differs significantly from convolutions, demanding flexible execution
strategies from hardware accelerators.

Throughout these networks, element-wise operations play a crucial sup-
porting role. Activation functions like ReLU and sigmoid transform values
independently. While conceptually simple, these operations can become bot-
tlenecked by memory bandwidth rather than computational capacity, as they
perform relatively few calculations per memory access. Batch normalization
presents similar challenges, computing statistics and normalizing values across
batch dimensions while creating synchronization points in the computation
pipeline.

Modern hardware accelerators, particularly GPUs, optimize these diverse
computations through massive parallelization. However, achieving peak per-
formance requires careful attention to hardware architecture. GPUs process
data in fixed-size blocks of threads called warps (in NVIDIA architectures)
or wavefronts (in AMD architectures). Peak efÏciency occurs when matrix
dimensions align with these hardware-specific sizes. For instance, NVIDIA
GPUs typically achieve optimal performance when processing matrices aligned
to 32×32 dimensions.

Libraries like cuDNN address these challenges by providing optimized im-
plementations for each operation type. These systems dynamically select al-
gorithms based on input dimensions, hardware capabilities, and memory con-
straints. The selection process balances computational efÏciency with memory

https://developer.nvidia.com/cudnn

Chapter 8. AI Training 317

usage, often requiring empirical measurement to determine optimal configura-
tions for specific hardware setups.

The relationship between batch size and hardware utilization illuminates
these trade-offs. When batch size decreases from 32 to 16, GPU utilization often
drops due to incomplete warp occupation. While larger batch sizes improve
hardware utilization, memory constraints in modern architectures may necessi-
tate smaller batches, creating a fundamental tension between computational
efÏciency and memory usage. This balance exemplifies a central challenge
in machine learning systems: maximizing computational throughput within
hardware resource constraints.

8.4.3.2 Memory Management
Memory management is a critical challenge in general, but it is particularly
crucial during the forward pass when intermediate activations must be stored
for subsequent backward propagation. The total memory footprint grows with
both network depth and batch size, following a basic relationship.

Total Memory ∼ 𝐵 × 𝐿∑𝑙=1 𝐴𝑙
where 𝐵 represents the batch size, 𝐿 is the number of layers, and 𝐴𝑙 repre-
sents the activation size at layer 𝑙. This simple equation masks considerable
complexity in practice.

Consider ResNet-50 processing images at 224×224 resolution with a batch
size of 32. The initial convolutional layer produces activation maps of dimension112×112×64. Using single-precision floating-point format (4 bytes per value),
this single layer’s activation storage requires approximately 98 MB. As the
network progresses through its 50 layers, the dimensions of these activation
maps change, typically decreasing in spatial dimensions while increasing in
channel depth, creating a cumulative memory demand that can reach several
gigabytes.

Modern GPUs typically provide between 16 and 24 GB of memory, which
must accommodate not just these activations but also model parameters, gradi-
ents, and optimization states. This constraint has motivated several memory
management strategies:

Activation checkpointing trades computational cost for memory efÏciency by
strategically discarding and recomputing activations during the backward pass.
Rather than storing all intermediate values, the system maintains checkpoints
at selected layers. During backpropagation, it regenerates necessary activations
from these checkpoints. While this approach can reduce memory usage by 50%
or more, it typically increases computation time by 20-30%.

Mixed precision training offers another approach to memory efÏciency. By
storing activations in half-precision (FP16) format instead of single-precision
(FP32), memory requirements are immediately halved. Modern hardware ar-
chitectures provide specialized support for these reduced-precision operations,
often maintaining computational throughput while saving memory.

The relationship between batch size and memory usage creates practical trade-
offs in training regimes. While larger batch sizes can improve computational

8.4. Pipeline Architecture 318

8 Memory calculations:– Acti-
vation maps:64 × 224 × 224 × 3 × 4
bytes = 0.38 GB– Gradient signals:64
× 224 × 224 × 64 × 4 bytes = 8.1 GB–
Weight gradients:7 × 7 × 3 × 64 × 4
bytes = 0.037 GB

efÏciency, they proportionally increase memory demands. A machine learning
practitioner might start with large batch sizes during initial development on
smaller networks, then adjust downward when scaling to deeper architectures
or when working with memory-constrained hardware.

This memory management challenge becomes particularly acute in state-of-
the-art models. Recent transformer architectures can require tens of gigabytes
just for activations, necessitating sophisticated memory management strategies
or distributed training approaches. Understanding these memory constraints
and management strategies proves essential for designing and deploying ma-
chine learning systems effectively.

8.4.4 Backward Pass

8.4.4.1 Compute Operations

The backward pass involves processing parameter gradients in reverse order
through the network’s layers. Computing these gradients requires matrix
operations that demand significant memory and processing power.

Neural networks store activation values from each layer during the forward
pass. Computing gradients combines these stored activations with gradient
signals to generate weight updates. This design requires twice the memory
compared to forward computation. Consider the gradient computation for a
layer’s weights: 𝜕𝐿𝜕𝑊 (𝑙) = 𝛿(𝑙) ⋅ (𝑎(𝑙−1))𝑇

The gradient signals 𝛿(𝑙) at layer 𝑙 multiply with transposed activations 𝑎(𝑙−1)
from layer 𝑙−1. This matrix multiplication forms the primary computational
load. For example, in a layer with 1000 input features and 100 output features,
computing gradients requires multiplying matrices of size 100 × batch_size
and batch_size × 1000, resulting in millions of floating-point operations.

8.4.4.2 Memory Operations

The backward pass moves large amounts of data between memory and compute
units. Each time a layer computes gradients, it orchestrates a sequence of
memory operations. The GPU first loads stored activations from memory, then
reads incoming gradient signals, and finally writes the computed gradients
back to memory.

To understand the scale of these memory transfers, consider a convolutional
layer processing a batch of 64 images. Each image measures 224×224 pixels
with 3 color channels. The activation maps alone occupy 0.38 GB of memory,
storing 64 copies of the input images. The gradient signals expand this mem-
ory usage significantly - they require 8.1 GB to hold gradients for each of the
layer’s 64 filters. Even the weight gradients, which only store updates for the
convolutional kernels, need 0.037 GB8.

Moreover, the backward pass in neural networks require coordinated data
movement through a hierarchical memory system. During backpropagation,
each computation requires specific activation values from the forward pass,

Chapter 8. AI Training 319

creating a pattern of data movement between memory levels. This movement
pattern shapes the performance characteristics of neural network training.

These backward pass computations operate across a memory hierarchy that
balances speed and capacity requirements. When computing gradients, the
processor must retrieve activation values stored in high-bandwidth memory
(HBM) or system memory, transfer them to fast static RAM (SRAM) for com-
putation, and write results back to larger storage. Each gradient calculation
triggers this sequence of memory transfers, making memory access patterns
a key factor in backward pass performance. The frequent transitions between
memory levels introduce latency that accumulates across the backward pass
computation chain.

8.4.4.3 Real-World Considerations
Consider training a ResNet-50 model on the ImageNet dataset with a batch
of 64 images. The first convolutional layer applies 64 filters of size 7 × 7 to
RGB images sized 224 × 224. During the backward pass, this single layer’s
computation requires:

Memory per image = 224×224×64×4 bytes

The total memory requirement multiplies by the batch size of 64, reaching
approximately 3.2 GB just for storing gradients. When we add memory for
activations, weight updates, and intermediate computations, a single layer
approaches the memory limits of many GPUs.

Deeper in the network, layers with more filters demand even greater re-
sources. A mid-network convolutional layer might use 256 filters, quadrupling
the memory and computation requirements. The backward pass must manage
these resources while maintaining efÏcient computation. Each layer’s computa-
tion can only begin after receiving gradient signals from the subsequent layer,
creating a strict sequential dependency in memory usage and computation
patterns.

This dependency means the GPU must maintain a large working set of mem-
ory throughout the backward pass. As gradients flow backward through the
network, each layer temporarily requires peak memory usage during its compu-
tation phase. The system cannot release this memory until the layer completes
its gradient calculations and passes the results to the previous layer.

8.4.5 Parameter Updates and Optimizers
The process of updating model parameters is a fundamental operation in ma-
chine learning systems. During training, after gradients are computed in the
backward pass, the system must allocate and manage memory for both the
parameters and their gradients, then perform the update computations. The
choice of optimizer determines not only the mathematical update rule, but also
the system resources required for training.

Listing 8.1 shows the parameter update process in a machine learning frame-
work.

These operations initiate a sequence of memory accesses and computations.
The system must load parameters from memory, compute updates using the

8.4. Pipeline Architecture 320

Listing 8.1: Parameter update step using backward and optimizer

loss.backward() # Compute gradients
optimizer.step() # Update parameters

stored gradients, and write the modified parameters back to memory. Different
optimizers vary in their memory requirements and computational patterns,
directly affecting system performance and resource utilization.

8.4.5.1 Memory Requirements

Gradient descent, the most basic optimization algorithm that we discussed ear-
lier, illustrates the fundamental memory and computation patterns in parameter
updates. From a systems perspective, each parameter update must:

1. Read the current parameter value from memory
2. Access the computed gradient from memory
3. Perform the multiplication and subtraction operations
4. Write the new parameter value back to memory

Because gradient descent only requires memory for storing parameters and
gradients, it has relatively low memory overhead compared to more complex
optimizers. However, more advanced optimizers introduce additional memory
requirements and computational complexity. For example, as we discussed
previously, Adam maintains two extra vectors for each parameter: one for the
first moment (the moving average of gradients) and one for the second moment
(the moving average of squared gradients). This triples the memory usage but
can lead to faster convergence. Consider the situation where there are 100,000
parameters, and each gradient requires 4 bytes (32 bits):

• Gradient Descent: 100,000 × 4 bytes = 400,000 bytes = 0.4 MB
• Adam: 3 × 100,000 × 4 bytes = 1,200,000 bytes = 1.2 MB

This problem becomes especially apparent for billion parameter models,
as model sizes (without counting optimizer states and gradients) alone can
already take up significant portions of GPU memory. As one way of solving
this problem, the authors of GaLoRE tackle this by compressing optimizer state
and gradients and computing updates in this compressed space (J. Zhao et al.
2024), greatly reducing memory footprint as shown below in Figure 8.8.

8.4.5.2 Computational Load

The computational cost of parameter updates also depends on the optimizer’s
complexity. For gradient descent, each update involves simple gradient cal-
culation and application. More sophisticated optimizers like Adam require
additional calculations, such as computing running averages of gradients and
their squares. This increases the computational load per parameter update.

The efÏciency of these computations on modern hardware like GPUs and
TPUs depends on how well the optimizer’s operations can be parallelized. While

Chapter 8. AI Training 321

Figure 8.8: Example memory foot-
print breakdown for the Llama-7B
model under different optimized
training schemes. Note that in the
unoptimized bfloat16 case, how op-
timizer state and weight gradients
combined can take up more than
double the footprint of the model
weights.

0 20 40 60 80

8-bit GaLore

8-bit Adam

Adafactor

BF16

Memory Cost (BG)

Others

WeightGradient

Optimization

Activation

Weight

RTX 4090 Memory Limit

matrix operations in Adam may be efÏciently handled by these accelerators,
some operations in complex optimizers might not parallelize well, potentially
leading to hardware underutilization.

In summary, the choice of optimizer directly impacts both system memory
requirements and computational load. More sophisticated optimizers often
trade increased memory usage and computational complexity for potentially
faster convergence, presenting important considerations for system design and
resource allocation in ML systems.

8.4.5.3 Batch Size and Parameter Updates

Batch size, a critical hyperparameter in machine learning systems, significantly
influences the parameter update process, memory usage, and hardware efÏ-
ciency. It determines the number of training examples processed in a single
iteration before the model parameters are updated.

Larger batch sizes generally provide more accurate gradient estimates, po-
tentially leading to faster convergence and more stable parameter updates.
However, they also increase memory demands proportionally:

Memory for Batch = Batch Size × Size of One Training Example

This increase in memory usage directly affects the parameter update process,
as it determines how much data is available for computing gradients in each
iteration.

Larger batches tend to improve hardware utilization, particularly on GPUs
and TPUs optimized for parallel processing. This can lead to more efÏcient
parameter updates and faster training times, provided sufÏcient memory is
available.

However, there’s a trade-off to consider. While larger batches can improve
computational efÏciency by allowing more parallel computations during gradi-
ent calculation and parameter updates, they also require more memory. On
systems with limited memory, this might necessitate reducing the batch size,
potentially slowing down training or leading to less stable parameter updates.

8.5. Pipeline Optimizations 322

The choice of batch size interacts with various aspects of the optimization pro-
cess. For instance, it affects the frequency of parameter updates: larger batches
result in less frequent but potentially more impactful updates. Additionally,
batch size influences the behavior of adaptive optimization algorithms, which
may need to be tuned differently depending on the batch size. In distributed
training, which we discuss later, batch size often determines the degree of data
parallelism, impacting how gradient computations and parameter updates are
distributed across devices.

Determining the optimal batch size involves balancing these factors within
hardware constraints. It often requires experimentation to find the sweet spot
that maximizes both learning efÏciency and hardware utilization while ensuring
effective parameter updates.

8.5 Pipeline Optimizations
EfÏcient training of machine learning models is constrained by bottlenecks in
data transfer, computation, and memory usage. These limitations manifest in
specific ways: data transfer delays occur when loading training batches from
disk to GPU memory, computational bottlenecks arise during matrix operations
in forward and backward passes, and memory constraints emerge when storing
large intermediate values like activation maps.

These bottlenecks often lead to underutilized hardware, prolonged training
times, and restricted model scalability. For machine learning practitioners,
understanding and implementing pipeline optimizations enables training of
larger models, faster experimentation cycles, and more efÏcient use of available
computing resources.

Here, we explore three widely adopted optimization strategies that address
key performance bottlenecks in training pipelines:

1. Prefetching and Overlapping: Techniques to minimize data transfer
delays and maximize GPU utilization.

2. Mixed-Precision Training: A method to reduce memory demands and
computational load using lower precision formats.

3. Gradient Accumulation and Checkpointing: Strategies to overcome
memory limitations during backpropagation and parameter updates.

Each technique is discussed in detail, covering its mechanics, advantages,
and practical considerations.

8.5.1 Prefetching and Overlapping
Training machine learning models involves significant data movement between
storage, memory, and computational units. The data pipeline consists of se-
quential transfers: from disk storage to CPU memory, CPU memory to GPU
memory, and through the GPU processing units. In standard implementations,
each transfer must complete before the next begins, as shown in Figure 8.9,
resulting in computational inefÏciencies.

Prefetching addresses these inefÏciencies by loading data into memory before
its scheduled computation time. During the processing of the current batch,

Chapter 8. AI Training 323

Figure 8.9: Naive data fetching im-
plementation.

Epoch

Train

Read

Open

00:00 00:15 00:30 00:45 01:00 01:15 01:30

Open 1

Read 1

Epoch 1

Read 2

Train 1 Train 2

Read 3

Train 3

Open 2

Read 4 Read 5

Train 4

Epoch 2

Read 6

Train 5 Train 6

the system loads and prepares subsequent batches, maintaining a consistent
supply of ready data (Martı́n Abadi et al. 2015).

Overlapping builds upon prefetching by coordinating multiple pipeline
stages to execute concurrently. The system processes the current batch while
simultaneously preparing future batches through data loading and preprocess-
ing operations. This coordination establishes a continuous data flow through
the training pipeline, as illustrated in Figure 8.10.

Figure 8.10: Parallel fetching and
overlapping implementation. The
job finishes at 00:40 seconds, instead
of 01:30 seconds as in Figure 8.9.

Epoch

Train

Read

Open

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55 01:00 01:05 01:10 01:15 01:20 01:25 01:30

Open 1

Read 1

Read 2

Read 3

Train 1 Train 2

Train 3

Epoch 1

Open 2

Read 4

Read 5

Read 6

Train 4 Train 5

Train 6

Epoch 2

These optimization techniques demonstrate particular value in scenarios in-
volving large-scale datasets, preprocessing-intensive data, multi-GPU training
configurations, or high-latency storage systems. The following section examines
the specific mechanics of implementing these techniques in modern training
systems.

8.5.1.1 Mechanics

Prefetching and overlapping optimize the training pipeline by enabling different
stages of data processing and computation to operate concurrently rather than
sequentially. These techniques maximize resource utilization by addressing
bottlenecks in data transfer and preprocessing.

As you recall, training data undergoes three main stages: retrieval from
storage, transformation into a suitable format, and utilization in model training.
An unoptimized pipeline executes these stages sequentially. The GPU remains
idle during data fetching and preprocessing, waiting for data preparation to
complete. This sequential execution creates significant inefÏciencies in the
training process.

Prefetching eliminates waiting time by loading data asynchronously during
model computation. Data loaders operate as separate threads or processes,
preparing the next batch while the current batch trains. This ensures immediate
data availability for the GPU when the current batch completes.

Overlapping extends this efÏciency by coordinating all three pipeline stages
simultaneously. As the GPU processes one batch, preprocessing begins on the
next batch, while data fetching starts for the subsequent batch. This coordina-
tion maintains constant activity across all pipeline stages.

8.5. Pipeline Optimizations 324

Modern machine learning frameworks implement these techniques through
built-in utilities. PyTorch’s DataLoader class demonstrates this implementation.
An example of this usage is shown in Listing 8.2.

Listing 8.2: Using PyTorch DataLoader with batching and prefetching

loader = DataLoader(dataset,
batch_size=32,
num_workers=4,
prefetch_factor=2)

The parameters num_workers and prefetch_factor control parallel process-
ing and data buffering. Multiple worker processes handle data loading and
preprocessing concurrently, while prefetch_factor determines the number of
batches prepared in advance.

Buffer management plays a key role in pipeline efÏciency. The prefetch buffer
size requires careful tuning to balance resource utilization. A buffer that is too
small causes the GPU to wait for data preparation, reintroducing the idle time
these techniques aim to eliminate. Conversely, allocating an overly large buffer
consumes memory that could otherwise store model parameters or larger batch
sizes.

The implementation relies on effective CPU-GPU coordination. The CPU
manages data preparation tasks while the GPU handles computation. This
division of labor, combined with storage I/O operations, creates an efÏcient
pipeline that minimizes idle time across hardware resources.

These optimization techniques yield particular benefits in scenarios involving
slow storage access, complex data preprocessing, or large datasets. The next
section examines the specific advantages these techniques offer in different
training contexts.

8.5.1.2 Benefits
Prefetching and overlapping are powerful techniques that significantly enhance
the efÏciency of training pipelines by addressing key bottlenecks in data han-
dling and computation. To illustrate the impact of these benefits, Table 8.4
presents the following comparison:

Table 8.4: Comparison of training pipeline characteristics with and without
prefetching and overlapping.

Aspect Traditional Pipeline With Prefetching & Overlapping

GPU Utilization Frequent idle periods Near-constant utilization
Training Time Longer due to sequential operations Reduced through parallelism
Resource Usage Often suboptimal Maximized across available hardware
Scalability Limited by slowest component Adaptable to various bottlenecks

One of the most critical advantages of these methods is the improvement in
GPU utilization. In traditional, unoptimized pipelines, the GPU often remains

Chapter 8. AI Training 325

idle while waiting for data to be fetched and preprocessed. This idle time
creates inefÏciencies, especially in workflows where data augmentation or
preprocessing involves complex transformations. By introducing asynchronous
data loading and overlapping, these techniques ensure that the GPU consistently
has data ready to process, eliminating unnecessary delays.

Another important benefit is the reduction in overall training time. Prefetch-
ing and overlapping allow the computational pipeline to operate continuously,
with multiple stages working simultaneously rather than sequentially. For
example, while the GPU processes the current batch, the data loader fetches
and preprocesses the next batch, ensuring a steady flow of data through the
system. This parallelism minimizes latency between training iterations, allow-
ing for faster completion of training cycles, particularly in scenarios involving
large-scale datasets.

Additionally, these techniques are highly scalable and adaptable to various
hardware configurations. Prefetching buffers and overlapping mechanisms
can be tuned to match the specific requirements of a system, whether the
bottleneck lies in slow storage, limited network bandwidth, or computational
constraints. By aligning the data pipeline with the capabilities of the underlying
hardware, prefetching and overlapping maximize resource utilization, making
them invaluable for large-scale machine learning workflows.

Overall, prefetching and overlapping directly address some of the most
common inefÏciencies in training pipelines. By optimizing data flow and
computation, these methods not only improve hardware efÏciency but also
enable the training of more complex models within shorter timeframes.

8.5.1.3 Use Cases

Prefetching and overlapping are highly versatile techniques that can be ap-
plied across various machine learning domains and tasks to enhance pipeline
efÏciency. Their benefits are most evident in scenarios where data handling
and preprocessing are computationally expensive or where large-scale datasets
create potential bottlenecks in data transfer and loading.

One of the primary use cases is in computer vision, where datasets often
consist of high-resolution images requiring extensive preprocessing. Tasks such
as image classification, object detection, or semantic segmentation typically
involve operations like resizing, normalization, and data augmentation, all of
which can significantly increase preprocessing time. By employing prefetch-
ing and overlapping, these operations can be carried out concurrently with
computation, ensuring that the GPU remains busy during the training process.

For example, a typical image classification pipeline might include random
cropping (10 ms), color jittering (15 ms), and normalization (5 ms). With-
out prefetching, these 30ms of preprocessing would delay each training step.
Prefetching allows these operations to occur during the previous batch’s com-
putation.

Natural language processing (NLP) workflows also benefit from these tech-
niques, particularly when working with large corpora of text data. For instance,
preprocessing text data involves tokenization (converting words to numbers),
padding sequences to equal length, and potentially subword tokenization. In

8.5. Pipeline Optimizations 326

a BERT model training pipeline, these steps might process thousands of sen-
tences per batch. Prefetching allows this text processing to happen concurrently
with model training. Prefetching ensures that these transformations occur in
parallel with training, while overlapping optimizes data transfer and computa-
tion. This is especially useful in transformer-based models like BERT or GPT,
which require consistent throughput to maintain efÏciency given their high
computational demand.

Distributed training systems, which we will discuss next, involve multiple
GPUs or nodes, present another critical application for prefetching and over-
lapping. In distributed setups, network latency and data transfer rates often
become the primary bottleneck. Prefetching mitigates these issues by ensur-
ing that data is ready and available before it is required by any specific GPU.
Overlapping further optimizes distributed training pipelines by coordinating
the data preprocessing on individual nodes while the central computation
continues, thus reducing overall synchronization delays.

Beyond these domains, prefetching and overlapping are particularly valuable
in workflows involving large-scale datasets stored on remote or cloud-based
systems. When training on cloud platforms, the data may need to be fetched
over a network or from distributed storage, which introduces additional latency.
Using prefetching and overlapping in such cases helps minimize the impact
of these delays, ensuring that training proceeds smoothly despite slower data
access speeds.

These use cases illustrate how prefetching and overlapping address inefÏcien-
cies in various machine learning pipelines. By optimizing the flow of data and
computation, these techniques enable faster, more reliable training workflows
across a wide range of applications.

8.5.1.4 Challenges and Trade-offs
While prefetching and overlapping are powerful techniques for optimizing
training pipelines, their implementation comes with certain challenges and
trade-offs. Understanding these limitations is crucial for effectively applying
these methods in real-world machine learning workflows.

One of the primary challenges is the increased memory usage that accompa-
nies prefetching and overlapping. By design, these techniques rely on main-
taining a buffer of prefetched data batches, which requires additional memory
resources. For large datasets or high-resolution inputs, this memory demand
can become significant, especially when training on GPUs with limited memory
capacity. If the buffer size is not carefully tuned, it may lead to out-of-memory
errors, forcing practitioners to reduce batch sizes or adjust other parameters,
which can impact overall efÏciency.

For example, with a prefetch factor of 2 and batch size of 256 high-resolution
images (1024×1024 pixels), the buffer might require an additional 2 GB of GPU
memory. This becomes particularly challenging when training vision models
that already require significant memory for their parameters and activations.

Another difÏculty lies in tuning the parameters that control prefetching and
overlapping. Settings such as num_workers and prefetch_factor in PyTorch,
or buffer sizes in other frameworks, need to be optimized for the specific hard-
ware and workload. For instance, increasing the number of worker threads can

Chapter 8. AI Training 327

improve throughput up to a point, but beyond that, it may lead to contention for
CPU resources or even degrade performance due to excessive context switching.
Determining the optimal configuration often requires empirical testing, which
can be time-consuming. A common starting point is to set num_workers to the
number of CPU cores available. However, on a 16-core system processing large
images, using all cores for data loading might leave insufÏcient CPU resources
for other essential operations, potentially slowing down the entire pipeline.

Debugging also becomes more complex in pipelines that employ prefetching
and overlapping. Asynchronous data loading and multithreading or multi-
processing introduce potential race conditions, deadlocks, or synchronization
issues. Diagnosing errors in such systems can be challenging because the execu-
tion flow is no longer straightforward. Developers may need to invest additional
effort into monitoring, logging, and debugging tools to ensure that the pipeline
operates reliably.

Moreover, there are scenarios where prefetching and overlapping may offer
minimal benefits. For instance, in systems where storage access or network
bandwidth is significantly faster than the computation itself, these techniques
might not noticeably improve throughput. In such cases, the additional com-
plexity and memory overhead introduced by prefetching may not justify its
use.

Finally, prefetching and overlapping require careful coordination across dif-
ferent components of the training pipeline, such as storage, CPUs, and GPUs.
Poorly designed pipelines can lead to imbalances where one stage becomes a
bottleneck, negating the advantages of these techniques. For example, if the
data loading process is too slow to keep up with the GPU’s processing speed,
the benefits of overlapping will be limited.

Despite these challenges, prefetching and overlapping remain essential tools
for optimizing training pipelines when used appropriately. By understanding
and addressing their trade-offs, practitioners can implement these techniques
effectively, ensuring smoother and more efÏcient machine learning workflows.

8.5.2 Mixed-Precision Training
Mixed-precision training combines different numerical precisions during model
training to optimize computational efÏciency. This approach uses combinations
of 32-bit floating-point (FP32), 16-bit floating-point (FP16), and brain floating-
point (bfloat16) formats to reduce memory usage and speed up computation
while preserving model accuracy (Micikevicius et al. 2017a; Y. Wang and
Kanwar 2019).

A neural network trained in FP32 requires 4 bytes per parameter, while both
FP16 and bfloat16 use 2 bytes. For a model with 109 parameters, this reduction
cuts memory usage from 4 GB to 2 GB. This memory reduction enables larger
batch sizes and deeper architectures on the same hardware.

The numerical precision differences between these formats shape their use
cases. FP32 represents numbers from approximately ±1.18×10−38 to ±3.4×1038 with 7 decimal digits of precision. FP16 ranges from ±6.10 × 10−5 to±65,504 with 3-4 decimal digits of precision. Bfloat16, developed by Google
Brain, maintains the same dynamic range as FP32 (±1.18×10−38 to ±3.4×1038)

8.5. Pipeline Optimizations 328

9 Tensor Cores: NVIDIA GPU
units that accelerate matrix oper-
ations with reduced precision for-
mats like FP16 and bfloat16, boost-
ing deep learning performance by
enabling parallel computations.

but with reduced precision (3-4 decimal digits). This range preservation makes
bfloat16 particularly suited for deep learning training, as it handles large and
small gradients more effectively than FP16.

The hybrid approach proceeds in three main phases, as illustrated in Fig-
ure 8.11. During the forward pass, input data converts to reduced precision
(FP16 or bfloat16), and matrix multiplications execute in this format, including
activation function computations. In the gradient computation phase, the back-
ward pass calculates gradients in reduced precision, but results are stored in
FP32 master weights. Finally, during weight updates, the optimizer updates
the main weights in FP32, and these updated weights convert back to reduced
precision for the next forward pass.

Figure 8.11: Mixed precision train-
ing flow.

FP 32 Master

Weights
FP 32

Gradients

Scaled FP 32

Gradients

Scaled FP 16

Gradients

FP 16

Weights
FP 16 Loss

Scaled FP 32

Loss

4. Copy

5. Remove scale,

(+clip, etc.)6. Apply

7. Copy

1. Forward

Pass

2. Loss

Scaling 3. Backprop

Modern hardware architectures are specifically designed to accelerate re-
duced precision computations. GPUs from NVIDIA include Tensor Cores9

optimized for FP16 and bfloat16 operations (Xianyan Jia et al. 2018). Google’s
TPUs natively support bfloat16, as this format was specifically designed for
machine learning workloads. These architectural optimizations typically enable
an order of magnitude higher computational throughput for reduced precision
operations compared to FP32, making mixed-precision training particularly
efÏcient on modern hardware.

8.5.2.1 FP16 Computation

The majority of operations in mixed-precision training, such as matrix multipli-
cations and activation functions, are performed in FP16. The reduced precision
allows these calculations to be executed faster and with less memory consump-
tion compared to FP32. FP16 operations are particularly effective on modern
GPUs equipped with Tensor Cores, which are designed to accelerate compu-
tations involving half-precision values. These cores perform FP16 operations
natively, resulting in significant speedups.

8.5.2.2 FP32 Accumulation

While FP16 is efÏcient, its limited precision can lead to numerical instabil-
ity, especially in critical operations like gradient updates. To mitigate this,
mixed-precision training retains FP32 precision for certain steps, such as weight
updates and gradient accumulation. By maintaining higher precision for these
calculations, the system avoids the risk of gradient underflow or overflow,
ensuring the model converges correctly during training.

Chapter 8. AI Training 329

10 Transformers are neural net-
works that use attention mecha-
nisms to dynamically capture rela-
tionships between elements in se-
quential data. Unlike traditional ar-
chitectures, transformers can pro-
cess all sequence elements in par-
allel through multi-head attention,
where each head learns different
relationship patterns. This paral-
lelization enables efÏcient process-
ing of long sequences, making trans-
formers particularly effective for
tasks like language modeling and
sequence translation.

8.5.2.3 Loss Scaling

One of the key challenges with FP16 is its reduced dynamic range, which
increases the likelihood of gradient values becoming too small to be represented
accurately. Loss scaling addresses this issue by temporarily amplifying gradient
values during backpropagation. Specifically, the loss value is scaled by a large
factor (e.g., 210) before gradients are computed, ensuring they remain within
the representable range of FP16. Once the gradients are computed, the scaling
factor is reversed during the weight update step to restore the original gradient
magnitude. This process allows FP16 to be used effectively without sacrificing
numerical stability.

Modern machine learning frameworks, such as PyTorch and TensorFlow,
provide built-in support for mixed-precision training. These frameworks ab-
stract the complexities of managing different precisions, enabling practitioners
to implement mixed-precision workflows with minimal effort. For instance,
PyTorch’s torch.cuda.amp (Automatic Mixed Precision) library automates the
process of selecting which operations to perform in FP16 or FP32, as well as
applying loss scaling when necessary.

Combining FP16 computation, FP32 accumulation, and loss scaling allows
us to achieve mixed-precision training, resulting in a significant reduction
in memory usage and computational overhead without compromising the
accuracy or stability of the training process. The following sections will explore
the practical advantages of this approach and its impact on modern machine
learning workflows.

8.5.2.4 Benefits

Mixed-precision training offers several significant advantages that make it an
essential optimization technique for modern machine learning workflows. By
reducing memory usage and computational load, it enables practitioners to
train larger models, process bigger batches, and achieve faster results, all while
maintaining model accuracy and convergence.

One of the most prominent benefits of mixed-precision training is its sub-
stantial reduction in memory consumption. FP16 computations require only
half the memory of FP32 computations, which directly reduces the storage
required for activations, weights, and gradients during training. For instance,
a transformer model with 1 billion parameters requires 4 GB of memory for
weights in FP32, but only 2 GB in FP16. This memory efÏciency allows for
larger batch sizes, which can lead to more stable gradient estimates and faster
convergence. Additionally, with less memory consumed per operation, prac-
titioners can train deeper and more complex models on the same hardware,
unlocking capabilities that were previously limited by memory constraints.10

Another key advantage is the acceleration of computations. Modern GPUs,
such as those equipped with Tensor Cores, are specifically optimized for FP16
operations. These cores enable hardware to process more operations per cycle
compared to FP32, resulting in faster training times. For matrix multiplica-
tion operations, which constitute 80-90% of training computation time in large
models, FP16 can achieve 2-3× speedup compared to FP32. This computa-
tional speedup becomes particularly noticeable in large-scale models, such as

8.5. Pipeline Optimizations 330

transformers and convolutional neural networks, where matrix multiplications
dominate the workload.

Mixed-precision training also improves hardware utilization by better match-
ing the capabilities of modern accelerators. In traditional FP32 workflows, the
computational throughput of GPUs is often underutilized due to their design
for parallel processing. FP16 operations, being less demanding, allow more
computations to be performed simultaneously, ensuring that the hardware
operates closer to its full capacity.

Finally, mixed-precision training aligns well with the requirements of dis-
tributed and cloud-based systems. In distributed training, where large-scale
models are trained across multiple GPUs or nodes, memory and bandwidth
become critical constraints. By reducing the size of tensors exchanged between
devices, mixed precision not only speeds up inter-device communication but
also decreases overall resource demands. This makes it particularly effective in
environments where scalability and cost-efÏciency are priorities.

Overall, the benefits of mixed-precision training extend beyond performance
improvements. By optimizing memory usage and computation, this technique
empowers machine learning practitioners to train cutting-edge models more
efÏciently, making it a cornerstone of modern machine learning.

8.5.2.5 Use Cases
Mixed-precision training has become a essential in machine learning workflows,
particularly in domains and scenarios where computational efÏciency and
memory optimization are critical. Its ability to enable faster training and larger
model capacities makes it highly applicable across a variety of machine learning
tasks and architectures.

One of the most prominent use cases is in training large-scale machine learn-
ing models. In natural language processing, models such as BERT (345M param-
eters), GPT-3 (175B parameters), and Transformer-based architectures involve
extensive matrix multiplications and large parameter sets. Mixed-precision
training allows these models to operate with larger batch sizes or deeper con-
figurations, facilitating faster convergence and improved accuracy on massive
datasets.

In computer vision, tasks such as image classification, object detection, and
segmentation often require handling high-resolution images and applying com-
putationally intensive convolutional operations. By leveraging mixed-precision
training, these workloads can be executed more efÏciently, enabling the training
of advanced architectures like ResNet, EfÏcientNet, and vision transformers
within practical resource limits.

Mixed-precision training is also particularly valuable in reinforcement learn-
ing (RL), where models interact with environments to optimize decision-making
policies. RL often involves high-dimensional state spaces and requires substan-
tial computational resources for both model training and simulation. Mixed
precision reduces the overhead of these processes, allowing researchers to focus
on larger environments and more complex policy networks.

Another critical application is in distributed training systems. When training
models across multiple GPUs or nodes, memory and bandwidth become limit-
ing factors for scalability. Mixed precision addresses these issues by reducing

Chapter 8. AI Training 331

the size of activations, weights, and gradients exchanged between devices. For
example, in a distributed training setup with 8 GPUs, reducing tensor sizes
from FP32 to FP16 can halve the communication bandwidth requirements from
320 GB/s to 160 GB/s. This optimization is especially beneficial in cloud-based
environments, where resource allocation and cost efÏciency are paramount.

Additionally, mixed-precision training is increasingly used in areas such as
speech processing, generative modeling, and scientific simulations. Models in
these fields often have large data and parameter requirements that can push
the limits of traditional FP32 workflows. By optimizing memory usage and
leveraging the speedups provided by Tensor Cores, practitioners can train
state-of-the-art models faster and more cost-effectively.

The adaptability of mixed-precision training to diverse tasks and domains
underscores its importance in modern machine learning. Whether applied
to large-scale natural language models, computationally intensive vision ar-
chitectures, or distributed training environments, this technique empowers
researchers and engineers to push the boundaries of what is computationally
feasible.

8.5.2.6 Challenges and Trade-offs
While mixed-precision training offers significant advantages in terms of memory
efÏciency and computational speed, it also introduces several challenges and
trade-offs that must be carefully managed to ensure successful implementation.

One of the primary challenges lies in the reduced precision of FP16. While
FP16 computations are faster and require less memory, their limited dynamic
range (±65,504) can lead to numerical instability, particularly during gradient
computations. Small gradient values below 6 × 10−5 become too small to be
represented accurately in FP16, resulting in underflow. While loss scaling
addresses this by multiplying gradients by factors like 28 to 214, implementing
and tuning this scaling factor adds complexity to the training process.

Another trade-off involves the increased risk of convergence issues. While
many modern machine learning tasks perform well with mixed-precision train-
ing, certain models or datasets may require higher precision to achieve stable
and reliable results. For example, recurrent neural networks with long se-
quences often accumulate numerical errors in FP16, requiring careful gradient
clipping and precision management. In such cases, practitioners may need
to experiment with selectively enabling or disabling FP16 computations for
specific operations, which can complicate the training workflow.

Debugging and monitoring mixed-precision training also require additional
attention. Numerical issues such as NaN (Not a Number) values in gradients or
activations are more common in FP16 workflows and may be difÏcult to trace
without proper tools and logging. For instance, gradient explosions in deep
networks might manifest differently in mixed precision, appearing as infinities
in FP16 before they would in FP32. Frameworks like PyTorch and TensorFlow
provide utilities for debugging mixed-precision training, but these tools may
not catch every edge case, especially in custom implementations.

Another challenge is the dependency on specialized hardware. Mixed-
precision training relies heavily on GPU architectures optimized for FP16 opera-
tions, such as Tensor Cores in NVIDIA’s GPUs. While these GPUs are becoming

8.5. Pipeline Optimizations 332

increasingly common, not all hardware supports mixed-precision operations,
limiting the applicability of this technique in some environments.

Finally, there are scenarios where mixed-precision training may not pro-
vide significant benefits. Models with relatively low computational demand
(less than 10M parameters) or small parameter sizes may not fully utilize the
speedups offered by FP16 operations. In such cases, the additional complexity
of mixed-precision workflows may outweigh their potential advantages.

Despite these challenges, mixed-precision training remains a highly effective
optimization technique for most large-scale machine learning tasks. By under-
standing and addressing its trade-offs, practitioners can harness its benefits
while minimizing potential drawbacks, ensuring efÏcient and reliable training
workflows.

8.5.3 Gradient Accumulation and Checkpointing
Training large machine learning models often requires significant memory
resources, particularly for storing three key components: activations (interme-
diate layer outputs), gradients (parameter updates), and model parameters
(weights and biases) during forward and backward passes. However, memory
constraints on GPUs can limit the batch size or the complexity of models that
can be trained on a given device.

Gradient accumulation and activation checkpointing are two techniques
designed to address these limitations by optimizing how memory is utilized
during training. Both techniques enable researchers and practitioners to train
larger and more complex models, making them indispensable tools for modern
deep learning workflows. In the following sections, we will go deeper into the
mechanics of gradient accumulation and activation checkpointing, exploring
their benefits, use cases, and practical implementation.

8.5.3.1 Mechanics
Gradient accumulation and activation checkpointing operate on distinct princi-
ples, but both aim to optimize memory usage during training by modifying
how forward and backward computations are handled.

GradientAccumulation. Gradient accumulation simulates larger batch sizes by
splitting a single effective batch into smaller “micro-batches.” As illustrated in
Figure 8.12, during each forward and backward pass, the gradients for a micro-
batch are computed and added to an accumulated gradient buffer. Instead
of immediately applying the gradients to update the model parameters, this
process repeats for several micro-batches. Once the gradients from all micro-
batches in the effective batch are accumulated, the parameters are updated
using the combined gradients.

This process allows models to achieve the benefits of training with larger
batch sizes, such as improved gradient estimates and convergence stability,
without requiring the memory to store an entire batch at once. For instance, in
PyTorch, this can be implemented by adjusting the learning rate proportionally
to the number of accumulated micro-batches and calling optimizer.step()
only after processing the entire effective batch.

The key steps in gradient accumulation are:

Chapter 8. AI Training 333

Figure 8.12: Gradient accumulation.

Batch 2 L2 δ2 δ1+δ2+δ3

Batch 1 L1

Batch 3 L3

δ1

δ3

Losses Gradients

Sum

∂L1

∂x

∂L2

∂x

∂L3

∂x

1. Perform the forward pass for a micro-batch.
2. Compute the gradients during the backward pass.
3. Accumulate the gradients into a buffer without updating the model pa-

rameters.
4. Repeat steps 1-3 for all micro-batches in the effective batch.
5. Update the model parameters using the accumulated gradients after all

micro-batches are processed.

Activation Checkpointing. Activation checkpointing reduces memory usage
during the backward pass by discarding and selectively recomputing activations.
In standard training, activations from the forward pass are stored in memory
for use in gradient computations during backpropagation. However, these
activations can consume significant memory, particularly in deep networks.

With checkpointing, only a subset of the activations is retained during the
forward pass. When gradients need to be computed during the backward
pass, the discarded activations are recomputed on demand by re-executing
parts of the forward pass, as illustrated in Figure 8.13. This approach trades
computational efÏciency for memory savings, as the recomputation increases
training time but allows deeper models to be trained within limited memory
constraints. The figure shows how memory is saved by avoiding storage of
unnecessarily large intermediate tensors from the forward pass, and simply
recomputing them on demand in the backwards pass.

The implementation involves:
1. Splitting the model into segments.
2. Retaining activations only at the boundaries of these segments during

the forward pass.
3. Recomputing activations for intermediate layers during the backward

pass when needed.

Frameworks like PyTorch provide tools such as torch.utils.checkpoint
to simplify this process. Checkpointing is particularly effective for very deep
architectures, such as transformers or large convolutional networks, where the
memory required for storing activations can exceed the GPU’s capacity.

8.5. Pipeline Optimizations 334

Figure 8.13: Diagram showing how
activation checkpointing helps to re-
duce memory usage during train-
ing.

Forward pass

Backward pass

Checkpoint

Green nodes are the ones

kept in memory to compute

the gradient update for this

node

This node is being recomputed

and kept in memory temporarily

Checkpoint

Green nodes are the ones

kept in memory to compute

the gradient update for this

node

The synergy between gradient accumulation and checkpointing enables train-
ing of larger, more complex models. Gradient accumulation manages memory
constraints related to batch size, while checkpointing optimizes memory usage
for intermediate activations. Together, these techniques expand the range of
models that can be trained on available hardware.

8.5.3.2 Benefits

Gradient accumulation and activation checkpointing provide solutions to the
memory limitations often encountered in training large-scale machine learning
models. By optimizing how memory is used during training, these techniques
enable the development and deployment of complex architectures, even on
hardware with constrained resources.

One of the primary benefits of gradient accumulation is its ability to simulate
larger batch sizes without increasing the memory requirements for storing the
full batch. Larger batch sizes are known to improve gradient estimates, leading
to more stable convergence and faster training. With gradient accumulation,
practitioners can achieve these benefits while working with smaller micro-
batches that fit within the GPU’s memory. This flexibility is useful when training
models on high-resolution data, such as large images or 3D volumetric data,
where even a single batch may exceed available memory.

Activation checkpointing, on the other hand, significantly reduces the mem-
ory footprint of intermediate activations during the forward pass. This allows
for the training of deeper models, which would otherwise be infeasible due to
memory constraints. By discarding and recomputing activations as needed,
checkpointing frees up memory that can be used for larger models, additional
layers, or higher resolution data. This is especially important in state-of-the-art
architectures, such as transformers or dense convolutional networks, which
require substantial memory to store intermediate computations.

Both techniques enhance the scalability of machine learning workflows. In
resource-constrained environments, such as cloud-based platforms or edge
devices, these methods provide a means to train models efÏciently without

Chapter 8. AI Training 335

requiring expensive hardware upgrades. Furthermore, they enable researchers
to experiment with larger and more complex architectures, pushing the bound-
aries of what is computationally feasible.

Beyond memory optimization, these techniques also contribute to cost ef-
ficiency. By reducing the hardware requirements for training, gradient accu-
mulation and checkpointing lower the overall cost of development, making
them valuable for organizations working within tight budgets. This is particu-
larly relevant for startups, academic institutions, or projects running on shared
computing resources.

Gradient accumulation and activation checkpointing provide both technical
and practical advantages. These techniques create a more flexible, scalable, and
cost-effective approach to training large-scale models, empowering practitioners
to tackle increasingly complex machine learning challenges.

8.5.3.3 Use Cases

Gradient accumulation and activation checkpointing are particularly valuable
in scenarios where hardware memory limitations present significant challenges
during training. These techniques are widely used in training large-scale mod-
els, working with high-resolution data, and optimizing workflows in resource-
constrained environments.

A common use case for gradient accumulation is in training models that
require large batch sizes to achieve stable convergence. For example, models
like GPT, BERT, and other transformer architectures often benefit from larger
batch sizes due to their improved gradient estimates. However, these batch sizes
can quickly exceed the memory capacity of GPUs, especially when working
with high-dimensional inputs or multiple GPUs. By accumulating gradients
over multiple smaller micro-batches, gradient accumulation enables the use of
effective large batch sizes without exceeding memory limits. This is particularly
beneficial for tasks like language modeling, sequence-to-sequence learning, and
image classification, where batch size significantly impacts training dynamics.

Activation checkpointing enables training of deep neural networks with
numerous layers or complex computations. In computer vision, architectures
like ResNet-152, EfÏcientNet, and DenseNet require substantial memory to
store intermediate activations during training. Checkpointing reduces this
memory requirement through strategic recomputation of activations, making
it possible to train these deeper architectures within GPU memory constraints.

In the domain of natural language processing, models like GPT-3 or T5, with
hundreds of layers and billions of parameters, rely heavily on checkpointing to
manage memory usage. These models often exceed the memory capacity of a
single GPU, making checkpointing a necessity for efÏcient training. Similarly,
in generative adversarial networks (GANs), which involve both generator and
discriminator models, checkpointing helps manage the combined memory
requirements of both networks during training.

Another critical application is in resource-constrained environments, such
as edge devices or cloud-based platforms. In these scenarios, memory is often
a limiting factor, and upgrading hardware may not always be a viable option.
Gradient accumulation and checkpointing provide a cost-effective solution for

8.5. Pipeline Optimizations 336

training models on existing hardware, enabling efÏcient workflows without
requiring additional investment in resources.

These techniques are also indispensable in research and experimentation.
They allow practitioners to prototype and test larger and more complex models,
exploring novel architectures that would otherwise be infeasible due to memory
constraints. This is particularly valuable for academic researchers and startups
operating within limited budgets.

Gradient accumulation and activation checkpointing solve fundamental chal-
lenges in training large-scale models within memory-constrained environments.
These techniques have become essential tools for practitioners in natural lan-
guage processing, computer vision, generative modeling, and edge computing,
enabling broader adoption of advanced machine learning architectures.

8.5.3.4 Challenges and Trade-offs
While gradient accumulation and activation checkpointing are powerful tools
for optimizing memory usage during training, their implementation introduces
several challenges and trade-offs that must be carefully managed to ensure
efÏcient and reliable workflows.

One of the primary trade-offs of activation checkpointing is the additional
computational overhead it introduces. By design, checkpointing saves memory
by discarding and recomputing intermediate activations during the backward
pass. This recomputation increases the training time, as portions of the forward
pass must be executed multiple times. For example, in a transformer model
with 12 layers, if checkpoints are placed every 4 layers, each intermediate
activation would need to be recomputed up to three times during the backward
pass. The extent of this overhead depends on how the model is segmented
for checkpointing and the computational cost of each segment. Practitioners
must strike a balance between memory savings and the additional time spent
on recomputation, which may affect overall training efÏciency.

Gradient accumulation, while effective at simulating larger batch sizes, can
lead to slower parameter updates. Since gradients are accumulated over multi-
ple micro-batches, the model parameters are updated less frequently compared
to training with full batches. This delay in updates can impact the speed of con-
vergence, particularly in models sensitive to batch size dynamics. Additionally,
gradient accumulation requires careful tuning of the learning rate. For instance,
if accumulating gradients over 4 micro-batches to simulate a batch size of 128,
the learning rate typically needs to be scaled up by a factor of 4 to maintain the
same effective learning rate as training with full batches. The effective batch
size increases with accumulation, necessitating proportional adjustments to
the learning rate to maintain stable training.

Debugging and monitoring are also more complex when using these tech-
niques. In activation checkpointing, errors may arise during recomputation,
making it more difÏcult to trace issues back to their source. Similarly, gradi-
ent accumulation requires ensuring that gradients are correctly accumulated
and reset after each effective batch, which can introduce bugs if not handled
properly.

Another challenge is the increased complexity in implementation. While
modern frameworks like PyTorch provide utilities to simplify gradient accu-

Chapter 8. AI Training 337

mulation and checkpointing, effective use still requires understanding the
underlying principles. For instance, activation checkpointing demands seg-
menting the model appropriately to minimize recomputation overhead while
achieving meaningful memory savings. Improper segmentation can lead to
suboptimal performance or excessive computational cost.

These techniques may also have limited benefits in certain scenarios. For
example, if the computational cost of recomputation in activation checkpointing
is too high relative to the memory savings, it may negate the advantages of
the technique. Similarly, for models or datasets that do not require large batch
sizes, the complexity introduced by gradient accumulation may not justify its
use.

Despite these challenges, gradient accumulation and activation checkpoint-
ing remain indispensable for training large-scale models under memory con-
straints. By carefully managing their trade-offs and tailoring their application to
specific workloads, practitioners can maximize the efÏciency and effectiveness
of these techniques.

8.5.4 Comparison

As summarized in Table 8.5, these techniques vary in their implementation
complexity, hardware requirements, and impact on computation speed and
memory usage. The selection of an appropriate optimization strategy depends
on factors such as the specific use case, available hardware resources, and the
nature of performance bottlenecks in the training process.

Table 8.5: High-level comparison of the three optimization strategies, highlight-
ing their key aspects, benefits, and challenges.

Aspect
Prefetching and
Overlapping Mixed-Precision Training

Gradient Accumulation and
Checkpointing

Primary
Goal

Minimize data transfer
delays and maximize GPU
utilization

Reduce memory
consumption and
computational overhead

Overcome memory limitations
during backpropagation and
parameter updates

Key
Mechanism

Asynchronous data loading
and parallel processing

Combining FP16 and FP32
computations

Simulating larger batch sizes and
selective activation storage

Memory
Impact

Increases memory usage for
prefetch buffer

Reduces memory usage by
using FP16

Reduces memory usage for
activations and gradients

Computa-
tion Speed

Improves by reducing idle
time

Accelerates computations
using FP16

May slow down due to
recomputations in checkpointing

Scalability Highly scalable, especially
for large datasets

Enables training of larger
models

Allows training deeper models on
limited hardware

Hardware
Require-
ments

Benefits from fast storage
and multi-core CPUs

Requires GPUs with FP16
support (e.g., Tensor Cores)

Works on standard hardware

Implementa-
tion
Complexity

Moderate (requires tuning
of prefetch parameters)

Low to moderate (with
framework support)

Moderate (requires careful
segmentation and accumulation)

Main
Benefits

Reduces training time,
improves hardware
utilization

Faster training, larger
models, reduced memory
usage

Enables larger batch sizes and
deeper models

Primary
Challenges

Tuning buffer sizes,
increased memory usage

Potential numerical
instability, loss scaling
needed

Increased computational
overhead, slower parameter
updates

Ideal Use
Cases

Large datasets, complex
preprocessing

Large-scale models,
especially in NLP and
computer vision

Very deep networks,
memory-constrained
environments

8.6. Distributed Systems 338

While these three techniques represent core optimization strategies in ma-
chine learning, they are part of a larger optimization landscape. Other notable
techniques include pipeline parallelism for multi-GPU training, dynamic batch-
ing for variable-length inputs, and quantization for inference optimization.
Practitioners should evaluate their specific requirements, including model ar-
chitecture, dataset characteristics, and hardware constraints, to select the most
appropriate combination of optimization techniques for their use case.

8.6 Distributed Systems
Thus far, we have focused on ML training pipelines from a single-system per-
spective. However, training machine learning models often requires scaling
beyond a single machine due to increasing model complexity and dataset sizes.
The demand for computational power, memory, and storage can exceed the
capacity of individual devices, especially in domains like natural language
processing, computer vision, and scientific computing. Distributed training
addresses this challenge by spreading the workload across multiple machines,
which coordinate to train a single model efÏciently.

Distributed training addresses this challenge by spreading the workload
across multiple machines, which coordinate to train a single model efÏciently.
This process typically involves splitting the dataset into non-overlapping sub-
sets, assigning each subset to a different GPU, and performing forward and
backward passes independently on each device. Once gradients are computed
on each GPU, they are synchronized and aggregated before updating the model
parameters, ensuring that all devices learn in a consistent manner. Figure 8.14
illustrates this process, showing how input data is divided, assigned to multiple
GPUs for computation, and later synchronized to update the model collectively.

Figure 8.14: Multi-GPU training
where the input data is divided into
non-overlapping subsets, assigned
to different GPUs for forward and
backward passes, and then synchro-
nized to aggregate gradients before
updating model parameters. GPU 1 GPU 1 GPU 1

Error

Compute

loss

function

Compare

predicted

label with

annotation

Avg

global

gradient

Chunk

Step 2 – Compute gradients Step 3 – Update ParametersStep 1 – Predict a label

Forward pass Backward pass

GPU 2 GPU 2 GPU 2

Error

Compute

loss

function

Compare

predicted

label with

annotation

Avg

global

gradient

Chunk

Forward pass Backward pass

Calculate Global Gradients

This coordination introduces several fundamental challenges that distributed
training systems must address. A distributed training system must orchestrate
multi-machine computation by splitting up the work, managing communication

Chapter 8. AI Training 339

between machines, and maintaining synchronization throughout the training
process. Understanding these basic requirements provides the foundation for
examining the main approaches to distributed training: data parallelism, which
divides the training data across machines; model parallelism, which splits the
model itself; and hybrid approaches that combine both strategies.

8.6.1 Data Parallelism
Data parallelism is a method for distributing the training process across multiple
devices by splitting the dataset into smaller subsets. Each device trains a
complete copy of the model using its assigned subset of the data. For example,
when training an image classification model on 1 million images using 4 GPUs,
each GPU would process 250,000 images while maintaining an identical copy
of the model architecture.

It is particularly effective when the dataset size is large but the model size is
manageable, as each device must store a full copy of the model in memory. This
method is widely used in scenarios such as image classification and natural
language processing, where the dataset can be processed in parallel without
dependencies between data samples. For instance, when training a ResNet
model on ImageNet, each GPU can independently process its portion of images
since the classification of one image doesn’t depend on the results of another.

Data parallelism builds on a key insight from stochastic gradient descent.
Gradients computed on different minibatches can be averaged. This property
enables parallel computation across devices. Let’s examine why this works
mathematically.

Consider a model with parameters 𝜃 training on a dataset 𝐷. The loss function
for a single data point 𝑥𝑖 is 𝐿(𝜃,𝑥𝑖). In standard SGD with batch size 𝐵, the
gradient update for a minibatch is:𝑔 = 1𝐵 𝐵∑𝑖=1 ∇𝜃𝐿(𝜃,𝑥𝑖)

In data parallelism with 𝑁 devices, each device 𝑘 computes gradients on its
own minibatch 𝐵𝑘: 𝑔𝑘 = 1|𝐵𝑘| ∑𝑥𝑖∈𝐵𝑘 ∇𝜃𝐿(𝜃,𝑥𝑖)

The global update averages these local gradients:𝑔global = 1𝑁 𝑁∑𝑘=1 𝑔𝑘
This averaging is mathematically equivalent to computing the gradient on

the combined batch 𝐵total = ⋃𝑁𝑘=1 𝐵𝑘:𝑔global = 1|𝐵total| ∑𝑥𝑖∈𝐵total

∇𝜃𝐿(𝜃,𝑥𝑖)
This equivalence shows why data parallelism maintains the statistical prop-

erties of SGD training. The approach distributes distinct data subsets across

8.6. Distributed Systems 340

devices, computes local gradients independently, and averages these gradients
to approximate the full-batch gradient.

The method parallels gradient accumulation, where a single device accu-
mulates gradients over multiple forward passes before updating parameters.
Both techniques leverage the additive properties of gradients to process large
batches efÏciently.

8.6.1.1 Mechanics

The process of data parallelism can be broken into a series of distinct steps,
each with its role in ensuring the system operates efÏciently. These steps are
illustrated in Figure 8.15.

Figure 8.15: Data-level parallelism.

GPU 1

Forward &

Backward Pass

GPU 2

Forward &

Backward Pass

GPU 3

Forward &

Backward Pass

GPU 4

Forward &

Backward Pass

Batch 1 Batch 2 Batch 3 Batch 4

Input Data

Gradients GPU N

Gradient

Aggregation

Model Update

Split into
Non-Overlapping Subsets

Split into
Non-Overlapping Subsets

Split into
Non-Overlapping Subsets

Split into
Non-Overlapping Subsets

Assigned
to GPU 1

Assigned
to GPU 2

Assigned
to GPU 3

Assigned
to GPU 4

Compute
Gradients

Compute
Gradients

Compute
Gradients

Compute
Gradients

Synchronize Gradients

Aggregate Gradients
and Update Parameters

Next Mini-Batch

Dataset Splitting. The first step in data parallelism involves dividing the
dataset into smaller, non-overlapping subsets. This ensures that each device
processes a unique portion of the data, avoiding redundancy and enabling efÏ-
cient utilization of available hardware. For instance, with a dataset of 100,000
training examples and 4 GPUs, each GPU would be assigned 25,000 examples.
Modern frameworks like PyTorch’s DistributedSampler handle this distribution
automatically, implementing prefetching and caching mechanisms to ensure
data is readily available for processing.

Chapter 8. AI Training 341

11 The choice between sum-
ming or averaging gradients im-
pacts model training dynamics. Gra-
dient summation requires scaling
the learning rate by the number of
workers to maintain consistent up-
date magnitudes. While gradient
averaging provides more stable up-
dates with reduced variance, it re-
quires a central coordination node
that can become a bottleneck as the
number of workers increases. The
decision depends on the specific
distributed training setup and op-
timization goals.

Device Forward Pass. Once the data subsets are distributed, each device per-
forms the forward pass independently. During this stage, the model processes
its assigned batch of data, generating predictions and calculating the loss. For
example, in a ResNet-50 model, each GPU would independently compute the
convolutions, activations, and final loss for its batch. The forward pass is com-
putationally intensive and benefits from hardware accelerators like NVIDIA
V100 GPUs or Google TPUs, which are optimized for matrix operations.

Backward Pass and Calculation. Following the forward pass, each device
computes the gradients of the loss with respect to the model’s parameters
during the backward pass. Modern frameworks like PyTorch and TensorFlow
handle this automatically through their autograd systems. For instance, if
a model has 50 million parameters, each device calculates gradients for all
parameters but based only on its local data subset.

Gradient Synchronization. To maintain consistency across the distributed
system, the gradients computed by each device must be synchronized. This step
typically uses the ring all-reduce algorithm, where each GPU communicates
only with its neighbors, reducing communication overhead. For example, with
8 GPUs, each sharing gradients for a 100MB model, ring all-reduce requires only
7 communication steps instead of the 56 steps needed for naive peer-to-peer
synchronization.

Parameter Updating. After gradient aggregation11, each device independently
updates model parameters using the chosen optimization algorithm, such as
SGD with momentum or Adam. This decentralized update strategy, imple-
mented in frameworks like PyTorch’s DistributedDataParallel (DDP), enables
efÏcient parameter updates without requiring a central coordination server.
Since all devices have identical gradient values after synchronization, they
perform mathematically equivalent updates to maintain model consistency
across the distributed system.

For example, in a system with 8 GPUs training a ResNet model, each GPU
computes local gradients based on its data subset. After gradient averaging via
ring all-reduce, every GPU has the same global gradient values. Each device
then independently applies these gradients using the optimizer’s update rule. If
using SGD with learning rate 0.1, the update would be weights = weights -
0.1 * gradients. This process maintains mathematical equivalence to single-
device training while enabling distributed computation.

This process, which involves splitting data, performing computations, syn-
chronizing results, and updating parameters, repeats for each batch of data.
Modern frameworks automate this cycle, allowing developers to focus on model
architecture and hyperparameter tuning rather than distributed computing
logistics.

8.6.1.2 Benefits

Data parallelism offers several key benefits that make it the predominant ap-
proach for distributed training. By splitting the dataset across multiple devices
and allowing each device to train an identical copy of the model, this approach
effectively addresses the core challenges in modern AI training systems.

8.6. Distributed Systems 342

12 A communication strat-
egy that minimizes data transfer
overhead by organizing devices in
a ring topology, first introduced
for distributed machine learning in
Horovod.

The primary advantage of data parallelism is its linear scaling capability with
large datasets. As datasets grow into the terabyte range, processing them on a
single machine becomes prohibitively time-consuming. For example, training
a vision transformer on ImageNet (1.2 million images) might take weeks on a
single GPU, but only days when distributed across 8 GPUs. This scalability is
particularly valuable in domains like language modeling, where datasets can
exceed billions of tokens.

Hardware utilization efÏciency represents another crucial benefit. Data par-
allelism maintains high GPU utilization rates, typically, above 85%, by ensur-
ing each device actively processes its data portion. Modern implementations
achieve this through asynchronous data loading and gradient computation
overlapping with communication. For instance, while one batch computes
gradients, the next batch’s data is already being loaded and preprocessed.

Implementation simplicity sets data parallelism apart from other distribution
strategies. Modern frameworks have reduced complex distributed training
to just a few lines of code. For example, converting a PyTorch model to use
data parallelism often requires only wrapping it in DistributedDataParallel
and initializing a distributed environment. This accessibility has contributed
significantly to its widespread adoption in both research and industry.

The approach also offers remarkable flexibility across model architectures.
Whether training a ResNet (vision), BERT (language), or Graph Neural Network
(graph data), the same data parallelism principles apply without modification.
This universality makes it particularly valuable as a default choice for dis-
tributed training.

Training time reduction is perhaps the most immediate benefit. Given proper
implementation, data parallelism can achieve near-linear speedup with addi-
tional devices. Training that takes 100 hours on a single GPU might complete
in roughly 13 hours on 8 GPUs, assuming efÏcient gradient synchronization
and minimal communication overhead.

While these benefits make data parallelism compelling, it’s important to
note that achieving these advantages requires careful system design. The next
section examines the challenges that must be addressed to fully realize these
benefits.

8.6.1.3 Challenges

While data parallelism is a powerful approach for distributed training, it in-
troduces several challenges that must be addressed to achieve efÏcient and
scalable training systems. These challenges stem from the inherent trade-offs
between computation and communication, as well as the limitations imposed
by hardware and network infrastructures.

Communication overhead represents the most significant bottleneck in data
parallelism. During gradient synchronization, each device must exchange
gradient updates—often hundreds of megabytes per step for large models.
With 8 GPUs training a 1-billion-parameter model, each synchronization step
might require transferring several gigabytes of data across the network. While
high-speed interconnects like NVLink (300 GB/s) or InfiniBand (200 Gb/s) help,
the overhead remains substantial. NCCL’s ring-allreduce12 algorithm reduces

Chapter 8. AI Training 343

this burden by organizing devices in a ring topology, but communication costs
still grow with model size and device count.

Scalability limitations become apparent as device count increases. While 8
GPUs might achieve 7× speedup (87.5% scaling efÏciency), scaling to 64 GPUs
typically yields only 45-50× speedup (70-78% efÏciency) due to growing syn-
chronization costs. This non-linear scaling means that doubling the number of
devices rarely halves the training time, particularly in configurations exceeding
16-32 devices.

Memory constraints present a hard limit for data parallelism. Consider a
transformer model with 175 billion parameters—it requires approximately 350
GB just to store model parameters in FP32. When accounting for optimizer
states and activation memories, the total requirement often exceeds 1 TB per
device. Since even high-end GPUs typically offer 80 GB or less, such models
cannot use pure data parallelism.

Workload imbalance affects heterogeneous systems significantly. In a cluster
mixing A100 and V100 GPUs, the A100s might process batches 1.7× faster,
forcing them to wait for the V100s to catch up. This idle time can reduce cluster
utilization by 20-30% without proper load balancing mechanisms.

Finally, there are challenges related to implementation complexity in dis-
tributed systems. While modern frameworks abstract much of the complexity,
implementing data parallelism at scale still requires significant engineering
effort. Ensuring fault tolerance, debugging synchronization issues, and optimiz-
ing data pipelines are non-trivial tasks that demand expertise in both machine
learning and distributed systems.

Despite these challenges, data parallelism remains an important technique
for distributed training, with many strategies available to address its limitations.
In the next section, we will explore model parallelism, another strategy for
scaling training that is particularly well-suited for handling extremely large
models that cannot fit on a single device.

8.6.2 Model Parallelism
Model parallelism splits neural networks across multiple computing devices
when the model’s parameters exceed single-device memory limits. Unlike
data parallelism, where each device contains a complete model copy, model
parallelism assigns different model components to different devices (Shazeer,
Mirhoseini, Maziarz, Davis, et al. 2017).

Several implementations of model parallelism exist. In layer-based splitting,
devices process distinct groups of layers sequentially. For instance, the first
device might compute layers 1-4 while the second handles layers 5-8. Channel-
based splitting divides the channels within each layer across devices, such as the
first device processing 512 channels while the second manages the remaining
ones. For transformer architectures, attention head splitting distributes different
attention heads to separate devices.

This distribution method enables training of large-scale models. GPT-3,
with 175 billion parameters, relies on model parallelism for training. Vision
transformers processing high-resolution 16k × 16k pixel images use model
parallelism to manage memory constraints. Mixture-of-Expert architectures

8.6. Distributed Systems 344

leverage this approach to distribute their conditional computation paths across
hardware.

Device coordination follows a specific pattern during training. In the forward
pass, data flows sequentially through model segments on different devices. The
backward pass propagates gradients in reverse order through these segments.
During parameter updates, each device modifies only its assigned portion of
the model. This coordination ensures mathematical equivalence to training on
a single device while enabling the handling of models that exceed individual
device memory capacities.

8.6.2.1 Mechanics

Model parallelism divides neural networks across multiple computing devices,
with each device computing a distinct portion of the model’s operations. This
division allows training of models whose parameter counts exceed single-device
memory capacity. The technique encompasses device coordination, data flow
management, and gradient computation across distributed model segments.
The mechanics of model parallelism are illustrated in Figure 8.16. These steps
are described next:

Figure 8.16: Model-level paral-
lelism.

Input Data
Model Part 1

on Device 1

Model Part 2 on

Device 2

Model Part 3

on Device 3
Predictions

Forward Pass

Gradient Updates

Intermediate Data

Gradient Updates

Intermediate Data

Gradient Updates

Output

Backward Pass

Model Partitioning. The first step in model parallelism is dividing the model
into smaller segments. For instance, in a deep neural network, layers are often
divided among devices. In a system with two GPUs, the first half of the layers
might reside on GPU 1, while the second half resides on GPU 2. Another
approach is to split computations within a single layer, such as dividing matrix
multiplications in transformer models across devices.

Model Forward Pass. During the forward pass, data flows sequentially through
the partitions. For example, data processed by the first set of layers on GPU
1 is sent to GPU 2 for processing by the next set of layers. This sequential
flow ensures that the entire model is used, even though it is distributed across
multiple devices. EfÏcient inter-device communication is crucial to minimize
delays during this step (Research 2021).

Backward Pass and Calculation. The backward pass computes gradients
through the distributed model segments in reverse order. Each device cal-
culates local gradients for its parameters and propagates necessary gradient
information to previous devices. In transformer models, this means backprop-
agating through attention computations and feed-forward networks across
device boundaries.

For example, in a two-device setup with attention mechanisms split between
devices, the backward computation works as follows: The second device com-
putes gradients for the final feed-forward layers and attention heads. It then

Chapter 8. AI Training 345

sends the gradient tensors for the attention output to the first device. The
first device uses these received gradients to compute updates for its attention
parameters and earlier layer weights.

Parameter Updates. Parameter updates occur independently on each device
using the computed gradients and an optimization algorithm. A device holding
attention layer parameters applies updates using only the gradients computed
for those specific parameters. This localized update approach differs from data
parallelism, which requires gradient averaging across devices.

The optimization step proceeds as follows: Each device applies its chosen
optimizer (such as Adam or AdaFactor) to update its portion of the model
parameters. A device holding the first six transformer layers updates only
those layers’ weights and biases. This local parameter update eliminates the
need for cross-device synchronization during the optimization step, reducing
communication overhead.

Iterative Process. Like other training strategies, model parallelism repeats
these steps for every batch of data. As the dataset is processed over multiple
iterations, the distributed model converges toward optimal performance.

Parallelism Variations. Model parallelism can be implemented through dif-
ferent strategies for dividing the model across devices. The three primary ap-
proaches are layer-wise partitioning, operator-level partitioning, and pipeline
parallelism, each suited to different model structures and computational needs.

Layer-wise Partitioning. Layer-wise partitioning assigns distinct model layers
to separate computing devices. In transformer architectures, this translates to
specific devices managing defined sets of attention and feed-forward blocks.
As illustrated in Figure 8.17, a 24-layer transformer model distributed across
four devices assigns six consecutive transformer blocks to each device. Device
1 processes blocks 1-6, device 2 handles blocks 7-12, and so forth.

Figure 8.17: Example of pipeline
parallelism.

Blocks 1-6 Blocks 7-12 Blocks 13-18 Blocks 19-24

GPU 1 GPU 2 GPU 3 GPU 4

Device 1 Device 2 Device 3 Device 4

This sequential processing introduces device idle time, as each device must
wait for the previous device to complete its computation before beginning work.
For example, while device 1 processes the initial blocks, devices 2, 3, and 4
remain inactive. Similarly, when device 2 begins its computation, device 1
sits idle. This pattern of waiting and idle time reduces hardware utilization
efÏciency compared to other parallelization strategies.

Layer-wise partitioning assigns distinct model layers to separate computing
devices. In transformer architectures, this translates to specific devices manag-

8.6. Distributed Systems 346

ing defined sets of attention and feed-forward blocks. A 24-layer transformer
model distributed across four devices assigns six consecutive transformer blocks
to each device. Device 1 processes blocks 1-6, device 2 handles blocks 7-12, and
so forth.

Pipeline Parallelism. Pipeline parallelism extends layer-wise partitioning by
introducing microbatching to minimize device idle time, as illustrated in Fig-
ure 8.18. Instead of waiting for an entire batch to sequentially pass through all
devices, the computation is divided into smaller segments called microbatches
[harlap2018pipedream]. Each device, as represented by the rows in the drawing,
processes its assigned model layers for different microbatches simultaneously.
For example, the forward pass involves devices passing activations to the next
stage (e.g., 𝐹0,0 to 𝐹1,0). The backward pass transfers gradients back through
the pipeline (e.g., 𝐵3,3 to 𝐵2,3). This overlapping computation reduces idle time
and increases throughput while maintaining the logical sequence of operations
across devices.

Figure 8.18: Example of pipeline
parallelism.

F0,0 F0,1 F0,2 F0,3

F1,0 F1,1 F1,2 F1,3

F2,0 F2,1 F2,2 F2,3

F3,0 F3,1 F3,2 F3,3 B3,3 B3,2 B3,1 B3,0

B2,3 B2,2 B2,1 B2,0

B1,3 B1,2 B1,1 B1,0

B0,3 B0,2 B0,1 B0,0 Update

Update

Update

Update

In a transformer model distributed across four devices, device 1 would pro-
cess blocks 1-6 for microbatch 𝑁 +1 while device 2 computes blocks 7-12 for
microbatch 𝑁. Simultaneously, device 3 executes blocks 13-18 for microbatch𝑁 −1, and device 4 processes blocks 19-24 for microbatch 𝑁 −2. Each device
maintains its assigned transformer blocks but operates on a different microbatch,
creating a continuous flow of computation.

The transfer of hidden states between devices occurs continuously rather than
in distinct phases. When device 1 completes processing a microbatch, it imme-
diately transfers the output tensor of shape [microbatch_size, sequence_length,
hidden_dimension] to device 2 and begins processing the next microbatch. This
overlapping computation pattern maintains full hardware utilization while
preserving the model’s mathematical properties.

Operator-level Parallelism. Operator-level parallelism divides individual neural
network operations across devices. In transformer models, this often means
splitting attention computations. Consider a transformer with 64 attention
heads and a hidden dimension of 4096. Two devices might split this compu-
tation as follows: Device 1 processes attention heads 1-32, computing queries,
keys, and values for its assigned heads. Device 2 simultaneously processes
heads 33-64. Each device handles attention computations for [batch_size, se-
quence_length, 2048] dimensional tensors.

Matrix multiplication operations in feed-forward networks also benefit from
operator-level splitting. A feed-forward layer with input dimension 4096 and
intermediate dimension 16384 can split across devices along the intermediate
dimension. Device 1 computes the first 8192 intermediate features, while device

Chapter 8. AI Training 347

2 computes the remaining 8192 features. This division reduces peak memory
usage while maintaining mathematical equivalence to the original computation.

Summary. Each of these partitioning methods addresses specific challenges in
training large models, and their applicability depends on the model architecture
and the resources available. By selecting the appropriate strategy, practitioners
can train models that exceed the limits of individual devices, enabling the
development of cutting-edge machine learning systems.

8.6.2.2 Benefits

Model parallelism offers several significant benefits, making it an essential
strategy for training large-scale models that exceed the capacity of individual
devices. These advantages stem from its ability to partition the workload across
multiple devices, enabling the training of more complex and resource-intensive
architectures.

Memory scaling represents the primary advantage of model parallelism. Cur-
rent transformer architectures contain up to hundreds of billions of parameters.
A 175 billion parameter model with 32-bit floating point precision requires 700
GB of memory just to store its parameters. When accounting for activations,
optimizer states, and gradients during training, the memory requirement multi-
plies several fold. Model parallelism makes training such architectures feasible
by distributing these memory requirements across devices.

Another key advantage is the efÏcient utilization of device memory and com-
pute power. Since each device only needs to store and process a portion of the
model, memory usage is distributed across the system. This allows practition-
ers to work with larger batch sizes or more complex layers without exceeding
memory limits, which can also improve training stability and convergence.

Model parallelism also provides flexibility for different model architectures.
Whether the model is sequential, as in many natural language processing tasks,
or composed of computationally intensive operations, as in attention-based
models or convolutional networks, there is a partitioning strategy that fits the
architecture. This adaptability makes model parallelism applicable to a wide
variety of tasks and domains.

Finally, model parallelism is a natural complement to other distributed train-
ing strategies, such as data parallelism and pipeline parallelism. By combining
these approaches, it becomes possible to train models that are both large in
size and require extensive data. This hybrid flexibility is especially valuable in
cutting-edge research and production environments, where scaling models and
datasets simultaneously is critical for achieving state-of-the-art performance.

While model parallelism introduces these benefits, its effectiveness depends
on the careful design and implementation of the partitioning strategy. In the
next section, we will discuss the challenges associated with model parallelism
and the trade-offs involved in its use.

8.6.2.3 Challenges

While model parallelism provides a powerful approach for training large-scale
models, it also introduces unique challenges. These challenges arise from the

8.6. Distributed Systems 348

complexity of partitioning the model and the dependencies between partitions
during training. Addressing these issues requires careful system design and
optimization.

One major challenge in model parallelism is balancing the workload across
devices. Not all parts of a model require the same amount of computation. For
instance, in layer-wise partitioning, some layers may perform significantly more
operations than others, leading to an uneven distribution of work. Devices
responsible for the heavier computations may become bottlenecks, leaving
others underutilized. This imbalance reduces overall efÏciency and slows
down training. Identifying optimal partitioning strategies is critical to ensuring
all devices contribute evenly.

Another challenge is data dependency between devices. During the forward
pass, activation tensors of shape [batch_size, sequence_length, hidden_dimen-
sion] must transfer between devices. For a typical transformer model with batch
size 32, sequence length 2048, and hidden dimension 2048, each transfer moves
approximately 512 MB of data at float32 precision. With gradient transfers
in the backward pass, a single training step can require several gigabytes of
inter-device communication. On systems using PCIe interconnects with 64
GB/s theoretical bandwidth, these transfers introduce significant latency.

Model parallelism also increases the complexity of implementation and de-
bugging. Partitioning the model, ensuring proper data flow, and synchronizing
gradients across devices require detailed coordination. Errors in any of these
steps can lead to incorrect gradient updates or even model divergence. Debug-
ging such errors is often more difÏcult in distributed systems, as issues may
arise only under specific conditions or workloads.

A further challenge is pipeline bubbles in pipeline parallelism. With m
pipeline stages, the first 𝑚−1 steps operate at reduced efÏciency as the pipeline
fills. For example, in an 8-device pipeline, the first device begins processing
immediately, but the eighth device remains idle for 7 steps. This warmup period
reduces hardware utilization by approximately (𝑚−1)/𝑏 percent, where 𝑏 is
the number of batches in the training step.

Finally, model parallelism may be less effective for certain architectures, such
as models with highly interdependent operations. In these cases, splitting
the model may lead to excessive communication overhead, outweighing the
benefits of parallel computation. For such models, alternative strategies like
data parallelism or hybrid approaches might be more suitable.

Despite these challenges, model parallelism remains an indispensable tool for
training large models. With careful optimization and the use of modern frame-
works, many of these issues can be mitigated, enabling efÏcient distributed
training at scale.

8.6.3 Hybrid Parallelism

Hybrid parallelism combines model parallelism and data parallelism when
training neural networks (D. Narayanan et al. 2021b). A model might be too
large to store on one GPU (requiring model parallelism) while simultaneously
needing to process large batches of data efÏciently (requiring data parallelism).

Chapter 8. AI Training 349

Training a 175-billion parameter language model on a dataset of 300 billion
tokens demonstrates hybrid parallelism in practice. The neural network layers
distribute across multiple GPUs through model parallelism, while data paral-
lelism enables different GPU groups to process separate batches. The hybrid
approach coordinates these two forms of parallelization.

This strategy addresses two fundamental constraints. First, memory con-
straints arise when model parameters exceed single-device memory capacity.
Second, computational demands increase when dataset size necessitates dis-
tributed processing.

8.6.3.1 Mechanics

Hybrid parallelism operates by combining the processes of model partition-
ing and dataset splitting, ensuring efÏcient utilization of both memory and
computation across devices. This integration allows large-scale machine learn-
ing systems to overcome the constraints imposed by individual parallelism
strategies.

Model and Data Partitioning. Hybrid parallelism divides both model archi-
tecture and training data across devices. The model divides through layer-wise
or operator-level partitioning, where GPUs process distinct neural network
segments. Simultaneously, the dataset splits into subsets, allowing each device
group to train on different batches. A transformer model might distribute its
attention layers across four GPUs, while each GPU group processes a unique
1,000-example batch. This dual partitioning distributes memory requirements
and computational workload.

Forward Pass. During the forward pass, input data flows through the dis-
tributed model. Each device processes its assigned portion of the model using
the data subset it holds. For example, in a hybrid system with four devices,
two devices might handle different layers of the model (model parallelism)
while simultaneously processing distinct data batches (data parallelism). Com-
munication between devices ensures that intermediate outputs from model
partitions are passed seamlessly to subsequent partitions.

Backward Pass and Gradient Calculation. During the backward pass, gradi-
ents are calculated for the model partitions stored on each device. Data-parallel
devices that process the same subset of the model but different data batches
aggregate their gradients, ensuring that updates reflect contributions from
the entire dataset. For model-parallel devices, gradients are computed locally
and passed to the next layer in reverse order. In a two-device model-parallel
configuration, for example, the first device computes gradients for layers 1-3,
then transmits these to the second device for layers 4-6. This combination of
gradient synchronization and inter-device communication ensures consistency
across the distributed system.

Parameter Updates. After gradient synchronization, model parameters are
updated using the chosen optimization algorithm. Devices working in data
parallelism update their shared model partitions consistently, while model-
parallel devices apply updates to their local segments. EfÏcient communication

8.6. Distributed Systems 350

is critical in this step to minimize delays and ensure that updates are correctly
propagated across all devices.

Iterative Process. Hybrid parallelism follows an iterative process similar to
other training strategies. The combination of model and data distribution
allows the system to process large datasets and complex models efÏciently
over multiple training epochs. By balancing the computational workload and
memory requirements, hybrid parallelism enables the training of advanced
machine learning models that would otherwise be infeasible.

Parallelism Variations. Hybrid parallelism can be implemented in different
configurations, depending on the model architecture, dataset characteristics,
and available hardware. These variations allow for tailored solutions that
optimize performance and scalability for specific training requirements.

Hierarchical Parallelism. Hierarchical hybrid parallelism applies model paral-
lelism to divide the model across devices first and then layers data parallelism
on top to handle the dataset distribution. For example, in a system with eight
devices, four devices may hold different partitions of the model, while each
partition is replicated across the other four devices for data parallel processing.
This approach is well-suited for large models with billions of parameters, where
memory constraints are a primary concern.

Hierarchical hybrid parallelism ensures that the model size is distributed
across devices, reducing memory requirements, while data parallelism en-
sures that multiple data samples are processed simultaneously, improving
throughput. This dual-layered approach is particularly effective for models like
transformers, where each layer may have a significant memory footprint.

Intra-layer Parallelism. Intra-layer hybrid parallelism combines model and data
parallelism within individual layers of the model. For instance, in a transformer
architecture, the attention mechanism can be split across multiple devices
(model parallelism), while each device processes distinct batches of data (data
parallelism). This fine-grained integration allows the system to optimize re-
source usage at the level of individual operations, enabling training for models
with extremely large intermediate computations.

This variation is particularly useful in scenarios where specific layers, such as
attention or feedforward layers, have computationally intensive operations that
are difÏcult to distribute effectively using model or data parallelism alone. Intra-
layer hybrid parallelism addresses this challenge by applying both strategies
simultaneously.

Inter-layer Parallelism. Inter-layer hybrid parallelism focuses on distributing the
workload between model and data parallelism at the level of distinct model
layers. For example, early layers of a neural network may be distributed using
model parallelism, while later layers leverage data parallelism. This approach
aligns with the observation that certain layers in a model may be more memory-
intensive, while others benefit from increased data throughput.

This configuration allows for dynamic allocation of resources, adapting to the
specific demands of different layers in the model. By tailoring the parallelism

Chapter 8. AI Training 351

strategy to the unique characteristics of each layer, inter-layer hybrid paral-
lelism achieves an optimal balance between memory usage and computational
efÏciency.

8.6.3.2 Benefits
The adoption of hybrid parallelism in machine learning systems addresses
some of the most significant challenges posed by the ever-growing scale of
models and datasets. By blending the strengths of model parallelism and data
parallelism, this approach provides a comprehensive solution to scaling modern
machine learning workloads.

One of the most prominent benefits of hybrid parallelism is its ability to scale
seamlessly across both the model and the dataset. Modern neural networks,
particularly transformers used in natural language processing and vision ap-
plications, often contain billions of parameters. These models, paired with
massive datasets, make training on a single device impractical or even impos-
sible. Hybrid parallelism enables the division of the model across multiple
devices to manage memory constraints while simultaneously distributing the
dataset to process vast amounts of data efÏciently. This dual capability ensures
that training systems can handle the computational and memory demands of
the largest models and datasets without compromise.

Another critical advantage lies in hardware utilization. In many distributed
training systems, inefÏciencies can arise when devices sit idle during different
stages of computation or synchronization. Hybrid parallelism mitigates this
issue by ensuring that all devices are actively engaged. Whether a device is
computing forward passes through its portion of the model or processing data
batches, hybrid strategies maximize resource usage, leading to faster training
times and improved throughput.

Flexibility is another hallmark of hybrid parallelism. Machine learning mod-
els vary widely in architecture and computational demands. For instance,
convolutional neural networks prioritize spatial data processing, while trans-
formers require intensive operations like matrix multiplications in attention
mechanisms. Hybrid parallelism adapts to these diverse needs by allowing
practitioners to apply model and data parallelism selectively. This adaptability
ensures that hybrid approaches can be tailored to the specific requirements of
a given model, making it a versatile solution for diverse training scenarios.

Moreover, hybrid parallelism reduces communication bottlenecks, a common
issue in distributed systems. By striking a balance between distributing model
computations and spreading data processing, hybrid strategies minimize the
amount of inter-device communication required during training. This efÏcient
coordination not only speeds up the training process but also enables the
effective use of large-scale distributed systems where network latency might
otherwise limit performance.

Finally, hybrid parallelism supports the ambitious scale of modern AI re-
search and development. It provides a framework for leveraging cutting-edge
hardware infrastructures, including clusters of GPUs or TPUs, to train models
that push the boundaries of what’s possible. Without hybrid parallelism, many
of the breakthroughs in AI, including large language models and advanced
vision systems, would remain unattainable due to resource limitations.

8.6. Distributed Systems 352

By enabling scalability, maximizing hardware efÏciency, and offering flexibil-
ity, hybrid parallelism has become an essential strategy for training the most
complex machine learning systems. It is not just a solution to today’s challenges
but also a foundation for the future of AI, where models and datasets will
continue to grow in complexity and size.

8.6.3.3 Challenges

While hybrid parallelism provides a robust framework for scaling machine learn-
ing training, it also introduces complexities that require careful consideration.
These challenges stem from the intricate coordination needed to integrate both
model and data parallelism effectively. Understanding these obstacles is crucial
for designing efÏcient hybrid systems and avoiding potential bottlenecks.

One of the primary challenges of hybrid parallelism is communication over-
head. Both model and data parallelism involve significant inter-device commu-
nication. In model parallelism, devices must exchange intermediate outputs and
gradients to maintain the sequential flow of computation. In data parallelism,
gradients computed on separate data subsets must be synchronized across
devices. Hybrid parallelism compounds these demands, as it requires efÏcient
communication for both processes simultaneously. If not managed properly,
the resulting overhead can negate the benefits of parallelization, particularly in
large-scale systems with slower interconnects or high network latency.

Another critical challenge is the complexity of implementation. Hybrid par-
allelism demands a nuanced understanding of both model and data parallelism
techniques, as well as the underlying hardware and software infrastructure.
Designing efÏcient hybrid strategies involves making decisions about how to
partition the model, how to distribute data, and how to synchronize computa-
tions across devices. This process often requires extensive experimentation and
optimization, particularly for custom architectures or non-standard hardware
setups. While modern frameworks like PyTorch and TensorFlow provide tools
for distributed training, implementing hybrid parallelism at scale still requires
significant engineering expertise.

Workload balancing also presents a challenge in hybrid parallelism. In a dis-
tributed system, not all devices may have equal computational capacity. Some
devices may process data or compute gradients faster than others, leading
to inefÏciencies as faster devices wait for slower ones to complete their tasks.
Additionally, certain model layers or operations may require more resources
than others, creating imbalances in computational load. Managing this dispar-
ity requires careful tuning of partitioning strategies and the use of dynamic
workload distribution techniques.

Memory constraints remain a concern, even in hybrid setups. While model
parallelism addresses the issue of fitting large models into device memory, the
additional memory requirements for data parallelism, such as storing multiple
data batches and gradient buffers, can still exceed available capacity. This is
especially true for models with extremely large intermediate computations,
such as transformers with high-dimensional attention mechanisms. Balancing
memory usage across devices is essential to prevent resource exhaustion during
training.

Chapter 8. AI Training 353

Lastly, hybrid parallelism poses challenges related to fault tolerance and de-
bugging. Distributed systems are inherently more prone to hardware failures
and synchronization errors. Debugging issues in hybrid setups can be signif-
icantly more complex than in standalone model or data parallelism systems,
as errors may arise from interactions between the two approaches. Ensuring
robust fault-tolerance mechanisms and designing tools for monitoring and
debugging distributed systems are essential for maintaining reliability.

Despite these challenges, hybrid parallelism remains an indispensable strat-
egy for training state-of-the-art machine learning models. By addressing these
obstacles through optimized communication protocols, intelligent partition-
ing strategies, and robust fault-tolerance systems, practitioners can unlock the
full potential of hybrid parallelism and drive innovation in AI research and
applications.

8.6.4 Comparison
The features of data parallelism, model parallelism, and hybrid parallelism are
summarized in Table 8.6. This comparison highlights their respective focuses,
memory requirements, communication overheads, scalability, implementation
complexity, and ideal use cases. By examining these factors, practitioners can
determine the most suitable approach for their training needs.

Table 8.6: Comparison of data parallelism, model parallelism, and hybrid par-
allelism across key aspects.

Aspect Data Parallelism Model Parallelism Hybrid Parallelism

Focus Distributes dataset across
devices, each with a full
model copy

Distributes the model
across devices, each
handling a portion of the
model

Combines model and
data parallelism for
balanced scalability

Memory Requirement
per Device

High (entire model on
each device)

Low (model split across
devices)

Moderate (splits model
and dataset across
devices)

Communication
Overhead

Moderate to High
(gradient
synchronization across
devices)

High (communication for
intermediate activations
and gradients)

Very High (requires
synchronization for both
model and data)

Scalability Good for large datasets
with moderate model
sizes

Good for very large
models with smaller
datasets

Excellent for extremely
large models and
datasets

Implementation
Complexity

Low to Moderate
(relatively
straightforward with
existing tools)

Moderate to High
(requires careful
partitioning and
coordination)

High (complex
integration of model and
data parallelism)

Ideal Use Case Large datasets where
model fits within a single
device

Extremely large models
that exceed single-device
memory limits

Training massive models
on vast datasets in
large-scale systems

Figure 8.19 provides a general guideline for selecting parallelism strategies
in distributed training systems. While the chart offers a structured decision-
making process based on model size, dataset size, and scaling constraints, it is
intentionally simplified. Real-world scenarios often involve additional complex-
ities such as hardware heterogeneity, communication bandwidth, and workload
imbalance, which may influence the choice of parallelism techniques. The chart

8.7. Optimization Techniques 354

is best viewed as a foundational tool for understanding the trade-offs and de-
cision points in parallelism strategy selection. Practitioners should consider
this guideline as a starting point and adapt it to the specific requirements and
constraints of their systems to achieve optimal performance.

Figure 8.19: Decision flowchart for
selecting parallelism strategies in
distributed training.

Hybrid

Parallelism

Model

Parallelism

Data

Parallelism

Single Device

Optimization

Is the dataset

very large?

Is scaling the model

or data more critical?

Are both constraints

significant?

Does the dataset fit

in a single device?

Does the model fit

in a single device?

Start

End

No

Yes

No

No

No

Yes

Yes

Scaling
Model

Scaling
Model

Yes

Parallelism Opportunities

8.7 Optimization Techniques
EfÏcient training of machine learning models relies on identifying and address-
ing the factors that limit performance and scalability. This section explores a
range of optimization techniques designed to improve the efÏciency of training
systems. By targeting specific bottlenecks, optimizing hardware and software
interactions, and employing scalable training strategies, these methods enable
practitioners to build systems that effectively utilize resources while minimizing
training time.

8.7.1 Identifying Bottlenecks
Effective optimization of training systems requires a systematic approach to
identifying and addressing performance bottlenecks. Bottlenecks can arise at
various levels, including computation, memory, and data handling, and they
directly impact the efÏciency and scalability of the training process.

Chapter 8. AI Training 355

Computational bottlenecks can significantly impact training efÏciency. One
common bottleneck occurs when computational resources, such as GPUs or
TPUs, are underutilized. This can happen due to imbalanced workloads or
inefÏcient parallelization strategies. For example, if one device completes its
assigned computation faster than others, it remains idle while waiting for
the slower devices to catch up. Such inefÏciencies reduce the overall training
throughput.

Memory-related bottlenecks are particularly challenging when dealing with
large models. InsufÏcient memory can lead to frequent swapping of data
between device memory and slower storage, significantly slowing down the
training process. In some cases, the memory required to store intermediate
activations during the forward and backward passes can exceed the available ca-
pacity, forcing the system to employ techniques such as gradient checkpointing,
which trade off computational efÏciency for memory savings.

Data handling bottlenecks can severely limit the utilization of computational
resources. Training systems often rely on a continuous supply of data to keep
computational resources fully utilized. If data loading and preprocessing
are not optimized, computational devices may sit idle while waiting for new
batches of data to arrive. This issue is particularly prevalent when training on
large datasets stored on networked file systems or remote storage solutions.
As illustrated in Figure 8.20, profiling traces can reveal cases where the GPU
remains underutilized due to slow data loading, highlighting the importance
of efÏcient input pipelines.

Figure 8.20: Example TensorFlow
profiling trace showing low utiliza-
tion. We observe that this workload
is bounded by the dataloader, as the
GPU sits largely unutilized waiting
for work.

Identifying these bottlenecks typically involves using profiling tools to ana-
lyze the performance of the training system. Tools integrated into machine learn-
ing frameworks, such as PyTorch’s torch.profiler or TensorFlow’s tf.data
analysis utilities, can provide detailed insights into where time and resources
are being spent during training. By pinpointing the specific stages or opera-
tions that are causing delays, practitioners can design targeted optimizations to
address these issues effectively.

8.7.2 System-Level Optimizations
After identifying the bottlenecks in a training system, the next step is to im-
plement optimizations at the system level. These optimizations target the

8.7. Optimization Techniques 356

13 Google’s bfloat16 format re-
tains FP32’s dynamic range while re-
ducing precision, making it highly
effective for deep learning training
on TPUs.

underlying hardware, data flow, and resource allocation to improve overall
performance and scalability.

One essential technique is profiling training workloads. Profiling involves
collecting detailed metrics about the system’s performance during training,
such as computation times, memory usage, and communication overhead.
These metrics help reveal inefÏciencies, such as imbalanced resource usage or
excessive time spent in specific stages of the training pipeline. Profiling tools
such as NVIDIA Nsight Systems or TensorFlow Profiler can provide actionable
insights, enabling developers to make informed adjustments to their training
configurations.

Leveraging hardware-specific features is another critical aspect of system-
level optimization. Modern accelerators, such as GPUs and TPUs, include spe-
cialized capabilities that can significantly enhance performance when utilized
effectively. For instance, mixed precision training, which uses lower-precision
floating-point formats like FP16 or bfloat1613 for computations, can dramatically
reduce memory usage and improve throughput without sacrificing model accu-
racy. Similarly, tensor cores in NVIDIA GPUs are designed to accelerate matrix
operations, a common computational workload in deep learning, making them
ideal for optimizing forward and backward passes.

Data pipeline optimization is also an important consideration at the system
level. Ensuring that data is loaded, preprocessed, and delivered to the training
devices efÏciently can eliminate potential bottlenecks caused by slow data
delivery. Techniques such as caching frequently used data, prefetching batches
to overlap computation and data loading, and using efÏcient data storage
formats like TFRecord or RecordIO can help maintain a steady flow of data to
computational devices.

8.7.3 Software-Level Optimizations

In addition to system-level adjustments, software-level optimizations focus
on improving the efÏciency of training algorithms and their implementation
within machine learning frameworks.

One effective software-level optimization is the use of fused kernels. In
traditional implementations, operations like matrix multiplications, activation
functions, and gradient calculations are often executed as separate steps. Fused
kernels combine these operations into a single optimized routine, reducing the
overhead associated with launching multiple operations and improving cache
utilization. Many frameworks, such as PyTorch and TensorFlow, automatically
apply kernel fusion where possible, but developers can further optimize custom
operations by explicitly using libraries like cuBLAS or cuDNN.

Dynamic graph execution is another powerful technique for software-level
optimization. In frameworks that support dynamic computation graphs, such as
PyTorch, the graph of operations is constructed on-the-fly during each training
iteration. This flexibility allows for fine-grained optimizations based on the
specific inputs and outputs of a given iteration. Dynamic graphs also enable
more efÏcient handling of variable-length sequences, such as those encountered
in natural language processing tasks.

Chapter 8. AI Training 357

Gradient accumulation is an additional strategy that can be implemented at
the software level to address memory constraints. Instead of updating model
parameters after every batch, gradient accumulation allows the system to com-
pute gradients over multiple smaller batches and update parameters only after
aggregating them. This approach effectively increases the batch size without
requiring additional memory, enabling training on larger datasets or models.

8.7.4 Scaling Techniques
Scaling techniques aim to extend the capabilities of training systems to han-
dle larger datasets and models by optimizing the training configuration and
resource allocation.

One common scaling technique is batch size scaling. Increasing the batch size
can reduce the number of synchronization steps required during training, as
fewer updates are needed to process the same amount of data. However, larger
batch sizes may introduce challenges, such as slower convergence or reduced
generalization. Techniques like learning rate scaling and warmup schedules
can help mitigate these issues, ensuring stable and effective training even with
large batches.

Layer-freezing strategies provide another method for scaling training systems
efÏciently. In many scenarios, particularly in transfer learning, the lower layers
of a model capture general features and do not need frequent updates. By
freezing these layers and allowing only the upper layers to train, memory and
computational resources can be conserved, enabling the system to focus its
efforts on fine-tuning the most critical parts of the model.

8.8 Specialized Hardware Training
The evolution of specialized machine learning hardware represents a critical
development in addressing the computational demands of modern training
systems. Each hardware architecture, such as GPUs, TPUs, FPGAs, and ASICs,
embodies distinct design philosophies and engineering trade-offs that optimize
for specific aspects of the training process. These specialized processors have
fundamentally altered the scalability and efÏciency constraints of machine
learning systems, enabling breakthroughs in model complexity and training
speed. We briefly examine the architectural principles, performance charac-
teristics, and practical applications of each hardware type, highlighting their
indispensable role in shaping the future capabilities of machine learning train-
ing systems.

8.8.1 GPUs
Machine learning training systems demand immense computational power
to process large datasets, perform gradient computations, and update model
parameters efÏciently. GPUs have emerged as a critical technology to meet
these requirements (Figure 8.21), primarily due to their highly parallelized
architecture and ability to execute the dense linear algebra operations central
to neural network training (Dally, Keckler, and Kirk 2021).

8.8. Specialized Hardware Training 358

Figure 8.21: GPU design has dra-
matically accelerated AI training, en-
abling breakthroughs in large-scale
models like GPT-3.

From the perspective of training pipeline architecture, GPUs address several
key bottlenecks. The large number of cores in GPUs allows for simultaneous
processing of thousands of matrix multiplications, accelerating the forward
and backward passes of training. In systems where data throughput limits
GPU utilization, prefetching and caching mechanisms help maintain a steady
flow of data. These optimizations, previously discussed in training pipeline
design, are critical to unlocking the full potential of GPUs (D. A. Patterson and
Hennessy 2021b).

In distributed training systems, GPUs enable scalable strategies such as data
parallelism and model parallelism. NVIDIA’s ecosystem, including tools like
NCCL for multi-GPU communication, facilitates efÏcient parameter synchro-
nization, a frequent challenge in large-scale setups. For example, in training
large models like GPT-3, GPUs were used in tandem with distributed frame-
works to split computations across thousands of devices while addressing
memory and compute scaling issues (T. B. Brown, Mann, Ryder, Subbiah, Ka-
plan, Dhariwal, et al. 2020).

Hardware-specific features further enhance GPU performance. NVIDIA’s
tensor cores, for instance, are optimized for mixed-precision training, which
reduces memory usage while maintaining numerical stability (Micikevicius et
al. 2017b). This directly addresses memory constraints, a common bottleneck
in training massive models. Combined with software-level optimizations like
fused kernels, GPUs deliver substantial speedups in both single-device and
multi-device configurations.

A case study that exemplifies the role of GPUs in machine learning training
is OpenAI’s use of NVIDIA hardware for large language models. Training
GPT-3, with its 175 billion parameters, required distributed processing across
thousands of V100 GPUs. The combination of GPU-optimized frameworks,
advanced communication protocols, and hardware features enabled OpenAI
to achieve this ambitious scale efÏciently (T. B. Brown, Mann, Ryder, Subbiah,
Kaplan, Dhariwal, et al. 2020).

https://developer.nvidia.com/nccl

Chapter 8. AI Training 359

Despite their advantages, GPUs are not without challenges. Effective utiliza-
tion of GPUs demands careful attention to workload balancing and inter-device
communication. Training systems must also consider the cost implications, as
GPUs are resource-intensive and require optimized data centers to operate at
scale. However, with innovations like NVLink and CUDA-X libraries, these
challenges are continually being addressed.

In conclusion, GPUs are indispensable for modern machine learning training
systems due to their versatility, scalability, and integration with advanced
software frameworks. By addressing key bottlenecks in computation, memory,
and distribution, GPUs play a foundational role in enabling the large-scale
training pipelines discussed throughout this chapter.

8.8.2 TPUs

Tensor Processing Units (TPUs) and other custom accelerators have been purpose-
built to address the unique challenges of large-scale machine learning training.
Unlike GPUs, which are versatile and serve a wide range of applications, TPUs
are specifically optimized for the computational patterns found in deep learning,
such as matrix multiplications and convolutional operations (Jouppi, Young, et
al. 2017c). These devices mitigate training bottlenecks by offering high through-
put, specialized memory handling, and tight integration with machine learning
frameworks.

As illustrated in Figure 8.22, TPUs have undergone significant architectural
evolution, with each generation introducing enhancements tailored for increas-
ingly demanding AI workloads. The first-generation TPU, introduced in 2015,
was designed for internal inference acceleration. Subsequent iterations have fo-
cused on large-scale distributed training, memory optimizations, and efÏciency
improvements, culminating in the most recent Trillium architecture. These
advancements illustrate how domain-specific accelerators continue to push the
boundaries of AI performance and efÏciency.

Figure 8.22: Tensor Processing Units
(TPUs), a single, specific purpose
chip desigend for accelerated AI.

Machine learning frameworks can achieve substantial gains in training efÏ-
ciency through purpose-built AI accelerators such as TPUs. However, maximiz-
ing these benefits requires careful attention to hardware-aware optimizations,
including memory layout, dataflow orchestration, and computational efÏciency.

https://www.nvidia.com/en-us/data-center/nvlink/
https://developer.nvidia.com/cuda-zone

8.8. Specialized Hardware Training 360

Google developed TPUs with a primary goal: to accelerate machine learning
workloads at scale while reducing the energy and infrastructure costs associated
with traditional hardware. Their architecture is optimized for tasks that benefit
from batch processing, making them particularly effective in distributed training
systems where large datasets are split across multiple devices. A key feature
of TPUs is their systolic array architecture, which performs efÏcient matrix
multiplications by streaming data through a network of processing elements.
This design minimizes data movement overhead, reducing latency and energy
consumption—critical factors for training large-scale models like transformers
(Jouppi, Young, et al. 2017c).

From the perspective of training pipeline optimization, TPUs simplify in-
tegration with data pipelines in the TensorFlow ecosystem. Features such as
the TPU runtime and TensorFlow’s tf.data API enable seamless preprocess-
ing, caching, and batching of data to feed the accelerators efÏciently (Martı́n
Abadi, Agarwal, et al. 2016). Additionally, TPUs are designed to work in pods—
clusters of interconnected TPU devices that allow for massive parallelism. In
such setups, TPU pods enable hybrid parallelism strategies by combining data
parallelism across devices with model parallelism within devices, addressing
memory and compute constraints simultaneously.

TPUs have been instrumental in training large-scale models, such as BERT
and T5. For example, Google’s use of TPUs to train BERT demonstrates their
ability to handle both the memory-intensive requirements of large transformer
models and the synchronization challenges of distributed setups (Devlin et al.
2018). By splitting the model across TPU cores and optimizing communication
patterns, Google achieved state-of-the-art results while significantly reducing
training time compared to traditional hardware.

Beyond TPUs, custom accelerators such as AWS Trainium and Intel Gaudi
chips are also gaining traction in the machine learning ecosystem. These devices
are designed to compete with TPUs by offering similar performance benefits
while catering to diverse cloud and on-premise environments. For example,
AWS Trainium provides deep integration with the AWS ecosystem, allowing
users to seamlessly scale their training pipelines with services like Amazon
SageMaker.

While TPUs and custom accelerators excel in throughput and energy efÏ-
ciency, their specialized nature introduces limitations. TPUs, for example, are
tightly coupled with Google’s ecosystem, making them less accessible to practi-
tioners using alternative frameworks. Similarly, the high upfront investment
required for TPU pods may deter smaller organizations or those with limited
budgets. Despite these challenges, the performance gains offered by custom
accelerators make them a compelling choice for large-scale training tasks.

In summary, TPUs and custom accelerators address many of the key chal-
lenges in machine learning training systems, from handling massive datasets
to optimizing distributed training. Their unique architectures and deep inte-
gration with specific ecosystems make them powerful tools for organizations
seeking to scale their training workflows. As machine learning models and
datasets continue to grow, these accelerators are likely to play an increasingly
central role in shaping the future of AI training.

https://www.tensorflow.org/guide/data
https://aws.amazon.com/machine-learning/trainium/
https://www.intel.com/content/www/us/en/artificial-intelligence/gaudi-deep-learning.html
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/

Chapter 8. AI Training 361

8.8.3 FPGAs
Field-Programmable Gate Arrays (FPGAs) are versatile hardware solutions
that allow developers to tailor their architecture for specific machine learning
workloads. Unlike GPUs or TPUs, which are designed with fixed architectures,
FPGAs can be reconfigured dynamically, offering a unique level of flexibility.
This adaptability makes them particularly valuable for applications that require
customized optimizations, low-latency processing, or experimentation with
novel algorithms.

Microsoft had been exploring the use of FPGAs for a while, as seen in Fig-
ure 8.23, with one prominent example being Project Brainwave. This initiative
leverages FPGAs to accelerate machine learning workloads in the Azure cloud.
Microsoft chose FPGAs for their ability to provide low-latency inference (not
training) while maintaining high throughput. This approach is especially bene-
ficial in scenarios where real-time predictions are critical, such as search engine
queries or language translation services. By integrating FPGAs directly into
their data center network, Microsoft has achieved significant performance gains
while minimizing power consumption.

Figure 8.23: Microsoft’s FPGA ad-
vancements through Project Cata-
pult and Project Brainwave high-
light their focus on accelerating AI
and other cloud workloads with re-
configurable hardware.

From a training perspective, FPGAs offer unique advantages in optimizing
training pipelines. Their reconfigurability allows them to implement custom
dataflow architectures tailored to specific model requirements. For instance,
data preprocessing and augmentation steps, which can often become bottle-
necks in GPU-based systems, can be ofÒoaded to FPGAs, freeing up GPUs
for core training tasks. Additionally, FPGAs can be programmed to perform
operations such as sparse matrix multiplications, which are common in recom-
mendation systems and graph-based models but are less efÏcient on traditional
accelerators (Putnam et al. 2014).

In distributed training systems, FPGAs provide fine-grained control over
communication patterns. This control allows developers to optimize inter-
device communication and memory access, addressing challenges such as
parameter synchronization overheads. For example, FPGAs can be configured
to implement custom all-reduce algorithms for gradient aggregation, reducing
latency compared to general-purpose hardware.

https://www.microsoft.com/en-us/research/project/project-brainwave/

8.8. Specialized Hardware Training 362

Despite their benefits, FPGAs come with challenges. Programming FPGAs
requires expertise in hardware description languages (HDLs) like Verilog or
VHDL, which can be a barrier for many machine learning practitioners. To
address this, frameworks like Xilinx’s Vitis AI and Intel’s OpenVINO have
simplified FPGA programming by providing tools and libraries tailored for
AI workloads. However, the learning curve remains steep compared to the
well-established ecosystems of GPUs and TPUs.

Microsoft’s use of FPGAs highlights their potential to integrate seamlessly
into existing machine learning workflows. By incorporating FPGAs into Azure,
Microsoft has demonstrated how these devices can complement other accel-
erators, optimizing end-to-end pipelines for both training and inference. This
hybrid approach leverages the strengths of FPGAs for specific tasks while
relying on GPUs or CPUs for others, creating a balanced and efÏcient system.

In summary, FPGAs offer a compelling solution for machine learning training
systems that require customization, low latency, or novel optimizations. While
their adoption may be limited by programming complexity, advancements
in tooling and real-world implementations like Microsoft’s Project Brainwave
demonstrate their growing relevance in the AI hardware ecosystem.

8.8.4 ASICs

Application-Specific Integrated Circuits (ASICs) represent a class of hardware
designed for specific tasks, offering unparalleled efÏciency and performance by
eschewing the general-purpose flexibility of GPUs or FPGAs. Among the most
innovative examples of ASICs for machine learning training is the Cerebras
Wafer-Scale Engine (WSE), as shown in Figure 8.24, which stands apart for its
unique approach to addressing the computational and memory challenges of
training massive machine learning models.

Figure 8.24: Cerebras Wafer Scale
Engine (WSE) 2 is the largest AI chip
ever built with nearly a cores.

The Cerebras WSE is unlike traditional chips in that it is a single wafer-
scale processor, spanning the entire silicon wafer rather than being cut into

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.cerebras.net/
https://www.cerebras.net/

Chapter 8. AI Training 363

smaller chips. This architecture enables Cerebras to pack 2.6 trillion transis-
tors and 850,000 cores onto a single device. These cores are connected via a
high-bandwidth, low-latency interconnect, allowing data to move across the
chip without the bottlenecks associated with external communication between
discrete GPUs or TPUs (Feldman et al. 2020).

From a machine learning training perspective, the WSE addresses several
critical bottlenecks:

1. Data Movement: In traditional distributed systems, significant time is
spent transferring data between devices. The WSE eliminates this by keep-
ing all computations and memory on a single wafer, drastically reducing
communication overhead.

2. Memory Bandwidth: The WSE integrates 40 GB of high-speed on-chip
memory directly adjacent to its processing cores. This proximity allows
for near-instantaneous access to data, overcoming the latency challenges
that GPUs often face when accessing off-chip memory.

3. Scalability: While traditional distributed systems rely on complex soft-
ware frameworks to manage multiple devices, the WSE simplifies scaling
by consolidating all resources into one massive chip. This design is par-
ticularly well-suited for training large language models and other deep
learning architectures that require significant parallelism.

A key example of Cerebras’ impact is its application in natural language pro-
cessing. Organizations using the WSE have demonstrated substantial speedups
in training transformer models, which are notoriously compute-intensive due
to their reliance on attention mechanisms. By leveraging the chip’s massive
parallelism and memory bandwidth, training times for models like BERT have
been significantly reduced compared to GPU-based systems (T. B. Brown, Mann,
Ryder, Subbiah, Kaplan, Dhariwal, et al. 2020).

However, the Cerebras WSE also comes with limitations. Its single-chip
design is optimized for specific use cases, such as dense matrix computations
in deep learning, but may not be as versatile as multi-purpose hardware like
GPUs or FPGAs. Additionally, the cost of acquiring and integrating such a
specialized device can be prohibitive for smaller organizations or those with
diverse workloads.

Cerebras’ strategy of targeting the largest models aligns with the trends
discussed earlier in this chapter, such as the growing emphasis on scaling tech-
niques and hybrid parallelism strategies. The WSE’s unique design addresses
challenges like memory bottlenecks and inter-device communication overhead,
making it a pioneering solution for next-generation AI workloads.

In conclusion, the Cerebras Wafer-Scale Engine exemplifies how ASICs can
push the boundaries of what is possible in machine learning training. By ad-
dressing fundamental bottlenecks in computation and data movement, the WSE
offers a glimpse into the future of specialized hardware for AI, where the inte-
gration of highly optimized, task-specific architectures unlocks unprecedented
performance.

8.9. Conclusion 364

8.9 Conclusion
AI training systems are built upon a foundation of mathematical principles,
computational strategies, and architectural considerations. The exploration
of neural network computation has shown how core operations, activation
functions, and optimization algorithms come together to enable efÏcient model
training, while also emphasizing the trade-offs that must be balanced between
memory, computation, and performance.

The design of training pipelines incorporates key components such as data
flows, forward and backward passes, and memory management. Understand-
ing these elements in conjunction with hardware execution patterns is essential
for achieving efÏcient and scalable training processes. Strategies like parameter
updates, prefetching, and gradient accumulation further enhance the effective-
ness of training by optimizing resource utilization and reducing computational
bottlenecks.

Distributed training systems, including data parallelism, model parallelism,
and hybrid approaches, are topics that we examined as solutions for scaling
AI training to larger datasets and models. Each approach comes with its own
benefits and challenges, highlighting the need for careful consideration of
system requirements and resource constraints.

Altogether, the combination of theoretical foundations and practical imple-
mentations forms a cohesive framework for addressing the complexities of
AI training. By leveraging this knowledge, it is possible to design robust, efÏ-
cient systems capable of meeting the demands of modern machine learning
applications.

8.10 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 9

EfÏcient AI

Figure 9.1: DALL·E 3 Prompt: A
conceptual illustration depicting efÏ-
ciency in artificial intelligence using
a shipyard analogy. The scene shows
a bustling shipyard where containers
represent bits or bytes of data. These
containers are being moved around efÏ-
ciently by cranes and vehicles, symbol-
izing the streamlined and rapid infor-
mation processing in AI systems. The
shipyard is meticulously organized, il-
lustrating the concept of optimal per-
formance within the constraints of lim-
ited resources. In the background, ships
are docked, representing different plat-
forms and scenarios where AI is ap-
plied. The atmosphere should convey
advanced technology with an underly-
ing theme of sustainability and wide ap-
plicability.

Purpose

What principles guide the efÏcient design of machine learning systems, and why is
understanding the interdependence of key resources essential?

Machine learning systems are shaped by the complex interplay among data,
models, and computing resources. Decisions on efÏciency in one dimension
often have ripple effects in the others, presenting both opportunities for synergy
and inevitable trade-offs. Understanding these individual components and
their interdependencies exposes not only how systems can be optimized but
also why these optimizations are crucial for achieving scalability, sustainabil-
ity, and real-world applicability. The relationship between data, model, and
computing efÏciency forms the basis for designing machine learning systems
that maximize capabilities while working within resource limitations. Each
efÏciency decision represents a balance between performance and practicality,

365

9.1. Overview 366

underscoring the significance of a holistic approach to system design. Explor-
ing these relationships equips us with the strategies necessary to navigate the
intricacies of developing efÏcient, impactful AI solutions.

L� Learning Objectives

• Define the principles of algorithmic, compute and data efÏciency
in AI systems.

• Identify and analyze trade-offs between algorithmic, compute, and
data efÏciency in system design.

• Apply strategies for achieving efÏciency across diverse deployment
contexts, such as edge, cloud, and Tiny ML applications.

• Examine the historical evolution and emerging trends in machine
learning efÏciency.

• Evaluate the broader ethical and environmental implications of
efÏcient AI system design.

9.1 Overview
Machine learning systems have become ubiquitous, permeating nearly every
aspect of modern life. As these systems grow in complexity and scale, they
must operate effectively across a wide range of deployments and scenarios.
This necessitates careful consideration of factors such as processing speed,
memory usage, and power consumption to ensure that models can handle large
workloads, operate on energy-constrained devices, and remain cost-effective.

Achieving this balance involves navigating trade-offs. For instance, in au-
tonomous vehicles, reducing a model’s size to fit the low-power constraints of
an edge device in a car might slightly decrease accuracy, but it ensures real-time
processing and decision-making. Conversely, a cloud-based system can afford
higher model complexity for improved accuracy, though this often comes at
the cost of increased latency and energy consumption. In the medical field, de-
ploying machine learning models on portable devices for diagnostics requires
efÏcient models that can operate with limited computational resources and
power, ensuring accessibility in remote or resource-constrained areas. Con-
versely, hospital-based systems can leverage more powerful hardware to run
complex models for detailed analysis, albeit with higher energy demands.

Understanding and managing these trade-offs is crucial for designing ma-
chine learning systems that meet diverse application needs within real-world
constraints. The implications of these design choices extend beyond perfor-
mance and cost. EfÏcient systems can be deployed across diverse environments,
from cloud infrastructures to edge devices, enhancing accessibility and adop-
tion. Additionally, they help reduce the environmental impact of machine
learning workloads by lowering energy consumption and carbon emissions,
aligning technological progress with ethical and ecological responsibilities.

This chapter focuses on the ‘why’ and ‘how’ of efÏciency in machine learning
systems. By establishing the foundational principles of efÏcient AI and explor-

Chapter 9. EfÏcient AI 367

ing strategies to achieve it, this chapter sets the stage for deeper discussions
on topics such as scaling, optimization, deployment, and sustainability in later
chapters.

9.2 AI Scaling Laws
The advancement of machine learning systems has been characterized by a
consistent trend: the augmentation of model scale, encompassing parameters,
training data, and computational resources, typically results in enhanced per-
formance. This observation, which was discovered empirically, has driven
significant progress across domains such as natural language processing, com-
puter vision, and speech recognition, where larger models trained on extensive
datasets have consistently achieved state-of-the-art results.

However, the pursuit of performance gains through scaling incurs substan-
tial resource demands, raising critical inquiries regarding the efÏciency and
sustainability of such practices. Specifically, questions arise concerning the
incremental computational resources required for marginal improvements in
accuracy, the scalability of data requirements as task complexity increases, and
the point at which diminishing returns render further scaling economically or
practically infeasible.

To address these concerns, researchers have developed scaling laws—empirical
relationships that quantify the correlation between model performance and
training resources. These laws provide a formal framework for analyzing the
trade-offs inherent in scaling and elucidate the increasing importance of efÏ-
ciency as systems expand in size and complexity.

This section introduces the concept of scaling laws, delineates their man-
ifestation across model, compute, and data dimensions, and examines their
implications for system design. By doing so, it establishes a foundation for un-
derstanding the limitations of brute-force scaling and underscores the necessity
of efÏcient methodologies that balance performance with practical resource
constraints.

9.2.1 Fundamental Principles
To comprehend the intricacies of efÏciency in large-scale machine learning
systems, it is imperative to establish the fundamental principles that govern their
performance. These principles are encapsulated in scaling laws, which describe
the empirical relationships between model performance and the allocation
of resources, including model size, dataset size, and computational capacity.
While initially popularized within the context of large language models, the
implications of scaling laws extend across diverse domains of machine learning.

The genesis of scaling laws in machine learning is intrinsically linked to the
advent of deep learning and the proliferation of large-scale models. In the
2010s, researchers observed a consistent trend: augmenting the size of neural
networks resulted in notable performance enhancements (Hestness et al. 2017),
particularly in complex tasks such as image recognition and natural language
processing. This observation, termed the ‘scaling hypothesis,’ posited that
larger models possess an increased capacity to capture intricate data patterns,

9.2. AI Scaling Laws 368

0 Power-law relationship: A
mathematical relationship where
one quantity varies as a power of
another. In ML scaling laws, per-
formance improvements are propor-
tional to resource increases raised to
some power, showing diminishing
returns as resources scale up.

thereby facilitating improved accuracy and generalization. Consequently, the
field witnessed a surge in models with millions or billions of parameters, trained
on extensive datasets to attain state-of-the-art results. However, this trend also
precipitated concerns regarding the sustainability and efÏciency of scaling,
necessitating a rigorous examination of the associated trade-offs.

Scaling laws provide a quantitative framework for analyzing these trade-
offs. They elucidate how model performance, training time, and resource
consumption vary with scale, enabling researchers to identify optimal strategies
for developing high-performing, resource-efÏcient systems. These laws have
become indispensable tools for guiding the design of contemporary machine
learning architectures, ensuring that advancements in scale are harmonized
with broader objectives of efÏciency and sustainability.

Scaling laws reveal that model performance exhibits predictable patterns
as resources are augmented. For example, power-law scaling,0 a common
phenomenon in deep learning, posits that performance improves as a power
function of model size, dataset size, or computational resources. This relation-
ship can be mathematically expressed as:

Performance ∝ Resource−𝛼
where 𝛼 denotes a scaling exponent that varies based on the task and model
architecture. This expression indicates that increasing model size, dataset size,
or computational resources leads to predictable enhancements in performance,
adhering to a power-law relationship.

Empirical studies of large language models (LLMs) further elucidate the
interplay between these factors, parameters, data, and computational resources,
under fixed resource constraints. As illustrated in Figure 9.2, for a given compu-
tational budget in language model training, there exists an optimal allocation
between model size and dataset size (measured in tokens) that minimizes train-
ing loss. The left panel depicts ‘IsoFLOP curves,’ where each curve corresponds
to a constant number of floating-point operations (FLOPs) during transformer
training. Each valley in these curves signifies the most efÏcient model size for
a given computational level when training autoregressive language models.
The center and right panels demonstrate how the optimal number of parame-
ters and tokens scales predictably with increasing computational budgets in
language model training, highlighting the necessity for coordinated scaling to
maximize resource utilization in large language models.

Figure 9.2: The left panel shows
training loss as a function of model
size for fixed compute budgets, re-
vealing that there exists an optimal
parameter count for each compute
level. The central and right pan-
els depict how the optimal number
of model parameters and training
tokens scale with available FLOPs.
These empirical curves illustrate the
need to balance model size and
data volume when scaling under re-
source constraints. Source: (Hoff-
mann et al. 2022).

For instance, in computer vision tasks, doubling the size of convolutional
neural networks typically yields consistent accuracy gains, provided that pro-

Chapter 9. EfÏcient AI 369

1 Power-law behavior has been
a fundamental pattern in machine
learning since early neural network
research. While theoretical work in
the 1960s and 1980s posited capac-
ity scaling benefits, empirical vali-
dation of these relationships across
multiple orders of magnitude be-
came feasible only with contempo-
rary computational resources and
large-scale datasets.

portional increases in training data are supplied. Similarly, language models
exhibit analogous patterns, with studies of models such as GPT-3 demonstrating
that performance scales predictably with both model parameters and training
data volume.

However, scaling laws also underscore critical constraints. While larger
models can achieve superior performance, the requisite resource demands
increase exponentially. As illustrated in Figure 9.9, the computational demands
of training state-of-the-art models are escalating at an unsustainable rate. This
raises pertinent questions regarding the environmental impact and economic
viability of continued scaling.

Figure 9.3: Model training com-
pute is growing at faster and faster
rates, especially in the recent deep
learning era. Source: (Sevilla et al.
2022a.)

Understanding these fundamental relationships is crucial for informing criti-
cal decisions pertaining to system design and resource allocation. They delin-
eate both the potential benefits of scaling and its inherent costs, guiding the
development of more efÏcient and sustainable machine learning systems. This
understanding provides the necessary context for our subsequent examination
of algorithmic, compute, and data efÏciency.

9.2.2 Empirical Scaling Laws
Scaling laws delineate the relationship between the performance of machine
learning models and the augmentation of resources, including model size,
dataset size, and computational budget. These relationships are typically ex-
pressed as power-law functions,1 which demonstrate that model loss decreases
predictably with increased resource allocation. Empirical investigations across
diverse domains have corroborated that performance metrics, including accu-
racy or perplexity, exhibit smooth and monotonic improvements when models
are scaled along these dimensions.

A key example of this behavior is the relationship between generalization er-
ror and dataset size, which exhibits three distinct regimes: a Small Data Region,
a Power-law Region, and an Irreducible Error Region (Hestness et al. 2017). As
shown in Figure 9.4, small datasets lead to high generalization error constrained

9.2. AI Scaling Laws 370

2 This study significantly al-
tered the machine learning com-
munity’s understanding of the im-
pact of scale on model performance
through comprehensive empirical
validation of scaling laws. Its find-
ings directly influenced training
methodologies for large language
models such as GPT-3, establishing
a quantitative framework for pre-
dicting performance improvements
based on compute, data, and model
size.

by poor estimates (best-guess error). As more data becomes available, models
enter the power-law region, where generalization error decreases predictably
as a function of dataset size. Eventually, this trend saturates, approaching the
irreducible error floor, beyond which further data yields negligible improve-
ments. This visualization demonstrates the principle of diminishing returns
and highlights the operational regime in which data scaling is most effective.

Figure 9.4: The relationship
between generalization error and
dataset size exhibits three distinct
regimes. As dataset size increases,
generalization error decreases
predictably until it reaches an
irreducible error floor. Source:
(Hestness et al. 2017).

Training Data Set Size (Log-Scale)

G
e
n
e
ra

liz
a
ti
o
n

E
rr

o
r

(L
o
g
-S

c
a
le

)

Best Guess Error

Irreducible Error

Small Data

Region

Power-Law

Region

Irreducible Error

Region

A general formulation of this relationship is expressed as:ℒ(𝑁) = 𝐴𝑁−𝛼 +𝐵
where ℒ(𝑁) represents the loss achieved with resource quantity 𝑁, 𝐴 and 𝐵 are
task-dependent constants, and 𝛼 is the scaling exponent that characterizes the
rate of performance improvement. A larger value of 𝛼 signifies that performance
improvements are more efÏcient with respect to scaling. This formulation
also encapsulates the principle of diminishing returns: incremental gains in
performance decrease as 𝑁 increases.

Empirical evidence for scaling laws is most prominently observed in large
language models. In a seminal study, Kaplan et al. (2020) demonstrated that
the cross-entropy loss of transformer-based language models scales predictably
with three pivotal factors: the number of model parameters, the volume of
the training dataset (measured in tokens), and the total computational budget
(measured in floating-point operations).2

When these factors are augmented proportionally, models exhibit consistent
performance improvements without necessitating architectural modifications
or task-specific tuning. This behavior underlies contemporary training strate-
gies for large-scale language models and has significantly influenced design
decisions in both research and production environments.

These empirical patterns are illustrated in Figure 9.5, which presents test
loss curves for models spanning a range of sizes, from 103 to 109 parameters.
The figure reveals two key insights. First, larger models demonstrate supe-
rior sample efÏciency, achieving target performance levels with fewer training
tokens. Second, as computational resources increase, the optimal model size
correspondingly grows, with loss decreasing predictably when compute is

Chapter 9. EfÏcient AI 371

3 The exponent 0.74 is empiri-
cally derived for transformer-based
language models under autoregres-
sive training. It represents the bal-
ance point where scaling both data
and model together yields optimal
performance for a fixed compute
budget, and has informed practi-
cal model development pipelines
across industry.

allocated efÏciently. The curves also highlight a practical consideration in large-
scale training: compute-optimal solutions often entail early stopping before full
convergence, demonstrating the inherent trade-off between training duration
and resource utilization.

Figure 9.5: Test loss curves show
that: (1) On the left, larger mod-
els achieve better performance with
fewer training tokens, leading to
better sample efÏciency. (2) On
the right, with increased compute
budget, optimal model size grows
steadily and loss decreases consis-
tently. Source: Kaplan et al. (2020)

More fundamentally, this work established a theoretical scaling relationship
that defines the optimal allocation of compute between model size and dataset
size. For a fixed compute budget 𝐶, the optimal trade-off occurs when the
dataset size 𝐷 and model size 𝑁 satisfy the relationship 𝐷 ∝ 𝑁0.74.3 This
equation defines the compute-optimal scaling frontier, where neither the model
is undertrained nor the data underutilized. Deviations from this equilibrium,
for example, training a large model on insufÏcient data, result in suboptimal
compute utilization and degraded performance. In practical terms, this implies
that scaling model size alone is insufÏcient; proportional increases in data and
compute are required to maintain efÏcient training dynamics.

This theoretical prediction is corroborated by empirical fits across multi-
ple model configurations. As shown in Figure 9.6, the early-stopped test lossℒ(𝑁,𝐷) varies predictably with both dataset size and model size, and learning
curves across configurations can be aligned through appropriate parameter-
ization. These results further substantiate the regularity of scaling behavior
and provide a practical tool for guiding model development under resource
constraints.

Similar trends have been observed in other domains. In computer vision,
model families such as ResNet and EfÏcientNet exhibit consistent accuracy
improvements when scaled along dimensions of depth, width, and resolution,
provided the scaling adheres to principled heuristics. These empirical patterns
reinforce the observation that the benefits of scale are governed by underlying
regularities that apply broadly across architectures and tasks.

As long as the scaling regime remains balanced, in which the model underfits
the data while compute capacity is fully utilized, performance continues to
improve predictably. However, once these assumptions are violated, scaling
may lead to overfitting, underutilized resources, or inefÏciencies, as explored
in subsequent sections.

9.2.3 Scaling Regimes
While the scaling laws discussed thus far have focused primarily on pre-training,
recent research indicates that scaling behavior extends to other phases of model

9.2. AI Scaling Laws 372

Figure 9.6: Test loss surfaceℒ(𝑁,𝐷) shows predictable
variation across model size 𝑁 and
dataset size 𝐷.

4 Foundation Models: Large-
scale AI models pre-trained on vast
amounts of data that can be adapted
to a wide range of downstream
tasks. Examples include GPT-3,
PaLM, and BERT. These models
demonstrate emergent capabilities
as they scale in size and training
data.

development and deployment. A more complete understanding emerges by
examining three distinct scaling regimes that characterize different stages of
the machine learning pipeline.

The first regime, pre-training scaling, encompasses the traditional domain
of scaling laws—how model performance improves with larger architectures,
expanded datasets, and increased compute during initial training. This has
been extensively studied in the context of foundation models4, where clear
power-law relationships emerge between resources and capabilities.

Post-training scaling is the second regime that focuses on improvements
achieved after initial training through techniques such as fine-tuning, prompt
engineering, and task-specific data augmentation. This regime has gained
prominence with the rise of foundation models, where adaptation rather than
retraining often provides the most efÏcient path to enhanced performance.

The third regime, test-time scaling, addresses how performance can be im-
proved by allocating additional compute during inference, without modifying
the model’s parameters. This includes methods such as ensemble prediction,
chain-of-thought prompting, and iterative refinement, which effectively allow
models to spend more time processing each input.

As shown in Figure 9.7, these regimes exhibit distinct characteristics in how
they trade computational resources for improved performance. Pre-training
scaling typically requires massive resources but provides broad capability im-
provements. Post-training scaling offers more targeted enhancements with mod-
erate resource requirements. Test-time scaling provides flexible performance-
compute trade-offs that can be adjusted per inference.

Understanding these regimes is crucial for system design, as it reveals multi-
ple paths to improving performance beyond simply scaling up model size or
training data. For resource-constrained deployments, post-training and test-
time scaling may provide more practical approaches than full model retraining.
Similarly, in high-stakes applications, test-time scaling offers a way to trade
latency for accuracy when needed.

Chapter 9. EfÏcient AI 373

Figure 9.7: The three scaling
regimes: pre-training, post-training,
and test-time scaling. Each
regime exhibits different compute–
performance characteristics.

Compute

In
te

lli
g
e
n
c
e

Pre-training scaling

Post-training scaling

Test-time scaling

"long thinking
From one to three

scaling laws

This framework provides a more nuanced view of scaling in machine learning
systems. By considering all three regimes, designers can make more informed
decisions about resource allocation and optimization strategies across the full
model lifecycle. The interplay between these regimes also suggests opportu-
nities for hybrid approaches that leverage the strengths of each scaling mode
while managing their respective costs and limitations.

9.2.4 System Design

Scaling laws provide insights into the behavior of machine learning systems as
resource allocation increases. The consistent observation of power-law trends
suggests that, within a well-defined operational regime, model performance
is predominantly determined by scale rather than idiosyncratic architectural
innovations. This observation has significant ramifications for system design,
resource planning, and the evaluation of efÏciency.

A salient characteristic of these laws is the phenomenon of diminishing
returns. While augmenting model size or training data volume yields perfor-
mance improvements, the rate of these improvements diminishes with increas-
ing scale. For instance, doubling the parameter count from 100 million to 200
million may produce substantial gains, whereas a similar doubling from 100
billion to 200 billion may yield only incremental enhancements. This behavior
is mathematically captured by the scaling exponent 𝛼, which dictates the slope
of the performance curve. Lower values of 𝛼 indicate that more aggressive
scaling is necessary to achieve comparable performance gains.

Practically, this implies that unmitigated scaling is ultimately unsustainable.
Each successive increment in performance necessitates a disproportionately
larger investment in data, compute, or model size. Consequently, scaling laws
underscore the escalating tension between model performance and resource
expenditure—a central theme of this discourse. They also emphasize the im-
perative of balanced scaling, wherein increments in one resource dimension
(e.g., model parameters) must be accompanied by commensurate increments in
other dimensions (e.g., dataset size and compute budget) to maintain optimal
performance progression.

9.2. AI Scaling Laws 374

Furthermore, scaling laws can serve as a diagnostic instrument for identify-
ing performance bottlenecks. Performance plateaus despite increased resource
allocation may indicate saturation in one dimension, such as inadequate data
in relation to model size, or inefÏcient utilization of computational resources.
This diagnostic capability renders scaling laws not only predictive but also pre-
scriptive, enabling practitioners to ascertain the optimal allocation of resources
for maximum efÏcacy.

Understanding scaling laws is not merely of theoretical interest—it has direct
implications for the practical design of efÏcient machine learning systems. By
revealing how performance responds to increases in model size, data, and
compute, scaling laws provide a principled framework for making informed
design decisions across the full lifecycle of system development.

One key application is in resource budgeting. Scaling laws allow practitioners
to estimate the returns on investment for different types of resources. For ex-
ample, when facing a fixed computational budget, designers can use empirical
scaling curves to determine whether performance gains are better achieved
by increasing model size, expanding the dataset, or improving training dura-
tion. This enables more strategic allocation of limited resources, particularly in
scenarios where cost, energy, or time constraints are dominant factors.

In OpenAI’s development of GPT-3, the authors followed scaling laws derived
from earlier experiments to determine the appropriate training dataset size
and model parameter count (T. B. Brown, Mann, Ryder, Subbiah, Kaplan, and
al. 2020). Rather than conducting expensive architecture searches, they scaled
a known transformer architecture along the compute-optimal frontier to 175
billion parameters and 300 billion tokens. This approach allowed them to
predict model performance and resource requirements in advance, highlighting
the practical value of scaling laws in large-scale system planning.

Scaling laws also inform decisions about model architecture. Rather than
relying on exhaustive architecture search or ad hoc heuristics, system designers
can use scaling trends to identify when architectural changes are likely to
yield significant improvements and when gains are better pursued through
scale alone. For instance, if a given model family follows a favorable scaling
curve, it may be preferable to scale that architecture rather than switching to
a more complex but untested design. Conversely, if scaling saturates early, it
may indicate that architectural innovations are needed to overcome current
limitations.

Moreover, scaling laws can guide deployment strategy. In edge and em-
bedded environments, system designers often face tight resource budgets. By
understanding how performance degrades when a model is scaled down, it
is possible to choose smaller configurations that deliver acceptable accuracy
within the deployment constraints. This supports the use of model families
with predictable scaling properties, enabling a continuum of options from
high-performance cloud deployment to lightweight on-device inference.

Finally, scaling laws provide insight into efÏciency limits. By quantifying
the trade-offs between scale and performance, they highlight when brute-force
scaling becomes inefÏcient and signal the need for alternative approaches. This
includes methods such as knowledge distillation, transfer learning, sparsity,

Chapter 9. EfÏcient AI 375

and hardware-aware model design—all of which aim to extract more value
from existing resources without requiring further increases in raw scale.

In this way, scaling laws serve as a compass for system designers, helping
them navigate the complex landscape of performance, efÏciency, and practical-
ity. They do not dictate a single path forward, but they provide the analytical
foundation for choosing among competing options in a principled and data-
driven manner.

9.2.5 Scaling vs. EfÏciency
While scaling laws elucidate a pathway to performance enhancement through
the augmentation of model size, dataset volume, and computational budget,
they concurrently reveal the rapidly escalating resource demands associated
with such progress. As models become increasingly large and sophisticated,
the resources necessary to support their training and deployment expand
disproportionately. This phenomenon introduces a fundamental tension within
contemporary machine learning: the performance gains achieved through
scaling are often accompanied by a significant compromise in system efÏciency.

A primary concern is the computational expenditure. Training large-scale
models necessitates substantial processing power, typically requiring distributed
infrastructures comprising hundreds or thousands of accelerators. For instance,
the training of state-of-the-art language models may require tens of thousands
of GPU-days, consuming millions of kilowatt-hours of electricity and incur-
ring financial costs that are prohibitive for many institutions. As previously
discussed, the energy demands of training have outpaced Moore’s Law, raising
critical questions regarding the long-term sustainability of continued scaling.

In addition to computational resources, data acquisition and curation present
significant trade-offs. Large models demand not only extensive data volumes
but also high-quality, diverse datasets to realize their full potential. The col-
lection, cleansing, and labeling of such datasets are both time-consuming and
costly. Furthermore, as models approach saturation of available high-quality
data, especially in fields like natural language processing, further performance
gains through data scaling become increasingly challenging. This necessitates
a focus on extracting greater value from existing data, emphasizing the impor-
tance of data efÏciency as a complement to brute-force scaling.

The financial and environmental implications of scaling also warrant careful
consideration. Training runs for large foundation models can incur millions of
U.S. dollars in computational expenses alone, and the carbon footprint asso-
ciated with such training has garnered increasing scrutiny. These costs limit
accessibility to cutting-edge research and exacerbate disparities in access to
advanced AI systems. From a system design perspective, this underscores the
imperative to develop more resource-efÏcient scaling strategies that minimize
consumption without sacrificing performance.

Collectively, these trade-offs highlight that while scaling laws provide a valu-
able framework for understanding performance growth, they do not offer an
unencumbered path to improvement. Each incremental performance gain must
be evaluated against the corresponding resource requirements. As machine
learning systems approach the practical limits of scale, the focus must shift

9.2. AI Scaling Laws 376

from mere scaling to efÏcient scaling. This transition necessitates a holistic
approach to system design that balances performance, cost, energy, and envi-
ronmental impact, ensuring that advancements in AI are not only effective but
also sustainable and equitable.

9.2.6 Scaling Breakdown
While scaling laws exhibit remarkable consistency within specific operational
regimes, they are not devoid of limitations. As machine learning systems ex-
pand, they inevitably encounter boundaries where the underlying assumptions
of smooth, predictable scaling no longer hold. These breakdown points reveal
critical inefÏciencies and underscore the necessity for more refined system
design.

A common failure mode is imbalanced scaling. For scaling laws to remain
valid, model size, dataset size, and computational budget must be augmented
in a coordinated manner. Over-investment in one dimension while maintaining
others constant often results in suboptimal outcomes. For example, increasing
model size without expanding the training dataset may induce overfitting,
whereas increasing computational resources without model redesign may lead
to inefÏcient resource utilization (Hoffmann et al. 2022). In such scenarios,
performance plateaus or even declines despite increased resource expenditure.

Closely related is the issue of underutilized compute budgets. Large-scale
models often require carefully tuned training schedules and learning rates to
make full use of available resources. When compute is insufÏciently allocated,
due to premature stopping, batch size misalignment, or ineffective parallelism,
models may fail to reach their performance potential despite significant infras-
tructure investment.

Another prevalent mode of failure is data saturation. Scaling laws presuppose
that model performance will continue to improve with access to sufÏcient
training data. However, in numerous domains, particularly in the fields of
language and vision, the availability of high-quality, human-annotated data is
finite. As models consume increasingly large datasets, they eventually reach a
point of diminishing marginal utility, where additional data points contribute
minimal new information. Beyond this threshold, larger models may exhibit
memorization rather than generalization, leading to degraded performance
on out-of-distribution tasks. This issue is particularly acute when scaling is
pursued without commensurate enhancements in data diversity or quality.

Infrastructure bottlenecks also impose practical scaling constraints. As mod-
els grow in size, they demand greater memory bandwidth, interconnect ca-
pacity, and I/O throughput. These hardware limitations become increasingly
challenging to overcome, even with specialized accelerators. For instance, dis-
tributing a trillion-parameter model across a cluster necessitates meticulous
management of data parallelism, communication overhead, and fault tolerance.
The complexity of orchestrating such large-scale systems introduces engineer-
ing challenges that can diminish the theoretical gains predicted by scaling
laws.

Finally, semantic saturation presents a significant conceptual challenge. At
extreme scales, models may approach the limits of what can be learned from

Chapter 9. EfÏcient AI 377

their training distributions. Performance on benchmark tasks may continue
to improve, but these improvements may no longer reflect meaningful gains
in generalization or understanding. Instead, models may become increasingly
brittle, susceptible to adversarial examples, or prone to generating plausible
but inaccurate outputs—particularly in generative tasks.

These breakdown points demonstrate that scaling laws, while powerful, are
not absolute. They describe empirical regularities under specific conditions,
which become increasingly difÏcult to maintain at scale. As machine learning
systems continue to evolve, it is essential to discern where and why scaling
ceases to be effective—and to develop strategies that enhance performance
without relying solely on scale.

To synthesize the primary causes of scaling failure, the following diagnostic
matrix (Table 9.1) outlines typical breakdown types, their underlying causes,
and representative scenarios. This table serves as a reference point for antici-
pating inefÏciencies and guiding more balanced system design.

Table 9.1: Common failure modes associated with unbalanced or excessive
scaling across model, data, and compute dimensions.

Dimension
Scaled

Type of
Breakdown Underlying Cause Example Scenario

Model Size Overfitting Model capacity exceeds available
data

Billion-parameter model on
limited dataset

Data Volume Diminishing
Returns

Saturation of new or diverse
information

Scaling web text beyond useful
threshold

Compute
Budget

Underutilized
Resources

InsufÏcient training steps or
inefÏcient use

Large model with truncated
training duration

Imbalanced
Scaling

InefÏciency Uncoordinated increase in
model/data/compute

Doubling model size without
more data or time

All Dimensions Semantic
Saturation

Exhaustion of learnable patterns
in the domain

No further gains despite scaling
all inputs

In this section, we have explored the fundamental principles of AI scaling
laws, examining their empirical foundations, practical implications, and inher-
ent limitations. Scaling laws provide a valuable framework for understanding
how model performance scales with resources, but they also highlight the
importance of efÏciency and sustainability. The trade-offs and challenges as-
sociated with scaling underscore the need for a holistic approach to system
design, which balances performance with resource constraints. In the following
sections, we will delve into the specific dimensions of efÏciency, including
algorithmic, computational, and data-related aspects, exploring how these ar-
eas contribute to the development of more sustainable and effective machine
learning systems.

9.2.7 Toward EfÏcient Scaling
While the empirical success of scaling laws has driven substantial progress
in artificial intelligence, these observations raise foundational questions that
extend beyond resource allocation. The sustainability of the current scaling
trajectory, and its adequacy in capturing the principles of efÏcient AI system
design, must be critically examined.

9.3. The Pillars of AI EfÏciency 378

The empirical regularities observed in scaling laws prompt deeper inquiry:
can observation be translated into a theoretical framework that explains the
mechanisms driving these patterns? Establishing such a framework would
enhance scientific understanding and inform the design of more efÏcient al-
gorithms and architectures. The limitations inherent in brute-force scaling,
including diminishing returns and observed breakdowns, highlight the need
for architectural innovations that reshape scaling behavior and address efÏ-
ciency from an algorithmic standpoint.

Simultaneously, the increasing demand for data emphasizes the importance
of transitioning to a data-centric paradigm. As data saturation is approached,
the efÏciency of data acquisition, curation, and utilization becomes critical.
This shift requires a deeper understanding of data dynamics and the develop-
ment of strategies that maximize the utility of limited data resources. These
considerations form the basis for the upcoming discussion on data efÏciency.

The computational demands of large-scale models further underscore the
necessity of compute efÏciency. Sustainable scaling depends on minimizing
resource consumption while maintaining or improving performance. This
objective motivates the exploration of hardware-optimized architectures and
training methodologies that support efÏcient execution, to be discussed in the
context of compute efÏciency.

Algorithmic, compute, and data efÏciency are not independent; their interde-
pendence shapes the overall performance of machine learning systems. The
emergence of novel capabilities in extremely large models suggests the potential
for synergistic effects across these dimensions. Achieving real-world efÏciency
requires a holistic approach to system design in which these elements are care-
fully orchestrated. This perspective introduces the forthcoming discussion on
system efÏciency.

Finally, the ethical considerations surrounding access to compute and data
resources demonstrate that efÏciency is not solely a technical goal. Ensuring
equitable distribution of the benefits of efÏcient AI represents a broader societal
imperative. Subsequent sections will address these challenges, including the
limits of optimization, the implications of Moore’s Law, and the balance between
innovation and accessibility.

In summary, the future of scaling lies not in unbounded expansion but in
the coordinated optimization of algorithmic, compute, and data resources. The
sections that follow will examine each of these dimensions and their contribu-
tions to the development of efÏcient and sustainable machine learning systems.
Although scaling laws offer a valuable perspective, they represent only one
component of a more comprehensive framework.

9.3 The Pillars of AI EfÏciency
The trajectory of machine learning has been significantly shaped by scaling
laws and the evolving concept of efÏciency. While scaling laws demonstrate the
potential benefits of increasing model size, dataset volume, and computational
resources, they also highlight the critical need for efÏcient resource utilization.
To systematically address these challenges, we delineate three fundamental
and interconnected pillars of AI efÏciency: algorithmic efÏciency, compute

Chapter 9. EfÏcient AI 379

efÏciency, and data efÏciency. These pillars represent critical domains that have
profoundly influenced how we navigate the trade-offs revealed by scaling laws.

Algorithmic efÏciency pertains to the design and optimization of algorithms
to maximize performance within given resource constraints. As scaling laws
indicate that larger models generally perform better, algorithmic efÏciency
becomes crucial for making these models practical and deployable. Contempo-
rary research focuses on techniques such as model compression, architectural
optimization, and algorithmic refinement, all aimed at preserving the benefits
of scale while minimizing resource consumption.

Compute efÏciency addresses the optimization of computational resources,
including hardware and energy utilization. Scaling laws have shown that
training compute requirements are growing at an exponential rate, making
compute efÏciency increasingly critical. The advent of specialized hardware
accelerators, such as GPUs and TPUs, has enabled the development of large-
scale models. However, the energy demands associated with training and
deploying these models have raised concerns regarding sustainability. Compute
efÏciency, therefore, encompasses strategies for optimizing hardware utilization,
reducing energy footprint, and exploring alternative computing paradigms
that can support continued scaling.

Data efÏciency focuses on maximizing the information gained from available
data while minimizing the required data volume. Scaling laws demonstrate
that model performance improves with larger datasets, but they also reveal
diminishing returns and practical limits to data collection. This pillar becomes
especially important as we approach the boundaries of available high-quality
data in domains like language modeling. Methods such as data augmentation,
active learning, and efÏcient data representation aim to achieve the benefits
predicted by scaling laws with reduced data requirements.

These three pillars are not mutually exclusive; rather, they are deeply inter-
twined and often mutually reinforcing. Improvements in one pillar can lead
to gains in others, and trade-offs between them are frequently necessary. As
we examine the historical evolution of these dimensions, as depicted in Fig-
ure 9.8, we will elucidate the dynamic interplay between algorithmic, compute,
and data efÏciency, providing a foundation for understanding how to achieve
efÏcient scaling in contemporary machine learning.

Figure 9.8: Evolution of AI EfÏ-
ciency over the past few decades.

Algorithmic

Efficiency

Deep

Learning Era

Modern

Efficiency

General-Purpose

Computing

Accelerated

Computing

Sustainable

Computing

Data

Scarcity
Big

Data Era
Data-Centric AI

Algorithmic Efficiency Compute Efficiency Data Efficiency

1980 2010 2023 1980 2010 2023 1980 2010 2023

2010 2022 Future 2010 2022 Future 2010 2022 Future

9.3.1 Algorithmic EfÏciency
Model efÏciency addresses the design and optimization of machine learning
models to deliver high performance while minimizing computational and

9.3. The Pillars of AI EfÏciency 380

5 Pruning was inspired by bio-
logical development where unused
connections between neurons are
eliminated during brain develop-
ment.

memory requirements. It is a critical component of machine learning systems,
enabling models to operate effectively across a range of platforms, from cloud
servers to resource-constrained edge devices. The evolution of algorithmic
efÏciency mirrors the broader trajectory of machine learning itself, shaped by
algorithmic advances, hardware developments, and the increasing complexity
of real-world applications.

9.3.1.1 Early EfÏciency

During the early decades of machine learning, algorithmic efÏciency was closely
tied to computational constraints, particularly in terms of parallelization. Early
algorithms like decision trees and SVMs were primarily optimized for single-
machine performance, with parallel implementations limited mainly to en-
semble methods where multiple models could be trained independently on
different data batches.

Neural networks also began to emerge during this period, but they were
constrained by the limited computational capacity of the time. Unlike earlier
algorithms, neural networks showed potential for model parallelism, the abil-
ity to distribute model components across multiple processors, though this
advantage wouldn’t be fully realized until the deep learning era. This led to
careful optimizations in their design, such as limiting the number of layers
or neurons to keep computations manageable. EfÏciency was achieved not
only through model simplicity but also through innovations in optimization
techniques, such as the adoption of stochastic gradient descent, which made
training more practical for the hardware available.

The era of algorithmic efÏciency laid the groundwork for machine learn-
ing by emphasizing the importance of achieving high performance under
strict resource constraints. These principles remain important even in today’s
datacenter-scale computing, where hardware limitations in memory bandwidth
and power consumption continue to drive innovation in algorithmic efÏciency.
It was an era of problem-solving through mathematical rigor and computa-
tional restraint, establishing patterns that would prove valuable as models grew
in scale and complexity.

9.3.1.2 Deep Learning Era

The introduction of deep learning in the early 2010s marked a turning point for
algorithmic efÏciency. Neural networks, which had previously been constrained
by hardware limitations, now benefited from advancements in computational
power, particularly the adoption of GPUs (Krizhevsky, Sutskever, and Hin-
ton 2017b). This capability allowed researchers to train larger, more complex
models, leading to breakthroughs in tasks such as image recognition, natural
language processing, and speech synthesis.

However, the growing size and complexity of these models introduced new
challenges. Larger models required significant computational resources and
memory, making them difÏcult to deploy in practical applications. To address
these challenges, researchers developed techniques to reduce model size and
computational requirements without sacrificing accuracy. Pruning5, for in-
stance, involved removing redundant or less significant connections within a

Chapter 9. EfÏcient AI 381

6 MobileNet/EfÏcient-
Net/SqueezeNet: Compact neural
network architectures designed
for efÏciency, balancing high
performance with reduced com-
putational demands. MobileNet
introduced depthwise separable
convolutions (2017), EfÏcientNet
applied compound scaling (2019),
and SqueezeNet focused on
reducing parameters using 1x1
convolutions (2016).

7 Low-Rank Adaptation (LoRA):
A technique that adapts large pre-
trained models to new tasks by up-
dating only a small subset of param-
eters, significantly reducing compu-
tational and memory requirements.

neural network, reducing both the model’s parameters and its computational
overhead (Yann LeCun, Denker, and Solla 1989). Quantization focused on
lowering the precision of numerical representations, enabling models to run
faster and with less memory (Jacob et al. 2018a). Knowledge distillation al-
lowed large, resource-intensive models (referred to as “teachers”) to transfer
their knowledge to smaller, more efÏcient models (referred to as “students”),
achieving comparable performance with reduced complexity (Hinton, Vinyals,
and Dean 2015a).

At the same time, new architectures specifically designed for efÏciency began
to emerge. Models such as MobileNet (A. G. Howard et al. 2017a), EfÏcientNet
(Tan and Le 2019b), and SqueezeNet (Iandola et al. 2016) demonstrated that
compact designs could deliver high performance, enabling their deployment
on devices with limited computational power, such as smartphones and IoT
devices6.

9.3.1.3 Modern EfÏciency

As machine learning systems continue to grow in scale and complexity, the focus
on algorithmic efÏciency has expanded to address sustainability and scalability.
Today’s challenges require balancing performance with resource efÏciency,
particularly as models like GPT-4 and beyond are applied to increasingly diverse
tasks and environments. One emerging approach involves sparsity, where only
the most critical parameters of a model are retained, significantly reducing
computational and memory demands. Hardware-aware design has also become
a priority, as researchers optimize models to take full advantage of specific
accelerators, such as GPUs, TPUs, and edge processors. Another important
trend is parameter-efÏcient fine-tuning, where large pre-trained models can be
adapted to new tasks by updating only a small subset of parameters. Low-Rank
Adaptation (LoRA)7 and prompt-tuning exemplify this approach, allowing
systems to achieve task-specific performance while maintaining the efÏciency
advantages of smaller models.

As shown in Figure 9.9, model training compute requirements have been
growing at an accelerating rate, especially in the deep learning era. This trend
underscores the necessity for algorithmic innovations that enhance efÏciency
without compromising performance.

These advancements reflect a broader shift in focus: from scaling models
indiscriminately to creating architectures that are purpose-built for efÏciency.
This modern era emphasizes not only technical excellence but also the practi-
cality and sustainability of machine learning systems.

9.3.1.4 EfÏciency in Design

Model efÏciency is fundamental to the design of scalable and sustainable ma-
chine learning systems. By reducing computational and memory demands,
efÏcient models lower energy consumption and operational costs, making
machine learning systems accessible to a wider range of applications and de-
ployment environments. Moreover, algorithmic efÏciency complements other
dimensions of efÏciency, such as compute and data efÏciency, by reducing the
overall burden on hardware and enabling faster training and inference cycles.

9.3. The Pillars of AI EfÏciency 382

Figure 9.9: Model training com-
pute is growing at faster and faster
rates, especially in the recent deep
learning era. Source: (Sevilla et al.
2022a.)

Figure 9.10: Within just seven years,
44 times less compute was required
to achieve AlexNet performance.
Source: (Jaech et al. 2024).

Chapter 9. EfÏcient AI 383

8 Moore’s Law: An observa-
tion made by Gordon Moore in 1965,
stating that the number of transis-
tors on a microchip doubles approx-
imately every two years, leading to
an exponential increase in computa-
tional power and a corresponding
decrease in relative cost.

Notably, as Figure 9.10 shows, the computational resources needed to train
a neural network to achieve AlexNet-level performance on ImageNet classi-
fication had decreased by 44× compared to 2012. This improvement, which
halved every 16 months, outpaced the hardware efÏciency gains of Moore’s
Law8. Such rapid progress demonstrates the role of algorithmic advancements
in driving efÏciency alongside hardware innovations (Hernandez, Brown, et al.
2020).

The evolution of algorithmic efÏciency, from algorithmic innovations to
hardware-aware optimization, is of importance in machine learning. As the
field advances, algorithmic efÏciency will remain central to the design of sys-
tems that are high-performing, scalable, and sustainable.

9.3.2 Compute EfÏciency
Compute efÏciency focuses on the effective use of hardware and computa-
tional resources to train and deploy machine learning models. It encompasses
strategies for reducing energy consumption, optimizing processing speed, and
leveraging hardware capabilities to achieve scalable and sustainable system
performance. The evolution of compute efÏciency is closely tied to advance-
ments in hardware technologies, reflecting the growing demands of machine
learning applications over time.

9.3.2.1 General-Purpose Computing Era

In the early days of machine learning, compute efÏciency was shaped by the lim-
itations of general-purpose CPUs. During this period, machine learning models
had to operate within strict computational constraints, as specialized hardware
for machine learning did not yet exist. EfÏciency was achieved through algorith-
mic innovations, such as simplifying mathematical operations, reducing model
size, and optimizing data handling to minimize computational overhead.

Researchers worked to maximize the capabilities of CPUs by using parallelism
where possible, though options were limited. Training times for models were
often measured in days or weeks, as even relatively small datasets and models
pushed the boundaries of available hardware. The focus on compute efÏciency
during this era was less about hardware optimization and more about designing
algorithms that could run effectively within these constraints.

9.3.2.2 Accelerated Computing Era

The introduction of deep learning in the early 2010s brought a seismic shift in
the landscape of compute efÏciency. Models like AlexNet and ResNet showed
the potential of neural networks, but their computational demands quickly
surpassed the capabilities of traditional CPUs. As shown in Figure 9.11, this
marked the beginning of an era of exponential growth in compute usage. Ope-
nAI’s analysis reveals that the amount of compute used in AI training has
increased 300,000 times since 2012, doubling approximately every 3.4 months—
a rate far exceeding Moore’s Law (Amodei, Hernandez, et al. 2018).

This rapid growth was driven not only by the adoption of GPUs, which
offered unparalleled parallel processing capabilities, but also by the willingness

9.3. The Pillars of AI EfÏciency 384

Figure 9.11: From AlexNet to Al-
phaGo Zero, there has been a
300,000x increase in demand for
computing power over seven years.
Source: (Yann LeCun, Bengio, and
Hinton 2015b).

9 Tensor Processing Units
(TPUs): Google’s custom-designed
AI accelerator chips, introduced
in 2016, demonstrated significant
performance gains—processing AI
workloads up to 30 times faster than
contemporary GPUs and 80 times
faster than CPUs.

10 Application-Specific
Integrated Circuits (ASICs):
Custom-designed chips optimized
for specific machine learning
workloads, offering superior
performance and energy efÏciency
compared to general-purpose
processors. ASICs can achieve
10-100x better performance per
watt than GPUs for targeted
applications.

of researchers to scale up experiments by using large GPU clusters. Specialized
hardware accelerators such as Google’s Tensor Processing Units (TPUs)9 and
application-specific integrated circuits (ASICs)10 further revolutionized com-
pute efÏciency. These innovations enabled significant reductions in training
times for deep learning models, transforming tasks that once took weeks into
operations completed in hours or days.

The rise of large-scale compute also highlighted the complementary rela-
tionship between algorithmic innovation and hardware efÏciency. Advances
such as neural architecture search and massive batch processing leveraged
the increasing availability of computational power, demonstrating that more
compute could directly lead to better performance in many domains.

9.3.2.3 Sustainable Computing Era

As machine learning systems scale further, compute efÏciency has become
closely tied to sustainability. Training state-of-the-art models like GPT-4 re-
quires massive computational resources, leading to increased attention on the
environmental impact of large-scale computing. The projected electricity usage
of data centers, shown in Figure 9.12, highlights this concern. Between 2010
and 2030, electricity consumption is expected to rise sharply, particularly under
the “Worst” scenario, where it could exceed 8,000 TWh by 203011.

The dramatic demand for energy usage underscores the urgency for compute
efÏciency, as even large data centers face energy constraints due to limitations in
electrical grid capacity and power availability in specific locations. To address

Chapter 9. EfÏcient AI 385

Figure 9.12: Electricity usage (TWh)
of Data Centers from 2010 to 2030.
Source: Andrae and Edler (2015).

2000

4000

6000

8000

2010 2015 2020 2025 2030
Year

E
le

ct
ric

ity
 U

sa
ge

 (
T

W
h)

Scenario

Best

Expected

Worst

11 The “Best,” “Expected,” and
“Worst” scenarios in the figure re-
flect different assumptions about
how efÏciently data centers can han-
dle increasing internet trafÏc, with
the best-case scenario assuming the
fastest improvements in energy efÏ-
ciency and the worst-case scenario
assuming minimal gains, leading to
sharply rising energy demands.

these challenges, the focus today is on optimizing hardware utilization and
minimizing energy consumption, both in cloud data centers and at the edge.

One key trend is the adoption of energy-aware scheduling and resource allo-
cation techniques, which ensure that computational workloads are distributed
efÏciently across available hardware (D. Patterson et al. 2021a). Researchers are
also developing methods to dynamically adjust precision levels during training
and inference, using lower precision operations (e.g., mixed-precision training)
to reduce power consumption without sacrificing accuracy.

Another focus is on distributed systems, where compute efÏciency is achieved
by splitting workloads across multiple machines. Techniques such as model
parallelism and data parallelism allow large-scale models to be trained more
efÏciently, leveraging clusters of GPUs or TPUs to maximize throughput. These
methods reduce training times while minimizing the idle time of hardware
resources.

At the edge, compute efÏciency is evolving to address the growing demand
for real-time processing in energy-constrained environments. Innovations such
as hardware-aware model optimization, lightweight inference engines, and
adaptive computing architectures are paving the way for highly efÏcient edge
systems. These advancements are critical for enabling applications like au-
tonomous vehicles and smart home devices, where latency and energy efÏciency
are paramount.

9.3.2.4 Compute EfÏciency’s Role

Compute efÏciency is a critical enabler of system-wide performance and scalabil-
ity. By optimizing hardware utilization and energy consumption, it ensures that
machine learning systems remain practical and cost-effective, even as models
and datasets grow larger. Moreover, compute efÏciency directly complements

9.3. The Pillars of AI EfÏciency 386

model and data efÏciency. For example, compact models reduce computational
requirements, while efÏcient data pipelines streamline hardware usage.

The evolution of compute efÏciency highlights its essential role in addressing
the growing demands of modern machine learning systems. From early reliance
on CPUs to the emergence of specialized accelerators and sustainable computing
practices, this dimension remains central to building scalable, accessible, and
environmentally responsible machine learning systems.

9.3.3 Data EfÏciency
Data efÏciency focuses on optimizing the amount and quality of data required
to train machine learning models effectively. As datasets have grown in scale
and complexity, managing data efÏciently has become an increasingly critical
challenge for machine learning systems. While historically less emphasized
than model or compute efÏciency, data efÏciency has emerged as a pivotal
dimension, driven by the rising costs of data collection, storage, and processing.
Its evolution reflects the changing role of data in machine learning, from a
scarce resource to a massive but unwieldy asset.

9.3.3.1 Data Scarcity Era

In the early days of machine learning, data efÏciency was not a significant focus,
largely because datasets were relatively small and manageable. The challenge
during this period was often acquiring enough labeled data to train models ef-
fectively. Researchers relied heavily on curated datasets, such as UCI’s Machine
Learning Repository, which provided clean, well-structured data for experi-
mentation. Feature selection and dimensionality reduction techniques, such as
principal component analysis (PCA), were common methods for ensuring that
models extracted the most valuable information from limited data.

During this era, data efÏciency was achieved through careful preprocessing
and data cleaning. Algorithms were designed to work well with relatively
small datasets such as MNIST (L. Deng 2012), Caltech 101 (Fei-Fei, Fergus, and
Perona, n.d.) and CIFAR-10 (Krizhevsky 2009), and computational limitations
reinforced the need for data parsimony. These constraints shaped the develop-
ment of techniques that maximized performance with minimal data, ensuring
that every data point contributed meaningfully to the learning process.

9.3.3.2 Big Data Era

The advent of deep learning in the 2010s transformed the role of data in machine
learning. Models such as AlexNet and GPT-3 demonstrated that larger datasets
often led to better performance, particularly for complex tasks like image clas-
sification and natural language processing. This marked the beginning of the
“big data” era, where the focus shifted from making the most of limited data to
scaling data collection and processing to unprecedented levels.

However, this reliance on large datasets introduced significant inefÏcien-
cies. Data collection became a costly and time-consuming endeavor, requiring
vast amounts of labeled data for supervised learning tasks. To address these
challenges, researchers developed techniques to enhance data efÏciency, even

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/

Chapter 9. EfÏcient AI 387

12 A machine learning approach
where the model selects the most
informative data points for labeling
to improve learning efÏciency.

as datasets continued to grow. Transfer learning allowed pre-trained models
to be fine-tuned on smaller datasets, reducing the need for task-specific data
(Yosinski et al. 2014). Data augmentation techniques, such as image rotations
or text paraphrasing, artificially expanded datasets by creating new variations
of existing samples. Additionally, active learning12 prioritized labeling only
the most informative data points, minimizing the overall labeling effort while
maintaining performance (Settles 2012a).

Despite these advancements, the “more data is better” paradigm dominated
this period, with less attention paid to streamlining data usage. As a result, the
environmental and economic costs of managing large datasets began to emerge
as significant concerns.

9.3.3.3 Modern Data EfÏciency Era
As machine learning systems grow in scale, the inefÏciencies of large datasets
have become increasingly apparent. Recent work has focused on developing
approaches that maximize the value of data while minimizing resource re-
quirements. This shift reflects a growing understanding that bigger datasets
do not always lead to better performance, particularly when considering the
computational and environmental costs of training on massive scales.

Data-centric AI has emerged as a key paradigm, emphasizing the importance
of data quality over quantity. This approach focuses on enhancing data prepro-
cessing, removing redundancy, and improving labeling efÏciency. Research has
shown that careful curation and filtering of datasets can achieve comparable or
superior model performance while using only a fraction of the original data vol-
ume. For instance, systematic analyses of web-scale datasets demonstrate that
targeted filtering techniques can maintain model capabilities while significantly
reducing training data requirements (Penedo et al. 2024).

Several techniques have emerged to support this transition toward data efÏ-
ciency. Self-supervised learning enables models to learn meaningful represen-
tations from unlabeled data, reducing the dependency on expensive human-
labeled datasets. Active learning strategies selectively identify the most infor-
mative examples for labeling, while curriculum learning structures the training
process to progress from simple to complex examples, improving learning
efÏciency. These approaches work together to minimize data requirements
while maintaining model performance.

The importance of data efÏciency is particularly evident in foundation models.
As these models grow in scale and capability, they are approaching the limits of
available high-quality training data, especially for language tasks (Figure 9.13).
This scarcity drives innovation in data processing and curation techniques,
pushing the field to develop more sophisticated approaches to data efÏciency.

Evidence for the impact of data quality appears across different scales of
deployment. In Tiny ML applications, datasets like Wake Vision demonstrate
how model performance critically depends on careful data curation (C. Banbury
et al. 2024). At larger scales, research on language models trained on web-scale
datasets shows that intelligent filtering and selection strategies can significantly
improve performance on downstream tasks (Penedo et al. 2024).

This modern era of data efÏciency represents a fundamental shift in how ma-
chine learning systems approach data utilization. By focusing on quality over

9.4. System EfÏciency 388

Figure 9.13: Datasets for foundation
model training are quickly growing
in size and capturing most of stock
of human-generated text. Source:
Sevilla et al. (2022b).

quantity and developing sophisticated techniques for data selection and pro-
cessing, the field is moving toward more sustainable and effective approaches
to model training and deployment.

9.3.3.4 Data EfÏciency’s Role
Data efÏciency is integral to the design of scalable and sustainable machine
learning systems. By reducing the dependency on large datasets, data ef-
ficiency directly impacts both model and compute efÏciency. For instance,
smaller, higher-quality datasets reduce training times and computational de-
mands, while enabling models to generalize more effectively. This dimension
of efÏciency is particularly critical for edge applications, where bandwidth and
storage limitations make it impractical to rely on large datasets.

As the field advances, data efÏciency will play an increasingly prominent
role in addressing the challenges of scalability, accessibility, and sustainability.
By rethinking how data is collected, processed, and utilized, machine learning
systems can achieve higher levels of efÏciency across the entire pipeline.

9.4 System EfÏciency
The efÏciency of machine learning systems has become a crucial area of fo-
cus. Optimizing these systems helps us ensure that they are not only high-
performing but also adaptable, cost-effective, and environmentally sustainable.
Understanding the concept of ML system efÏciency, its key dimensions, and
the interplay between them is essential for uncovering how these principles
can drive impactful, scalable, and responsible AI solutions.

9.4.1 Defining System EfÏciency
Machine learning is a highly complex field, involving a multitude of components
across a vast domain. Despite its complexity, there has not been a synthesis of
what it truly means to have an efÏcient machine learning system. Here, we take
a first step towards defining this concept.

Chapter 9. EfÏcient AI 389

�� Definition of Machine Learning System EfÏciency

Machine Learning System EfÏciency refers to the optimization of
machine learning systems across three interconnected dimensions—
algorithmic efÏciency, compute efÏciency, and data efÏciency. Its goal is to
minimize computational, memory, and energy demands while maintaining
or improving system performance. This efÏciency ensures that machine
learning systems are scalable, cost-effective, and sustainable, which allows
them to adapt to diverse deployment contexts, ranging from cloud data
centers to edge devices. Achieving system efÏciency, however, often re-
quires navigating trade-offs between dimensions, such as balancing model
complexity with hardware constraints or reducing data dependency without
compromising generalization.

This definition highlights the holistic nature of efÏciency in machine learning
systems, emphasizing that the three dimensions, algorithmic efÏciency, com-
pute efÏciency, and data efÏciency, are deeply interconnected. Optimizing one
dimension often affects the others, either by creating synergies or necessitating
trade-offs. Understanding these interdependencies is essential for designing
systems that are not only performant but also scalable, adaptable, and sustain-
able (D. Patterson et al. 2021b).

To better understand this interplay, we must examine how these dimensions
reinforce one another and the challenges in balancing them. While each dimen-
sion contributes uniquely, the true complexity lies in their interdependencies.
Historically, optimizations were often approached in isolation. However, re-
cent years have seen a shift towards co-design, where multiple dimensions are
optimized concurrently to achieve superior overall efÏciency.

9.4.2 EfÏciency Interdependencies
The efÏciency of machine learning systems is inherently a multifaceted chal-
lenge that encompasses model design, computational resources, and data uti-
lization. These dimensions, including algorithmic efÏciency, compute efÏciency,
and data efÏciency, are deeply interdependent, forming a dynamic ecosystem
where improvements in one area often ripple across the others. Understand-
ing these interdependencies is crucial for building scalable, cost-effective, and
high-performing systems that can adapt to diverse application demands.

This interplay is best captured through a conceptual visualization. Figure 9.14
illustrates how these efÏciency dimensions overlap and interact with each
other in a simple Venn diagram. Each circle represents one of the efÏciency
dimensions, and their intersections highlight the areas where they influence
one another, which we will explore next.

9.4.2.1 Algorithmic EfÏciency Aids Compute and Data

Model efÏciency is essential for efÏcient machine learning systems. By de-
signing compact and streamlined models, we can significantly reduce compu-
tational demands, leading to faster and more cost-effective inference. These

9.4. System EfÏciency 390

Figure 9.14: Interdependence of the
different efÏciency dimensions. Algorithmic

Efficiency

Data

Efficiency

Compute

Efficiency

compact models not only consume fewer resources but are also easier to deploy
across diverse environments, such as resource-constrained edge devices or
energy-intensive cloud infrastructure.

Moreover, efÏcient models often require less data for training, as they avoid
over-parameterization and focus on capturing essential patterns within the
data. This results in shorter training times and reduced dependency on massive
datasets, which can be expensive and time-consuming to curate. As a result, op-
timizing algorithmic efÏciency creates a ripple effect, enhancing both compute
and data efÏciency.

Mobile Deployment Example. Mobile devices, such as smartphones, provide
an accessible introduction to the interplay of efÏciency dimensions. Consider a
photo-editing application that uses machine learning to apply real-time filters.
Compute efÏciency is achieved through hardware accelerators like mobile GPUs
or Neural Processing Units (NPUs), ensuring tasks are performed quickly while
minimizing battery usage.

This compute efÏciency, in turn, is supported by algorithmic efÏciency. The
application relies on a lightweight neural network architecture, such as Mo-
bileNets, that reduces the computational load, allowing it to take full advantage
of the mobile device’s hardware. Streamlined models also help reduce mem-
ory consumption, further enhancing computational performance and enabling
real-time responsiveness.

Furthermore, data efÏciency strengthens both compute and algorithmic efÏ-
ciency by ensuring the model is trained on carefully curated and augmented
datasets. These datasets allow the model to generalize effectively, reducing
the need for extensive retraining and lowering the demand for computational
resources during training. Additionally, by minimizing the complexity of the
training data, the model can remain lightweight without sacrificing accuracy,
reinforcing both model and compute efÏciency.

Integrating these dimensions means mobile deployments achieve a seam-
less balance between performance, energy efÏciency, and practicality. The
interdependence of model, compute, and data efÏciencies ensures that even
resource-constrained devices can deliver advanced AI capabilities to users on
the go.

Chapter 9. EfÏcient AI 391

9.4.2.2 Compute EfÏciency Supports Model and Data
Compute efÏciency is a key factor in optimizing machine learning systems. By
maximizing hardware utilization and employing efÏcient algorithms, compute
efÏciency speeds up both model training and inference processes, ultimately
cutting down on the time and resources needed, even when working with
complex or large-scale models.

EfÏcient computation enables models to handle large datasets more effec-
tively, minimizing bottlenecks associated with memory or processing power.
Techniques such as parallel processing, hardware accelerators (e.g., GPUs,
TPUs), and energy-aware scheduling contribute to reducing overhead while
ensuring peak performance. As a result, compute efÏciency not only supports
model optimization but also enhances data handling, making it feasible to train
models on high-quality datasets without unnecessary computational strain.

Edge Deployment Example. Edge deployments, such as those in autonomous
vehicles, highlight the intricate balance required between real-time constraints
and energy efÏciency. Compute efÏciency is central, as vehicles rely on high-
performance onboard hardware to process massive streams of sensor data,
including data from cameras, LiDAR, and radar, in real time. These computa-
tions must be performed with minimal latency to ensure safe navigation and
split-second decision-making.

This compute efÏciency is closely supported by algorithmic efÏciency, as the
system depends on compact, high-accuracy models designed for low latency.
By employing streamlined neural network architectures or hybrid models com-
bining deep learning and traditional algorithms, the computational demands
on hardware are reduced. These optimized models not only lower the process-
ing load but also consume less energy, reinforcing the system’s overall energy
efÏciency.

Data efÏciency enhances both compute and algorithmic efÏciency by reduc-
ing the dependency on vast amounts of training data. Through synthetic and
augmented datasets, the model can generalize effectively across diverse sce-
narios, including varying lighting, weather, and trafÏc conditions, without
requiring extensive retraining. This targeted approach minimizes computa-
tional costs during training and allows the model to remain efÏcient while
adapting to a wide range of real-world environments.

Together, the interdependence of these efÏciencies ensures that autonomous
vehicles can operate safely and reliably while minimizing energy consumption.
This balance not only improves real-time performance but also contributes to
broader goals, such as reducing fuel consumption and enhancing environmental
sustainability.

9.4.2.3 Data EfÏciency Strengthens Model and Compute
Data efÏciency is fundamental to bolstering both model and compute efÏciency.
By focusing on high-quality, compact datasets, the training process becomes
more streamlined, requiring fewer computational resources to achieve com-
parable or superior model performance. This targeted approach reduces data
redundancy and minimizes the overhead associated with handling excessively
large datasets.

9.4. System EfÏciency 392

Furthermore, data efÏciency enables more focused model design. When
datasets emphasize relevant features and minimize noise, models can achieve
high performance with simpler architectures. Consequently, this reduces com-
putational requirements during both training and inference, allowing more
efÏcient use of computing resources.

Cloud Deployment Example. Cloud deployments exemplify how system efÏ-
ciency can be achieved across interconnected dimensions. Consider a recom-
mendation system operating in a data center, where high throughput and rapid
inference are critical. Compute efÏciency is achieved by leveraging parallelized
processing on GPUs or TPUs, which optimize the computational workload
to ensure timely and resource-efÏcient performance. This high-performance
hardware allows the system to handle millions of simultaneous queries while
keeping energy and operational costs in check.

This compute efÏciency is bolstered by algorithmic efÏciency, as the rec-
ommendation system employs streamlined architectures, such as pruned or
simplified models. By reducing the computational and memory footprint,
these models enable the system to scale efÏciently, processing large volumes of
data without overwhelming the infrastructure. The streamlined design also
reduces the burden on accelerators, improving energy usage and maintaining
throughput.

Data efÏciency strengthens both compute and algorithmic efÏciency by en-
abling the system to learn and adapt without excessive data overhead. By
focusing on actively labeled datasets, the system can prioritize high-value
training data, ensuring better model performance with fewer computational
resources. This targeted approach reduces the size and complexity of training
tasks, freeing up resources for inference and scaling while maintaining high
recommendation accuracy.

Together, the interdependence of these efÏciencies enables cloud-based sys-
tems to achieve a balance of performance, scalability, and cost-effectiveness. By
optimizing model, compute, and data dimensions in harmony, cloud deploy-
ments become a cornerstone of modern AI applications, supporting millions of
users with efÏciency and reliability.

9.4.2.4 EfÏciency Trade-offs

In many machine learning applications, efÏciency is not merely a goal for opti-
mization but a prerequisite for system feasibility. Extreme resource constraints,
such as limited computational power, energy availability, and storage capacity,
demand careful trade-offs between algorithmic efÏciency, compute efÏciency,
and data efÏciency. These constraints are particularly relevant in scenarios
where machine learning models must operate in low-power embedded devices,
remote sensors, or battery-operated systems.

Unlike cloud-based or even edge-based deployments, where computational
resources are relatively abundant, resource-constrained environments require
severe optimizations to ensure that models can function within tight operational
limits. Achieving efÏciency in such settings often involves trade-offs: smaller
models may sacrifice some predictive accuracy, lower precision computations
may introduce noise, and constrained datasets may limit generalization. The

Chapter 9. EfÏcient AI 393

key challenge is to balance these trade-offs to maintain functionality while
staying within strict power and compute budgets.

Tiny Deployment Case Study. A clear example of these trade-offs can be
seen in Tiny ML, where machine learning models are deployed on ultra-low-
power microcontrollers, often operating on milliwatts of power. Consider an
IoT-based environmental monitoring system designed to detect temperature
anomalies in remote agricultural fields. The device must process sensor data
locally while operating on a small battery for months or even years without
requiring recharging or maintenance.

In this setting, compute efÏciency is critical, as the microcontroller has ex-
tremely limited processing capabilities, meaning the model must perform in-
ference with minimal computational overhead. Algorithmic efÏciency plays a
central role, as the model must be compact enough to fit within the tiny mem-
ory available on the device, requiring streamlined architectures that eliminate
unnecessary complexity. Data efÏciency becomes essential, since collecting and
storing large datasets in a remote location is impractical, requiring the model
to learn effectively from small, carefully selected datasets to make reliable
predictions with minimal training data.

Because of these constraints, Tiny ML deployments require a holistic ap-
proach to efÏciency, where improvements in one area must compensate for
limitations in another. A model that is computationally lightweight but requires
excessive amounts of training data may not be viable. Similarly, a highly accu-
rate model that demands too much energy will drain the battery too quickly.
The success of Tiny ML hinges on balancing these interdependencies, ensur-
ing that machine learning remains practical even in environments with severe
resource constraints.

9.4.2.5 Progression and Takeaways

Starting with Mobile ML deployments and progressing to Edge ML, Cloud
ML, and Tiny ML, these examples illustrate how system efÏciency adapts to
diverse operational contexts. Mobile ML emphasizes battery life and hardware
limitations, edge systems balance real-time demands with energy efÏciency,
cloud systems prioritize scalability and throughput, and Tiny ML demonstrates
how AI can thrive in environments with severe resource constraints.

Despite these differences, the fundamental principles remain consistent:
achieving system efÏciency requires optimizing model, compute, and data di-
mensions. These dimensions are deeply interconnected, with improvements in
one often reinforcing the others. For instance, lightweight models enhance com-
putational performance and reduce data requirements, while efÏcient hardware
accelerates model training and inference. Similarly, focused datasets streamline
model training and reduce computational overhead.

By understanding the interplay between these dimensions, we can design
machine learning systems that meet specific deployment requirements while
maintaining flexibility across contexts. For instance, a model architected for
edge deployment can often be adapted for cloud scaling or simplified for mobile
use, provided we carefully consider the relationships between model architec-
ture, computational resources, and data requirements.

9.4. System EfÏciency 394

9.4.3 Scalability and Sustainability
System efÏciency serves as a fundamental driver of environmental sustainability
in machine learning systems. When systems are optimized for efÏciency, they
can be deployed at scale while minimizing their environmental footprint. This
relationship creates a positive feedback loop, as sustainable design practices
naturally encourage further efÏciency improvements.

The interconnection between efÏciency, scalability, and sustainability forms
a virtuous cycle, as shown in Figure 9.15, that enhances the broader impact
of machine learning systems. EfÏcient system design enables widespread
deployment, which amplifies the positive environmental effects of sustainable
practices. As organizations prioritize sustainability, they drive innovation in
efÏcient system design, ensuring that advances in artificial intelligence align
with global sustainability goals.

Figure 9.15: The virtuous cycle of
machine learning system. EfÏciency
drives scalability and widespread
adoption, which in turn drives the
need for sustainable solutions, fuel-
ing the need for further efÏciency.

Efficiency

Scalability Sustainability

9.4.3.1 EfÏciency-Scalability Relationship

EfÏcient systems are inherently scalable. Reducing resource demands through
lightweight models, targeted datasets, and optimized compute utilization al-
lows systems to deploy broadly across diverse environments. For example,
a speech recognition model that is efÏcient enough to run on mobile devices
can serve millions of users globally without relying on costly infrastructure
upgrades. Similarly, Tiny ML technologies, designed to operate on low-power
hardware, make it possible to deploy thousands of devices in remote areas for
applications like environmental monitoring or precision agriculture.

Scalability becomes feasible because efÏciency reduces barriers to entry. Sys-
tems that are compact and energy-efÏcient require less infrastructure, making
them more adaptable to different deployment contexts, from cloud data centers
to edge and IoT devices. This adaptability is key to ensuring that advanced AI
solutions reach users worldwide, fostering inclusion and innovation.

9.4.3.2 Scalability-Sustainability Relationship

When efÏcient systems scale, they amplify their contribution to sustainability.
Energy-efÏcient designs deployed at scale reduce overall energy consumption
and computational waste, mitigating the environmental impact of machine
learning systems. For instance, deploying Tiny ML devices for on-device data
processing avoids the energy costs of transmitting raw data to the cloud, while

Chapter 9. EfÏcient AI 395

efÏcient recommendation engines in the cloud reduce the operational footprint
of serving millions of users.

The wide-scale adoption of efÏcient systems not only reduces environmental
costs but also fosters sustainable development in underserved regions. EfÏcient
AI applications in healthcare, education, and agriculture can provide trans-
formative benefits without imposing significant resource demands, aligning
technological growth with ethical and environmental goals.

9.4.3.3 Sustainability-EfÏciency Relationship

Sustainability itself reinforces the need for efÏciency, creating a feedback loop
that strengthens the entire system. Practices like minimizing data redundancy,
designing energy-efÏcient hardware, and developing low-power models all
emphasize efÏcient resource utilization. These efforts not only reduce the envi-
ronmental footprint of AI systems but also set the stage for further scalability
by making systems cost-effective and accessible.

9.5 EfÏciency Trade-offs and Challenges
Thus far, we explored how the dimensions of system efÏciency, including algo-
rithmic efÏciency, compute efÏciency, and data efÏciency, are deeply intercon-
nected. Ideally, these dimensions reinforce one another, creating a system that
is both efÏcient and high-performing. Compact models reduce computational
demands, efÏcient hardware accelerates processes, and high-quality datasets
streamline training and inference. However, achieving this harmony is far from
straightforward.

9.5.1 Trade-offs Source
In practice, balancing these dimensions often uncovers underlying tensions.
Improvements in one area can impose constraints on others, highlighting the
interconnected nature of machine learning systems. For instance, simplifying
a model to reduce computational demands might result in reduced accuracy,
while optimizing compute efÏciency for real-time responsiveness can conflict
with energy efÏciency goals. These trade-offs are not limitations but reflec-
tions of the intricate design decisions required to build adaptable and efÏcient
systems.

Understanding the root of these trade-offs is essential for navigating the
challenges of system design. Each efÏciency dimension influences the others,
creating a dynamic interplay that shapes system performance. The following
sections delve into these interdependencies, beginning with the relationship
between algorithmic efÏciency and compute requirements.

9.5.1.1 EfÏciency and Compute Requirements

Model efÏciency focuses on designing compact and streamlined models that
minimize computational and memory demands. By reducing the size or com-
plexity of a model, it becomes easier to deploy on devices with limited resources,
such as mobile phones or IoT sensors.

9.5. EfÏciency Trade-offs and Challenges 396

However, overly simplifying a model can reduce its accuracy, especially for
complex tasks. To make up for this loss, additional computational resources
may be required during training to fine-tune the model or during deployment
to apply more sophisticated inference algorithms. Thus, while algorithmic
efÏciency can reduce computational costs, achieving this often places additional
strain on compute efÏciency.

9.5.1.2 EfÏciency and Real-Time Needs

Compute efÏciency aims to minimize the resources required for tasks like train-
ing and inference, reducing energy consumption, processing time, and memory
use. In many applications, particularly in cloud computing or data centers, this
optimization works seamlessly with algorithmic efÏciency to improve system
performance.

However, in scenarios that require real-time responsiveness, including au-
tonomous vehicles and augmented reality, compute efÏciency is harder to
maintain. Figure 9.16 illustrates this challenge: real-time systems often require
high-performance hardware to process large amounts of data instantly, which
can conflict with energy efÏciency goals or increase system costs. Balancing
compute efÏciency with stringent real-time application needs becomes a key
challenge in such applications.

Figure 9.16: An example in the
autonomous vehicle (AV) setting,
where both efÏciency and latency
both matter. One cannot easily in-
crease compute to drive down la-
tency, but latency cannot be sacri-
fied as it might impact safety, where
increase processing time might im-
pact reation time and braking dis-
tance.

120 km/h

Driving Simulator

Latency = 100 ms

XYZ Simulator

(e.begin. GNSS)

120 km/h = 3.33 m/s

1 s: 33.33 m

1 ms: 0.033 m 100 ms: 3.33 m

Vehicle

Dynamics

STOP

4!Obstacle ahead

Avoid Collision

Where were you in

a real life scenario?

Uncertaint y = 3.33 m

Why latency matters?

9.5.1.3 EfÏciency and Model Generalization

Data efÏciency seeks to minimize the amount of data required to train a model
without sacrificing performance. By curating smaller, high-quality datasets,
the training process becomes faster and less resource-intensive. Ideally, this
reinforces both model and compute efÏciency, as smaller datasets reduce the
computational load and support more compact models.

However, reducing the size of a dataset can also limit its diversity, making
it harder for the model to generalize to unseen scenarios. To address this,
additional compute resources or model complexity may be required, creating a
tension between data efÏciency and the broader goals of system efÏciency.

Chapter 9. EfÏcient AI 397

9.5.1.4 Summary
The interdependencies between model, compute, and data efÏciency are the
foundation of a well-designed machine learning system. While these dimen-
sions can reinforce one another, building a system that achieves this synergy
often requires navigating difÏcult trade-offs. These trade-offs highlight the
complexity of designing machine learning systems that balance performance,
scalability, and resource constraints.

9.5.2 Common Trade-offs
In machine learning system design, trade-offs are an inherent reality. As we
explored in the previous section, the interdependencies between algorithmic
efÏciency, compute efÏciency, and data efÏciency ideally work together to create
powerful, resource-conscious systems. However, achieving this harmony is far
from straightforward. In practice, improvements in one dimension often come
at the expense of another. Designers must carefully weigh these trade-offs to
achieve a balance that aligns with the system’s goals and deployment context.

This balancing act is especially challenging because trade-offs are rarely one-
dimensional. Decisions made in one area often have cascading effects on the
rest of the system. For instance, choosing a larger, more complex model may
improve accuracy, but it also increases computational demands and the size
of the training dataset required. Similarly, reducing energy consumption may
limit the ability to meet real-time performance requirements, particularly in
latency-sensitive applications.

We explore three of the most common trade-offs encountered in machine
learning system design:

1. Model complexity vs. compute resources,
2. Energy efÏciency vs. real-time performance, and
3. Data size vs. model generalization.

Each of these trade-offs illustrates the nuanced decisions that system de-
signers must make and the challenges involved in achieving efÏcient, high-
performing systems.

9.5.2.1 Complexity vs. Resources
The relationship between model complexity and compute resources is one of
the most fundamental trade-offs in machine learning system design. Complex
models, such as deep neural networks with millions or even billions of param-
eters, are often capable of achieving higher accuracy by capturing intricate
patterns in data. However, this complexity comes at a cost. These models
require significant computational power and memory to train and deploy, often
making them impractical for environments with limited resources.

For example, consider a recommendation system deployed in a cloud data
center. A highly complex model may deliver better recommendations, but
it increases the computational demands on servers, leading to higher energy
consumption and operating costs. On the other hand, a simplified model may
reduce these demands but might compromise the quality of recommendations,
especially when handling diverse or unpredictable user behavior.

9.5. EfÏciency Trade-offs and Challenges 398

The trade-off becomes even more pronounced in resource-constrained en-
vironments such as mobile or edge devices. A compact, streamlined model
designed for a smartphone or an autonomous vehicle may operate efÏciently
within the device’s hardware limits but might require more sophisticated data
preprocessing or training procedures to compensate for its reduced capacity.
This balancing act highlights the interconnected nature of efÏciency dimensions,
where gains in one area often demand sacrifices in another.

9.5.2.2 Energy vs. Performance

Energy efÏciency and real-time performance often pull machine learning sys-
tems in opposite directions, particularly in applications requiring low-latency
responses. Real-time systems, such as those in autonomous vehicles or aug-
mented reality applications, rely on high-performance hardware to process
large volumes of data quickly. This ensures responsiveness and safety in sce-
narios where even small delays can lead to significant consequences. However,
achieving such performance typically increases energy consumption, creating
tension with the goal of minimizing resource use.

For instance, an autonomous vehicle must process sensor data from cameras,
LiDAR, and radar in real time to make navigation decisions. The computational
demands of these tasks often require specialized accelerators, such as GPUs,
which can consume significant energy. While optimizing hardware utilization
and model architecture can improve energy efÏciency to some extent, the de-
mands of real-time responsiveness make it challenging to achieve both goals
simultaneously.

In edge deployments, where devices rely on battery power or limited energy
sources, this trade-off becomes even more critical. Striking a balance between
energy efÏciency and real-time performance often involves prioritizing one
over the other, depending on the application’s requirements. This trade-off
underscores the importance of context-specific design, where the constraints
and priorities of the deployment environment dictate the balance between
competing objectives.

9.5.2.3 Data Size vs. Generalization

The size and quality of the dataset used to train a machine learning model
play a role in its ability to generalize to new, unseen data. Larger datasets
generally provide greater diversity and coverage, enabling models to capture
subtle patterns and reduce the risk of overfitting. However, the computational
and memory demands of training on large datasets can be substantial, leading
to trade-offs between data efÏciency and computational requirements.

In resource-constrained environments such as Tiny ML deployments, the
challenge of dataset size is particularly evident. For example, an IoT device
monitoring environmental conditions might need a model that generalizes well
to varying temperatures, humidity levels, or geographic regions. Collecting and
processing extensive datasets to capture these variations may be impractical
due to storage, computational, and energy limitations. In such cases, smaller,
carefully curated datasets or synthetic data generated to mimic real-world con-
ditions are used to reduce computational strain. However, this reduction often

Chapter 9. EfÏcient AI 399

risks missing key edge cases, which could degrade the model’s performance in
diverse environments.

Conversely, in cloud-based systems, where compute resources are more abun-
dant, training on massive datasets can still pose challenges. Managing data
redundancy, ensuring high-quality labeling, and handling the time and cost
associated with large-scale data pipelines often require significant computa-
tional infrastructure. This trade-off highlights how the need to balance dataset
size and model generalization depends heavily on the deployment context and
available resources.

9.5.2.4 Summary

The interplay between model complexity, compute resources, energy efÏciency,
real-time performance, and dataset size illustrates the inherent trade-offs in
machine learning system design. These trade-offs are rarely one-dimensional;
decisions to optimize one aspect of a system often ripple through the others,
requiring careful consideration of the specific goals and constraints of the
application.

Designers must weigh the advantages and limitations of each trade-off in the
context of the deployment environment. For instance, a cloud-based system
might prioritize scalability and throughput over energy efÏciency, while an
edge system must balance real-time performance with strict power constraints.
Similarly, resource-limited Tiny ML deployments require exceptional data and
algorithmic efÏciency to operate within severe hardware restrictions.

By understanding these common trade-offs, we can begin to identify strate-
gies for navigating them effectively. The next section will explore practical
approaches to managing these tensions, focusing on techniques and design
principles that enable system efÏciency while addressing the complexities of
real-world applications.

9.6 Managing Trade-offs

The trade-offs inherent in machine learning system design require thoughtful
strategies to navigate effectively. While the interdependencies between algo-
rithmic efÏciency, compute efÏciency, and data efÏciency create opportunities
for synergy, achieving this balance often involves difÏcult decisions. The spe-
cific goals and constraints of the deployment environment heavily influence
how these trade-offs are addressed. For example, a system designed for cloud
deployment may prioritize scalability and throughput, while a Tiny ML system
must focus on extreme resource efÏciency.

To manage these challenges, designers can adopt a range of strategies that
address the unique requirements of different contexts. By prioritizing efÏciency
dimensions based on the application, collaborating across system components,
and leveraging automated optimization tools, it is possible to create systems
that balance performance, cost, and resource use. This section explores these
approaches and provides guidance for designing systems that are both efÏcient
and adaptable.

9.6. Managing Trade-offs 400

9.6.1 Contextual Prioritization
EfÏciency goals are rarely universal. The specific demands of an application or
deployment scenario heavily influence which dimension of efÏciency, whether
it be model, compute, or data, takes precedence. Designing an efÏcient system
requires a deep understanding of the operating environment and the constraints
it imposes. Prioritizing the right dimensions based on context is the first step
in effectively managing trade-offs.

For instance, in Mobile ML deployments, battery life is often the primary
constraint. This places a premium on compute efÏciency, as energy consump-
tion must be minimized to preserve the device’s operational time. As a result,
lightweight models are prioritized, even if it means sacrificing some accuracy or
requiring additional data preprocessing. The focus is on balancing acceptable
performance with energy-efÏcient operation.

In contrast, Cloud ML-based systems prioritize scalability and throughput.
These systems must process large volumes of data and serve millions of users
simultaneously. While compute resources in cloud environments are more
abundant, energy efÏciency and operational costs still remain important con-
siderations. Here, algorithmic efÏciency plays a critical role in ensuring that
the system can scale without overwhelming the underlying infrastructure.

Edge ML systems present an entirely different set of priorities. Autonomous
vehicles or real-time monitoring systems require low-latency processing to
ensure safe and reliable operation. This makes real-time performance and
compute efÏciency paramount, often at the expense of energy consumption.
However, the hardware constraints of edge devices mean that these systems
must still carefully manage energy and computational resources to remain
viable.

Finally, Tiny ML deployments demand extreme levels of efÏciency due to
the severe limitations of hardware and energy availability. For these systems,
model and data efÏciency are the top priorities. Models must be highly com-
pact and capable of operating on microcontrollers with minimal memory and
compute power. At the same time, the training process must rely on small, care-
fully curated datasets to ensure the model generalizes well without requiring
extensive resources.

In each of these contexts, prioritizing the right dimensions of efÏciency en-
sures that the system meets its functional and resource requirements. Recog-
nizing the unique demands of each deployment scenario allows designers to
navigate trade-offs effectively and tailor solutions to specific needs.

9.6.2 Test-Time Compute
We can further enhance system adaptability through dynamic resource allo-
cation during inference, a concept often referred to as “Test-Time Compute.”
This approach recognizes that resource needs may fluctuate even within a
specific deployment context. By adjusting the computational effort expended
at inference time, systems can fine-tune their performance to meet immediate
demands.

For example, in a cloud-based video analysis system, standard video streams
might be processed with a streamlined, low-compute model to maintain high

Chapter 9. EfÏcient AI 401

13 8-bit models: ML models
use 8-bit integer representations for
weights and activations instead of
the standard 32-bit floating-point
format, reducing memory usage
and computational requirements for
faster, more energy-efÏcient infer-
ence on compatible hardware.

throughput. However, when a critical event is detected, the system could
dynamically allocate more computational resources to a more complex model,
enabling higher precision analysis of the event. This flexibility allows for a
trade-off between latency and accuracy on demand.

Similarly, in mobile applications, a voice assistant might use a lightweight
model for routine commands, conserving battery life. But when faced with a
complex query, the system could temporarily activate a more resource-intensive
model for improved accuracy. This ability to adjust compute based on the
complexity of the task or the importance of the result is a powerful tool for
optimizing system performance in real-time.

However, implementing “Test-Time Compute” introduces new challenges.
Dynamic resource allocation requires sophisticated monitoring and control
mechanisms to ensure that the system remains stable and responsive. Addi-
tionally, there is a point of diminishing returns; increasing compute beyond a
certain threshold may not yield significant performance improvements, making
it crucial to strike a balance between resource usage and desired outcomes.
Furthermore, the ability to dynamically increase compute can create disparities
in access to high-performance AI, raising equity concerns about who benefits
from advanced AI capabilities.

Despite these challenges, “Test-Time Compute” offers a valuable strategy for
enhancing system adaptability and optimizing performance in dynamic envi-
ronments. It complements the contextual prioritization approach by enabling
systems to respond effectively to varying demands within specific deployment
scenarios.

9.6.3 Co-Design

EfÏcient machine learning systems are rarely the product of isolated optimiza-
tions. Achieving balance across model, compute, and data efÏciency requires
an end-to-end perspective, where each component of the system is designed in
tandem with the others. This holistic approach, often referred to as co-design,
involves aligning model architectures, hardware platforms, and data pipelines
to work seamlessly together.

One of the key benefits of co-design is its ability to mitigate trade-offs by
tailoring each component to the specific requirements of the system. For in-
stance, consider a speech recognition system deployed on a mobile device. The
model must be compact enough to fit within the device’s tiny ML memory con-
straints while still delivering real-time performance. By designing the model
architecture to leverage the capabilities of hardware accelerators, such as NPUs,
it becomes possible to achieve low-latency inference without excessive energy
consumption. Similarly, careful preprocessing and augmentation of the training
data can ensure robust performance, even with a smaller, streamlined model.

Co-design becomes essential in resource-constrained environments like Edge
ML and Tiny ML deployments. Models must align precisely with hardware
capabilities. For example, 8-bit models13 require hardware support for efÏcient
integer operations, while pruned models benefit from sparse tensor operations.
Similarly, edge accelerators often optimize specific operations like convolutions

9.6. Managing Trade-offs 402

or matrix multiplication, influencing model architecture choices. This creates a
tight coupling between hardware and model design decisions.

This approach extends beyond the interaction of models and hardware. Data
pipelines, too, play a central role in co-design. For example, in applications
requiring real-time adaptation, such as personalized recommendation systems,
the data pipeline must deliver high-quality, timely information that minimizes
computational overhead while maximizing model effectiveness. By integrat-
ing data management into the design process, it becomes possible to reduce
redundancy, streamline training, and support efÏcient deployment.

End-to-end co-design ensures that the trade-offs inherent in machine learning
systems are addressed holistically. By designing each component with the
others in mind, it becomes possible to balance competing priorities and create
systems that are not only efÏcient but also robust and adaptable.

9.6.4 Automation

Navigating the trade-offs between model, compute, and data efÏciency is a
complex task that often involves numerous iterations and expert judgment.
Automation and optimization tools have emerged as powerful solutions for
managing these challenges, streamlining the process of balancing efÏciency
dimensions while reducing the time and expertise required.

One widely used approach is automated machine learning (AutoML), which
enables the exploration of different model architectures, hyperparameter con-
figurations, and feature engineering techniques. By automating these aspects
of the design process, AutoML can identify models that achieve an optimal
balance between performance and efÏciency. For instance, an AutoML pipeline
might search for a lightweight model architecture that delivers high accuracy
while fitting within the resource constraints of an edge device (F. Hutter, Kot-
thoff, and Vanschoren 2019a). This approach reduces the need for manual
trial-and-error, making optimization faster and more accessible.

Neural architecture search (NAS) takes automation a step further by design-
ing model architectures tailored to specific hardware or deployment scenarios.
NAS algorithms evaluate a wide range of architectural possibilities, selecting
those that maximize performance while minimizing computational demands.
For example, NAS can design models that leverage quantization or sparsity
techniques, ensuring compatibility with energy-efÏcient accelerators like TPUs
or microcontrollers (Elsken, Metzen, and Hutter 2019a). This automated co-
design of models and hardware helps mitigate trade-offs by aligning efÏciency
goals across dimensions.

Data efÏciency, too, benefits from automation. Tools that automate dataset
curation, augmentation, and active learning reduce the size of training datasets
without sacrificing model performance. These tools prioritize high-value data
points, ensuring that models are trained on the most informative examples.
This not only speeds up training but also reduces computational overhead,
reinforcing both compute and algorithmic efÏciency (Settles 2012b).

While automation tools are not a panacea, they play a critical role in address-
ing the complexity of trade-offs. By leveraging these tools, system designers

Chapter 9. EfÏcient AI 403

can achieve efÏcient solutions more quickly and at lower cost, freeing them to
focus on broader design challenges and deployment considerations.

9.6.5 Summary
Designing efÏcient machine learning systems requires a deliberate approach
to managing trade-offs between model, compute, and data efÏciency. These
trade-offs are influenced by the context of the deployment, the constraints
of the hardware, and the goals of the application. By prioritizing efÏciency
dimensions based on the specific needs of the system, embracing end-to-end
co-design, and leveraging automation tools, it becomes possible to navigate
these challenges effectively.

The strategies explored illustrate how thoughtful design can transform trade-
offs into opportunities for synergy. For example, aligning model architectures
with hardware capabilities can mitigate energy constraints, while automation
tools like AutoML and NAS streamline the process of optimizing efÏciency
dimensions. These approaches underscore the importance of treating system
efÏciency as a holistic endeavor, where components are designed to complement
and reinforce one another.

9.7 EfÏciency-First Mindset
Designing an efÏcient machine learning system requires a holistic approach.
While it is tempting to focus on optimizing individual components, such as the
model architecture or the hardware platform, true efÏciency emerges when the
entire system is considered as a whole. This end-to-end perspective ensures
that trade-offs are balanced across all stages of the machine learning pipeline,
from data collection to deployment.

EfÏciency is not a static goal but a dynamic process shaped by the context
of the application. A system designed for a cloud data center will prioritize
scalability and throughput, while an edge deployment will focus on low latency
and energy conservation. These differing priorities influence decisions at every
step of the design process, requiring careful alignment of the model, compute
resources, and data strategy.

An end-to-end perspective can transform system design, enabling machine
learning practitioners to build systems that effectively balance trade-offs. Through
case studies and examples, we will highlight how efÏcient systems are designed
to meet the unique challenges of their deployment environments, whether in
the cloud, on mobile devices, or in resource-constrained Tiny ML applications.

9.7.1 End-to-End Perspective
EfÏciency in machine learning systems is achieved not through isolated op-
timizations but by considering the entire pipeline as a unified whole. Each
stage, including data collection, model training, hardware deployment, and
inference, contributes to the overall efÏciency of the system. Decisions made at
one stage can ripple through the rest, influencing performance, resource use,
and scalability.

9.7. EfÏciency-First Mindset 404

For example, data collection and preprocessing are often the starting points
of the pipeline. The quality and diversity of the data directly impact model
performance and efÏciency. Curating smaller, high-quality datasets can reduce
computational costs during training while simplifying the model’s design.
However, insufÏcient data diversity may affect generalization, necessitating
compensatory measures in model architecture or training procedures. By
aligning the data strategy with the model and deployment context, designers
can avoid inefÏciencies downstream.

Model training is another critical stage. The choice of architecture, optimiza-
tion techniques, and hyperparameters must consider the constraints of the
deployment hardware. A model designed for high-performance cloud systems
may emphasize accuracy and scalability, leveraging large datasets and com-
pute resources. Conversely, a model intended for edge devices must balance
accuracy with size and energy efÏciency, often requiring compact architectures
and quantization techniques tailored to specific hardware.

Deployment and inference demand precise hardware alignment. Each plat-
form offers distinct capabilities. GPUs excel at parallel matrix operations,
TPUs optimize specific neural network computations, and microcontrollers
provide energy-efÏcient scalar processing. For example, a smartphone speech
recognition system might leverage an NPU’s dedicated convolution units for
5-millisecond inference times at 1-watt power draw, while an autonomous
vehicle’s FPGA-based accelerator processes multiple sensor streams with 50-
microsecond latency. This hardware-software integration determines real-
world efÏciency.

An end-to-end perspective ensures that trade-offs are addressed holistically,
rather than shifting inefÏciencies from one stage of the pipeline to another. By
treating the system as an integrated whole, machine learning practitioners can
design solutions that are not only efÏcient but also robust and scalable across
diverse deployment scenarios.

9.7.2 Scenarios
The efÏciency needs of machine learning systems differ significantly depending
on the lifecycle stage and deployment environment. From research prototypes to
production systems, and from high-performance cloud applications to resource-
constrained edge deployments, each scenario presents unique challenges and
trade-offs. Understanding these differences is crucial for designing systems
that meet their operational requirements effectively.

9.7.2.1 Prototypes vs. Production

In the research phase, the primary focus is often on model performance, with
efÏciency taking a secondary role. Prototypes are typically trained and tested
using abundant compute resources, allowing researchers to experiment with
large architectures, extensive hyperparameter tuning, and diverse datasets.
While this approach enables the exploration of cutting-edge techniques, the
resulting systems are often too resource-intensive for real-world use.

In contrast, production systems must prioritize efÏciency to operate within
practical constraints. Deployment environments, including cloud data centers,

Chapter 9. EfÏcient AI 405

mobile devices, and IoT sensors, impose strict limitations on compute power,
memory, and energy consumption. Transitioning from a research prototype to a
production-ready system often involves significant optimization, such as model
pruning, quantization, or retraining on targeted datasets. This shift highlights
the need to balance performance and efÏciency as systems move from concept
to deployment.

9.7.2.2 Cloud Apps vs. Constrained Systems
Cloud-based systems, such as those used for large-scale analytics or recom-
mendation engines, are designed to handle massive workloads. Scalability is
the primary concern, requiring models and infrastructure that can support
millions of users simultaneously. While compute resources are relatively abun-
dant in cloud environments, energy efÏciency and operational costs remain
critical considerations. Techniques such as model compression and hardware-
specific optimizations help manage these trade-offs, ensuring the system scales
efÏciently.

In contrast, edge and mobile systems operate under far stricter constraints.
Real-time performance, energy efÏciency, and hardware limitations are often
the dominant concerns. For example, a speech recognition application on a
smartphone must balance model size and latency to provide a seamless user ex-
perience without draining the device’s battery. Similarly, an IoT sensor deployed
in a remote location must operate for months on limited power, requiring an
ultra-efÏcient model and compute pipeline. These scenarios demand solutions
that prioritize efÏciency over raw performance.

9.7.2.3 Frequent Retraining vs. Stability
Some systems, such as recommendation engines or fraud detection platforms,
require frequent retraining to remain effective in dynamic environments. These
systems depend heavily on data efÏciency, using actively labeled datasets and
sampling strategies to minimize retraining costs. Compute efÏciency also plays
a role, as scalable infrastructure is needed to process new data and update
models regularly.

Other systems, such as embedded models in medical devices or industrial
equipment, require long-term stability with minimal updates. In these cases,
upfront optimizations in model and data efÏciency are critical to ensure the
system performs reliably over time. Reducing dependency on frequent updates
minimizes computational and operational overhead, making the system more
sustainable in the long run.

9.7.3 Summary
Designing machine learning systems with efÏciency in mind requires a holistic
approach that considers the specific needs and constraints of the deployment
context. From research prototypes to production systems, and across environ-
ments as varied as cloud data centers, mobile devices, and Tiny ML applications,
the priorities for efÏciency differ significantly. Each stage of the machine learn-
ing pipeline, including data collection, model design, training, deployment,
and inference, presents unique trade-offs that must be navigated thoughtfully.

9.8. Broader Challenges 406

The examples and scenarios in this section demonstrate the importance of
aligning system design with operational requirements. Cloud systems prioritize
scalability and throughput, edge systems focus on real-time performance, and
Tiny ML applications emphasize extreme resource efÏciency. Understanding
these differences enables practitioners to tailor their approach, leveraging strate-
gies such as end-to-end co-design and automation tools to balance competing
priorities effectively.

Ultimately, the key to designing efÏcient systems lies in recognizing that
efÏciency is not a one-size-fits-all solution. It is a dynamic process that requires
careful consideration of trade-offs, informed prioritization, and a commitment
to addressing the unique challenges of each scenario. With these principles
in mind, machine learning practitioners can create systems that are not only
efÏcient but also robust, scalable, and sustainable.

9.8 Broader Challenges
While efÏciency in machine learning is often framed as a technical challenge,
it is also deeply tied to broader questions about the purpose and impact of
AI systems. Designing efÏcient systems involves navigating not only practical
trade-offs but also complex ethical and philosophical considerations, such as
the following:

• What are the limits of optimization?
• How do we ensure that efÏciency benefits are distributed equitably?
• Can the pursuit of efÏciency stifle innovation or creativity in the field?

We must explore these questions as engineers, inviting reflection on the
broader implications of system efÏciency. By examining the limits of optimiza-
tion, equity concerns, and the tension between innovation and efÏciency, we can
have a deeper understanding of the challenges involved in balancing technical
goals with ethical and societal values.

9.8.1 Optimization Limits
Optimization plays a central role in building efÏcient machine learning systems,
but it is not an infinite process. As systems become more refined, each addi-
tional improvement often requires exponentially more effort, time, or resources,
while delivering increasingly smaller benefits. This phenomenon, known as
diminishing returns, is a common challenge in many engineering domains,
including machine learning.

The No Free Lunch (NFL) theorems for optimization further illustrate the
inherent limitations of optimization efforts. According to the NFL theorems, no
single optimization algorithm can outperform all others across every possible
problem. This implies that the effectiveness of an optimization technique is
highly problem-specific, and improvements in one area may not translate to
others (Wolpert and Macready 1997).

For example, compressing a machine learning model can initially reduce
memory usage and compute requirements significantly with minimal loss
in accuracy. However, as compression progresses, maintaining performance

Chapter 9. EfÏcient AI 407

becomes increasingly challenging. Achieving additional gains may necessitate
sophisticated techniques, such as hardware-specific optimizations or extensive
retraining, which increase both complexity and cost. These costs extend beyond
financial investment in specialized hardware and training resources to include
the time and expertise required to fine-tune models, iterative testing efforts, and
potential trade-offs in model robustness and generalizability. As such, pursuing
extreme efÏciency often leads to diminishing returns, where escalating costs
and complexity outweigh incremental benefits.

The NFL theorems highlight that no universal optimization solution exists,
emphasizing the need to balance efÏciency pursuits with practical considera-
tions. Recognizing the limits of optimization is critical for designing systems
that are not only efÏcient but also practical and sustainable. Over-optimization
risks wasted resources and reduced adaptability, complicating future system
updates or adjustments to changing requirements. Identifying when a system
is “good enough” ensures resources are allocated effectively, focusing on efforts
with the greatest overall impact.

Similarly, optimizing datasets for training efÏciency may initially save re-
sources but excessively reducing dataset size risks compromising diversity
and weakening model generalization. Likewise, pushing hardware to its per-
formance limits may improve metrics such as latency or power consumption,
yet the associated reliability concerns and engineering costs can ultimately
outweigh these gains.

In summary, understanding the limits of optimization is essential for creat-
ing systems that balance efÏciency with practicality and sustainability. This
perspective helps avoid over-optimization and ensures resources are invested
in areas with the most meaningful returns.

9.8.2 Moore’s Law Case Study
One of the most insightful examples of the limits of optimization can be seen in
Moore’s Law and the economic curve it depends on. While Moore’s Law is often
celebrated as a predictor of exponential growth in computational power, its
success relied on an intricate economic balance. The relationship between inte-
gration and cost, as illustrated in the accompanying plot, provides a compelling
analogy for the diminishing returns seen in machine learning optimization.

Figure 9.17 shows the relative manufacturing cost per component as the
number of components in an integrated circuit increases. Initially, as more
components are packed onto a chip (𝑥-axis), the cost per component (𝑦-axis)
decreases. This is because higher integration reduces the need for supporting
infrastructure such as packaging and interconnects, creating economies of
scale. For example, in the early years of integrated circuit design, moving from
hundreds to thousands of components per chip drastically reduced costs and
improved performance (Moore 2021).

However, as integration continues, the curve begins to rise. This inflection
point occurs because the challenges of scaling become more pronounced. Com-
ponents packed closer together face reliability issues, such as increased heat
dissipation and signal interference. Addressing these issues requires more
sophisticated manufacturing techniques, such as advanced lithography, error

9.8. Broader Challenges 408

Figure 9.17: The economics of
Moore’s law. Source: (Moore 2021)

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

1962

1965

1970

Number of components per integrated circuit
R

e
la

ti
ve

m
a

n
u

fa
c
tu

ri
n

g
c
o

s
t/

c
o

m
p

o
n

e
n

t

correction, and improved materials. These innovations increase the complex-
ity and cost of production, driving the curve upward. This U-shaped curve
captures the fundamental trade-off in optimization: early improvements yield
substantial benefits, but beyond a certain point, each additional gain comes at
a greater cost.

9.8.2.1 ML Optimization Parallels

The dynamics of this curve mirror the challenges faced in machine learning
optimization. For instance, compressing a deep learning model to reduce its
size and energy consumption follows a similar trajectory. Initial optimizations,
such as pruning redundant parameters or reducing precision, often lead to
significant savings with minimal impact on accuracy. However, as the model
is further compressed, the losses in performance become harder to recover.
Techniques such as quantization or hardware-specific tuning can restore some
of this performance, but these methods add complexity and cost to the design
process.

Similarly, in data efÏciency, reducing the size of training datasets often im-
proves computational efÏciency at first, as less data requires fewer resources to
process. Yet, as the dataset shrinks further, it may lose diversity, compromising
the model’s ability to generalize. Addressing this often involves introducing
synthetic data or sophisticated augmentation techniques, which demand addi-
tional engineering effort.

The Moore’s Law plot (Figure 9.17) serves as a visual reminder that opti-
mization is not an infinite process. The cost-benefit balance is always context-
dependent, and the point of diminishing returns varies based on the goals
and constraints of the system. Machine learning practitioners, like semicon-
ductor engineers, must identify when further optimization ceases to provide
meaningful benefits. Over-optimization can lead to wasted resources, reduced
adaptability, and systems that are overly specialized to their initial conditions.

Chapter 9. EfÏcient AI 409

9.8.3 Equity Concerns

EfÏciency in machine learning has the potential to reduce costs, improve scal-
ability, and expand accessibility. However, the resources needed to achieve
efÏciency, including advanced hardware, curated datasets, and state-of-the-art
optimization techniques, are often concentrated in well-funded organizations
or regions. This disparity creates inequities in who can leverage efÏciency gains,
limiting the reach of machine learning in low-resource contexts. By examining
compute, data, and algorithmic efÏciency inequities, we can better understand
these challenges and explore pathways toward democratization.

9.8.3.1 Uneven Access

The training costs of state-of-the-art AI models have reached unprecedented
levels. For example, OpenAI’s GPT-4 used an estimated USD $78 million worth
of compute to train, while Google’s Gemini Ultra cost USD $191 million for
compute (Maslej et al. 2024). Computational efÏciency depends on access to
specialized hardware and infrastructure. The discrepancy in access is signifi-
cant: training even a small language model (SLM) like LLlama with 7 billion
parameters can require millions of dollars in computing resources, while many
research institutions operate with significantly lower annual compute budgets.

Research conducted by OECD.AI indicates that 90% of global AI computing
capacity is centralized in only five countries, posing significant challenges for
researchers and professionals in other regions (OECD.AI 2021).

A concrete illustration of this disparity is the compute divide in academia
versus industry. Academic institutions often lack the hardware needed to repli-
cate state-of-the-art results, particularly when competing with large technology
firms that have access to custom supercomputers or cloud resources. This
imbalance not only stifles innovation in underfunded sectors but also makes it
harder for diverse voices to contribute to advancing machine learning.

Energy-efÏcient compute technologies, such as accelerators designed for Tiny
ML or Mobile ML, present a promising avenue for democratization. By en-
abling powerful processing on low-cost, low-power devices, these technologies
allow organizations without access to high-end infrastructure to build and
deploy impactful systems. For instance, energy-efÏcient Tiny ML models can
be deployed on affordable microcontrollers, opening doors for applications in
healthcare, agriculture, and education in underserved regions.

9.8.3.2 Low-Resource Challenges

Data efÏciency is essential in contexts where high-quality datasets are scarce, but
the challenges of achieving it are unequally distributed. For example, natural
language processing (NLP) for low-resource languages suffers from a lack of
sufÏcient training data, leading to significant performance gaps compared to
high-resource languages like English. Efforts like the Masakhane project, which
builds open-source datasets for African languages, show how collaborative
initiatives can address this issue. However, scaling such efforts globally requires
far greater investment and coordination.

https://oecd.ai/en/

9.8. Broader Challenges 410

Even when data is available, the ability to process and curate it efÏciently
depends on computational and human resources. Large organizations rou-
tinely employ data engineering teams and automated pipelines for curation
and augmentation, enabling them to optimize data efÏciency and improve
downstream performance. In contrast, smaller groups often lack access to the
tools or expertise needed for such tasks, leaving them at a disadvantage in both
research and practical applications.

Democratizing data efÏciency requires more open sharing of pre-trained
models and datasets. Initiatives like Hugging Face’s open access to transform-
ers or multilingual models by organizations like Meta’s No Language Left
Behind aim to make state-of-the-art NLP models available to researchers and
practitioners worldwide. These efforts help reduce the barriers to entry for
data-scarce regions, enabling more equitable access to AI capabilities.

9.8.3.3 EfÏciency for Accessibility

Model efÏciency plays a crucial role in democratizing machine learning by
enabling advanced capabilities on low-cost, resource-constrained devices. Com-
pact, efÏcient models designed for edge devices or mobile phones have already
begun to bridge the gap in accessibility. For instance, AI-powered diagnostic
tools running on smartphones are transforming healthcare in remote areas,
while low-power Tiny ML models enable environmental monitoring in regions
without reliable electricity or internet connectivity.

Technologies like TensorFlow Lite and PyTorch Mobile allow developers
to deploy lightweight models on everyday devices, expanding access to AI
applications in resource-constrained settings. These tools demonstrate how
algorithmic efÏciency can serve as a practical pathway to equity, particularly
when combined with energy-efÏcient compute hardware.

However, scaling the benefits of algorithmic efÏciency requires address-
ing barriers to entry. Many efÏcient architectures, such as those designed
through NAS, remain resource-intensive to develop. Open-source efforts to
share pre-optimized models, like MobileNet or EfÏcientNet, play a critical role
in democratizing access to efÏcient AI by allowing under-resourced organiza-
tions to deploy state-of-the-art solutions without needing to invest in expensive
optimization processes.

9.8.3.4 Democratization Pathways

Efforts to close the equity gap in machine learning must focus on democratizing
access to tools and techniques that enhance efÏciency. Open-source initiatives,
such as community-driven datasets and shared model repositories, provide
a foundation for equitable access to efÏcient systems. Affordable hardware
platforms, such as Raspberry Pi devices or open-source microcontroller frame-
works, further enable resource-constrained organizations to build and deploy
AI solutions tailored to their needs.

Collaborative partnerships between well-resourced organizations and un-
derrepresented groups also offer opportunities to share expertise, funding,
and infrastructure. For example, initiatives that provide subsidized access to

https://ai.google.dev/edge/litert
https://pytorch.org/mobile/home/

Chapter 9. EfÏcient AI 411

cloud computing platforms or pre-trained models for underserved regions can
empower diverse communities to leverage efÏciency for social impact.

Through efforts in model, computation, and data efÏciency, the democratiza-
tion of machine learning can become a reality. These efforts not only expand
access to AI capabilities but also foster innovation and inclusivity, ensuring that
the benefits of efÏciency are shared across the global community.

9.8.4 Balancing Innovation and EfÏciency

The pursuit of efÏciency in machine learning often brings with it a tension
between optimizing for what is known and exploring what is new. On one
hand, efÏciency drives the practical deployment of machine learning systems,
enabling scalability, cost reduction, and environmental sustainability. On the
other hand, focusing too heavily on efÏciency can stifle innovation by discour-
aging experimentation with untested, resource-intensive ideas.

9.8.4.1 Stability vs. Experimentation

EfÏciency often favors established techniques and systems that have already
been proven to work well. For instance, optimizing neural networks through
pruning, quantization, or distillation typically involves refining existing archi-
tectures rather than developing entirely new ones. While these approaches
provide incremental improvements, they may come at the cost of exploring
novel designs or paradigms that could yield transformative breakthroughs.

Consider the shift from traditional machine learning methods to deep learn-
ing. Early neural network research in the 1990s and 2000s required significant
computational resources and often failed to outperform simpler methods on
practical tasks. Despite this, researchers continued to push the boundaries of
what was possible, eventually leading to the breakthroughs in deep learning
that define modern AI. If the field had focused exclusively on efÏciency during
that period, these innovations might never have emerged.

9.8.4.2 Resource-Intensive Innovation

Pioneering research often requires significant resources, from massive datasets
to custom hardware. For example, large language models like GPT-4 or PaLM
are not inherently efÏcient; their training processes consume enormous amounts
of compute power and energy. Yet, these models have opened up entirely
new possibilities in language understanding, prompting advancements that
eventually lead to more efÏcient systems, such as smaller fine-tuned versions
for specific tasks.

However, this reliance on resource-intensive innovation raises questions
about who gets to participate in these advancements. Well-funded organiza-
tions can afford to explore new frontiers, while smaller institutions may be
constrained to incremental improvements that prioritize efÏciency over novelty.
Balancing the need for experimentation with the realities of resource availability
is a key challenge for the field.

9.9. Conclusion 412

9.8.4.3 EfÏciency-Creativity Constraint

EfÏciency-focused design often requires adhering to strict constraints, such as
reducing model size, energy consumption, or latency. While these constraints
can drive ingenuity, they can also limit the scope of what researchers and engi-
neers are willing to explore. For instance, edge computing applications often
demand ultra-compact models, leading to a narrow focus on compression tech-
niques rather than entirely new approaches to machine learning on constrained
devices.

At the same time, the drive for efÏciency can have a positive impact on
innovation. Constraints force researchers to think creatively, leading to the
development of new methods that maximize performance within tight resource
budgets. Techniques like NAS and attention mechanisms arose, in part, from
the need to balance performance and efÏciency, demonstrating that innovation
and efÏciency can coexist when approached thoughtfully.

9.8.4.4 Striking a Balance

The tension between innovation and efÏciency highlights the need for a bal-
anced approach to system design and research priorities. Organizations and
researchers must recognize when it is appropriate to prioritize efÏciency and
when to embrace the risks of experimentation. For instance, applied systems
for real-world deployment may demand strict efÏciency constraints, while ex-
ploratory research labs can focus on pushing boundaries without immediate
concern for resource optimization.

Ultimately, the relationship between innovation and efÏciency is not adver-
sarial but complementary. EfÏcient systems create the foundation for scalable,
practical applications, while resource-intensive experimentation drives the
breakthroughs that redefine what is possible. Balancing these priorities en-
sures that machine learning continues to evolve while remaining accessible,
impactful, and sustainable.

9.9 Conclusion
EfÏciency in machine learning systems is essential not just for achieving techni-
cal goals but for addressing broader questions about scalability, sustainability,
and inclusivity. This chapter has focused on the why and how of efÏciency—
why it is critical to modern machine learning and how to achieve it through a
balanced focus on model, compute, and data dimensions. We began by explor-
ing the empirical foundations of scaling laws, revealing how model performance
scales with resources and highlighting the critical importance of efÏcient re-
source utilization as models grow in complexity. The trade-offs and challenges
inherent in scaling, as well as the potential for scaling breakdowns, underscore
the necessity of a holistic approach to system design.

By understanding the interdependencies and trade-offs inherent in the algo-
rithmic, compute, and data dimensions of efÏciency, we can build systems that
align with their operational contexts and long-term objectives. The challenges
discussed in this chapter, from the limits of optimization to equity concerns
and the tension between efÏciency and innovation, highlight the need for a

Chapter 9. EfÏcient AI 413

thoughtful approach. Whether working on a high-performance cloud system
or a constrained Tiny ML application, the principles of efÏciency serve as a
compass for navigating the complexities of system design.

The future of scaling laws is a critical area of exploration, particularly as we
consider the practical and sustainable limits of continued scaling. Research into
the theoretical foundations of scaling, architectural innovations, and the role of
data quality will be essential for guiding the development of next-generation
AI systems. Moreover, addressing the equity concerns associated with access
to compute, data, and efÏcient models is crucial for ensuring that the benefits
of AI are shared broadly.

With this foundation in place, we can now dive into the what, the specific
techniques and strategies that enable efÏcient machine learning systems. By
grounding these practices in a clear understanding of the why and the how,
we ensure that efÏciency remains a guiding principle rather than a reactive
afterthought, and that the insights from scaling laws are applied in a way that
promotes both performance and sustainability.

9.10 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 10

Model Optimizations

Figure 10.1: DALL·E 3 Prompt: Illus-
tration of a neural network model repre-
sented as a busy construction site, with
a diverse group of construction workers,
both male and female, of various ethnici-
ties, labeled as ‘pruning’, ‘quantization’,
and ‘sparsity’. They are working to-
gether to make the neural network more
efÏcient and smaller, while maintaining
high accuracy. The ‘pruning’ worker,
a Hispanic female, is cutting unneces-
sary connections from the middle of the
network. The ‘quantization’ worker, a
Caucasian male, is adjusting or tweak-
ing the weights all over the place. The
‘sparsity’ worker, an African female, is
removing unnecessary nodes to shrink
the model. Construction trucks and
cranes are in the background, assisting
the workers in their tasks. The neural
network is visually transforming from
a complex and large structure to a more
streamlined and smaller one.Purpose

How do neural network models transition from design to practical deployment, and
what challenges arise in making them efÏcient and scalable?

Developing machine learning models goes beyond achieving high accuracy;
real-world deployment introduces constraints that demand careful adapta-
tion. Models must operate within the limits of computation, memory, latency,
and energy efÏciency, all while maintaining effectiveness. As models grow in
complexity and scale, ensuring their feasibility across diverse hardware and
applications becomes increasingly challenging. This necessitates a deeper un-
derstanding of the fundamental trade-offs between accuracy and efÏciency, as
well as the strategies that enable models to function optimally in different envi-
ronments. By addressing these challenges, we establish guiding principles for
transforming machine learning advancements into practical, scalable systems.

415

10.1. Overview 416

L� Learning Objectives

• Identify, compare, and contrast various techniques for optimizing
model representation.

• Assess the trade-offs between different precision reduction strate-
gies.

• Evaluate how hardware-aware model design influences computa-
tion and memory efÏciency.

• Explain the role of dynamic computation techniques in improving
efÏciency.

• Analyze the benefits and challenges of sparsity in model optimiza-
tion and its hardware implications.

• Discuss how different optimization strategies interact and impact
system-level performance.

10.1 Overview

As machine learning models evolve in complexity and become increasingly
ubiquitous, the focus shifts from solely enhancing accuracy to ensuring that
models are practical, scalable, and efÏcient. The substantial computational
requirements for training and deploying state-of-the-art models frequently
surpass the limitations imposed by real-world environments, whether in ex-
pansive data centers or on resource-constrained mobile devices. Additionally,
considerations such as memory constraints, energy consumption, and inference
latency critically influence the effective deployment of these models. Model
optimization, therefore, serves as the framework that reconciles advanced mod-
eling techniques with practical system limitations, ensuring that enhanced
performance is achieved without compromising operational viability.

�� Definition of Model Optimization

Model Optimization is the systematic refinement of machine learning mod-
els to enhance their efÏciency while maintaining effectiveness. This process
involves balancing trade-offs between accuracy, computational cost, memory
usage, latency, and energy efÏciency to ensure models can operate within
real-world constraints. Model optimization is driven by fundamental
principles such as reducing redundancy, improving numerical representa-
tion, and structuring computations more efÏciently. These principles guide
the adaptation of models across diverse deployment environments, from
cloud-scale infrastructure to resource-constrained edge devices, enabling
scalable, practical, and high-performance machine learning systems.

The necessity for model optimization arises from the inherent limitations of
modern computational systems. Machine learning models function within a

Chapter 10. Model Optimizations 417

multifaceted ecosystem encompassing hardware capabilities, software frame-
works, and diverse deployment scenarios. A model that excels in controlled
research environments may prove unsuitable for practical applications due
to prohibitive computational costs or substantial memory requirements. Con-
sequently, optimization techniques are critical for aligning high-performing
models with the practical constraints of real-world systems.

Optimization is inherently context-dependent. Models deployed in cloud
environments often prioritize scalability and throughput, whereas those in-
tended for edge devices must emphasize low power consumption and minimal
memory footprint. The array of optimization strategies available enables the
adjustment of models to accommodate these divergent constraints without
compromising their predictive accuracy.

This chapter explores the principles of model optimization from a systems
perspective. Figure 10.2 illustrates the three distinct layers of the optimization
stack discussed in the chapter. At the highest level, methodologies aimed at
reducing model parameter complexity while preserving inferential capabilities
are introduced. Techniques such as pruning and knowledge distillation are
examined for their ability to compress and refine models, thereby enhancing
model quality and improving system runtime performance.

Figure 10.2: Three layers to be cov-
ered.

Efficient Hardware Implementation

Efficient Model Representation

Efficient Numerics Representation

M
or

e
ha

rd
wa

re
M

or
e

so
ftw

ar
e

We also investigate the role of numerical precision in model computations.
An understanding of how various numerical representations affect model size,
speed, and accuracy is essential for achieving optimal performance. Accord-
ingly, the trade-offs associated with different numerical formats and the imple-
mentation of reduced-precision arithmetic are discussed, a topic of particular
importance for embedded system deployments where computational resources
are constrained.

At the lowest layer, the intricacies of hardware-software co-design are exam-
ined, which elucidates how models can be systematically tailored to efÏciently
utilize the specific characteristics of target hardware platforms. Alignment of
machine learning model design with hardware architecture may yield substan-
tial gains in performance and efÏciency.

On the whole, the chapter systematically examines the underlying factors that
shape optimization approaches, including model representation, numerical pre-
cision, and architectural efÏciency. In addition, the interdependencies between
software and hardware are explored, with emphasis on the roles played by

10.2. Real-World Models 418

compilers, runtimes, and specialized accelerators in influencing optimization
choices. A structured framework is ultimately proposed to guide the selection
and application of optimization techniques, ensuring that machine learning
models remain both effective and viable under real-world conditions.

10.2 Real-World Models
Machine learning models are rarely deployed in isolation—they operate as
part of larger systems with complex constraints, dependencies, and trade-offs.
Model optimization, therefore, cannot be treated as a purely algorithmic prob-
lem; it must be viewed as a systems-level challenge that considers computational
efÏciency, scalability, deployment feasibility, and overall system performance.
A well-optimized model must balance multiple objectives, including inference
speed, memory footprint, power consumption, and accuracy, all while aligning
with the specific requirements of the target deployment environment.

Therefore, it is important to understand the systems perspective on model
optimization, highlighting why optimization is essential, the key constraints
that drive optimization efforts, and the principles that define an effective op-
timization strategy. By framing optimization as a systems problem, we can
move beyond ad-hoc techniques and instead develop principled approaches
that integrate hardware, software, and algorithmic considerations into a unified
optimization framework.

10.2.1 Practical Models
Modern machine learning models often achieve impressive accuracy on bench-
mark datasets, but making them practical for real-world use is far from trivial.
In practice, machine learning systems operate under a range of computational,
memory, latency, and energy constraints that significantly impact both training
and inference (Choudhary et al. 2020). A model that performs well in a research
setting may be impractical when integrated into a broader system, whether
it is deployed in the cloud, embedded in a smartphone, or running on a tiny
microcontroller.

The real-world feasibility of a model depends on more than just accuracy—it
also hinges on how efÏciently it can be trained, stored, and executed. In large-
scale Cloud ML settings, optimizing models helps minimize training time,
computational cost, and power consumption, making large-scale AI workloads
more efÏcient (Jeff Dean, Patterson, and Young 2018). In contrast, Edge ML
requires models to run with limited compute resources, necessitating optimiza-
tions that reduce memory footprint and computational complexity. Mobile
ML introduces additional constraints, such as battery life and real-time respon-
siveness, while Tiny ML pushes efÏciency to the extreme, requiring models to
fit within the memory and processing limits of ultra-low-power devices (C. R.
Banbury et al. 2020).

Optimization also plays a crucial role in making AI more sustainable and
accessible. Reducing a model’s energy footprint is critical as AI workloads
scale, helping mitigate the environmental impact of large-scale ML training and
inference (D. Patterson et al. 2021b). At the same time, optimized models can

Chapter 10. Model Optimizations 419

0 Model Capacity: The ability of
a model to capture and represent the
complexity of a dataset, influenced
by parameters and architecture.

1 Pruning: The process of remov-
ing unnecessary parameters from
a neural network to reduce its size
and improve efÏciency.

2 Model Distillation: A technique
to compress a large model into a
smaller, more efÏcient model while
retaining performance.

expand the reach of machine learning, enabling applications in low-resource
environments, from rural healthcare to autonomous systems operating in the
field.

Ultimately, without systematic optimization, many machine learning models
remain confined to academic studies rather than progressing to practical appli-
cations. For ML systems engineers and practitioners, the primary objective is
to bridge the gap between theoretical potential and real-world functionality by
deliberately designing models that are both efÏcient in execution and robust in
diverse operational environments.

10.2.2 Accuracy-EfÏciency Balance
Machine learning models are typically optimized to achieve high accuracy, but
improving accuracy often comes at the cost of increased computational com-
plexity. Larger models with more parameters, deeper architectures, and higher
numerical precision can yield better performance on benchmark tasks. How-
ever, these improvements introduce challenges related to memory footprint,
inference latency, power consumption, and training efÏciency. As machine
learning systems are deployed across a wide range of hardware platforms,
balancing accuracy and efÏciency becomes a fundamental challenge in model
optimization.

From a systems perspective, accuracy and efÏciency are often in direct tension.
Increasing model capacity0, including more parameters, deeper layers, and
larger input resolutions, generally enhances predictive performance. However,
these same modifications also increase computational cost, making inference
slower and more resource-intensive. Similarly, during training, larger models
demand greater memory bandwidth, longer training times, and more energy
consumption, all of which introduce scalability concerns.

The need for efÏciency constraints extends beyond inference. Training efÏ-
ciency is critical for both research and industrial-scale applications, as larger
models require greater computational resources and longer convergence times.
Unoptimized training pipelines can result in prohibitive costs and delays, limit-
ing the pace of innovation and deployment. On the inference side, real-time
applications impose strict constraints on latency and power consumption, fur-
ther motivating the need for optimization.

Balancing accuracy and efÏciency requires a structured approach to model
optimization, where trade-offs are carefully analyzed rather than applied in-
discriminately. Some optimizations, such as pruning1 redundant parameters
or reducing numerical precision, can improve efÏciency without significantly
impacting accuracy. Other techniques, like model distillation2 or architecture
search, aim to preserve predictive performance while improving computational
efÏciency. The key challenge is to systematically determine which optimizations
provide the best trade-offs for a given application and hardware platform.

10.2.3 Optimization System Constraints
Machine learning models operate within a set of fundamental system con-
straints that influence how they are designed, trained, and deployed. These
constraints arise from the computational resources available, the hardware on

10.3. Model Optimization Dimensions 420

3 Random Access Memory
(RAM): Hardware feature that pro-
vides fast, volatile working memory
for temporary data storage during
program execution. Unlike persis-
tent storage devices like the hard
disk, RAM enables rapid data access
but loses its contents when powered
off, making it critical for efÏcient
computation and memory-intensive
operations.

4 Model Sparsity: Refers to tech-
niques that involve using fewer non-
zero parameters within a model
to reduce complexity and increase
speed.

5 Adaptive Computation: Dy-
namic adjustment of computational
resources based on the task com-
plexity to optimize efÏciency.

which the model runs, and the operational requirements of the application. Un-
derstanding these constraints is essential for developing effective optimization
strategies that balance accuracy, efÏciency, and feasibility. The primary system
constraints that drive model optimization include:

Computational Cost: Training and inference require significant compute
resources, especially for large-scale models. The computational complexity of a
model affects the feasibility of training on large datasets and deploying real-
time inference workloads. Optimization techniques that reduce computation,
including pruning, quantization, and efÏcient architectures, can significantly
lower costs.

Memory and Storage Limitations: Models must fit within the memory con-
straints of the target system. This includes RAM3 limitations during execution
and storage constraints for model persistence. Large models with billions of
parameters may exceed the capacity of edge devices or embedded systems, ne-
cessitating optimizations that reduce memory footprint without compromising
performance.

Latency and Throughput: Many applications impose real-time constraints,
requiring models to produce predictions within strict latency budgets. In
autonomous systems, healthcare diagnostics, and interactive AI applications,
slow inference times can render a model unusable. Optimizing model execution,
by employing reduced precision arithmetic, optimizing data movement, or
utilizing parallel computation, can help meet real-time constraints.

Energy EfÏciency and Power Consumption: Power constraints are critical in
mobile, edge, and embedded AI systems. High energy consumption impacts
battery-powered devices and increases operational costs in large-scale cloud
deployments. Techniques such as model sparsity,4 adaptive computation,5 and
hardware-aware optimization contribute to energy-efÏcient AI.

Scalability and Hardware Compatibility: Model optimizations must align
with the capabilities of the target hardware. A model optimized for special-
ized accelerators (e.g., GPUs, TPUs, FPGAs) may not perform efÏciently on
general-purpose CPUs. Additionally, scaling models across distributed systems
introduces new challenges in synchronization and workload balancing.

These constraints are interdependent, meaning that optimizing for one factor
may impact another. For example, reducing numerical precision can lower
memory usage and improve inference speed but may introduce quantization
errors that degrade accuracy. Similarly, aggressive pruning can reduce compu-
tation but may lead to diminished generalization if not carefully managed.

10.3 Model Optimization Dimensions
Machine learning models must balance accuracy, efÏciency, and feasibility to
operate effectively in real-world systems. As discussed in the previous section,
optimization is necessary to address key system constraints such as computa-
tional cost, memory limitations, energy efÏciency, and latency requirements.
However, model optimization is not a single technique but a structured process
that can be categorized into three fundamental dimensions: model representa-
tion optimization, numerical precision optimization, and architectural efÏciency
optimization.

Chapter 10. Model Optimizations 421

Each of these dimensions addresses a distinct aspect of efÏciency. Model
representation optimization focuses on modifying the architecture of the model
itself to reduce redundancy while preserving accuracy. Numerical precision
optimization improves efÏciency by adjusting how numerical values are stored
and computed, reducing the computational and memory overhead of machine
learning operations. Architectural efÏciency focuses on optimizing how compu-
tations are executed, ensuring that operations are performed efÏciently across
different hardware platforms.

Understanding these three dimensions provides a structured framework
for systematically improving model efÏciency. Rather than applying ad hoc
techniques, machine learning practitioners must carefully select optimizations
based on their impact across these dimensions, considering trade-offs between
accuracy, efÏciency, and deployment constraints.

10.3.1 Model Representation
The first dimension, model representation optimization, focuses on reducing
redundancy in the structure of machine learning models. Large models often
contain excessive parameters that contribute little to overall performance but
significantly increase memory footprint and computational cost. Optimizing
model representation involves techniques that remove unnecessary components
while maintaining predictive accuracy. Common approaches include pruning,
which eliminates redundant weights and neurons, and knowledge distillation,
where a smaller model learns to approximate the behavior of a larger model.
Additionally, automated architecture search methods refine model structures
to balance efÏciency and accuracy. These optimizations primarily impact how
models are designed at an algorithmic level, ensuring that they remain effective
while being computationally manageable.

10.3.2 Numerical Precision
The second dimension, numerical precision optimization, addresses how nu-
merical values are represented and processed within machine learning models.
Reducing the precision of computations can significantly lower the memory and
computational requirements of a model, particularly for machine learning work-
loads. Quantization techniques map high-precision weights and activations to
lower-bit representations, enabling efÏcient execution on hardware accelerators
such as GPUs, TPUs, and specialized AI chips. Mixed-precision training dy-
namically adjusts precision levels during training to strike a balance between
efÏciency and accuracy. By carefully optimizing numerical precision, models
can achieve substantial reductions in computational cost while maintaining
acceptable levels of accuracy.

10.3.3 Architectural EfÏciency
The third dimension, architectural efÏciency, focuses on how computations
are performed efÏciently during both training and inference. A well-designed
model structure is not sufÏcient if its execution is suboptimal. Many machine
learning models contain redundancies in their computational graphs, leading

10.3. Model Optimization Dimensions 422

6 Operator Fusion: A technique
that merges multiple operations into
a single operation to reduce compu-
tational overhead.

7 Hardware-Aware Scheduling:
Optimizing computational tasks
based on the specific hardware char-
acteristics.

to inefÏciencies in how operations are scheduled and executed. Architectural
efÏciency involves techniques that exploit sparsity in both model weights and
activations, factorize large computational components into more efÏcient forms,
and dynamically adjust computation based on input complexity. These meth-
ods improve execution efÏciency across different hardware platforms, reducing
latency and power consumption. In addition to inference optimizations, archi-
tectural efÏciency also applies to training, where techniques such as gradient
checkpointing and low-rank adaptation help reduce memory overhead and
computational demands.

10.3.4 Tripartite Framework
These three dimensions collectively provide a framework for understanding
model optimization. While each category targets different aspects of efÏciency,
they are highly interconnected. Pruning, for example, primarily falls under
model representation but also affects architectural efÏciency by reducing the
number of operations performed during inference. Quantization reduces nu-
merical precision but can also impact memory footprint and execution efÏciency.
Understanding these interdependencies is crucial for selecting the right combi-
nation of optimizations for a given system.

The choice of optimizations is driven by system constraints, which define the
practical limitations within which models must operate. A machine learning
model deployed in a data center has different constraints from one running on
a mobile device or an embedded system. Computational cost, memory usage,
inference latency, and energy efÏciency all influence which optimizations are
most appropriate for a given scenario. A model that is too large for a resource-
constrained device may require aggressive pruning and quantization, while a
latency-sensitive application may benefit from operator fusion6 and hardware-
aware scheduling7.

Table 10.1 summarizes how different system constraints map to the three
core dimensions of model optimization.

Table 10.1: Mapping of system constraints to optimization dimensions.

System Constraint Model Representation Numerical Precision Architectural EfÏciency

Computational Cost � ✓ ✓
Memory and Storage ✓ ✓ �
Latency and
Throughput

✓ � ✓

Energy EfÏciency � ✓ ✓
Scalability ✓ � ✓

This mapping highlights the interdependence between optimization strate-
gies and real-world constraints. Although each system constraint primarily
aligns with one or more optimization dimensions, the relationships are not
strictly one-to-one. Many optimization techniques affect multiple constraints
simultaneously. Structuring model optimization along these three dimensions
and mapping techniques to specific system constraints enables practitioners to
analyze trade-offs more effectively and select optimizations that best align with

Chapter 10. Model Optimizations 423

deployment requirements. The following sections explore each optimization
dimension in detail, highlighting the key techniques and their impact on model
efÏciency.

10.4 Model Representation Optimization
Model representation plays a key role in determining the computational and
memory efÏciency of a machine learning system. The way a model is structured,
not just in terms of the number of parameters but also how these parameters
interact, directly affects its ability to scale, deploy efÏciently, and generalize
effectively. Optimizing model representation involves reducing redundancy,
restructuring architectures for efÏciency, and leveraging automated design
methods to find optimal configurations.

The primary goal of model representation optimization is to eliminate unnec-
essary complexity while preserving model performance. Many state-of-the-art
models are designed to maximize accuracy with little regard for efÏciency, lead-
ing to architectures with excessive parameters, redundant computations, and
inefÏcient data flow. In real-world deployment scenarios, these inefÏciencies
translate into higher computational costs, increased memory usage, and slower
inference times. Addressing these issues requires systematically restructuring
the model to remove redundancy, minimize unnecessary computations, and
ensure that every parameter contributes meaningfully to the task at hand.

From a systems perspective, model representation optimization focuses on
two key objectives. First, reducing redundancy by eliminating unnecessary
parameters, neurons, or layers while preserving model accuracy. Many models
are overparameterized, meaning that a smaller version could achieve similar
performance with significantly lower computational overhead. Second, struc-
turing computations efÏciently to ensure that the model’s architecture aligns
well with modern hardware capabilities, such as leveraging parallel processing
and minimizing costly memory operations. An unoptimized model may be
unnecessarily large, leading to slower inference times, higher energy consump-
tion, and increased deployment costs. Conversely, an overly compressed model
may lose too much predictive accuracy, making it unreliable for real-world
use. The challenge in model representation optimization is to strike a balance
between model size, accuracy, and efÏciency, selecting techniques that reduce
computational complexity while maintaining strong generalization.

To systematically approach model representation optimization, we focus
on three key techniques that have proven effective in balancing efÏciency and
accuracy. Pruning systematically removes parameters or entire structural com-
ponents that contribute little to overall performance, reducing computational
and memory overhead while preserving accuracy. Knowledge distillation trans-
fers knowledge from a large, high-capacity model to a smaller, more efÏcient
model, enabling smaller models to retain predictive power while reducing
computational cost. Finally, NAS automates the process of designing models
optimized for specific constraints, leveraging machine learning itself to explore
and refine model architectures.

We focus on these three techniques because they represent distinct but com-
plementary approaches to optimizing model representation. Pruning and

10.4. Model Representation Optimization 424

knowledge distillation focus on reducing redundancy in existing models, while
NAS addresses how to build optimized architectures from the ground up. To-
gether, they provide a structured framework for understanding how to create
machine learning models that are both accurate and computationally efÏcient.
Each of these techniques offers a different approach to improving model ef-
ficiency, and in many cases, they can be combined to achieve even greater
optimization.

10.4.1 Pruning

State-of-the-art machine learning models often contain millions, or even bil-
lions, of parameters, many of which contribute minimally to final predictions.
While large models enhance representational power and generalization, they
also introduce inefÏciencies that impact both training and deployment. From
a machine learning systems perspective, these inefÏciencies present several
challenges:

1. High Memory Requirements: Large models require substantial storage,
limiting their feasibility on resource-constrained devices such as smart-
phones, IoT devices, and embedded systems. Storing and loading these
models also creates bandwidth bottlenecks in distributed ML pipelines.

2. Increased Computational Cost: More parameters lead to higher inference
latency and energy consumption, which is particularly problematic for
real-time applications such as autonomous systems, speech recognition,
and mobile AI. Running unoptimized models on hardware accelerators
like GPUs and TPUs requires additional compute cycles, increasing oper-
ational costs.

3. Scalability Limitations: Training and deploying large models at scale is
resource-intensive in terms of compute, memory, and power. Large-scale
distributed training demands high-bandwidth communication and stor-
age, while inference in production environments becomes costly without
optimizations.

Despite these challenges, not all parameters in a model are necessary to
maintain accuracy. Many weights contribute little to the decision-making pro-
cess, and their removal can significantly improve efÏciency without substantial
performance degradation. This motivates the use of pruning, a class of opti-
mization techniques that systematically remove redundant parameters while
preserving model accuracy.

�� Definition of Pruning

Pruning is a model optimization technique that removes unnecessary
parameters from a neural network while maintaining predictive perfor-
mance. By systematically eliminating redundant weights, neurons, or
layers, pruning reduces model size and computational cost, making it
more efÏcient for storage, inference, and deployment.

Chapter 10. Model Optimizations 425

Pruning allows models to become smaller, faster, and more efÏcient with-
out requiring fundamental changes to their architecture. By reducing redun-
dancy, pruning directly addresses the memory, computation, and scalability
constraints of machine learning systems, making it a key optimization technique
for deploying ML models across cloud, edge, and mobile platforms.

10.4.1.1 Distillation Mathematics

Pruning can be formally described as an optimization problem, where the goal
is to reduce the number of parameters in a neural network while maintaining
its predictive performance. Given a trained model with parameters 𝑊, pruning
seeks to find a sparse version of the model, �̂�, that retains only the most
important parameters. The objective can be expressed as:

min�̂� ℒ(�̂�) subject to ‖�̂� ‖0 ≤ 𝑘
where:

• ℒ(�̂�) represents the model’s loss function after pruning.
• �̂� denotes the pruned model’s parameters.
• ‖�̂� ‖0 is the number of nonzero parameters in �̂�, constrained to a budget𝑘.

As illustrated in Figure 10.3, pruning reduces the number of nonzero weights
by eliminating small-magnitude values, transforming a dense weight matrix
into a sparse representation. This explicit enforcement of sparsity aligns with
the ℓ0-norm constraint in our optimization formulation.

Figure 10.3: Weight matrix before
and after pruning.

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

-1.9 1.76 3.750.02 0.02 0.02

7.93 0.68 -1.10.02 0.02 0.02

5.2 0.2 -6.20.02 0.02 0.02 0.02

-2.50.02 0.02

0.32 -3.5 0.88 0.02 0.02 0.02

2.4 -3.1 8.260.02 0.02 0.02 0.02

0.96 9.77 0.92 8.5 6.6

0.80.03 0.03 0.030.02 0.02 0.02 0.02

0.7 14.8 0.910.02 0.02 0.03

-0.38 10.10.02 0.02 0.02 0.03

16.3 2.9 -5.40.03 0.03 0.02

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1.9 1.76 3.75

7.93 0.68 -1.1

5.2 0.2 -6.2

-2.5

0.32 -3.5 0.88

2.4 -3.1 8.26

0.96 9.77 0.92 8.5 6.6

0.8

0.7 14.8 0.91

-0.38 10.1

16.3 2.9 -5.4

Weight matrix

(before pruning)

Weight matrix

(after pruning – very sparse)

However, solving this problem exactly is computationally infeasible due
to the discrete nature of the ℓ0-norm constraint. Finding the optimal subset
of parameters to retain would require evaluating an exponential number of
possible parameter configurations, making it impractical for deep networks
with millions of parameters (Labarge, n.d.).

10.4. Model Representation Optimization 426

To make pruning computationally feasible, practical methods replace the hard
constraint on the number of remaining parameters with a soft regularization
term that encourages sparsity. A common relaxation is to introduce an ℓ1-norm
regularization penalty, leading to the following objective:

min𝑊 ℒ(𝑊)+𝜆‖𝑊‖1
where 𝜆 controls the degree of sparsity. The ℓ1-norm encourages smaller weight
values and promotes sparsity but does not strictly enforce zero values. Other
methods use iterative heuristics, where parameters with the smallest magni-
tudes are pruned in successive steps, followed by fine-tuning to recover lost
accuracy (Gale, Elsen, and Hooker 2019a).

10.4.1.2 Target Structures

Pruning methods vary based on which structures within a neural network are
removed. The primary targets include neurons, channels, and layers, each with
distinct implications for the model’s architecture and performance.

• Neuron pruning removes entire neurons along with their associated
weights and biases, reducing the width of a layer. This technique is often
applied to fully connected layers.

• Channel pruning (or filter pruning), commonly used in convolutional
neural networks, eliminates entire channels or filters. This reduces the
depth of feature maps, which impacts the network’s ability to extract
certain features. Channel pruning is particularly valuable in image-
processing tasks where computational efÏciency is a priority.

• Layer pruning removes entire layers from the network, significantly re-
ducing depth. While this approach can yield substantial efÏciency gains,
it requires careful balance to ensure the model retains sufÏcient capacity
to capture complex patterns.

Figure 10.4 illustrates the differences between channel pruning and layer
pruning. When a channel is pruned, the model’s architecture must be adjusted
to accommodate the structural change. Specifically, the number of input chan-
nels in subsequent layers must be modified, requiring alterations to the depths
of the filters applied to the layer with the removed channel. In contrast, layer
pruning removes all channels within a layer, necessitating more substantial
architectural modifications. In this case, connections between remaining layers
must be reconfigured to bypass the removed layer. Regardless of the pruning
approach, fine-tuning is essential to adapt the remaining network and restore
performance.

10.4.1.3 Unstructured Pruning

Unstructured pruning reduces the number of active parameters in a neural
network by removing individual weights while preserving the overall network
architecture. Many machine learning models are overparameterized, meaning
they contain more weights than are strictly necessary for accurate predictions.
During training, some connections become redundant, contributing little to

Chapter 10. Model Optimizations 427

Figure 10.4: Channel vs layer prun-
ing.

Prune the selected

channel (in red)

Reconfigure model’s

architecture to adjust

to the changes

Channel/Filter Pruning

Prune the entire layer

(all channels in red)

Reconfigure model’s

architecture to adjust

to the changes

Layer Pruning

8 Hadamard Product: An
element-wise product operation be-
tween two matrices of the same di-
mensions.

the final computation. Pruning these weak connections can reduce memory
requirements while preserving most of the model’s accuracy.

Mathematically, unstructured pruning introduces sparsity into the weight
matrices of a neural network. Let 𝑊 ∈ ℝ𝑚×𝑛 represent a weight matrix in a
given layer of a network. Pruning removes a subset of weights by applying a
binary mask 𝑀 ∈ {0,1}𝑚×𝑛, yielding a pruned weight matrix:�̂� = 𝑀 ⊙𝑊
where ⊙ represents the element-wise Hadamard product8. The mask 𝑀 is
constructed based on a pruning criterion, typically weight magnitude. A com-
mon approach is magnitude-based pruning, which removes a fraction 𝑠 of the
lowest-magnitude weights. This is achieved by defining a threshold 𝜏 such that:𝑀𝑖,𝑗 = {1, if |𝑊𝑖,𝑗| > 𝜏0, otherwise

where 𝜏 is chosen to ensure that only the largest (1 − 𝑠) fraction of weights
remain. This method assumes that larger-magnitude weights contribute more
to the network’s function, making them preferable for retention.

The primary advantage of unstructured pruning is memory efÏciency. By
reducing the number of nonzero parameters, pruned models require less stor-
age, which is particularly beneficial when deploying models to embedded or
mobile devices with limited memory.

However, unstructured pruning does not necessarily improve computational
efÏciency on modern machine learning hardware. Standard GPUs and TPUs
are optimized for dense matrix multiplications, and a sparse weight matrix
often cannot fully utilize hardware acceleration unless specialized sparse com-
putation kernels are available. Consequently, unstructured pruning is most

10.4. Model Representation Optimization 428

beneficial when the goal is to compress a model for storage rather than to
accelerate inference speed. While unstructured pruning improves model efÏ-
ciency at the parameter level, it does not alter the structural organization of the
network.

10.4.1.4 Structured Pruning

While unstructured pruning removes individual weights from a neural network,
structured pruning eliminates entire computational units, such as neurons,
filters, channels, or layers. This approach is particularly beneficial for hardware
efÏciency, as it produces smaller dense models that can be directly mapped to
modern machine learning accelerators. Unlike unstructured pruning, which
results in sparse weight matrices that require specialized execution kernels
to exploit computational benefits, structured pruning leads to more efÏcient
inference on general-purpose hardware by reducing the overall size of the
network architecture.

Structured pruning is motivated by the observation that not all neurons,
filters, or layers contribute equally to a model’s predictions. Some units pri-
marily carry redundant or low-impact information, and removing them does
not significantly degrade model performance. The challenge lies in identifying
which structures can be pruned while preserving accuracy.

Figure 10.5 illustrates the key differences between unstructured and struc-
tured pruning. On the left, unstructured pruning removes individual weights
(depicted as dashed connections), leading to a sparse weight matrix. This can
disrupt the original structure of the network, as shown in the fully connected
network where certain connections have been randomly pruned. While this
can reduce the number of active parameters, the resulting sparsity requires
specialized execution kernels to fully leverage computational benefits.

In contrast, structured pruning, depicted in the middle and right sections of
the figure, removes entire neurons (dashed circles) or filters while preserving
the network’s overall structure. In the middle section, a pruned fully connected
network retains its fully connected nature but with fewer neurons. On the
right, structured pruning is applied to a convolutional neural network (CNN)
by removing convolutional kernels or entire channels (dashed squares). This
method maintains the CNN’s fundamental convolutional operations while
reducing the computational load, making it more compatible with hardware
accelerators.

Figure 10.5: Unstructured vs struc-
tured pruning. Source: C. Qi et al.
(2021).

Convolutional

neural network

Convolutional

kernel

Channels

Structured pruningUnstructured pruning

Chapter 10. Model Optimizations 429

A common approach to structured pruning is magnitude-based pruning,
where entire neurons or filters are removed based on the magnitude of their
associated weights. The intuition behind this method is that parameters with
smaller magnitudes contribute less to the model’s output, making them prime
candidates for elimination. The importance of a neuron or filter is often mea-
sured using a norm function, such as the ℓ1-norm or ℓ2-norm, applied to the
weights associated with that unit. If the norm falls below a predefined threshold,
the corresponding neuron or filter is pruned. This method is straightforward
to implement and does not require additional computational overhead beyond
computing norms across layers.

Another strategy is activation-based pruning, which evaluates the average
activation values of neurons or filters over a dataset. Neurons that consistently
produce low activations contribute less information to the network’s decision
process and can be safely removed. This method captures the dynamic behavior
of the network rather than relying solely on static weight values. Activation-
based pruning requires profiling the model over a representative dataset to
estimate the average activation magnitudes before making pruning decisions.

Gradient-based pruning leverages information from the model’s training
process to identify less significant neurons or filters. The key idea is that
units with smaller gradient magnitudes contribute less to reducing the loss
function, making them less critical for learning. By ranking neurons based
on their gradient values, structured pruning can remove those with the least
impact on model optimization. Unlike magnitude-based or activation-based
pruning, which rely on static properties of the trained model, gradient-based
pruning requires access to gradient computations and is typically applied
during training rather than as a post-processing step.

Each of these methods presents trade-offs in terms of computational complex-
ity and effectiveness. Magnitude-based pruning is computationally inexpensive
and easy to implement but does not account for how neurons behave across
different data distributions. Activation-based pruning provides a more data-
driven pruning approach but requires additional computations to estimate
neuron importance. Gradient-based pruning leverages training dynamics but
may introduce additional complexity if applied to large-scale models. The
choice of method depends on the specific constraints of the target deployment
environment and the performance requirements of the pruned model.

10.4.1.5 Dynamic Pruning

Traditional pruning methods, whether unstructured or structured, typically
involve static pruning, where parameters are permanently removed after train-
ing or at fixed intervals during training. However, this approach assumes that
the importance of parameters is fixed, which is not always the case. In contrast,
dynamic pruning adapts pruning decisions based on the input data or training
dynamics, allowing the model to adjust its structure in real time.

Dynamic pruning can be implemented using runtime sparsity techniques,
where the model actively determines which parameters to utilize based on input
characteristics. Activation-conditioned pruning exemplifies this approach by
selectively deactivating neurons or channels that exhibit low activation values

10.4. Model Representation Optimization 430

for specific inputs (J. Hu et al. 2023). This method introduces input-dependent
sparsity patterns, effectively reducing the computational workload during
inference without permanently modifying the model architecture.

For instance, consider a convolutional neural network processing images
with varying complexity. During inference of a simple image containing mostly
uniform regions, many convolutional filters may produce negligible activations.
Dynamic pruning identifies these low-impact filters and temporarily excludes
them from computation, improving efÏciency while maintaining accuracy
for the current input. This adaptive behavior is particularly advantageous in
latency-sensitive applications, where computational resources must be allocated
judiciously based on input complexity.

Another class of dynamic pruning operates during training, where sparsity
is gradually introduced and adjusted throughout the optimization process.
Methods such as gradual magnitude pruning start with a dense network and
progressively increase the fraction of pruned parameters as training progresses.
Instead of permanently removing parameters, these approaches allow the net-
work to recover from pruning-induced capacity loss by regrowing connections
that prove to be important in later stages of training.

Dynamic pruning presents several advantages over static pruning. It allows
models to adapt to different workloads, potentially improving efÏciency while
maintaining accuracy. Unlike static pruning, which risks over-pruning and
degrading performance, dynamic pruning provides a mechanism for selectively
reactivating parameters when necessary. However, implementing dynamic
pruning requires additional computational overhead, as pruning decisions
must be made in real-time, either during training or inference. This makes it
more complex to integrate into standard machine learning pipelines compared
to static pruning.

Despite its challenges, dynamic pruning is particularly useful in edge comput-
ing and adaptive AI systems, where resource constraints and real-time efÏciency
requirements vary across different inputs. The next section explores the practi-
cal considerations and trade-offs involved in choosing the right pruning method
for a given machine learning system.

10.4.1.6 Pruning Trade-offs

Pruning techniques offer different trade-offs in terms of memory efÏciency, com-
putational efÏciency, accuracy retention, hardware compatibility, and imple-
mentation complexity. The choice of pruning strategy depends on the specific
constraints of the machine learning system and the deployment environment.

Unstructured pruning is particularly effective in reducing model size and
memory footprint, as it removes individual weights while keeping the over-
all model architecture intact. However, since machine learning accelerators
are optimized for dense matrix operations, unstructured pruning does not al-
ways translate to significant computational speed-ups unless specialized sparse
execution kernels are used.

Structured pruning, in contrast, eliminates entire neurons, channels, or layers,
leading to a more hardware-friendly model. This technique provides direct
computational savings, as it reduces the number of floating-point operations

Chapter 10. Model Optimizations 431

(FLOPs) required during inference. The downside is that modifying the network
structure can lead to a greater accuracy drop, requiring careful fine-tuning to
recover lost performance.

Dynamic pruning introduces adaptability into the pruning process by adjust-
ing which parameters are pruned at runtime based on input data or training
dynamics. This allows for a better balance between accuracy and efÏciency, as
the model retains the flexibility to reintroduce previously pruned parameters if
needed. However, dynamic pruning increases implementation complexity, as
it requires additional computations to determine which parameters to prune
on-the-fly.

Table 10.2 summarizes the key structural differences between these pruning
approaches, outlining how each method modifies the model and impacts its
execution.

Table 10.2: Comparison of unstructured, structured, and dynamic pruning.

Aspect Unstructured Pruning Structured Pruning Dynamic Pruning

What is
removed?

Individual weights in the model Entire neurons, channels,
filters, or layers

Adjusts pruning
based on runtime
conditions

Model
structure

Sparse weight matrices; original
architecture remains unchanged

Model architecture is
modified; pruned layers are
fully removed

Structure adapts
dynamically

Impact on
memory

Reduces model storage by eliminating
nonzero weights

Reduces model storage by
removing entire components

Varies based on
real-time pruning

Impact on
computa-
tion

Limited; dense matrix operations still
required unless specialized sparse
computation is used

Directly reduces FLOPs and
speeds up inference

Balances accuracy and
efÏciency dynamically

Hardware
compatibil-
ity

Sparse weight matrices require
specialized execution support for
efÏciency

Works efÏciently with
standard deep learning
hardware

Requires adaptive
inference engines

Fine-tuning
required?

Often necessary to recover accuracy
after pruning

More likely to require
fine-tuning due to larger
structural modifications

Adjusts dynamically,
reducing the need for
retraining

Use cases Memory-efÏcient model compression,
particularly for cloud deployment

Real-time inference
optimization, mobile/edge AI,
and efÏcient training

Adaptive AI
applications, real-time
systems

10.4.1.7 Pruning Strategies

Beyond the broad categories of unstructured, structured, and dynamic pruning,
different pruning workflows can impact model efÏciency and accuracy retention.
Two widely used pruning strategies are iterative pruning and one-shot pruning,
each with its own benefits and trade-offs.

Iterative Pruning. Iterative pruning implements a gradual approach to struc-
ture removal through multiple cycles of pruning followed by fine-tuning. Dur-
ing each cycle, the algorithm removes a small subset of structures based on
predefined importance metrics. The model then undergoes fine-tuning to adapt
to these structural modifications before proceeding to the next pruning itera-
tion. This methodical approach helps prevent sudden drops in accuracy while
allowing the network to progressively adjust to reduced complexity.

To illustrate this process, consider pruning six channels from a convolutional
neural network as shown in Figure 10.6. Rather than removing all channels
simultaneously, iterative pruning eliminates two channels per iteration over

10.4. Model Representation Optimization 432

three cycles. Following each pruning step, the model undergoes fine-tuning to
recover performance. The first iteration, which removes two channels, results
in an accuracy decrease from 0.995 to 0.971, but subsequent fine-tuning restores
accuracy to 0.992. After completing two additional pruning-tuning cycles, the
final model achieves 0.991 accuracy, which represents only a 0.4% reduction
from the original, while operating with 27% fewer channels. By distributing
structural modifications across multiple iterations, the network maintains its
performance capabilities while achieving improved computational efÏciency.

Figure 10.6: Iterative pruning.

Starting Accuracy:

0.995

1st Iteration

Test Accuracy:

0.971

Test Accuracy:

0.992

Prune

selected

channels

Fine-tune

on new

structure

Starting Accuracy:

0.992

2nd Iteration

Test Accuracy:

0.956

Test Accuracy:

0.993

Prune

selected

channels

Fine-tune

on new

structure

Starting Accuracy:

0.993

3rd Iteration

Test Accuracy:

0.967

Test Accuracy:

0.991

Prune

selected

channels

Fine-tune

on new

structure

One-shot Pruning. One-shot pruning removes multiple architectural compo-
nents in a single step, followed by an extensive fine-tuning phase to recover
model accuracy. This aggressive approach compresses the model quickly but
risks greater accuracy degradation, as the network must adapt to substantial
structural changes simultaneously.

Consider applying one-shot pruning to the same network discussed in the
iterative pruning example. Instead of removing two channels at a time over
multiple iterations, one-shot pruning eliminates all six channels at once, as
illustrated in Figure 10.7. Removing 27% of the network’s channels simulta-
neously causes the accuracy to drop significantly, from 0.995 to 0.914. Even
after fine-tuning, the network only recovers to an accuracy of 0.943, which is a
5% degradation from the original unpruned network. While both iterative and
one-shot pruning ultimately produce identical network structures, the gradual
approach of iterative pruning better preserves model performance.

The choice of pruning strategy requires careful consideration of several key
factors that influence both model efÏciency and performance:

Chapter 10. Model Optimizations 433

Figure 10.7: One-shot pruning.

Starting Accuracy:

0.995

One-shot (a single iteration)

Test Accuracy:

0.914

Test Accuracy:

0.943

Prune

selected

channels

Fine-tune

on new

structure

Sparsity Target: The desired level of parameter reduction directly impacts
strategy selection. Higher reduction targets often necessitate iterative ap-
proaches to maintain accuracy, while moderate sparsity goals may be achievable
through simpler one-shot methods.

Computational Resources: Available computing power significantly influ-
ences strategy choice. Iterative pruning demands substantial resources for
multiple fine-tuning cycles, whereas one-shot approaches require fewer re-
sources but may sacrifice accuracy.

Performance Requirements: Applications with strict accuracy requirements
typically benefit from gradual, iterative pruning to carefully preserve model
capabilities. Use cases with more flexible performance constraints may accom-
modate more aggressive one-shot approaches.

Development Timeline: Project schedules impact pruning decisions. One-
shot methods enable faster deployment when time is limited, though iterative
approaches generally achieve superior results given sufÏcient optimization
periods.

Hardware Constraints: Target platform capabilities significantly influence
strategy selection. Certain hardware architectures may better support specific
sparsity patterns, making particular pruning approaches more advantageous
for deployment.

The choice between pruning strategies requires careful evaluation of project
requirements and constraints. One-shot pruning enables rapid model compres-
sion by removing multiple parameters simultaneously, making it suitable for
scenarios where deployment speed is prioritized over accuracy. However, this
aggressive approach often results in greater performance degradation com-
pared to more gradual methods. Iterative pruning, on the other hand, while
computationally intensive and time-consuming, typically achieves superior
accuracy retention through systematic parameter reduction across multiple
cycles. This methodical approach enables the network to adapt progressively
to structural modifications, preserving critical connections that maintain model
performance. The trade-off is increased optimization time and computational
overhead. By evaluating these factors systematically, practitioners can select a
pruning approach that optimally balances efÏciency gains with model perfor-
mance for their specific use case.

10.4.1.8 Lottery Ticket Hypothesis

Pruning is widely used to reduce the size and computational cost of neural
networks, but the process of determining which parameters to remove is not
always straightforward. While traditional pruning methods eliminate weights

10.4. Model Representation Optimization 434

9 Small, well-initialized sub-
networks within larger models that,
when trained alone, achieve or ex-
ceed the full model’s accuracy.

based on magnitude, structure, or dynamic conditions, recent research suggests
that pruning is not just about reducing redundancy; it may also reveal inherently
efÏcient subnetworks that exist within the original model.

This perspective leads to the Lottery Ticket Hypothesis (LTH), which chal-
lenges conventional pruning workflows by proposing that within large neural
networks, there exist small, well-initialized subnetworks, referred to as ‘win-
ning tickets’ (see footnote for details), that can achieve comparable accuracy
to the full model when trained in isolation. Rather than viewing pruning as
just a post-training compression step, LTH suggests it can serve as a discovery
mechanism to identify these efÏcient subnetworks early in training.

LTH is validated through an iterative pruning process, illustrated in Fig-
ure 10.8. A large network is first trained to convergence. The lowest-magnitude
weights are then pruned, and the remaining weights are reset to their original
initialization rather than being re-randomized. This process is repeated iter-
atively, gradually reducing the network’s size while preserving performance.
After multiple iterations, the remaining subnetwork, referred to as the ‘winning
ticket’9, proves capable of training to the same or higher accuracy as the original
full model.

Figure 10.8: The lottery ticket hy-
pothesis.

Iterate

Train the network

until convergence

Prune a

percentage of

the lowest weights

Reset weights

to initial values

0.5

0.08

0.45

0.98

Randomly

initialize

the weights
Rermaining structure

constitites the wining

lottery ticket subnetwork

The implications of the Lottery Ticket Hypothesis extend beyond conven-
tional pruning techniques. Instead of training large models and pruning
them later, LTH suggests that compact, high-performing subnetworks could be
trained directly from the start, eliminating the need for overparameterization.
This insight challenges the traditional assumption that model size is necessary
for effective learning. It also emphasizes the importance of initialization, as win-
ning tickets only retain their performance when reset to their original weight
values. This finding raises deeper questions about the role of initialization in
shaping a network’s learning trajectory.

The hypothesis further reinforces the effectiveness of iterative pruning over
one-shot pruning. Gradually refining the model structure allows the network

Chapter 10. Model Optimizations 435

to adapt at each stage, preserving accuracy more effectively than removing
large portions of the model in a single step. This process aligns well with
practical pruning strategies used in deployment, where preserving accuracy
while reducing computation is critical.

Despite its promise, applying LTH in practice remains computationally ex-
pensive, as identifying winning tickets requires multiple cycles of pruning
and retraining. Ongoing research explores whether winning subnetworks can
be detected early without full training, potentially leading to more efÏcient
sparse training techniques. If such methods become practical, LTH could fun-
damentally reshape how machine learning models are trained, shifting the
focus from pruning large networks after training to discovering and training
only the essential components from the beginning.

While LTH presents a compelling theoretical perspective on pruning, prac-
tical implementations rely on established framework-level tools to integrate
structured and unstructured pruning techniques.

10.4.1.9 Pruning Practice
Several machine learning frameworks provide built-in tools to apply structured
and unstructured pruning, fine-tune pruned models, and optimize deployment
for cloud, edge, and mobile environments.

Machine learning frameworks such as PyTorch, TensorFlow, and ONNX offer
dedicated pruning utilities that allow practitioners to efÏciently implement
these techniques while ensuring compatibility with deployment hardware.

In PyTorch, pruning is available through the torch.nn.utils.prunemodule,
which provides functions to apply magnitude-based pruning to individual
layers or the entire model. Users can perform unstructured pruning by setting a
fraction of the smallest-magnitude weights to zero or apply structured pruning
to remove entire neurons or filters. PyTorch also allows for custom pruning
strategies, where users define pruning criteria beyond weight magnitude, such
as activation-based or gradient-based pruning. Once a model is pruned, it can
be fine-tuned to recover lost accuracy before being exported for inference.

TensorFlow provides pruning support through the TensorFlow Model Op-
timization Toolkit (TF-MOT). This toolkit integrates pruning directly into the
training process by applying sparsity-inducing regularization. TensorFlow’s
pruning API supports global and layer-wise pruning, dynamically selecting
parameters for removal based on weight magnitudes. Unlike PyTorch, Tensor-
Flow’s pruning is typically applied during training, allowing models to learn
sparse representations from the start rather than pruning them post-training.
TF-MOT also provides export tools to convert pruned models into TFLite format,
making them compatible with mobile and edge devices.

ONNX, an open standard for model representation, does not implement
pruning directly but provides export and compatibility support for pruned
models from PyTorch and TensorFlow. Since ONNX is designed to be hardware-
agnostic, it allows models that have undergone pruning in different frameworks
to be optimized for inference engines such as TensorRT, OpenVINO, and Ed-
geTPU. These inference engines can further leverage structured and dynamic
pruning for execution efÏciency, particularly on specialized hardware accelera-
tors.

10.4. Model Representation Optimization 436

Although framework-level support for pruning has advanced significantly,
applying pruning in practice requires careful consideration of hardware com-
patibility and software optimizations. Standard CPUs and GPUs often do not
natively accelerate sparse matrix operations, meaning that unstructured prun-
ing may reduce memory usage without providing significant computational
speed-ups. In contrast, structured pruning is more widely supported in infer-
ence engines, as it directly reduces the number of computations needed during
execution. Dynamic pruning, when properly integrated with inference engines,
can optimize execution based on workload variations and hardware constraints,
making it particularly beneficial for adaptive AI applications.

At a practical level, choosing the right pruning strategy depends on sev-
eral key trade-offs, including memory efÏciency, computational performance,
accuracy retention, and implementation complexity. These trade-offs impact
how pruning methods are applied in real-world machine learning workflows,
influencing deployment choices based on resource constraints and system re-
quirements.

To help guide these decisions, Table 10.3 provides a high-level comparison
of these trade-offs, summarizing the key efÏciency and usability factors that
practitioners must consider when selecting a pruning method.

Table 10.3: Comparison of pruning strategies.

Criterion Unstructured Pruning Structured Pruning Dynamic Pruning

Memory EfÏciency ↑↑ High ↑ Moderate ↑ Moderate
Computational EfÏciency → Neutral ↑↑ High ↑ High
Accuracy Retention ↑ Moderate ↓↓ Low ↑↑ High
Hardware Compatibility ↓ Low ↑↑ High → Neutral
Implementation Complexity → Neutral ↑ Moderate ↓↓ High

These trade-offs underscore the importance of aligning pruning methods with
practical deployment needs. Frameworks such as PyTorch, TensorFlow, and
ONNX enable developers to implement these strategies, but the effectiveness
of a pruning approach depends on the underlying hardware and application
requirements.

For example, structured pruning is commonly used in mobile and edge appli-
cations because of its compatibility with standard inference engines, whereas
dynamic pruning is better suited for adaptive AI workloads that need to ad-
just sparsity levels on the fly. Unstructured pruning, while useful for reducing
memory footprints, requires specialized sparse execution kernels to fully realize
computational savings.

Understanding these trade-offs is essential when deploying pruned models
in real-world settings. Several high-profile models have successfully integrated
pruning to optimize performance. MobileNet, a lightweight convolutional neu-
ral network designed for mobile and embedded applications, has been pruned
to reduce inference latency while preserving accuracy (A. G. Howard et al.
2017b). BERT, a widely used transformer model for natural language process-
ing, has undergone structured pruning of attention heads and intermediate
layers to create efÏcient versions such as DistilBERT and TinyBERT, which re-
tain much of the original performance while reducing computational overhead

Chapter 10. Model Optimizations 437

(Sanh et al. 2019). In computer vision, EfÏcientNet has been pruned to re-
move unnecessary filters, optimizing it for deployment in resource-constrained
environments (Tan and Le 2019a).

10.4.2 Knowledge Distillation
Machine learning models are often trained with the goal of achieving the
highest possible accuracy, leading to the development of large, complex archi-
tectures with millions or even billions of parameters. While these models excel
in performance, they are computationally expensive and difÏcult to deploy in
resource-constrained environments such as mobile devices, edge computing
platforms, and real-time inference systems. Knowledge distillation is a tech-
nique designed to transfer the knowledge of a large, high-capacity model (the
teacher) into a smaller, more efÏcient model (the student) while preserving
most of the original model’s performance (Gou et al. 2021).

Unlike pruning, which removes unnecessary parameters from a trained
model, knowledge distillation involves training a separate, smaller model using
guidance from a larger pre-trained model. The student model does not simply
learn from labeled data but instead is optimized to match the soft predictions
of the teacher model (Jiong Lin et al. 2020). These soft targets, which are
probability distributions over classes rather than hard labels, contain richer
information about how the teacher model generalizes beyond just the correct
answer, helping the student learn more efÏciently.

As illustrated in Figure 10.9, the knowledge distillation process involves
two models: a high-capacity teacher model (top) and a smaller student model
(bottom). The teacher model is first trained on the given dataset and produces
a probability distribution over classes using a softened softmax function with
temperature 𝑇. These soft labels encode more information than traditional
hard labels by capturing the relative similarities between different classes. The
student model is trained using both these soft labels and the ground truth hard
labels.

Figure 10.9: Knowledge distillation.

Layer 1 Layer 2 · · · Layer n

Student (distilled) model

Layer 1 Layer 2 · · · Layer m

Teacher model

Input x

Softmax (T = t)

Softmax (T = t)

Softmax (T = 1)

Soft labels

Soft predictions

Hard predictions

Hard

label y

Loss Fn

Loss Fn

Distillation

loss

Student

loss

(Ground truth)

The training process for the student model incorporates two loss terms:
• Distillation loss: A loss function (often based on Kullback-Leibler (KL)

divergence) that minimizes the difference between the student’s and
teacher’s soft label distributions.

10.4. Model Representation Optimization 438

10 Cross-entropy loss: A loss
function used to measure the differ-
ence between two probability distri-
butions.

11 Softmax: A function that con-
verts logits into probabilities by scal-
ing them based on a temperature pa-
rameter.

• Student loss: A standard cross-entropy loss that ensures the student
model correctly classifies the hard labels.

The combination of these two loss functions enables the student model to
absorb both structured knowledge from the teacher and label supervision from
the dataset. This approach allows smaller models to reach accuracy levels close
to their larger teacher models, making knowledge distillation a key technique
for model compression and efÏcient deployment.

Knowledge distillation allows smaller models to reach a level of accuracy that
would be difÏcult to achieve through standard training alone. This makes it
particularly useful in ML systems where inference efÏciency is a priority, such
as real-time applications, cloud-to-edge model compression, and low-power AI
systems (Sun et al. 2019).

10.4.2.1 Distillation Theory

Knowledge distillation is based on the idea that a well-trained teacher model
encodes more information about the data distribution than just the correct class
labels. In conventional supervised learning, a model is trained to minimize
the cross-entropy loss10 between its predictions and the ground truth labels.
However, this approach only provides a hard decision boundary for each class,
discarding potentially useful information about how the model relates different
classes to one another (Hinton, Vinyals, and Dean 2015b).

In contrast, knowledge distillation transfers this additional information by
using the soft probability distributions produced by the teacher model. Instead
of training the student model to match only the correct label, it is trained to
match the teacher’s full probability distribution over all possible classes. This
is achieved by introducing a temperature-scaled softmax function11, which
smooths the probability distribution, making it easier for the student model to
learn from the teacher’s outputs (Gou et al. 2021).

10.4.2.2 Distillation Mathematics

Let 𝑧𝑖 be the logits (pre-softmax outputs) of the model for class 𝑖. The standard
softmax function computes class probabilities as:𝑝𝑖 = exp(𝑧𝑖)∑𝑗 exp(𝑧𝑗)
where higher logits correspond to higher confidence in a class prediction.

In knowledge distillation, we introduce a temperature parameter 𝑇 that scales
the logits before applying softmax:𝑝𝑖(𝑇) = exp(𝑧𝑖/𝑇)∑𝑗 exp(𝑧𝑗/𝑇)
where a higher temperature produces a softer probability distribution, revealing
more information about how the model distributes uncertainty across different
classes.

Chapter 10. Model Optimizations 439

12 Hard Labels: Binary indica-
tions of whether a prediction is cor-
rect, used in traditional supervised
learning.

The student model is then trained using a loss function that minimizes the
difference between its output distribution and the teacher’s softened output
distribution. The most common formulation combines two loss terms:ℒdistill = (1−𝛼)ℒCE(𝑦𝑠,𝑦)+𝛼𝑇 2 ∑𝑖 𝑝𝑇𝑖 log𝑝𝑇𝑖,𝑠
where:

• ℒCE(𝑦𝑠,𝑦) is the standard cross-entropy loss between the student’s pre-
dictions 𝑦𝑠 and the ground truth labels 𝑦.

• The second term minimizes the Kullback-Leibler (KL) divergence between
the teacher’s softened predictions 𝑝𝑇𝑖 and the student’s predictions 𝑝𝑇𝑖,𝑠.

• The factor 𝑇 2 ensures that gradients remain appropriately scaled when
using high-temperature values.

• The hyperparameter 𝛼 balances the importance of the standard training
loss versus the distillation loss.

By learning from both hard labels and soft teacher outputs, the student model
benefits from the generalization power of the teacher, improving its ability to
distinguish between similar classes even with fewer parameters.

10.4.2.3 Distillation Intuition

By learning from both hard labels12 and soft teacher outputs, the student model
benefits from the generalization power of the teacher, improving its ability to
distinguish between similar classes even with fewer parameters. Unlike con-
ventional training, where a model learns only from binary correctness signals,
knowledge distillation allows the student to absorb a richer understanding of
the data distribution from the teacher’s predictions.

A key advantage of soft targets is that they provide relative confidence levels
rather than just a single correct answer. Consider an image classification task
where the goal is to distinguish between different animal species. A standard
model trained with hard labels will only receive feedback on whether its predic-
tion is right or wrong. If an image contains a cat, the correct label is “cat,” and
all other categories, such as “dog” and “fox,” are treated as equally incorrect.
However, a well-trained teacher model naturally understands that a cat is more
visually similar to a dog than to a fox, and its soft output probabilities might
look like Figure 10.10, where the relative confidence levels indicate that while
“cat” is the most likely category, “dog” is still a plausible alternative, whereas
“fox” is much less likely.

Rather than simply forcing the student model to classify the image strictly as
a cat, the teacher model provides a more nuanced learning signal, indicating
that while “dog” is incorrect, it is a more reasonable mistake than “fox.” This
subtle information helps the student model build better decision boundaries
between similar classes, making it more robust to ambiguity in real-world data.

This effect is particularly useful in cases where training data is limited or
noisy. A large teacher model trained on extensive data has already learned
to generalize well, capturing patterns that might be difÏcult to discover with
smaller datasets. The student benefits by inheriting this structured knowledge,

10.4. Model Representation Optimization 440

Figure 10.10: Soft target probability
distribution.

0%

20%

40%

60%

80%

Cat Dog Fox
Animal

P
ro

ba
bi

lit
y

acting as if it had access to a larger training signal than what is explicitly
available.

Another key benefit of knowledge distillation is its regularization effect.
Because soft targets distribute probability mass across multiple classes, they
prevent the student model from overfitting to specific hard labels. Instead of
confidently assigning a probability of 1.0 to the correct class and 0.0 to all others,
the student learns to make more calibrated predictions, which improves its
generalization performance. This is especially important when the student
model has fewer parameters, as smaller networks are more prone to overfitting.

Finally, distillation helps compress large models into smaller, more efÏcient
versions without major performance loss. Training a small model from scratch
often results in lower accuracy because the model lacks the capacity to learn
the complex representations that a larger network can capture. However, by
leveraging the knowledge of a well-trained teacher, the student can reach a
higher accuracy than it would have on its own, making it a more practical
choice for real-world ML deployments, particularly in edge computing, mobile
applications, and other resource-constrained environments.

10.4.2.4 EfÏciency Gains

Knowledge distillation is widely used in machine learning systems because
it enables smaller models to achieve performance levels comparable to larger
models, making it an essential technique for optimizing inference efÏciency.
While pruning reduces the size of a trained model by removing unnecessary
parameters, knowledge distillation improves efÏciency by training a compact
model from the start, leveraging the teacher’s guidance to enhance learning
(Sanh et al. 2019). This allows the student model to reach a level of accuracy
that would be difÏcult to achieve through standard training alone.

The efÏciency benefits of knowledge distillation can be categorized into
three key areas: memory efÏciency, computational efÏciency, and deployment
flexibility.

Memory and Model Compression. A key advantage of knowledge distillation
is that it enables smaller models to retain much of the predictive power of larger
models, significantly reducing memory footprint. This is particularly useful in

Chapter 10. Model Optimizations 441

13 Multi-task Learning: A learn-
ing paradigm where a model learns
multiple tasks simultaneously, im-
proving generalization.

resource-constrained environments such as mobile and embedded AI systems,
where model size directly impacts storage requirements and load times.

For instance, models such as DistilBERT in NLP and MobileNet distillation
variants in computer vision have been shown to retain up to 97% of the accuracy
of their larger teacher models while using only half the number of parame-
ters. This level of compression is often superior to pruning, where aggressive
parameter reduction can lead to deterioration in representational power.

Another key benefit of knowledge distillation is its ability to transfer robust-
ness and generalization from the teacher to the student. Large models are often
trained with extensive datasets and develop strong generalization capabilities,
meaning they are less sensitive to noise and data shifts. A well-trained student
model inherits these properties, making it less prone to overfitting and more
stable across diverse deployment conditions. This is particularly useful in low-
data regimes, where training a small model from scratch may result in poor
generalization due to insufÏcient training examples.

Computation and Inference Speed. By training the student model to approxi-
mate the teacher’s knowledge in a more compact representation, distillation
results in models that require fewer FLOPs per inference, leading to faster
execution times. Unlike unstructured pruning, which may require specialized
hardware support for sparse computation, a distilled model remains densely
structured, making it more compatible with existing machine learning acceler-
ators such as GPUs, TPUs, and edge AI chips (Jiao et al. 2020).

In real-world deployments, this translates to:
• Reduced inference latency, which is important for real-time AI appli-

cations such as speech recognition, recommendation systems, and self-
driving perception models.

• Lower energy consumption, making distillation particularly relevant for
low-power AI on mobile devices and IoT systems.

• Higher throughput in cloud inference, where serving a distilled model
allows large-scale AI applications to reduce computational cost while
maintaining model quality.

For example, when deploying transformer models for NLP, organizations
often use teacher-student distillation to create models that achieve similar
accuracy at 2-4× lower latency, making it feasible to serve billions of requests
per day with significantly lower computational overhead.

Deployment and System Considerations. Knowledge distillation is also effec-
tive in multi-task learning13 scenarios, where a single teacher model can guide
multiple student models for different tasks. For example, in multi-lingual NLP
models, a large teacher trained on multiple languages can transfer language-
specific knowledge to smaller, task-specific student models, enabling efÏcient
deployment across different languages without retraining from scratch. Sim-
ilarly, in computer vision, a teacher trained on diverse object categories can
distill knowledge into specialized students optimized for tasks such as face
recognition, medical imaging, or autonomous driving.

Once a student model is distilled, it can be further optimized for hardware-
specific acceleration using techniques such as pruning, quantization, and graph

10.4. Model Representation Optimization 442

optimization. This ensures that compressed models remain inference-efÏcient
across multiple hardware environments, particularly in edge AI and mobile
deployments (Gordon, Duh, and Andrews 2020).

Despite its advantages, knowledge distillation has some limitations. The
effectiveness of distillation depends on the quality of the teacher model—a
poorly trained teacher may transfer incorrect biases to the student. Additionally,
distillation introduces an additional training phase, where both the teacher
and student must be used together, increasing computational costs during
training. In some cases, designing an appropriate student model architecture
that can fully benefit from the teacher’s knowledge remains a challenge, as
overly small student models may not have enough capacity to absorb all the
relevant information.

10.4.2.5 Trade-offs

Knowledge distillation is a powerful technique for compressing large models
into smaller, more efÏcient versions while maintaining accuracy. By training a
student model under the supervision of a teacher model, distillation enables bet-
ter generalization and inference efÏciency compared to training a small model
from scratch. It is particularly effective in low-resource environments, such
as mobile devices, edge AI, and large-scale cloud inference, where balancing
accuracy, speed, and memory footprint is essential.

Compared to pruning, distillation preserves accuracy better but comes at
the cost of higher training complexity, as it requires training a new model
instead of modifying an existing one. However, pruning provides a more direct
computational efÏciency gain, especially when structured pruning is used. In
practice, combining pruning and distillation often yields the best trade-off, as
seen in models like DistilBERT and MobileBERT, where pruning first reduces
unnecessary parameters before distillation optimizes a final student model.
Table 10.4 summarizes the key trade-offs between knowledge distillation and
pruning.

Table 10.4: Comparison of knowledge distillation and pruning.

Criterion Knowledge Distillation Pruning

Accuracy
retention

High – Student learns from teacher,
better generalization

Varies – Can degrade accuracy if over-pruned

Training cost Higher – Requires training both
teacher and student

Lower – Only fine-tuning needed

Inference speed High – Produces dense, optimized
models

Depends – Structured pruning is efÏcient,
unstructured needs special support

Hardware
compatibility

High – Works on standard accelerators Limited – Sparse models may need specialized
execution

Ease of
implementation

Complex – Requires designing a
teacher-student pipeline

Simple – Applied post-training

Knowledge distillation remains an essential technique in ML systems opti-
mization, often used alongside pruning and quantization for deployment-ready
models. The next section explores quantization, a method that further reduces
computational cost by lowering numerical precision.

Chapter 10. Model Optimizations 443

10.4.3 Structured Approximations
Machine learning models often contain a significant degree of parameter redun-
dancy, leading to inefÏciencies in computation, storage, and energy consump-
tion. The preceding sections on pruning and knowledge distillation introduced
methods that explicitly remove redundant parameters or transfer knowledge
to a smaller model. In contrast, approximation-based compression techniques
focus on restructuring model representations to reduce complexity while main-
taining expressive power.

Rather than eliminating individual parameters, approximation methods de-
compose large weight matrices and tensors into lower-dimensional components,
allowing models to be stored and executed more efÏciently. These techniques
leverage the observation that many high-dimensional representations can be
well-approximated by lower-rank structures, thereby reducing the number of
parameters without a substantial loss in performance. Unlike pruning, which
selectively removes connections, or distillation, which transfers learned knowl-
edge, factorization-based approaches optimize the internal representation of a
model through structured approximations.

Among the most widely used approximation techniques are:
• Low-Rank Matrix Factorization (LRMF): A method for decomposing

weight matrices into products of lower-rank matrices, reducing storage
and computational complexity.

• Tensor Decomposition: A generalization of LRMF to higher-dimensional
tensors, enabling more efÏcient representations of multi-way interactions
in neural networks.

These methods have been widely applied in machine learning to improve
model efÏciency, particularly in resource-constrained environments such as
edge ML and Tiny ML. Additionally, they play a key role in accelerating model
training and inference by reducing the number of required operations. The
following sections will provide a detailed examination of low-rank matrix fac-
torization and tensor decomposition, including their mathematical foundations,
applications, and associated trade-offs.

10.4.3.1 Low-Rank Factorization

Many machine learning models contain a significant degree of redundancy in
their weight matrices, leading to inefÏciencies in computation, storage, and
deployment. In the previous sections, pruning and knowledge distillation were
introduced as methods to reduce model size—pruning by selectively removing
parameters and distillation by transferring knowledge from a larger model
to a smaller one. However, these techniques do not fundamentally alter the
structure of the model’s parameters. Instead, they focus on reducing redundant
weights or optimizing training processes.

Low-Rank Matrix Factorization (LRMF) provides an alternative approach
by approximating a model’s weight matrices with lower-rank representations,
rather than explicitly removing or transferring information. This technique
restructures large parameter matrices into compact, lower-dimensional compo-
nents, preserving most of the original information while significantly reducing

10.4. Model Representation Optimization 444

storage and computational costs. Unlike pruning, which creates sparse repre-
sentations, or distillation, which requires an additional training process, LRMF
is a purely mathematical transformation that decomposes a weight matrix into
two or more smaller matrices.

This structured compression is particularly useful in machine learning sys-
tems where efÏciency is a primary concern, such as edge computing, cloud
inference, and hardware-accelerated ML execution. By leveraging low-rank
approximations, models can achieve substantial reductions in parameter stor-
age while maintaining predictive accuracy, making LRMF a valuable tool for
optimizing machine learning architectures.

Training Mathematics. LRMF is a mathematical technique used in linear alge-
bra and machine learning systems to approximate a high-dimensional matrix
by decomposing it into the product of lower-dimensional matrices. This factor-
ization enables a more compact representation of model parameters, reducing
both memory footprint and computational complexity while preserving essen-
tial structural information. In the context of machine learning systems, LRMF
plays a crucial role in optimizing model efÏciency, particularly for resource-
constrained environments such as edge AI and embedded deployments.

Formally, given a matrix 𝐴 ∈ ℝ𝑚×𝑛, LRMF seeks two matrices 𝑈 ∈ ℝ𝑚×𝑘 and𝑉 ∈ ℝ𝑘×𝑛 such that: 𝐴 ≈ 𝑈𝑉
where 𝑘 is the rank of the approximation, typically much smaller than both𝑚 and 𝑛. This approximation is commonly obtained through singular value
decomposition (SVD), where 𝐴 is factorized as:𝐴 = 𝑈Σ𝑉 𝑇
where Σ is a diagonal matrix containing singular values, and 𝑈 and 𝑉 are
orthogonal matrices. By retaining only the top 𝑘 singular values, a low-rank
approximation of 𝐴 is obtained.

Figure 10.11 illustrates the decrease in parameterization enabled by low-
rank matrix factorization. Observe how the matrix 𝑀 can be approximated
by the product of matrices 𝐿𝑘 and 𝑅𝑇𝑘 . For intuition, most fully connected
layers in networks are stored as a projection matrix 𝑀, which requires 𝑚×𝑛
parameters to be loaded during computation. However, by decomposing and
approximating it as the product of two lower-rank matrices, we only need to
store 𝑚×𝑘+𝑘×𝑛 parameters in terms of storage while incurring an additional
compute cost of the matrix multiplication. So long as 𝑘 < 𝑛/2, this factorization
has fewer total parameters to store while adding a computation of runtime𝑂(𝑚𝑘𝑛) (Gu 2023).

Figure 10.11: Low matrix factoriza-
tion. Source: The Clever Machine.

M Lk Rk
T

≈ ×

m × n m × k

k × n

https://dustinstansbury.github.io/theclevermachine/svd-data-compression

Chapter 10. Model Optimizations 445

LRMF is widely used to enhance the efÏciency of machine learning models by
reducing parameter redundancy, particularly in fully connected and convolu-
tional layers. In the broader context of machine learning systems, factorization
techniques contribute to optimizing model inference speed, storage efÏciency,
and adaptability to specialized hardware accelerators.

Fully connected layers often contain large weight matrices, making them ideal
candidates for factorization. Instead of storing a dense 𝑚 × 𝑛 weight matrix,
LRMF allows for a more compact representation with two smaller matrices of
dimensions 𝑚× 𝑘 and 𝑘 × 𝑛, significantly reducing storage and computational
costs. This reduction is particularly valuable in cloud-to-edge ML pipelines,
where minimizing model size can facilitate real-time execution on embedded
devices.

Convolutional layers can also benefit from LRMF by decomposing convolu-
tional filters into separable structures. Techniques such as depthwise-separable
convolutions leverage factorization principles to achieve computational efÏ-
ciency without significant loss in accuracy. These methods align well with
hardware-aware optimizations used in modern AI acceleration frameworks.

LRMF has been extensively used in collaborative filtering for recommen-
dation systems. By factorizing user-item interaction matrices, latent factors
corresponding to user preferences and item attributes can be extracted, enabling
efÏcient and accurate recommendations. Within large-scale machine learning
systems, such optimizations directly impact scalability and performance in
production environments.

Factorization EfÏciency and Challenges. By factorizing a weight matrix into
lower-rank components, the number of parameters required for storage is
reduced from 𝑂(𝑚𝑛) to 𝑂(𝑚𝑘+𝑘𝑛), where 𝑘 is significantly smaller than 𝑚,𝑛.
However, this reduction comes at the cost of an additional matrix multiplication
operation during inference, potentially increasing computational latency. In
machine learning systems, this trade-off is carefully managed to balance storage
efÏciency and real-time inference speed.

Choosing an appropriate rank 𝑘 is a key challenge in LRMF. A smaller 𝑘
results in greater compression but may lead to significant information loss,
while a larger 𝑘 retains more information but offers limited efÏciency gains.
Methods such as cross-validation and heuristic approaches are often employed
to determine the optimal rank, particularly in large-scale ML deployments
where compute and storage constraints vary.

In real-world machine learning applications, datasets may contain noise or
missing values, which can affect the quality of factorization. Regularization
techniques, such as adding an 𝐿2 penalty, can help mitigate overfitting and
improve the robustness of LRMF, ensuring stable performance across different
ML system architectures.

Low-rank matrix factorization provides an effective approach for reducing
the complexity of machine learning models while maintaining their expressive
power. By approximating weight matrices with lower-rank representations,
LRMF facilitates efÏcient inference and model deployment, particularly in
resource-constrained environments such as edge computing. Within machine
learning systems, factorization techniques contribute to scalable, hardware-

10.4. Model Representation Optimization 446

aware optimizations that enhance real-world model performance. Despite
challenges such as rank selection and computational overhead, LRMF remains
a valuable tool for improving efÏciency in ML system design and deployment.

10.4.3.2 Tensor Decomposition

While low-rank matrix factorization provides an effective method for com-
pressing large weight matrices in machine learning models, many modern
architectures rely on multi-dimensional tensors rather than two-dimensional
matrices. Convolutional layers, attention mechanisms, and embedding repre-
sentations commonly involve multi-way interactions that cannot be efÏciently
captured using standard matrix factorization techniques. In such cases, tensor
decomposition provides a more general approach to reducing model complexity
while preserving structural relationships within the data.

Figure 10.12: Tensor decomposition.
Source: Richter and Zhao (2021).

N

T

M

(i, j, t)-th

yijt

y ∈ R
M×N×T

U ∈ R
M×R

ui≈

X ∈ R
T×RX ∈ R
T×R

xi

V ∈ R
N×R

vi

Tensor decomposition (TD) extends the principles of low-rank factoriza-
tion to higher-order tensors, allowing large multi-dimensional arrays to be
expressed in terms of lower-rank components (see Figure 10.12). Given that
tensors frequently appear in machine learning systems as representations of
weight parameters, activations, and input features, their direct storage and
computation often become impractical. By decomposing these tensors into
a set of smaller factors, tensor decomposition significantly reduces memory
requirements and computational overhead while maintaining the integrity of
the original structure.

This approach is widely used in machine learning to improve efÏciency across
various architectures. In convolutional neural networks, tensor decomposition
enables the approximation of convolutional kernels with lower-dimensional fac-
tors, reducing the number of parameters while preserving the representational
power of the model. In natural language processing, high-dimensional embed-
dings can be factorized into more compact representations, leading to faster
inference and reduced memory consumption. In hardware acceleration, tensor
decomposition helps optimize tensor operations for execution on specialized
processors, ensuring efÏcient utilization of computational resources.

Chapter 10. Model Optimizations 447

Training Mathematics. A tensor is a multi-dimensional extension of a ma-
trix, representing data across multiple axes rather than being confined to two-
dimensional structures. In machine learning, tensors naturally arise in various
contexts, including the representation of weight parameters, activations, and
input features. Given the high dimensionality of these tensors, direct storage
and computation often become impractical, necessitating efÏcient factorization
techniques.

Tensor decomposition generalizes the principles of low-rank matrix factoriza-
tion by approximating a high-order tensor with a set of lower-rank components.
Formally, for a given tensor 𝒜 ∈ ℝ𝑚×𝑛×𝑝, the goal of decomposition is to ex-
press 𝒜 in terms of factorized components that require fewer parameters to
store and manipulate. This decomposition reduces the memory footprint and
computational requirements while retaining the structural relationships present
in the original tensor.

Several factorization methods have been developed for tensor decomposi-
tion, each suited to different applications in machine learning. One common
approach is CANDECOMP/PARAFAC (CP) decomposition, which expresses
a tensor as a sum of rank-one components. In CP decomposition, a tensor𝒜 ∈ ℝ𝑚×𝑛×𝑝 is approximated as𝒜 ≈ 𝑘∑𝑟=1 𝑢𝑟 ⊗𝑣𝑟 ⊗𝑤𝑟
where 𝑢𝑟 ∈ ℝ𝑚, 𝑣𝑟 ∈ ℝ𝑛, and 𝑤𝑟 ∈ ℝ𝑝 are factor vectors and 𝑘 is the rank of the
approximation.

Another widely used approach is Tucker decomposition, which general-
izes singular value decomposition to tensors by introducing a core tensor𝒢 ∈ ℝ𝑘1×𝑘2×𝑘3 and factor matrices 𝑈 ∈ ℝ𝑚×𝑘1 , 𝑉 ∈ ℝ𝑛×𝑘2 , and 𝑊 ∈ ℝ𝑝×𝑘3 ,
such that 𝒜 ≈ 𝒢×1 𝑈 ×2 𝑉 ×3 𝑊
where ×𝑖 denotes the mode-𝑖 tensor-matrix multiplication.

Another method, Tensor-Train (TT) decomposition, factorizes high-order
tensors into a sequence of lower-rank matrices, reducing both storage and com-
putational complexity. Given a tensor 𝒜 ∈ ℝ𝑚1×𝑚2×⋯×𝑚𝑑 , TT decomposition
represents it as a product of lower-dimensional tensor cores 𝒢(𝑖), where each
core 𝒢(𝑖) has dimensions ℝ𝑟𝑖−1×𝑚𝑖×𝑟𝑖 , and the full tensor is reconstructed as𝒜 ≈ 𝒢(1) ×𝒢(2) ×⋯×𝒢(𝑑)
where 𝑟𝑖 are the TT ranks.

These tensor decomposition methods play a crucial role in optimizing ma-
chine learning models by reducing parameter redundancy while maintaining
expressive power. The next section will examine how these techniques are
applied to machine learning architectures and discuss their computational
trade-offs.

10.4. Model Representation Optimization 448

TensorDecompositionApplications. Tensor decomposition methods are widely
applied in machine learning systems to improve efÏciency and scalability. By
factorizing high-dimensional tensors into lower-rank representations, these
methods reduce memory usage and computational requirements while pre-
serving the model’s expressive capacity. This section examines several key ap-
plications of tensor decomposition in machine learning, focusing on its impact
on convolutional neural networks, natural language processing, and hardware
acceleration.

In convolutional neural networks (CNNs), tensor decomposition is used to
compress convolutional filters and reduce the number of required operations
during inference. A standard convolutional layer contains a set of weight ten-
sors that define how input features are transformed. These weight tensors often
exhibit redundancy, meaning they can be decomposed into smaller compo-
nents without significantly degrading performance. Techniques such as CP
decomposition and Tucker decomposition enable convolutional filters to be
approximated using lower-rank tensors, reducing the number of parameters
and computational complexity of the convolution operation. This form of struc-
tured compression is particularly valuable in edge and mobile machine learning
applications, where memory and compute resources are constrained.

In natural language processing (NLP), tensor decomposition is commonly
applied to embedding layers and attention mechanisms. Many NLP models, in-
cluding transformers, rely on high-dimensional embeddings to represent words,
sentences, or entire documents. These embeddings can be factorized using
tensor decomposition to reduce storage requirements without compromising
their ability to capture semantic relationships. Similarly, in transformer-based
architectures, the self-attention mechanism requires large tensor multiplica-
tions, which can be optimized using decomposition techniques to lower the
computational burden and accelerate inference.

Hardware acceleration for machine learning also benefits from tensor de-
composition by enabling more efÏcient execution on specialized processors
such as GPUs, tensor processing units (TPUs), and field-programmable gate
arrays (FPGAs). Many machine learning frameworks include optimizations that
leverage tensor decomposition to improve model execution speed and reduce
energy consumption. Decomposing tensors into structured low-rank compo-
nents aligns well with the memory hierarchy of modern hardware accelerators,
facilitating more efÏcient data movement and parallel computation.

Despite these advantages, tensor decomposition introduces certain trade-
offs that must be carefully managed. The choice of decomposition method
and rank significantly influences model accuracy and computational efÏciency.
Selecting an overly aggressive rank reduction may lead to excessive information
loss, while retaining too many components diminishes the efÏciency gains.
Additionally, the factorization process itself can introduce a computational
overhead, requiring careful consideration when applying tensor decomposition
to large-scale machine learning systems.

TD Trade-offs and Challenges. While tensor decomposition provides signifi-
cant efÏciency gains in machine learning systems, it introduces trade-offs that
must be carefully managed to maintain model accuracy and computational fea-

Chapter 10. Model Optimizations 449

sibility. These trade-offs primarily involve the selection of decomposition rank,
the computational complexity of factorization, and the stability of factorized
representations.

One of the primary challenges in tensor decomposition is determining an
appropriate rank for the factorized representation. In low-rank matrix factor-
ization, the rank defines the dimensionality of the factorized matrices, directly
influencing the balance between compression and information retention. In
tensor decomposition, rank selection becomes even more complex, as different
decomposition methods define rank in varying ways. For instance, in CANDE-
COMP/PARAFAC (CP) decomposition, the rank corresponds to the number of
rank-one tensors used to approximate the original tensor. In Tucker decompo-
sition, the rank is determined by the dimensions of the core tensor, while in
Tensor-Train (TT) decomposition, the ranks of the factorized components dictate
the level of compression. Selecting an insufÏcient rank can lead to excessive
information loss, degrading the model’s predictive performance, whereas an
overly conservative rank reduction results in limited compression benefits.

Another key challenge is the computational overhead associated with per-
forming tensor decomposition. The factorization process itself requires solving
an optimization problem, often involving iterative procedures such as alternat-
ing least squares (ALS) or stochastic gradient descent (SGD). These methods can
be computationally expensive, particularly for large-scale tensors used in ma-
chine learning models. Additionally, during inference, the need to reconstruct
tensors from their factorized components introduces additional matrix and ten-
sor multiplications, which may increase computational latency. The efÏciency
of tensor decomposition in practice depends on striking a balance between
reducing parameter storage and minimizing the additional computational cost
incurred by factorized representations.

Numerical stability is another concern when applying tensor decomposition
to machine learning models. Factorized representations can suffer from numer-
ical instability, particularly when the original tensor contains highly correlated
structures or when decomposition methods introduce ill-conditioned factors.
Regularization techniques, such as adding constraints on factor matrices or
applying low-rank approximations incrementally, can help mitigate these issues.
Additionally, the optimization process used for decomposition must be care-
fully tuned to avoid convergence to suboptimal solutions that fail to preserve
the essential properties of the original tensor.

Despite these challenges, tensor decomposition remains a valuable tool for
optimizing machine learning models, particularly in applications where reduc-
ing memory footprint and computational complexity is a priority. Advances
in adaptive decomposition methods, automated rank selection strategies, and
hardware-aware factorization techniques continue to improve the practical
utility of tensor decomposition in machine learning. The following section will
summarize the key insights gained from low-rank matrix factorization and
tensor decomposition, highlighting their role in designing efÏcient machine
learning systems.

LRMF vs. TD. Both low-rank matrix factorization and tensor decomposition
serve as fundamental techniques for reducing the complexity of machine learn-

10.4. Model Representation Optimization 450

ing models by approximating large parameter structures with lower-rank repre-
sentations. While they share the common goal of improving storage efÏciency
and computational performance, their applications, computational trade-offs,
and structural assumptions differ significantly. This section provides a compara-
tive analysis of these two techniques, highlighting their advantages, limitations,
and practical use cases in machine learning systems.

One of the key distinctions between LRMF and tensor decomposition lies
in the dimensionality of the data they operate on. LRMF applies to two-
dimensional matrices, making it particularly useful for compressing weight
matrices in fully connected layers or embeddings. Tensor decomposition, on the
other hand, extends factorization to multi-dimensional tensors, which arise nat-
urally in convolutional layers, attention mechanisms, and multi-modal learning.
This generalization allows tensor decomposition to exploit additional structural
properties of high-dimensional data that LRMF cannot capture.

Computationally, both methods introduce trade-offs between storage savings
and inference speed. LRMF reduces the number of parameters in a model by
factorizing a weight matrix into two smaller matrices, thereby reducing memory
footprint while incurring an additional matrix multiplication during inference.
In contrast, tensor decomposition further reduces storage by decomposing
tensors into multiple lower-rank components, but at the cost of more complex
tensor contractions, which may introduce higher computational overhead. The
choice between these methods depends on whether the primary constraint is
memory storage or inference latency.

Table 10.5 summarizes the key differences between LRMF and tensor decom-
position:

Table 10.5: Comparing LRMF with tensor decomposition.

Feature Low-Rank Matrix Factorization (LRMF) Tensor Decomposition

Applicable Data
Structure

Two-dimensional matrices Multi-dimensional tensors

Compression
Mechanism

Factorizes a matrix into two or more
lower-rank matrices

Decomposes a tensor into multiple lower-rank
components

Common
Methods

Singular Value Decomposition (SVD),
Alternating Least Squares (ALS)

CP Decomposition, Tucker Decomposition,
Tensor-Train (TT)

Computational
Complexity

Generally lower, often $ O(mnk) $ for a
rank-$ k $ approximation

Higher, due to iterative optimization and tensor
contractions

Storage
Reduction

Reduces storage from $ O(mn) $ to $
O(mk + kn) $

Achieves higher compression but requires more
complex storage representations

Inference
Overhead

Requires additional matrix multiplication Introduces additional tensor operations,
potentially increasing inference latency

Primary Use
Cases

Fully connected layers, embeddings,
recommendation systems

Convolutional filters, attention mechanisms,
multi-modal learning

Implementation
Complexity

Easier to implement, often involves direct
factorization methods

More complex, requiring iterative optimization
and rank selection

Despite these differences, LRMF and tensor decomposition are not mutually
exclusive. In many machine learning models, both methods can be applied
together to optimize different components of the architecture. For example,
fully connected layers may be compressed using LRMF, while convolutional
kernels and attention tensors undergo tensor decomposition. The choice of
technique ultimately depends on the specific characteristics of the model and
the trade-offs between storage efÏciency and computational complexity.

Chapter 10. Model Optimizations 451

10.4.4 Neural Architecture Search
The techniques discussed in previous sections, such as pruning, knowledge
distillation, and various other methods, rely on human expertise to determine
optimal model configurations. While these manual approaches have led to
significant advancements, they are inherently slow, resource-intensive, and
constrained by human biases. Selecting an optimal architecture requires exten-
sive experimentation, and even experienced practitioners may overlook more
efÏcient designs (Elsken, Metzen, and Hutter 2019a).

NAS addresses these limitations by automating model design. As illustrated
in Figure 10.13, instead of manually tuning configurations, NAS systematically
explores a large space of architectures to identify those that best balance accu-
racy, computational cost, memory efÏciency, and inference latency. By framing
model selection as a structured search problem, NAS reduces reliance on trial
and error, allowing architectures to be discovered programmatically rather than
heuristically (Zoph and Le 2017a).

Figure 10.13: An example flow of
neural architecture search, where
model architectures and weights are
learned together.Search Space

A
Search Strategy

Performance

Estimation Strategy

One-shot approach:

learning model architecture parameters and weights together

Architecture

A ∈ A

Performance

estimate of A

NAS formalizes model design as an optimization problem, leveraging tech-
niques such as reinforcement learning, evolutionary algorithms, and gradient-
based methods to automate decisions traditionally made by experts (Real et al.
2019a). This approach integrates principles of scaling optimization, structural
pruning, and compressed representations, offering a unified framework for
model efÏciency.

Real-world applications demonstrate that NAS-generated architectures often
match or surpass human-designed models in efÏciency and accuracy. Examples
include models optimized for mobile and cloud environments, where inference
latency and memory constraints are critical considerations. Ultimately, NAS
encapsulates a holistic approach to model optimization, unifying multiple
strategies into an automated, scalable framework.

10.4.4.1 Model EfÏciency Encoding

NAS operates in three key stages: defining the search space, exploring candi-
date architectures, and evaluating their performance. The search space defines
the architectural components and constraints that NAS can modify. The search
strategy determines how NAS explores possible architectures, selecting promis-
ing candidates based on past observations. The evaluation process ensures
that the discovered architectures satisfy multiple objectives, including accuracy,
efÏciency, and hardware suitability.

1. Search Space Definition: This stage establishes the architectural compo-
nents and constraints NAS can modify, such as the number of layers, con-

10.4. Model Representation Optimization 452

14 Reinforcement Learning: A
machine learning technique that
learns actions based on rewards.

15 Evolutionary Algorithms: Op-
timization algorithms inspired by
natural selection.

16 Depthwise Separable Con-
volution: A type of convolution
that splits the convolutional process
into separate spatial and depth-wise
steps.

17 Residual Block: A series of
layers in a deep neural network de-
signed to prevent the vanishing gra-
dient problem by adding inputs to
outputs.

volution types, activation functions, and hardware-specific optimizations.
A well-defined search space balances innovation with computational
feasibility.

2. Search Strategy: NAS explores the search space using methods such as
reinforcement learning14, evolutionary algorithms15, or gradient-based
techniques. These approaches guide the search toward architectures that
maximize performance while meeting resource constraints.

3. Evaluation Criteria: Candidate architectures are assessed based on multi-
ple metrics, including accuracy, FLOPs, memory consumption, inference
latency, and power efÏciency. NAS ensures that the selected architectures
align with deployment requirements.

NAS unifies structural design and optimization into a singular, automated
framework. The result is the discovery of architectures that are not only highly
accurate but also computationally efÏcient and well-suited for target hardware
platforms.

10.4.4.2 Search Space Definition

The first step in NAS is determining the set of architectures it is allowed to
explore, known as the search space. The size and structure of this space directly
affect how efÏciently NAS can discover optimal models. A well-defined search
space must be broad enough to allow innovation while remaining narrow
enough to prevent unnecessary computation on impractical designs.

A typical NAS search space consists of modular building blocks that define
the structure of the model. These include the types of layers available for
selection, such as standard convolutions, depthwise separable convolutions,16

attention mechanisms, and residual blocks.17 The search space also defines
constraints on network depth and width, specifying how many layers the model
can have and how many channels each layer should include. Additionally, NAS
considers activation functions, such as ReLU, Swish, or GELU, which influence
both model expressiveness and computational efÏciency.

Other architectural decisions within the search space include kernel sizes,
receptive fields, and skip connections, which impact both feature extraction
and model complexity. Some NAS implementations also incorporate hardware-
aware optimizations, ensuring that the discovered architectures align with
specific hardware, such as GPUs, TPUs, or mobile CPUs.

The choice of search space determines the extent to which NAS can optimize a
model. If the space is too constrained, the search algorithm may fail to discover
novel and efÏcient architectures. If it is too large, the search becomes computa-
tionally expensive, requiring extensive resources to explore a vast number of
possibilities. Striking the right balance ensures that NAS can efÏciently identify
architectures that improve upon human-designed models.

10.4.4.3 Search Space Exploration

Once the search space is defined, NAS must determine how to explore different
architectures effectively. The search strategy guides this process by selecting
which architectures to evaluate based on past observations. An effective search

Chapter 10. Model Optimizations 453

strategy must balance exploration (testing new architectures) with exploitation
(refining promising designs).

Several methods have been developed to navigate the search space efÏciently.
Reinforcement learning-based NAS formulates the search process as a decision-
making problem, where an agent sequentially selects architectural components
and receives a reward signal based on the performance of the generated model.
Over time, the agent learns to generate better architectures by maximizing this
reward. While effective, reinforcement learning-based NAS can be computa-
tionally expensive because it requires training many candidate models before
converging on an optimal design.

An alternative approach uses evolutionary algorithms, which maintain a
population of candidate architectures and iteratively improve them through
mutation and selection. Stronger architectures, which possess higher accuracy
and efÏciency, are retained, while modifications such as changing layer types or
filter sizes introduce new variations. This approach has been shown to balance
exploration and computational feasibility more effectively than reinforcement
learning-based NAS.

More recent methods, such as gradient-based NAS, introduce differentiable
parameters that represent architectural choices. Instead of treating architectures
as discrete entities, gradient-based methods optimize both model weights and
architectural parameters simultaneously using standard gradient descent. This
significantly reduces the computational cost of the search, making NAS more
practical for real-world applications.

The choice of search strategy has a direct impact on the feasibility of NAS.
Early NAS methods that relied on reinforcement learning required weeks of
GPU computation to discover a single architecture. More recent methods,
particularly those based on gradient-based search, have significantly reduced
this cost, making NAS more efÏcient and accessible.

10.4.4.4 Candidate Architecture Evaluation

Every architecture explored by NAS must be evaluated based on a set of prede-
fined criteria. While accuracy is a fundamental metric, NAS also optimizes for
efÏciency constraints to ensure that models are practical for deployment. The
evaluation process determines whether an architecture should be retained for
further refinement or discarded in favor of more promising designs.

The primary evaluation metrics include computational complexity, memory
consumption, inference latency, and energy efÏciency. Computational complex-
ity, often measured in FLOPs, determines the overall resource demands of a
model. NAS favors architectures that achieve high accuracy while reducing
unnecessary computations. Memory consumption, which includes both pa-
rameter count and activation storage, ensures that models fit within hardware
constraints. For real-time applications, inference latency is a key factor, with
NAS selecting architectures that minimize execution time on specific hardware
platforms. Finally, some NAS implementations explicitly optimize for power
consumption, ensuring that models are suitable for mobile and edge devices.

For example, FBNet, a NAS-generated architecture optimized for mobile
inference, incorporated latency constraints into the search process. Instead

10.4. Model Representation Optimization 454

of selecting the most accurate model, NAS identified architectures that pro-
vided the best balance between accuracy and inference speed (B. Wu et al.
2019). Similarly, EfÏcientNet was discovered through NAS by jointly optimiz-
ing for accuracy and computational efÏciency, resulting in a model that delivers
state-of-the-art performance while reducing FLOPs compared to conventional
architectures (Tan and Le 2019a).

By integrating these constraints into the search process, NAS systematically
discovers architectures that balance accuracy, efÏciency, and hardware adapt-
ability. Instead of manually fine-tuning these trade-offs, NAS automates the
selection of optimal architectures, ensuring that models are well-suited for
real-world deployment scenarios.

10.4.4.5 NAS-Discovered Architecture Examples

NAS has been successfully used to design several state-of-the-art architectures
that outperform manually designed models in terms of efÏciency and accu-
racy. These architectures illustrate how NAS integrates scaling optimization,
computation reduction, memory efÏciency, and hardware-aware design into
an automated process.

One of the most well-known NAS-generated models is EfÏcientNet, which
was discovered using a NAS framework that searched for the most effective
combination of depth, width, and resolution scaling. Unlike traditional scaling
strategies that independently adjust these factors, NAS optimized the model
using compound scaling, which applies a fixed set of scaling coefÏcients to
ensure that the network grows in a balanced way. EfÏcientNet achieves higher
accuracy with fewer parameters and lower FLOPs than previous architectures,
making it ideal for both cloud and mobile deployment.

Another key example is MobileNetV3, which used NAS to optimize its net-
work structure for mobile hardware. The search process led to the discovery
of inverted residual blocks with squeeze-and-excitation layers, which improve
accuracy while reducing computational cost. NAS also selected optimized
activation functions and efÏcient depthwise separable convolutions, leading to
a 5× reduction in FLOPs compared to earlier MobileNet versions.

FBNet, another NAS-generated model, was specifically optimized for real-
time inference on mobile CPUs. Unlike architectures designed for general-
purpose acceleration, FBNet’s search process explicitly considered latency con-
straints during training, ensuring that the final model runs efÏciently on low-
power hardware. Similar approaches have been used in TPU-optimized NAS
models, where the search process is guided by hardware-aware cost functions
to maximize parallel execution efÏciency.

NAS has also been applied beyond convolutional networks. NAS-BERT ex-
plores transformer-based architectures, searching for efÏcient model structures
that retain strong natural language understanding capabilities while reducing
compute and memory overhead. NAS has been particularly useful in designing
efÏcient vision transformers (ViTs) by automatically discovering lightweight
attention mechanisms tailored for edge AI applications.

Each of these NAS-generated models demonstrates how automated architec-
ture search can uncover novel efÏciency trade-offs that may not be immediately

Chapter 10. Model Optimizations 455

18 Binarization and Ternariza-
tion: Techniques that use 1-bit or
3-state representations to minimize
model size and complexity.

19 Biological neural systems
achieve remarkable performance us-
ing imprecise, noisy neural sig-
nals. This natural efÏciency has in-
spired the development of reduced-
precision computational models in
artificial neural networks.

20 Floating-Point Addition
(FAdd): An operation to sum two
floating-point numbers.

intuitive to human designers. Explicit encoding of efÏciency constraints into
the search process enables NAS to systematically produce architectures that
are more computationally efÏcient, memory-friendly, and hardware-adapted
than those designed manually (Radosavovic et al. 2020).

10.5 Numerical Precision Optimization
Machine learning models perform computations using numerical representa-
tions, and the choice of precision directly affects memory usage, computational
efÏciency, and power consumption. Many state-of-the-art models are trained
and deployed using high-precision floating-point formats, such as FP32 (32-bit
floating point), which offer numerical stability and high accuracy (S. Gupta
et al. 2015). However, high-precision formats increase storage requirements,
memory bandwidth usage, and power consumption, making them inefÏcient
for large-scale or resource-constrained deployments.

Reducing numerical precision improves efÏciency by reducing storage needs,
decreasing data movement between memory and compute units, and enabling
faster computation. Many modern AI accelerators, such as TPUs, GPUs, and
edge AI chips, include dedicated hardware for low-precision computation,
allowing FP16 and INT8 operations to run at significantly higher throughput
than FP32 (Y. E. Wang, Wei, and Brooks 2019). However, reducing precision
introduces quantization error, which can lead to accuracy degradation. The
extent to which precision can be reduced depends on the model architecture,
dataset properties, and hardware support.

This section explores the role of numerical precision in model efÏciency,
examining the trade-offs between different precision formats, methods for pre-
cision reduction, the benefits of custom and adaptive numerical representations,
and extreme cases where models operate using only a few discrete numerical
states (binarization and ternarization18).

10.5.1 EfÏciency Numerical Precision
EfÏcient numerical representations enable significant reductions in storage
requirements, computation latency, and power usage. By lowering precision,
models can perform inference more efÏciently, making this approach particu-
larly beneficial for mobile AI, embedded systems, and cloud inference, where
efÏciency constraints are paramount. Moreover, efÏcient numerics facilitate
hardware-software co-design, allowing precision levels to be tuned to specific
hardware capabilities, thereby maximizing throughput on AI accelerators such
as GPUs, TPUs, NPUs, and edge AI chips.19

10.5.1.1 Numerical Precision Energy Costs

The energy costs associated with different numerical precisions further high-
light the benefits of reducing precision. As shown in Figure 10.14, performing a
32-bit floating-point addition (FAdd)20 consumes approximately 0.9 pJ, whereas
a 16-bit floating-point addition only requires 0.4 pJ. Similarly, a 32-bit integer
addition costs 0.1 pJ, while an 8-bit integer addition is significantly lower at

10.5. Numerical Precision Optimization 456

Figure 10.14: Coming soon.
Operation

Integer ADD (8b)1

Energy_pJ

Integer ADD (16b)2

Integer ADD (32b)3

Integer MULT (8b)4

Integer MULT (32b)5

8 KB SRAM Read (32b)6

32 KB SRAM Read (32b)7

1 MB SRAM Read (32b)8

 0.03

 0.05

 0.10

 0.20

 3.10

 5.00

10.00

50.00

0.03 0.05 0.1 0.2
3.1

5

10

50

100X

0

10

20

30

40

50

In
te

ge
r A

DD (8
b)

In
te

ge
r A

DD (1
6b

)

In
te

ge
r A

DD (3
2b

)

In
te

ge
r M

ULT
 (8

b)

In
te

ge
r M

ULT
 (3

2b
)

8
KB S

RAM
 R

ea
d

(3
2b

)

32
 K

B S
RAM

 R
ea

d
(3

2b
)

1
M

B S
RAM

 R
ea

d
(3

2b
)

Operation

E
ne

rg
y

(p
J)

Energy Consumption of Different Operations

21 Numerical Instability: Occurs
when small errors in data or oper-
ations amplify through a computa-
tion, possibly leading to erroneous
results.

22 Quantization Noise: Un-
wanted variability in model output
due to reduced precision in numeri-
cal calculations.

just 0.03 pJ. These savings compound when considering large-scale models
operating across billions of operations.

Beyond direct compute savings, reducing numerical precision has a signifi-
cant impact on memory energy consumption, which often dominates total sys-
tem power. Lower-precision representations reduce data storage requirements
and memory bandwidth usage, leading to fewer and more efÏcient memory
accesses. This is critical because accessing memory, particularly off-chip DRAM,
is far more energy-intensive than performing arithmetic operations. For in-
stance, DRAM accesses require orders of magnitude more energy (1.3–2.6 nJ)
compared to cache accesses (e.g., 10 pJ for an 8 KB L1 cache access). The break-
down of instruction energy further underscores the cost of moving data within
the memory hierarchy, where an instruction’s total energy can be significantly
impacted by memory access patterns.

By reducing numerical precision, models can not only execute computations
more efÏciently but also reduce data movement, leading to lower overall energy
consumption. This is particularly important for hardware accelerators and edge
devices, where memory bandwidth and power efÏciency are key constraints.

10.5.1.2 Quantization Performance Gains

Figure 10.15 illustrates the impact of quantization on both inference time and
model size using a stacked bar chart with a dual-axis representation. The
left bars in each category show inference time improvements when moving
from FP32 to INT8, while the right bars depict the corresponding reduction in
model size. The results indicate that quantized models achieve up to 4× faster
inference while reducing storage requirements by a factor of 4×, making them
highly suitable for deployment in resource-constrained environments.

However, reducing numerical precision introduces trade-offs. Lower-precision
formats can lead to numerical instability21 and quantization noise22, potentially
affecting model accuracy. Some architectures, such as large transformer-based
NLP models, tolerate precision reduction well, whereas others may experience
significant degradation. Thus, selecting the appropriate numerical precision
requires balancing accuracy constraints, hardware support, and efÏciency gains.

Chapter 10. Model Optimizations 457

Figure 10.15: Impact of quantization
on inference time and model size.
The left stacked bars show inference
time improvements, while the right
stacked bars highlight memory sav-
ings.

30 ms

700 ms

300 ms

70 ms
800 ms

500 ms

4 MB

45 MB

24 MB

13 MB

135 MB

71 MB

Inference_Time Model_Size

Inception_v3 MobileNet_v1 ResNet_v2 Inception_v3 MobileNet_v1 ResNet_v2

0

50

100

150

200

0

500

1000

Model

V
al

ue

Precision

FP32

INT8

Impact of Quantization on Inference Time and Model Size

10.5.1.3 Numerical Precision Reduction Trade-offs

However, reducing numerical precision introduces trade-offs. Lower-precision
formats can lead to numerical instability and quantization noise, potentially
affecting model accuracy. Some architectures, such as large transformer-based
NLP models, tolerate precision reduction well, whereas others may experience
significant degradation. Thus, selecting the appropriate numerical precision
requires balancing accuracy constraints, hardware support, and efÏciency gains.

Figure 10.16: Quantization error
weighted by p(x).

The figure above illustrates the quantization error weighted by the probability
distribution of values, comparing different numerical formats (FP8 variants
and INT8). The error distribution highlights how different formats introduce

10.5. Numerical Precision Optimization 458

varying levels of quantization noise across the range of values, which in turn
influences model accuracy and stability.

10.5.2 Numeric Encoding and Storage

The representation of numerical data in machine learning systems extends be-
yond precision levels to encompass encoding formats and storage mechanisms,
both of which significantly influence computational efÏciency. The encoding of
numerical values determines how floating-point and integer representations
are stored in memory and processed by hardware, directly affecting perfor-
mance in machine learning workloads. As machine learning models grow
in size and complexity, optimizing numeric encoding becomes increasingly
critical for ensuring efÏciency, particularly on specialized hardware accelerators
(Mellempudi et al. 2019).

Floating-point representations, which are widely used in machine learning,
follow the IEEE 754 standard, defining how numbers are represented using
a combination of sign, exponent, and mantissa (fraction) bits. Standard for-
mats such as FP32 (single precision) and FP64 (double precision) provide high
accuracy but demand substantial memory and computational resources. To
enhance efÏciency, reduced-precision formats such as FP16, bfloat16, and FP8
have been introduced, offering lower storage requirements while maintaining
sufÏcient numerical range for machine learning computations. Unlike FP16,
which allocates more bits to the mantissa, bfloat16 retains the same exponent
size as FP32, allowing it to represent a wider dynamic range while reducing
precision in the fraction. This characteristic makes bfloat16 particularly effective
for machine learning training, where maintaining dynamic range is critical for
stable gradient updates.

Integer-based representations, including INT8 and INT4, further reduce stor-
age and computational overhead by eliminating the need for exponent and
mantissa encoding. These formats are commonly used in quantized inference,
where model weights and activations are converted to discrete integer values
to accelerate computation and reduce power consumption. The determinis-
tic nature of integer arithmetic simplifies execution on hardware, making it
particularly well-suited for edge AI and mobile devices. At the extreme end,
binary and ternary representations restrict values to just one or two bits, lead-
ing to significant reductions in memory footprint and power consumption.
However, such aggressive quantization can degrade model accuracy unless
complemented by specialized training techniques or architectural adaptations.

Emerging numeric formats seek to balance the trade-off between efÏciency
and accuracy. TF32, introduced by NVIDIA for Ampere GPUs, modifies FP32
by reducing the mantissa size while maintaining the exponent width, allowing
for faster computations with minimal precision loss. Similarly, FP8, which is
gaining adoption in AI accelerators, provides an even lower-precision floating-
point alternative while retaining a structure that aligns well with machine
learning workloads (Micikevicius et al. 2022). Alternative formats such as Posit,
Flexpoint, and BF16ALT are also being explored for their potential advantages
in numerical stability and hardware adaptability.

https://standards.ieee.org/standard/754-2019.html
https://cloud.google.com/tpu/docs/bfloat16
https://arxiv.org/abs/2209.05433
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://ieeexplore.ieee.org/document/9399648
https://arxiv.org/abs/1711.02213
https://developer.arm.com/documentation/ddi0596/2020-12/SIMD-FP-Instructions/BFMLALB--BFMLALT--vector---BFloat16-floating-point-widening-multiply-add-long--vector--

Chapter 10. Model Optimizations 459

The efÏciency of numeric encoding is further influenced by how data is
stored and accessed in memory. AI accelerators optimize memory hierarchies
to maximize the benefits of reduced-precision formats, leveraging specialized
hardware such as tensor cores, matrix multiply units (MMUs), and vector pro-
cessing engines to accelerate lower-precision computations. On these platforms,
data alignment, memory tiling, and compression techniques play a crucial role
in ensuring that reduced-precision computations deliver tangible performance
gains.

As machine learning systems evolve, numeric encoding and storage strategies
will continue to adapt to meet the demands of large-scale models and diverse
hardware environments. The ongoing development of precision formats tai-
lored for AI workloads highlights the importance of co-designing numerical
representations with underlying hardware capabilities, ensuring that machine
learning models achieve optimal performance while minimizing computational
costs.

10.5.3 Numerical Precision Format Comparison
Table 11.5 compares commonly used numerical precision formats in machine
learning, highlighting their trade-offs in storage efÏciency, computational speed,
and energy consumption. Emerging formats like FP8 and TF32 have been
introduced to further optimize performance, particularly on AI accelerators.

Table 10.6: Comparison of numerical precision formats.

Precision Format
Bit-
Width

Storage
Reduction
(vs FP32)

Compute Speed (vs
FP32)

Power
Con-
sumption Use Cases

FP32
(Single-Precision
Floating Point)

32-
bit

Baseline (1×) Baseline (1×) High Training & inference
(general-purpose)

FP16
(Half-Precision
Floating Point)

16-
bit

2× smaller 2× faster on
FP16-optimized
hardware

Lower Accelerated training,
inference (NVIDIA Tensor
Cores, TPUs)

bfloat16 (Brain
Floating Point)

16-
bit

2× smaller Similar speed to
FP16, better
dynamic range

Lower Training on TPUs,
transformer-based models

TF32
(TensorFloat-32)

19-
bit

Similar to
FP16

Up to 8× faster on
NVIDIA Ampere
GPUs

Lower Training on NVIDIA GPUs

FP8
(Floating-Point
8-bit)

8-bit 4× smaller Faster than INT8 in
some cases

Signifi-
cantly
lower

EfÏcient
training/inference (H100,
AI accelerators)

INT8 (8-bit
Integer)

8-bit 4× smaller 4–8× faster than
FP32

Signifi-
cantly
lower

Quantized inference (Edge
AI, mobile AI, NPUs)

INT4 (4-bit
Integer)

4-bit 8× smaller Hardware-
dependent

Ex-
tremely
low

Ultra-low-power AI,
experimental quantization

Binary/Ternary
(1-bit / 2-bit)

1–2-
bit

16–32×
smaller

Highly hardware-
dependent

Lowest Extreme efÏciency
(binary/ternary neural
networks)

FP16 and bfloat16 formats provide moderate efÏciency gains while preserving
model accuracy. Many AI accelerators, such as NVIDIA Tensor Cores and TPUs,
include dedicated support for FP16 computations, enabling 2× faster matrix
operations compared to FP32. BFloat16, in particular, retains the same 8-bit

10.5. Numerical Precision Optimization 460

exponent as FP32 but with a reduced 7-bit mantissa, allowing it to maintain a
similar dynamic range (~10−38 to 1038) while sacrificing precision. In contrast,
FP16, with its 5-bit exponent and 10-bit mantissa, has a significantly reduced
dynamic range (~10−5 to 105), making it more suitable for inference rather than
training. Since BFloat16 preserves the exponent size of FP32, it better handles
extreme values encountered during training, whereas FP16 may struggle with
underflow or overflow. This makes BFloat16 a more robust alternative for deep
learning workloads that require a wide dynamic range.

Figure 10.17: Three floating-point
formats.

1-bit

sign
8-bit exponent 23-bit mantissaFloat32

1-bit

sign
5-bit exponent 10-bit mantissaFloat16

1-bit

sign
8-bit exponent 7-bit mantissaBFloat16

16 bits 16 bits

Figure 10.17 highlights these differences, showing how bit-width allocations
impact the trade-offs between precision and numerical range.1

INT8 precision offers more aggressive efÏciency improvements, particularly
for inference workloads. Many quantized models use INT8 for inference, re-
ducing storage by 4× while accelerating computation by 4–8× on optimized
hardware. INT8 is widely used in mobile and embedded AI, where energy
constraints are significant.

Binary and ternary networks represent the extreme end of precision reduc-
tion, where weights and activations are constrained to 1-bit (binary) or 2-bit
(ternary) values. This results in massive storage and energy savings, but model
accuracy often degrades significantly unless specialized architectures are used.

10.5.4 Precision Reduction Trade-offs
Reducing numerical precision in machine learning systems offers substantial
gains in efÏciency, including lower memory requirements, reduced power con-
sumption, and increased computational throughput. However, these benefits
come with trade-offs, as lower-precision representations introduce numerical
error and quantization noise, which can affect model accuracy. The extent of
this impact depends on multiple factors, including the model architecture, the
dataset, and the specific precision format used.

Models exhibit varying levels of tolerance to precision reduction. Large-scale
architectures, such as convolutional neural networks and transformer-based
models, often retain high accuracy even when using reduced-precision formats

1The dynamic range of a floating-point format is determined by its exponent bit-width and bias.
FP32 and BFloat16 both use an 8-bit exponent with a bias of 127, resulting in an exponent range of[−126,127] and an approximate numerical range of 10−38 to 1038. FP16, with a 5-bit exponent
and a bias of 15, has an exponent range of [−14,15], leading to a more constrained numerical
range of roughly 10−5 to 105. This reduced range in FP16 can lead to numerical instability in
training, whereas BFloat16 retains FP32’s broader range, making it more suitable for training deep
neural networks.

Chapter 10. Model Optimizations 461

such as bfloat16 or INT8. In contrast, smaller models or those trained on tasks
requiring high numerical precision may experience greater degradation in
performance. Additionally, not all layers within a neural network respond
equally to precision reduction. Certain layers, such as batch normalization
and attention mechanisms, may be more sensitive to numerical precision than
standard feedforward layers. As a result, techniques such as mixed-precision
training, where different layers operate at different levels of precision, can help
maintain accuracy while optimizing computational efÏciency.

Hardware support is another critical factor in determining the effectiveness
of precision reduction. AI accelerators, including GPUs, TPUs, and NPUs,
are designed with dedicated low-precision arithmetic units that enable efÏ-
cient computation using FP16, bfloat16, INT8, and, more recently, FP8. These
architectures exploit reduced precision to perform high-throughput matrix
operations, improving both speed and energy efÏciency. In contrast, general-
purpose CPUs often lack specialized hardware for low-precision computations,
limiting the potential benefits of numerical precision reduction. The intro-
duction of newer floating-point formats, such as TF32 for NVIDIA GPUs and
FP8 for AI accelerators, seeks to optimize the trade-off between precision and
efÏciency, offering an alternative for hardware that is not explicitly designed
for extreme quantization.

In addition to hardware constraints, reducing numerical precision impacts
power consumption. Lower-precision arithmetic reduces the number of re-
quired memory accesses and simplifies computational operations, leading
to lower overall energy use. This is particularly advantageous for energy-
constrained environments such as mobile devices and edge AI systems. At the
extreme end, ultra-low precision formats, including INT4 and binary/ternary
representations, provide substantial reductions in power and memory usage.
However, these formats often require specialized architectures to compensate
for the accuracy loss associated with such aggressive quantization.

To mitigate accuracy loss associated with reduced precision, various preci-
sion reduction strategies can be employed. Ultimately, selecting the appropriate
numerical precision for a given machine learning model requires balancing
efÏciency gains against accuracy constraints. This selection depends on the
model’s architecture, the computational requirements of the target application,
and the underlying hardware’s support for low-precision operations. By lever-
aging advancements in both hardware and software optimization techniques,
practitioners can effectively integrate lower-precision numerics into machine
learning pipelines, maximizing efÏciency while maintaining performance.

10.5.5 Precision Reduction Strategies

Reducing numerical precision is an essential optimization technique for im-
proving the efÏciency of machine learning models. By lowering the bit-width
of weights and activations, models can reduce memory footprint, improve
computational throughput, and decrease power consumption. However, naive
precision reduction can introduce quantization errors, leading to accuracy
degradation. To address this, different precision reduction strategies have

10.5. Numerical Precision Optimization 462

been developed, allowing models to balance efÏciency gains while preserving
predictive performance.

Precision reduction techniques can be applied at different stages of a model’s
lifecycle. Post-training quantization reduces precision after training, making it
a simple and low-cost approach for optimizing inference. Quantization-aware
training incorporates quantization effects into the training process, enabling
models to adapt to lower precision and retain higher accuracy. Mixed-precision
training leverages hardware support to dynamically assign precision levels
to different computations, optimizing execution efÏciency without sacrificing
accuracy.

10.5.5.1 Post-Training Quantization

Post-training quantization (PTQ) is a widely used technique for optimizing
machine learning models by reducing numerical precision after training, im-
proving inference efÏciency without requiring additional retraining (Jacob et
al. 2018b). By converting model weights and activations from high-precision
floating-point formats (e.g., FP32) to lower-precision representations (e.g., INT8
or FP16), PTQ enables smaller model sizes, faster computation, and reduced
energy consumption. This makes it a practical choice for deploying models on
resource-constrained environments, such as mobile devices, edge AI systems,
and cloud inference platforms (H. Wu et al. 2020).

Unlike other quantization techniques that modify the training process, PTQ is
applied after training is complete. This means that the model retains its original
structure and parameters, but its numerical representation is changed to operate
in a more efÏcient format. The key advantage of PTQ is its low computational
cost, as it does not require retraining the model with quantization constraints.
However, reducing precision can introduce quantization error, which may lead
to accuracy degradation, especially in tasks that rely on fine-grained numerical
precision.

PTQ is widely supported in machine learning frameworks such as Tensor-
Flow Lite, ONNX Runtime, and PyTorch’s quantization toolkit, making it an
accessible and practical approach for optimizing inference workloads. The
following sections explore how PTQ works, its benefits and challenges, and
techniques for mitigating accuracy loss.

PTQ Functionality. PTQ converts a trained model’s weights and activations
from high-precision floating-point representations (e.g., FP32) to lower-precision
formats (e.g., INT8 or FP16). This process reduces the memory footprint of
the model, accelerates inference, and lowers power consumption. However,
since lower-precision formats have a smaller numerical range, quantization
introduces rounding errors, which can impact model accuracy.

The core mechanism behind PTQ is scaling and mapping high-precision
values into a reduced numerical range. A widely used approach is uniform
quantization, which maps floating-point values to discrete integer levels using
a consistent scaling factor. In uniform quantization, the interval between each
quantized value is constant, simplifying implementation and ensuring efÏcient

Chapter 10. Model Optimizations 463

23 Calibration determines the op-
timal quantization range for model
parameters to minimize informa-
tion loss during precision reduction.

execution on hardware. The quantized value 𝑞 is computed as:𝑞 = round(𝑥𝑠)
where:

• 𝑞 is the quantized integer representation,
• 𝑥 is the original floating-point value,
• 𝑠 is a scaling factor that maps the floating-point range to the available

integer range.

For example, in INT8 quantization, the model’s floating-point values (typi-
cally ranging from [−𝑟,𝑟]) are mapped to an integer range of [−128,127]. The
scaling factor ensures that the most significant information is retained while
reducing precision loss. Once the model has been quantized, inference is
performed using integer arithmetic, which is significantly more efÏcient than
floating-point operations on many hardware platforms (A. et al. Gholami 2021).
However, due to rounding errors and numerical approximation, quantized
models may experience slight accuracy degradation compared to their full-
precision counterparts.

Once the model has been quantized, inference is performed using integer
arithmetic, which is significantly more efÏcient than floating-point operations
on many hardware platforms. However, due to rounding errors and numerical
approximation, quantized models may experience slight accuracy degradation
compared to their full-precision counterparts.

In addition to uniform quantization, non-uniform quantization can be em-
ployed to preserve accuracy in certain scenarios. Unlike uniform quantization,
which uses a consistent scaling factor, non-uniform quantization assigns finer-
grained precision to numerical ranges that are more densely populated. This
approach can be beneficial for models with weight distributions that concentrate
around certain values, as it allows more details to be retained where it matters
most. However, non-uniform quantization typically requires more complex
calibration and may involve additional computational overhead. While it is
not as commonly used as uniform quantization in production environments,
non-uniform techniques can be effective for preserving accuracy in models that
are particularly sensitive to precision changes.

PTQ is particularly effective for computer vision models, where CNNs often
tolerate quantization well. However, models that rely on small numerical differ-
ences, such as NLP transformers or speech recognition models, may require ad-
ditional tuning or alternative quantization techniques, including non-uniform
strategies, to retain performance.

Calibration. An important aspect of PTQ is the calibration step23, which in-
volves selecting the most effective clipping range [𝛼, 𝛽] for quantizing model
weights and activations. During PTQ, the model’s weights and activations
are converted to lower-precision formats (e.g., INT8), but the effectiveness of
this reduction depends heavily on the chosen quantization range. Without
proper calibration, the quantization process may cause significant accuracy
degradation, even if the overall precision is reduced. Calibration ensures that

10.5. Numerical Precision Optimization 464

24 Kullback-Leibler divergence:
A measure of how one probability
distribution diverges from a second,
expected probability distribution.

25 TensorRT is NVIDIA’s high-
performance deep learning infer-
ence optimizer and runtime engine.

the chosen range minimizes loss of information and helps preserve the model’s
performance after precision reduction.

The overall workflow of post-training quantization is illustrated in Figure 10.18.
The process begins with a pre-trained model, which serves as the starting point
for optimization. To determine an effective quantization range, a calibration
dataset, which is a representative subset of training or validation data—is
passed through the model. This step allows the calibration process to estimate
the numerical distribution of activations and weights, which is then used to
define the clipping range for quantization. Following calibration, the quantiza-
tion step converts the model parameters to a lower-precision format, producing
the final quantized model, which is more efÏcient in terms of memory and
computation.

Figure 10.18: Post-Training Quanti-
zation Workflow. Calibration uses
a pre-trained model and calibra-
tion data to determine quantization
ranges before applying precision re-
duction.

Quantized model

Quantization

Calibration

Pre-trained model Calibration data

For example, consider quantizing activations that originally have a floating-
point range between –6 and 6 to 8-bit integers. Simply using the full integer
range of –128 to 127 for quantization might not be the most effective approach.
Instead, calibration involves passing a representative dataset through the model
and observing the actual range of the activations. The observed range can then
be used to set a more effective quantization range, reducing information loss.

Calibration Methods. There are several commonly used calibration methods:
• Max: This method uses the maximum absolute value seen during calibra-

tion as the clipping range. While simple, it is susceptible to outlier data.
For example, in the activation distribution shown in Figure 10.19, we see
an outlier cluster around 2.1, while the rest of the values are clustered
around smaller values. The Max method could lead to an inefÏcient range
if the outliers significantly influence the quantization.

• Entropy: This method minimizes information loss between the original
floating-point values and the values that could be represented by the
quantized format, typically using KL divergence.24 This is the default
calibration method used by TensorRT25 and works well when trying to
preserve the distribution of the original values.

• Percentile: This method sets the clipping range to a percentile of the
distribution of absolute values seen during calibration. For example, a 99%
calibration would clip the top 1% of the largest magnitude values. This

Chapter 10. Model Optimizations 465

method helps avoid the impact of outliers, which are not representative
of the general data distribution.

Figure 10.19: Input activations to
layer 3 in ResNet50. Source: @H.
Wu et al. (2020).

The quality of calibration directly affects the performance of the quantized
model. A poor calibration could lead to a model that suffers from significant
accuracy loss, while a well-calibrated model can retain much of its original
performance after quantization. Importantly, there are two types of calibration
ranges to consider:

• Symmetric Calibration: The clipping range is symmetric around zero,
meaning both the positive and negative ranges are equally scaled.

• Asymmetric Calibration: The clipping range is not symmetric, which
means the positive and negative ranges may have different scaling factors.
This can be useful when the data is not centered around zero.

Choosing the right calibration method and range is critical for maintaining
model accuracy while benefiting from the efÏciency gains of reduced precision.

Calibration Ranges. A key challenge in post-training quantization is selecting
the appropriate calibration range [𝛼,𝛽] to map floating-point values into a
lower-precision representation. The choice of this range directly affects the
quantization error and, consequently, the accuracy of the quantized model.
As illustrated in Figure 10.20, there are two primary calibration strategies:
symmetric calibration and asymmetric calibration.

Figure 10.20: Comparison of sym-
metric and asymmetric calibration
methods.

r

Q

α = −0.5

−128

0

−Z

SZ

0

β = −1.5

127

r

Q

α = −1

−127

0

0

β = −1

127

On the left side of Figure 10.20, symmetric calibration is depicted, where the
clipping range is centered around zero. The range extends from 𝛼 = −1 to 𝛽 = 1,
mapping these values to the integer range [−127,127]. This method ensures
that positive and negative values are treated equally, preserving zero-centered

10.5. Numerical Precision Optimization 466

26 Clipping range: The bounds
within which values are allowed be-
fore they are adjusted for quantiza-
tion.

distributions. A key advantage of symmetric calibration is its simplified im-
plementation, as the same scale factor is applied to both positive and negative
values. However, this approach may not be optimal for datasets where the acti-
vation distributions are skewed, leading to poor representation of significant
portions of the data.

On the right side, asymmetric calibration is shown, where 𝛼 = −0.5 and𝛽 = 1.5. Here, zero is mapped to a shifted quantized value −𝑍, and the range
extends asymmetrically. In this case, the quantization scale is adjusted to
account for non-zero mean distributions. Asymmetric calibration is particularly
useful when activations or weights exhibit skew, ensuring that the full quantized
range is effectively utilized. However, it introduces additional computational
complexity in determining the optimal offset and scaling factors.

The choice between these calibration strategies depends on the model and
dataset characteristics:

• Symmetric calibration is commonly used when weight distributions are
centered around zero, which is often the case for well-initialized machine
learning models. It simplifies computation and hardware implementation
but may not be optimal for all scenarios.

• Asymmetric calibration is useful when the data distribution is skewed,
ensuring that the full quantized range is effectively utilized. It can im-
prove accuracy retention but may introduce additional computational
complexity in determining the optimal quantization parameters.

Many machine learning frameworks, including TensorRT and PyTorch, sup-
port both calibration modes, enabling practitioners to empirically evaluate the
best approach. Selecting an appropriate calibration range is important for PTQ,
as it directly influences the trade-off between numerical precision and efÏciency,
ultimately affecting the performance of quantized models.

Granularity. After determining the clipping range, the next step in optimizing
quantization involves adjusting the granularity of the clipping range to ensure
that the model retains as much accuracy as possible. In CNNs, for instance, the
input activations of a layer undergo convolution with multiple convolutional
filters, each of which may have a unique range of values. The quantization
process, therefore, must account for these differences in range across filters to
preserve the model’s performance.

As illustrated in Figure 10.21, the range for Filter 1 is significantly smaller
than that for Filter 3, demonstrating the variation in the magnitude of values
across different filters. The precision with which the clipping range [𝛼, 𝛽] is
determined for the weights becomes a critical factor in effective quantization.
This variability in ranges is a key reason why different quantization strategies,
based on granularity, are employed.

Several methods are commonly used to determine the granularity of quanti-
zation, each with its own trade-offs in terms of accuracy, efÏciency, and compu-
tational cost.

Layerwise Quantization. In this approach, the clipping range26 is determined
by considering all weights in the convolutional filters of a layer. The same
clipping range is applied to all filters within the layer. While this method is

Chapter 10. Model Optimizations 467

Figure 10.21: Quantization granu-
larity: variable ranges. Source: A. et
al. Gholami (2021).Filter 1

Filter 2

Filter 3

Filter C

Layerwise

Quantization
Channelwise

Quantization

...

Layer N

Layer N 1

Layer 2

Layer 1

...

Output: ŷ

Input: x

simple to implement, it often leads to suboptimal accuracy due to the wide
range of values across different filters. For example, if one convolutional kernel
has a narrower range of values than another in the same layer, the quantization
resolution of the narrower range may be compromised, resulting in a loss of
information.

Groupwise Quantization. Groupwise quantization divides the convolutional
filters into groups and calculates a shared clipping range for each group. This
method can be beneficial when the distribution of values within a layer is
highly variable. For example, the Q-BERT model (Shen et al. 2019) applied
this technique when quantizing Transformer models (M. X. Chen et al. 2018),
particularly for the fully-connected attention layers. While groupwise quanti-
zation offers better accuracy than layerwise quantization, it incurs additional
computational cost due to the need to account for multiple scaling factors.

Channelwise Quantization. Channelwise quantization assigns a dedicated clip-
ping range and scaling factor to each convolutional filter. This approach ensures
a higher resolution in quantization, as each channel is quantized independently.
Channelwise quantization is widely used in practice, as it often yields better
accuracy compared to the previous methods. By allowing each filter to have
its own clipping range, this method ensures that the quantization process is
tailored to the specific characteristics of each filter.

Sub-channelwise Quantization. This method takes the concept of channelwise
quantization a step further by subdividing each convolutional filter into smaller
groups, each with its own clipping range. Although this method can provide
very fine-grained control over quantization, it introduces significant computa-
tional overhead as multiple scaling factors must be managed for each group
within a filter. As a result, sub-channelwise quantization is generally only

10.5. Numerical Precision Optimization 468

used in scenarios where maximum precision is required, despite the increased
computational cost.

Among these methods, channelwise quantization is the current standard for
quantizing convolutional filters. It strikes a balance between the accuracy gains
from finer granularity and the computational efÏciency needed for practical
deployment. Adjusting the clipping range for each individual kernel provides
significant improvements in model accuracy with minimal overhead, making it
the most widely adopted approach in machine learning applications.

Weights vs. Activations. Weight Quantization involves converting the contin-
uous, high-precision weights of a model into lower-precision values, such as
converting 32-bit floating-point (Float32) weights to 8-bit integer (INT8) weights.
As illustrated in Figure 10.22, weight quantization occurs in the second step (red
squares) during the multiplication of inputs. This process significantly reduces
the model size, decreasing both the memory required to store the model and the
computational resources needed for inference. For example, a weight matrix in
a neural network layer with Float32 weights like [0.215,−1.432,0.902,…] might
be mapped to INT8 values such as [27,−183,115,…], leading to a substantial
reduction in memory usage.

Figure 10.22: Weight and activation
quantization. Source: HarvardX. Matrix

Multiplication

Int32

Output
Quantization Activation

Float 16

Output

QuantizationFloat input

QuantizationFloat input

x

y

1

0.5

0.5

1

Int8

Int8

Float 16

Activation Quantization refers to the process of quantizing the activation
values, or outputs of the layers, during model inference. This quantization
can reduce the computational resources required during inference, particularly
when targeting hardware optimized for integer arithmetic. It introduces chal-
lenges related to maintaining model accuracy, as the precision of intermediate
computations is reduced. For instance, in a CNN, the activation maps (or fea-
ture maps) produced by convolutional layers, originally represented in Float32,
may be quantized to INT8 during inference. This can significantly accelerate
computation on hardware capable of efÏciently processing lower-precision
integers.

Recent advancements have explored Activation-aware Weight Quantization
(AWQ) for the compression and acceleration of large language models (LLMs).
This approach focuses on protecting only a small fraction of the most salient
weights, approximately 1%, by observing the activations rather than the weights
themselves. This method has been shown to improve model efÏciency while
preserving accuracy, as discussed in (Ji Lin, Tang, et al. 2023).

Chapter 10. Model Optimizations 469

Static vs. Dynamic Quantization. After determining the type and granularity
of the clipping range, practitioners must decide when the clipping ranges are
calculated in their quantization algorithms. Two primary approaches exist for
quantizing activations: static quantization and dynamic quantization.

Static Quantization is the more commonly used approach. In static quantiza-
tion, the clipping range is pre-calculated and remains fixed during inference.
This method does not introduce any additional computational overhead during
runtime, which makes it efÏcient in terms of computational resources. However,
the fixed range can lead to lower accuracy compared to dynamic quantization.
A typical implementation of static quantization involves running a series of
calibration inputs to compute the typical range of activations, as discussed in
works like (Jacob et al. 2018b) and (Yao et al. 2021).

In contrast, Dynamic Quantization dynamically calculates the range for each
activation map during runtime. This approach allows the quantization process
to adjust in real time based on the input, potentially yielding higher accuracy
since the range is specifically calculated for each input activation. However,
dynamic quantization incurs higher computational overhead because the range
must be recalculated at each step. Although this often results in higher accuracy,
the real-time computations can be expensive, particularly when deployed at
scale.

The following table, Table 10.7, summarizes the characteristics of post-training
quantization, quantization-aware training, and dynamic quantization, provid-
ing an overview of their respective strengths, limitations, and trade-offs. These
methods are widely deployed across machine learning systems of varying scales,
and understanding their pros and cons is crucial for selecting the appropriate
approach for a given application.

Table 10.7: Comparison of post-training quantization, quantization-aware train-
ing, and dynamic quantization.

Aspect
Post Training
Quantization

Quantization-Aware
Training

Dynamic
Quantization

Pros
Simplicity ✓ � �
Accuracy Preservation � ✓ ✓
Adaptability � � ✓
Optimized Performance � ✓ Potentially
Cons
Accuracy Degradation ✓ � Potentially
Computational Overhead � ✓ ✓
Implementation Complexity � ✓ ✓
Tradeoffs
Speed vs. Accuracy ✓ � �
Accuracy vs. Cost � ✓ �
Adaptability vs. Overhead � � ✓

PTQ Advantages. One of the key advantages of PTQ is its low computational
cost, as it does not require retraining the model. This makes it an attractive
option for the rapid deployment of trained models, particularly when retrain-
ing is computationally expensive or infeasible. Since PTQ only modifies the
numerical representation of weights and activations, the underlying model

10.5. Numerical Precision Optimization 470

architecture remains unchanged, allowing it to be applied to a wide range of
pre-trained models without modification.

PTQ also provides substantial memory and storage savings by reducing the
bit-width of model parameters. For instance, converting a model from FP32
to INT8 results in a 4× reduction in storage size, making it feasible to deploy
larger models on resource-constrained devices such as mobile phones, edge
AI hardware, and embedded systems. These reductions in memory footprint
also lead to lower bandwidth requirements when transferring models across
networked systems.

In terms of computational efÏciency, PTQ allows inference to be performed
using integer arithmetic, which is inherently faster than floating-point opera-
tions on many hardware platforms. AI accelerators such as TPUs and Neural
Processing Units (NPUs) are optimized for lower-precision computations, en-
abling higher throughput and reduced power consumption when executing
quantized models. This makes PTQ particularly useful for applications requir-
ing real-time inference, such as object detection in autonomous systems or
speech recognition on mobile devices.

PTQ Challenges and Limitations. Despite its advantages, PTQ introduces
quantization errors due to rounding effects when mapping floating-point val-
ues to discrete lower-precision representations. While some models remain
robust to these changes, others may experience notable accuracy degradation,
especially in tasks that rely on small numerical differences.

The extent of accuracy loss depends on both the model architecture and the
task domain. CNNs for image classification are generally tolerant to PTQ, often
maintaining near-original accuracy even with aggressive INT8 quantization.
Transformer-based models used in natural language processing (NLP) and
speech recognition tend to be more sensitive, as these architectures rely on the
precision of numerical relationships in attention mechanisms.

To mitigate accuracy loss, calibration techniques such as KL divergence-
based scaling or per-channel quantization are commonly applied to fine-tune
the scaling factor and minimize information loss. Some frameworks, including
TensorFlow Lite and PyTorch, provide automated quantization tools with built-
in calibration methods to improve accuracy retention.

Another limitation of PTQ is that not all hardware supports efÏcient integer
arithmetic. While GPUs, TPUs, and specialized edge AI chips often include
dedicated support for INT8 inference, general-purpose CPUs may lack the
optimized instructions for low-precision execution, resulting in suboptimal
performance improvements.

Additionally, PTQ is not always suitable for training purposes. Since PTQ
applies quantization after training, models that require further fine-tuning or
adaptation may benefit more from alternative approaches, such as quantization-
aware training (which we will discuss next), to ensure that precision constraints
are adequately considered during the learning process.

Post-training quantization remains one of the most practical and widely used
techniques for improving inference efÏciency. It provides substantial memory
and computational savings with minimal overhead, making it an ideal choice
for deploying machine learning models in resource-constrained environments.

Chapter 10. Model Optimizations 471

However, the success of PTQ depends on model architecture, task sensitiv-
ity, and hardware compatibility. In scenarios where accuracy degradation is
unacceptable, alternative quantization strategies, such as quantization-aware
training, may be required.

10.5.5.2 Quantization-Aware Training

While PTQ offers a fast, computationally inexpensive approach for optimizing
inference efÏciency, it has inherent limitations; applying quantization after
training does not consider the impacts of reduced numerical precision on
model behavior. This oversight can result in noticeable accuracy degradation,
particularly for models that rely on fine-grained numerical precision, such as
transformers used in NLP and speech recognition systems (Nagel et al. 2021a).

QAT addresses this limitation by integrating quantization constraints di-
rectly into the training process. Instead of reducing precision after training,
QAT simulates low-precision arithmetic during forward passes, allowing the
model to learn how to be more robust to quantization effects. This ensures that
the model’s accuracy is better maintained once deployed with low-precision
computations (Jacob et al. 2018b).

As illustrated in Figure 10.23, QAT involves first applying quantization to a
pre-trained model, followed by retraining or fine-tuning using training data.
This process allows the model to adapt to low-precision numerical constraints,
mitigating accuracy degradation.

Figure 10.23: Quantization-aware
training process.

Quantized model

Retraining/Finetuning

Quantization

Pre-trained model

Training data

In many cases, QAT can also build off PTQ, as shown in Figure 10.24. Instead
of starting from a full-precision model, PTQ is first applied to produce an
initial quantized model, leveraging calibration data to determine appropriate
quantization parameters. This PTQ model then serves as the starting point for
QAT, where additional fine-tuning with training data helps the model better
adapt to low-precision constraints. This hybrid approach benefits from the
efÏciency of PTQ while reducing the accuracy degradation typically associated
with post-training quantization alone.

Training Mathematics. During forward propagation, weights and activations
are quantized and dequantized to mimic reduced precision. This process is

10.5. Numerical Precision Optimization 472

Figure 10.24: Quantization-aware
training process after PTQ.

Pretrained model

Quantize model

Calibrate model

PTQ model

Finteune model

QAT model

Calibrate data

Training data

PTQ

QAT

27 Straight-Through Estima-
tor (STE): A method used in neu-
ral network training to backprop-
agate through non-differentiable
functions.

typically represented as: 𝑞 = round(𝑥𝑠)×𝑠
where 𝑞 represents the simulated quantized value, 𝑥 denotes the full-precision
weight or activation, and 𝑠 is the scaling factor mapping floating-point values
to lower-precision integers.

Although the forward pass utilizes quantized values, gradient calculations
during backpropagation remain in full precision. This is achieved using the
Straight-Through Estimator (STE)27, which approximates the gradient of the
quantized function by treating the rounding operation as if it had a derivative
of one. This approach prevents the gradient from being obstructed due to
the non-differentiable nature of the quantization operation, thereby allowing
effective model training (Y. Bengio, Léonard, and Courville 2013a).

Integrating quantization effects during training enables the model to learn
an optimal distribution of weights and activations that minimizes the impact
of numerical precision loss. The resulting model, when deployed using true
low-precision arithmetic (e.g., INT8 inference), maintains significantly higher
accuracy than one that is quantized post hoc (Krishnamoorthi 2018).

QATAdvantages. A primary advantage of QAT is its ability to maintain model
accuracy, even under low-precision inference conditions. Incorporating quanti-
zation during training helps the model to compensate for precision loss, reduc-
ing the impact of rounding errors and numerical instability. This is critical for
quantization-sensitive models commonly used in NLP, speech recognition, and
high-resolution computer vision (A. et al. Gholami 2021).

Another major benefit is that QAT permits low-precision inference on hard-
ware accelerators without significant accuracy degradation. AI processors such
as TPUs, NPUs, and specialized edge devices include dedicated hardware for
integer operations, permitting INT8 models to run much faster and with lower

Chapter 10. Model Optimizations 473

energy consumption compared to FP32 models. Training with quantization
effects in mind ensures that the final model can fully leverage these hardware
optimizations (H. Wu et al. 2020).

QAT Challenges and Trade-offs. Despite its benefits, QAT introduces addi-
tional computational overhead during training. Simulated quantization at
every forward pass slows down training relative to full-precision methods. The
process adds complexity to the training schedule, making QAT less practical for
very large-scale models where the additional training time might be prohibitive.

Moreover, QAT introduces extra hyperparameters and design considerations,
such as choosing appropriate quantization schemes and scaling factors. Unlike
PTQ, which applies quantization after training, QAT requires careful tuning of
the training dynamics to ensure that the model suitably adapts to low-precision
constraints (Gong et al. 2019).

Table 10.8 summarizes the key trade-offs of QAT compared to PTQ:

Table 10.8: Comparison of QAT and PTQ.

Aspect QAT (Quantization-Aware Training) PTQ (Post-Training Quantization)

Accuracy
Retention

Minimizes accuracy loss from quantization May suffer from accuracy degradation

Inference
EfÏciency

Optimized for low-precision hardware (e.g., INT8
on TPUs)

Optimized but may require calibration

Training
Complexity

Requires retraining with quantization constraints No retraining required

Training Time Slower due to simulated quantization in forward
pass

Faster, as quantization is applied post
hoc

Deployment
Readiness

Best for models sensitive to quantization errors Fastest way to optimize models for
inference

Integrating quantization into the training process preserves model accuracy
more effectively than post-training quantization, although it requires additional
training resources and time.

10.5.5.3 PTQ and QAT Strategies

PTQ and QAT are supported across modern machine learning frameworks,
facilitating efÏcient deployment of machine learning models on low-precision
hardware. Although PTQ is simpler to implement since it does not require
retraining, QAT embeds quantization into the training pipeline, leading to better
accuracy retention. Each framework offers specialized tools that allow these
methods to be applied effectively while balancing computational trade-offs.

TensorFlow implements PTQ using tf.lite.TFLiteConverter, which con-
verts model weights and activations to lower-precision formats (e.g., INT8) post-
training. Since PTQ circumvents retraining, calibration techniques such as per-
channel quantization and KL-divergence scaling can be applied to minimize ac-
curacy loss. TensorFlow also supports QAT through tf.keras.quantization.quantize_-
model(), which leverages simulated quantization operations inserted into the
computation graph. This allows models to learn weight distributions more
robust to reduced precision, thereby improving accuracy when deployed with
INT8 inference.

10.5. Numerical Precision Optimization 474

In PyTorch, PTQ is performed using torch.quantization.convert(), which
transforms a pre-trained model into a quantized version optimized for in-
ference. PyTorch supports both dynamic and static quantization, enabling
trade-offs between accuracy and efÏciency. QAT in PyTorch is facilitated us-
ing torch.quantization.prepare_qat(), which introduces fake quantization
layers during training to simulate low-precision arithmetic while maintaining
full-precision gradients. This approach helps the model adapt to quantization
constraints without incurring substantial accuracy loss.

ONNX Runtime supports PTQ through onnxruntime.quantization, which
includes both static and dynamic quantization modes. While static quantization
relies on calibration data to determine optimal scaling factors for weights and
activations, dynamic quantization applies quantization only during inference,
offering flexibility for real-time applications. For QAT, ONNX Runtime pro-
vides onnxruntime.training.QuantizationMode.QAT, allowing models to be
trained with simulated quantization prior to export for INT8 inference.

Although PTQ offers a straightforward and computationally inexpensive
means to optimize models, it may lead to accuracy degradation—especially
for sensitivity-critical architectures. QAT, despite its higher training cost, deliv-
ers models that better preserve accuracy when deployed under low-precision
computations.

10.5.5.4 PTQ vs. QAT

Quantization plays a critical role in optimizing machine learning models for
deployment on low-precision hardware, enabling smaller model sizes, faster
inference, and reduced power consumption. The choice between PTQ and
QAT depends on the trade-offs between accuracy, computational cost, and
deployment constraints.

PTQ is the preferred approach when retraining is infeasible or unnecessary. It
is computationally inexpensive, requiring only a conversion step after training,
making it an efÏcient way to optimize models for inference. However, its
effectiveness varies across model architectures—CNNs for image classification
often tolerate PTQ well, while NLP and speech models may experience accuracy
degradation due to their reliance on precise numerical representations.

QAT, in contrast, is necessary when high accuracy retention is critical. By
integrating quantization effects during training, QAT allows models to adapt to
lower-precision arithmetic, reducing quantization errors. While this results in
higher accuracy in low-precision inference, it also requires additional training
time and computational resources, making it less practical for cases where fast
model deployment is a priority (Jacob et al. 2018c).

Ultimately, the decision between PTQ and QAT depends on the specific
requirements of the machine learning system. If rapid deployment and minimal
computational overhead are the primary concerns, PTQ provides a quick and
effective solution. If accuracy is a critical factor and the model is sensitive to
quantization errors, QAT offers a more robust but computationally expensive
alternative. In many real-world applications, a hybrid approach that starts with
PTQ and selectively applies QAT for accuracy-critical models provides the best
balance between efÏciency and performance.

Chapter 10. Model Optimizations 475

28 Data with a high proportion
of zero values, often found in large
datasets.

10.5.6 Extreme Precision Reduction
Extreme precision reduction techniques, such as binarization and ternarization,
are designed to dramatically reduce the bit-width of weights and activations in
a neural network. By representing values with just one or two bits (for binary
and ternary representations, respectively), these techniques achieve substan-
tial reductions in memory usage and computational requirements, making
them particularly attractive for hardware-efÏcient deployment in resource-
constrained environments (Courbariaux, Bengio, and David 2016).

10.5.6.1 Binarization

Binarization involves reducing weights and activations to just two values, typ-
ically -1 and +1, or 0 and 1, depending on the specific method. The primary
advantage of binarization lies in its ability to drastically reduce the size of a
model, allowing it to fit into a very small memory footprint. This reduction
also accelerates inference, especially when deployed on specialized hardware
such as binary neural networks (Rastegari et al. 2016). However, binarization
introduces significant challenges, primarily in terms of model accuracy. When
weights and activations are constrained to only two values, the expressiveness
of the model is greatly reduced, which can lead to a loss in accuracy, particularly
in tasks requiring high precision, such as image recognition or natural language
processing (Hubara et al. 2018).

Moreover, the process of binarization introduces non-differentiable oper-
ations, which complicates the optimization process. To address this issue,
techniques such as the STE are employed to approximate gradients, allowing
for effective backpropagation despite the non-differentiability of the quanti-
zation operation (Y. Bengio, Léonard, and Courville 2013b). The use of STE
ensures that the network can still learn and adjust during training, even with
the extreme precision reduction. While these challenges are non-trivial, the
potential benefits of binarized models in ultra-low-power environments, such
as edge devices and IoT sensors, make binarization an exciting area of research.

10.5.6.2 Ternarization

Ternarization extends binarization by allowing three possible values for weights
and activations—typically -1, 0, and +1. While ternarization still represents
a significant reduction in precision, it offers a slight improvement in model
accuracy over binarization, as the additional value (0) provides more flexibility
in capturing the underlying patterns (Zhu et al. 2017). This additional precision
comes at the cost of increased complexity, both in terms of computation and
the required training methods. Similar to binarization, ternarization is often
implemented using techniques that approximate gradients, such as the hard
thresholding method or QAT, which integrate quantization effects into the
training process to mitigate the accuracy loss (J. Choi et al. 2018).

The advantages of ternarization over binarization are most noticeable when
dealing with highly sparse data28. In some cases, ternarization can introduce
more sparsity into the model by mapping a large portion of weights to zero.
However, managing this sparsity effectively requires careful implementation to

10.5. Numerical Precision Optimization 476

avoid the overhead that comes with storing sparse matrices (F. Li et al. 2016).
Additionally, while ternarization improves accuracy compared to binarization,
it still represents a severe trade-off in terms of the model’s ability to capture
intricate relationships between inputs and outputs. The challenge, therefore,
lies in finding the right balance between the memory and computational sav-
ings offered by ternarization and the accuracy loss incurred by reducing the
precision.

10.5.6.3 Computation Challenges and Limitations

What makes binarization and ternarization particularly interesting is their
potential to enable ultra-low-power machine learning. These extreme precision
reduction methods offer a way to make machine learning models more feasible
for deployment on hardware with strict resource constraints, such as embedded
systems and mobile devices. However, the challenge remains in how to maintain
the performance of these models despite such drastic reductions in precision.
Binarized and ternarized models require specialized hardware that is capable of
efÏciently handling binary or ternary operations. Many traditional processors
are not optimized for this type of computation, which means that realizing the
full potential of these methods often requires custom hardware accelerators
(Umuroglu et al. 2017).

Another challenge is the loss of accuracy that typically accompanies the
extreme precision reduction inherent in binarization and ternarization. These
methods are best suited for tasks where high levels of precision are not critical,
or where the model can be trained to adjust to the precision constraints through
techniques like QAT. Despite these challenges, the ability to drastically reduce
the size of a model while maintaining acceptable levels of accuracy makes
binarization and ternarization attractive for certain use cases, particularly in
edge AI and resource-constrained environments (Jacob et al. 2018c).

The future of these techniques lies in advancing both the algorithms and
hardware that support them. As more specialized hardware is developed for
low-precision operations, and as techniques for compensating for precision
loss during training improve, binarization and ternarization will likely play
a significant role in making AI models more efÏcient, scalable, and energy-
efÏcient.

10.5.7 Quantization vs. Model Representation
Thus far, we explored various quantization techniques, including PTQ, QAT,
and extreme precision reduction methods like binarization and ternarization.
These techniques aim to reduce the memory footprint and computational de-
mands of machine learning models, making them suitable for deployment in
environments with strict resource constraints, such as edge devices or mobile
platforms.

While quantization offers significant reductions in model size and compu-
tational requirements, it often requires careful management of the trade-offs
between model efÏciency and accuracy. When comparing quantization to other
model representation techniques, including pruning, knowledge distillation,
and NAS, several key differences and synergies emerge.

Chapter 10. Model Optimizations 477

Pruning focuses on reducing the number of parameters in a model by re-
moving unimportant or redundant weights. While quantization reduces the
precision of weights and activations, pruning reduces their sheer number. The
two techniques can complement each other: pruning can be applied first to
reduce the number of weights, which then makes the quantization process
more effective by working with a smaller set of parameters. However, pruning
does not necessarily reduce precision, so it may not achieve the same level of
computational savings as quantization.

Knowledge distillation reduces model size by transferring knowledge from
a large, high-precision model (teacher) to a smaller, more efÏcient model (stu-
dent). While quantization focuses on precision reduction within a given model,
distillation works by transferring learned behavior into a more compact model.
The advantage of distillation is that it can help mitigate accuracy loss, which
is often a concern with extreme precision reduction. When combined with
quantization, distillation can help ensure that the smaller, quantized model
retains much of the accuracy of the original, larger model.

NAS automates the design of neural network architectures to identify the
most efÏcient model for a given task. NAS focuses on optimizing the structure
of the model itself, whereas quantization operates on the numerical represen-
tation of the model’s weights and activations. The two approaches can be
complementary, as NAS can lead to model architectures that are inherently
more suited for low-precision operations, thus making quantization more ef-
fective. In this sense, NAS can be seen as a precursor to quantization, as it
optimizes the architecture for the constraints of low-precision environments.

As shown in Figure 10.25, different compression strategies such as prun-
ing, quantization, and singular value decomposition (SVD) exhibit varying
trade-offs between model size and accuracy loss. While pruning combined
with quantization (red circles) achieves high compression ratios with minimal
accuracy loss, quantization alone (yellow squares) also provides a reasonable
balance. In contrast, SVD (green diamonds) requires a larger model size to main-
tain accuracy, illustrating how different techniques can impact compression
effectiveness.

Figure 10.25: Accuracy vs. compres-
sion rate under different compres-
sion methods. Source: Han, Mao,
and Dally (2015).

In summary, quantization differs from pruning, knowledge distillation, and
NAS in that it specifically focuses on reducing the numerical precision of
weights and activations. While quantization alone can provide significant
computational benefits, its effectiveness can be amplified when combined with

10.6. Architectural EfÏciency Optimization 478

the complementary techniques of pruning, distillation, and NAS. These meth-
ods, each targeting a different aspect of model efÏciency, work together to create
more compact, faster, and energy-efÏcient models, enabling better performance
in constrained environments. By understanding the strengths and limitations
of these methods, practitioners can choose the most suitable combination to
meet the specific needs of their application and deployment hardware.

10.6 Architectural EfÏciency Optimization
Architectural efÏciency is the process of optimizing the machine learning model
structures with an explicit focus on the computational resources available dur-
ing deployment. Unlike other optimization methods, such as pruning and
knowledge distillation, which are applied after model training and are ag-
nostic to the hardware on which the model will run, architectural efÏciency
requires proactive consideration of the target hardware from the beginning.
This approach ensures that models are designed to effectively utilize the spe-
cific capabilities of the deployment platform, whether it be a mobile device,
embedded system, or specialized AI hardware.

10.6.1 Hardware-Aware Design
The incorporation of hardware constraints, including memory bandwidth,
processing power, and energy consumption, into model design enables the
creation of architectures that are both accurate and computationally efÏcient.
This approach leads to improved performance and reduced resource usage
during both training and inference.

The focus of this section is on the techniques that can be employed to achieve
architectural efÏciency, including exploiting sparsity, model factorization, dy-
namic computation, and hardware-aware design. These techniques allow for
the development of models that are optimized for the constraints of specific
hardware environments, ensuring that they can operate efÏciently and meet
the performance requirements of real-world applications.

10.6.1.1 EfÏcient Design Principles

Designing machine learning models for hardware efÏciency requires structur-
ing architectures to account for computational cost, memory usage, inference
latency, and power consumption, all while maintaining strong predictive perfor-
mance. Unlike post-training optimizations, which attempt to recover efÏciency
after training, hardware-aware model design proactively integrates hardware
considerations from the outset. This ensures that models are computationally
efÏcient and deployable across diverse hardware environments with minimal
adaptation.

A key aspect of hardware-aware design is leveraging the strengths of spe-
cific hardware platforms (e.g., GPUs, TPUs, mobile or edge devices) to maxi-
mize parallelism, optimize memory hierarchies, and minimize latency through
hardware-optimized operations. As summarized in Table 10.9, hardware-aware
model design can be categorized into several principles, each addressing a fun-
damental aspect of computational and system constraints.

Chapter 10. Model Optimizations 479

Table 10.9: Taxonomy of hardware-aware model design principles.

Principle Goal
Example
Networks

Scaling
Optimiza-
tion

Adjust model depth, width, and resolution to balance efÏciency and hardware
constraints.

EfÏcientNet,
RegNet

Computa-
tion
Reduction

Minimize redundant operations to reduce computational cost, utilizing
hardware-specific optimizations (e.g., using depthwise separable convolutions on
mobile chips).

MobileNet,
ResNeXt

Memory
Optimiza-
tion

Ensure efÏcient memory usage by reducing activation and parameter storage
requirements, leveraging hardware-specific memory hierarchies (e.g., local and
global memory in GPUs).

DenseNet,
SqueezeNet

Hardware-
Aware
Design

Optimize architectures for specific hardware constraints (e.g., low power,
parallelism, high throughput).

TPU-optimized
models,
MobileNet

Hardware-aware model design principles focus on creating efÏcient archi-
tectures that align with specific hardware capabilities and constraints. Scaling
optimization ensures models are appropriately sized for available resources,
preventing inefÏcient parameterization while maintaining performance. This
allows models to effectively utilize hardware without exceeding its limitations.

Computation reduction techniques eliminate redundant operations that con-
sume excessive resources. For example, mobile CPUs and GPUs can leverage
parallelism through depthwise separable convolutions, reducing computa-
tional overhead while preserving model effectiveness. These optimizations are
specifically tailored to take advantage of hardware-specific features.

Memory optimization plays a crucial role by considering hardware-specific
memory hierarchies, including cache and on-chip memory. This principle en-
sures efÏcient data movement and maximizes throughput by aligning memory
access patterns with the underlying hardware architecture. Proper memory
management reduces bottlenecks and improves overall system performance.

Hardware-aware design aligns architectural decisions directly with platform
capabilities. By optimizing model structure for specific hardware, this approach
ensures maximum execution efÏciency and minimal power consumption. The
result is a model that not only performs well but also operates efÏciently within
hardware constraints.

These principles work together synergistically, enabling the creation of mod-
els that balance accuracy with computational efÏciency. By considering hard-
ware constraints during the design phase, models achieve better performance
while maintaining lower resource usage, particularly when deployed on plat-
forms with limited capabilities.

10.6.1.2 Scaling Optimization

Scaling a model’s architecture involves balancing accuracy with computational
cost, and optimizing it to align with the capabilities of the target hardware.
Each component of a model, whether its depth, width, or input resolution,
impacts resource consumption. In hardware-aware design, these dimensions
should not only be optimized for accuracy but also for efÏciency in memory
usage, processing power, and energy consumption, especially when the model
is deployed on specific hardware like GPUs, TPUs, or edge devices.

10.6. Architectural EfÏciency Optimization 480

From a hardware-aware perspective, it is crucial to consider how different
hardware platforms, such as GPUs, TPUs, or edge devices, interact with scaling
dimensions. For instance, deeper models can capture more complex repre-
sentations, but excessive depth can lead to increased inference latency, longer
training times, and higher memory consumption—issues that are particularly
problematic on resource-constrained platforms. Similarly, increasing the width
of the model to process more parallel information may be beneficial for GPUs
and TPUs with high parallelism, but it requires careful management of memory
usage. In contrast, increasing the input resolution can provide finer details
for tasks like image classification, but it exponentially increases computational
costs, potentially overloading hardware memory or causing power inefÏciencies
on edge devices.

Mathematically, the total FLOPs for a convolutional model can be approxi-
mated as:

FLOPs ∝ 𝑑 ⋅𝑤2 ⋅ 𝑟2,
where 𝑑 is depth, 𝑤 is width, and 𝑟 is the input resolution. Increasing all
three dimensions without considering the hardware limitations can result in
suboptimal performance, especially on devices with limited computational
power or memory bandwidth.

For efÏcient model scaling, it’s essential to manage these parameters in a
balanced way, ensuring that the model remains within the limits of the hard-
ware while maximizing performance. This is where compound scaling comes
into play. Instead of adjusting depth, width, and resolution independently,
compound scaling balances all three dimensions together by applying fixed
ratios (𝛼,𝛽,𝛾) relative to a base model:𝑑 = 𝛼𝜙𝑑0, 𝑤 = 𝛽𝜙𝑤0, 𝑟 = 𝛾𝜙𝑟0
Here, 𝜙 is a scaling coefÏcient, and 𝛼, 𝛽, and 𝛾 are scaling factors determined
based on hardware constraints and empirical data. This approach ensures that
models grow in a way that optimizes hardware resource usage, keeping them
efÏcient while improving accuracy.

For example, EfÏcientNet, which employs compound scaling, demonstrates
how carefully balancing depth, width, and resolution results in models that
are both computationally efÏcient and high-performing. Compound scaling
reduces computational cost while preserving accuracy, making it a key con-
sideration for hardware-aware model design. This approach is particularly
beneficial when deploying models on GPUs or TPUs, where parallelism can be
fully leveraged, but memory and power usage need to be carefully managed.

This principle applies not only to convolutional models but also to other
architectures like transformers. For instance, in transformer models, adjusting
the number of attention heads or layers can have similar resource usage impli-
cations, and hardware-aware scaling can ensure that the computational cost is
minimized while maintaining strong performance.

Beyond convolutional models, this principle of scaling optimization can be
generalized to other architectures, such as transformers. In these architectures,
adjusting the number of layers, attention heads, or embedding dimensions can
have a similar impact on computational efÏciency. Hardware-aware scaling has

Chapter 10. Model Optimizations 481

become a central consideration in optimizing model performance for various
computational constraints, particularly when working with large models or
resource-constrained devices.

10.6.1.3 Computation Reduction
Reducing redundant operations is a critical strategy for improving the efÏ-
ciency of machine learning models, especially when considering deployment
on resource-constrained hardware. Traditional machine learning architectures,
particularly convolutional neural networks, often rely on dense operations,
including standard convolutions, which apply computations uniformly across
all spatial locations and channels. However, these operations introduce unnec-
essary computation, especially when many of the channels or activations do not
contribute meaningfully to the final prediction. This can lead to excessive com-
putational load and memory consumption, which are significant constraints on
hardware with limited processing power or memory bandwidth, like mobile
or embedded devices.

To address this issue, modern architectures leverage factorized computations,
which decompose complex operations into simpler components. This enables
models to achieve the same representational power while reducing the com-
putational overhead, making them more efÏcient for deployment on specific
hardware platforms. One widely adopted method for computation reduction
is depthwise separable convolutions, introduced in the MobileNet architecture.
Depthwise separable convolutions break a standard convolution operation into
two distinct steps:

1. Depthwise convolution applies a separate convolutional filter to each
input channel independently, ensuring that computations for each channel
are treated separately.

2. Pointwise convolution (a 1×1 convolution) then mixes the outputs across
channels, effectively combining the results into the final feature represen-
tation.

This factorization reduces the number of operations compared to the stan-
dard convolutional approach, where a single filter processes all input channels
simultaneously. The reduction in operations is particularly beneficial for hard-
ware accelerators, as it reduces the number of calculations that need to be
performed and the amount of memory bandwidth required. The computa-
tional complexity of a standard convolution with an input size of ℎ × 𝑤, 𝐶in
input channels, and 𝐶out output channels can be expressed as:𝒪(ℎ𝑤𝐶in𝐶out𝑘2)
where 𝑘 is the kernel size. This equation shows that the computational cost
scales with both the spatial dimensions and the number of channels, making it
computationally expensive. However, for depthwise separable convolutions,
the complexity reduces to:𝒪(ℎ𝑤𝐶in𝑘2)+𝒪(ℎ𝑤𝐶in𝐶out)
Here, the first term depends only on 𝐶in, the number of input channels, and
the second term eliminates the 𝑘2 factor from the channel-mixing operation.

10.6. Architectural EfÏciency Optimization 482

29 Feature Reuse: A strategy
where networks reuse the computed
features from previous layers to re-
duce computational redundancy.

The result is a 5× to 10× reduction in FLOPs (floating-point operations), which
directly reduces the computational burden and improves model efÏciency,
particularly for hardware with limited resources, such as mobile devices or
edge processors.

Beyond depthwise separable convolutions, other architectures employ ad-
ditional factorization techniques to further reduce computation. For example,
Grouped convolutions, used in the ResNeXt architecture, split feature maps
into separate groups, each of which is processed independently before being
merged. This approach increases computational efÏciency while maintaining
strong accuracy by reducing redundant operations. Another example is Bot-
tleneck layers, used in architectures like ResNet. These layers employ 1 × 1
convolutions to reduce the dimensionality of feature maps before applying
larger convolutions, which reduces the computational complexity of deeper
networks, where most of the computational cost lies.

These computation reduction techniques are highly effective in optimizing
models for specific hardware, particularly for real-time applications in mobile,
edge computing, and embedded systems. By reducing the number of computa-
tions required, models can achieve high performance while consuming fewer
resources, which is critical for ensuring low inference latency and minimal
energy usage.

In hardware-aware model design, such as when deploying on GPUs, TPUs, or
other specialized accelerators, these techniques can significantly reduce compu-
tational load and memory footprint. By reducing the complexity of operations,
the hardware can process the data more efÏciently, allowing for faster execution
and lower power consumption. Additionally, these techniques can be combined
with other optimizations, such as sparsity, to maximize hardware utilization
and achieve better overall performance.

10.6.1.4 Memory Optimization

Memory optimization is a fundamental aspect of model efÏciency, especially
when deploying machine learning models on resource-constrained hardware,
such as mobile devices, embedded systems, and edge AI platforms. Inference-
based models require memory to store activations, intermediate feature maps,
and parameters. If these memory demands exceed the hardware’s available
resources, the model can experience performance bottlenecks, including in-
creased inference latency and power inefÏciencies due to frequent memory
accesses. EfÏcient memory management is crucial to minimize these issues
while maintaining accuracy and performance.

To address these challenges, modern architectures employ various memory-
efÏcient strategies that reduce unnecessary storage while keeping the model’s
performance intact. Hardware-aware memory optimization techniques are
particularly important when considering deployment on accelerators such
as GPUs, TPUs, or edge AI chips. These strategies ensure that models are
computationally tractable and energy-efÏcient, particularly when operating
under strict power and memory constraints.

One effective technique for memory optimization is feature reuse29, a strat-
egy employed in DenseNet. In traditional convolutional networks, each layer

Chapter 10. Model Optimizations 483

30 SqueezeNet achieves similar
accuracy to AlexNet while being 50
times smaller.

typically computes a new set of feature maps, increasing the model’s memory
footprint. However, DenseNet reduces the need for redundant activations by
reusing feature maps from previous layers and selectively applying transforma-
tions. This method reduces the total number of feature maps that need to be
stored, which in turn lowers the memory requirements without sacrificing accu-
racy. In a standard convolutional network with 𝐿 layers, if each layer generates𝑘 new feature maps, the total number of feature maps grows linearly:𝒪(𝐿𝑘)

In contrast, DenseNet reuses feature maps from earlier layers, reducing the
number of feature maps stored. This leads to improved parameter efÏciency
and a reduced memory footprint, which is essential for hardware with limited
memory resources.

Another useful technique is activation checkpointing, which is especially
beneficial during training. In a typical neural network, backpropagation re-
quires storing all forward activations for the backward pass. This can lead to
a significant memory overhead, especially for large models. Activation check-
pointing reduces memory consumption by only storing a subset of activations
and recomputing the remaining ones when needed. If an architecture requires
storing 𝐴total activations, the standard backpropagation method requires the
full storage: 𝒪(𝐴total)

With activation checkpointing, however, only a fraction of activations is
stored, and the remaining ones are recomputed on-the-fly, reducing storage
requirements to: 𝒪(√𝐴total)

This technique can significantly reduce peak memory consumption, making it
particularly useful for training large models on hardware with limited memory.

Parameter reduction is another essential technique, particularly for models
that use large filters. For instance, SqueezeNet uses a novel architecture where
it applies 1×1 convolutions to reduce the number of input channels before ap-
plying standard convolutions.30 By first reducing the number of channels with1×1 convolutions, SqueezeNet reduces the model size significantly without
compromising the model’s expressive power. The number of parameters in a
standard convolutional layer is: 𝒪(𝐶in𝐶out𝑘2)

By reducing 𝐶in using 1×1 convolutions, SqueezeNet reduces the number
of parameters, achieving a 50x reduction in model size compared to AlexNet
while maintaining similar performance. This method is particularly valuable
for edge devices that have strict memory and storage constraints.

These memory-efÏcient techniques, including feature reuse, activation check-
pointing, and parameter reduction, are key components of hardware-aware
model design. By minimizing memory usage and efÏciently managing storage,
these techniques allow machine learning models to fit within the memory limits
of modern accelerators, such as GPUs, TPUs, and edge devices. These strategies

10.6. Architectural EfÏciency Optimization 484

also lead to lower power consumption by reducing the frequency of memory
accesses, which is particularly beneficial for devices with limited battery life.

In hardware-aware design, memory optimization is not just about reducing
memory usage but also about optimizing how memory is accessed. Specialized
accelerators like TPUs and GPUs can take advantage of memory hierarchies,
caching, and high bandwidth memory to efÏciently handle sparse or reduced-
memory representations. By incorporating these memory-efÏcient strategies,
models can operate with minimal overhead, enabling faster inference and more
efÏcient power consumption.

10.6.2 Dynamic Computation and Adaptation
Dynamic computation refers to the ability of a machine learning model to
adapt its computational load based on the complexity of the input. Rather than
applying a fixed amount of computation to every input, dynamic computation
allows models to allocate computational resources more effectively, depending
on the task’s requirements. This is especially crucial for applications where
computational efÏciency, real-time processing, and energy conservation are
vital, such as in mobile devices, embedded systems, and autonomous vehicles.

In traditional machine learning models, every input is processed using the
same network architecture, irrespective of its complexity. For example, an
image classification model might apply the full depth of a neural network to
classify both a simple and a complex image, even though the simple image
could be classified with fewer operations. This uniform processing results
in wasted computational resources, unnecessary power consumption, and
increased processing times—all of which are particularly problematic in real-
time and resource-constrained systems.

Dynamic computation addresses these inefÏciencies by allowing models to
adjust the computational load based on the input’s complexity. For simpler
inputs, the model might skip certain layers or operations, reducing computa-
tional costs. On the other hand, for more complex inputs, it may opt to process
additional layers or operations to ensure accuracy is maintained. This adaptive
approach not only optimizes computational efÏciency but also reduces energy
consumption, minimizes latency, and preserves high predictive performance.

Dynamic computation is essential for efÏcient resource use on hardware with
limited capabilities. Adjusting the computational load dynamically based on
input complexity enables models to significantly enhance efÏciency and overall
performance without sacrificing accuracy.

10.6.2.1 Dynamic Schemes

Dynamic schemes enable models to selectively reduce computation when inputs
are simple, preserving resources while maintaining predictive performance.
The approaches discussed below, beginning with early exit architectures, illus-
trate how to implement this adaptive strategy effectively.

Early Exit Architectures. Early exit architectures allow a model to make pre-
dictions at intermediate points in the network rather than completing the full
forward pass for every input. This approach is particularly effective for real-time

Chapter 10. Model Optimizations 485

applications and energy-efÏcient inference, as it enables selective computation
based on the complexity of individual inputs (Teerapittayanon, McDanel, and
Kung 2017).

The core mechanism in early exit architectures involves multiple exit points
embedded within the network. Simpler inputs, which can be classified with
high confidence early in the model, exit at an intermediate layer, reducing un-
necessary computations. Conversely, more complex inputs continue processing
through deeper layers to ensure accuracy.

A well-known example is BranchyNet, which introduces multiple exit points
throughout the network. For each input, the model evaluates intermediate
predictions using confidence thresholds. If the prediction confidence exceeds a
predefined threshold at an exit point, the model terminates further computa-
tions and outputs the result. Otherwise, it continues processing until the final
layer (Teerapittayanon, McDanel, and Kung 2017). This approach minimizes
inference time without compromising performance on challenging inputs.

Another example is multi-exit vision transformers, which extend early exits
to transformer-based architectures. These models use lightweight classifiers at
various transformer layers, allowing predictions to be generated early when
possible (Scardapane, Wang, and Panella 2020). This technique significantly
reduces inference time while maintaining robust performance for complex
samples.

Early exit models are particularly advantageous for resource-constrained
devices, such as mobile processors and edge accelerators. By dynamically
adjusting computational effort, these architectures reduce power consumption
and processing latency, making them ideal for real-time decision-making (B.
Hu, Zhang, and Fu 2021).

When deployed on hardware accelerators such as GPUs and TPUs, early
exit architectures can be further optimized by exploiting parallelism. For in-
stance, different exit paths can be evaluated concurrently, thereby improving
throughput while preserving the benefits of adaptive computation (Yu, Li, and
Wang 2023). This approach is illustrated in Figure 10.26, where each trans-
former layer is followed by a classifier and an optional early exit mechanism
based on confidence estimation or latency-to-accuracy trade-offs (LTE). At each
stage, the system may choose to exit early if sufÏcient confidence is achieved,
or continue processing through deeper layers, enabling dynamic allocation of
computational resources.

Figure 10.26: Example early exit
BERT architecture, where a confi-
dence score per Transformer layer
is used to determine whether to exit
early. Source: Xin et al. (2021).

Input Transformer 1 Transformer 2 Transformer n• • •

Classifier 1

Confidence / LTE

Exit

Classifier 2

Confidence / LTE

Exit

Classifier n

Confidence / LTE

Exit

• • •

• • •

C
o

n
ti
n
u

e

C
o

n
ti
n
u

e

10.6. Architectural EfÏciency Optimization 486

Conditional Computation. Conditional computation refers to the ability of
a neural network to decide which parts of the model to activate based on the
input, thereby reducing unnecessary computation. This approach can be highly
beneficial in resource-constrained environments, such as mobile devices or
real-time systems, where reducing the number of operations directly translates
to lower computational cost, power consumption, and inference latency (E.
Bengio et al. 2015).

In contrast to Early Exit Architectures, where the decision to exit early is typ-
ically made once a threshold confidence level is met, conditional computation
works by dynamically selecting which layers, units, or paths in the network
should be computed based on the characteristics of the input. This can be
achieved through mechanisms such as gating functions or dynamic routing,
which essentially “turn off” parts of the network that are not needed for a
particular input, allowing the model to focus computational resources where
they are most required.

One example of conditional computation is SkipNet, which uses a gating
mechanism to skip layers in a CNN when the input is deemed simple enough.
The gating mechanism uses a lightweight classifier to predict if the layer should
be skipped. This prediction is made based on the input, and the model adjusts
the number of layers used during inference accordingly (X. Wang et al. 2018).
If the gating function determines that the input is simple, certain layers are
bypassed, resulting in faster inference. However, for more complex inputs, the
model uses the full depth of the network to achieve the necessary accuracy.

Another example is Dynamic Routing Networks, such as in the Capsule Net-
works (CapsNets), where routing mechanisms dynamically choose the path that
activations take through the network. In these networks, the decision-making
process involves selecting specific pathways for information flow based on the
input’s complexity, which can significantly reduce the number of operations
and computations required (Sabour, Frosst, and Hinton 2017). This mechanism
introduces adaptability by leveraging different routing strategies, providing
computational efÏciency while preserving the quality of predictions.

These conditional computation strategies have significant advantages in real-
world applications where computational resources are limited. For example, in
autonomous driving, the system must process a variety of inputs (e.g., pedes-
trians, trafÏc signs, road lanes) with varying complexity. In cases where the
input is straightforward, a simpler, less computationally demanding path can
be taken, whereas more complex scenarios (such as detecting obstacles or per-
forming detailed scene understanding) will require full use of the model’s
capacity. Conditional computation ensures that the system adapts its computa-
tion based on the real-time complexity of the input, leading to improved speed
and efÏciency (W. Huang, Chen, and Zhang 2023).

Gate-Based Computation. Gate-based conditional computation introduces learned
gating mechanisms that dynamically control which parts of a neural network
are activated based on input complexity. Unlike static architectures that process
all inputs with the same computational effort, this approach enables dynamic
activation of sub-networks or layers by learning decision boundaries during
training (Shazeer, Mirhoseini, Maziarz, and others 2017).

Chapter 10. Model Optimizations 487

Gating mechanisms are typically implemented using binary or continuous
gating functions, wherein a lightweight control module (often called a router or
gating network) predicts whether a particular layer or path should be executed.
This decision-making occurs dynamically at inference time, allowing the model
to allocate computational resources adaptively.

A well-known example of this paradigm is the Dynamic Filter Network
(DFN), which applies input-dependent filtering by selecting different convolu-
tional kernels at runtime. DFN reduces unnecessary computation by avoiding
uniform filter application across inputs, tailoring its computations based on
input complexity (Xu Jia et al. 2016).

Another widely adopted strategy is the Mixture of Experts (MoE) framework.
In this architecture, a gating network selects a subset of specialized expert
subnetworks to process each input (Shazeer, Mirhoseini, Maziarz, and others
2017). This allows only a small portion of the total model to be active for
any given input, significantly improving computational efÏciency without
sacrificing model capacity. A notable instantiation of this idea is Google’s
Switch Transformer, which extends the transformer architecture with expert-
based conditional computation (Fedus, Zoph, and Shazeer 2021).

Figure 10.27: A Switch Transformer
block is an example of Mixture of
Experts (MoE) architecture and an
architecture that dynamic routes to-
ken computation to subnetworks.
Source (Fedus, Zoph, and Shazeer
2021).

Self-Attention

Add + Normalize

Add + Normalize

Router Router

FFN1 FFN2 FFN3 FFN4 FFN1 FFN2 FFN3 FFN4

p = 0.65 p = 0.8

y1 y2

Positional

embedding

Positional

embedding

x1

More

x2

Parameters

Self-Attention

Add + Normalize

Switching FFN Layer

Add + Normalize

y

x

As shown in Figure 10.27, the Switch Transformer replaces the traditional
feedforward layer with a Switching FFN Layer. For each token, a lightweight
router selects a single expert from a pool of feedforward networks. The router
outputs a probability distribution over available experts, and the highest-
probability expert is activated per token. This design enables large models to
scale parameter count without proportionally increasing inference cost.

Gate-based conditional computation is particularly effective for multi-task
and transfer learning settings, where inputs may benefit from specialized pro-
cessing pathways. By enabling fine-grained control over model execution, such

10.6. Architectural EfÏciency Optimization 488

mechanisms allow for adaptive specialization across tasks while maintaining
efÏciency.

However, these benefits come at the cost of increased architectural complexity.
The routing and gating operations themselves introduce additional overhead,
both in terms of latency and memory access. EfÏcient deployment, particularly
on hardware accelerators such as GPUs, TPUs, or edge devices, requires careful
attention to the scheduling and batching of expert activations (Lepikhin et al.
2020).

Adaptive Inference. Adaptive inference refers to a model’s ability to dynamically
adjust its computational effort during inference based on input complexity.
Unlike earlier approaches that rely on predefined exit points or discrete layer
skipping, adaptive inference continuously modulates computational depth and
resource allocation based on real-time confidence and task complexity (Yang et
al. 2020).

This flexibility allows models to make on-the-fly decisions about how much
computation is required, balancing efÏciency and accuracy without rigid thresh-
olds. Instead of committing to a fixed computational path, adaptive inference
enables models to dynamically allocate layers, operations, or specialized com-
putations based on intermediate assessments of the input (Yang et al. 2020).

One example of adaptive inference is Fast Neural Networks (FNNs), which
adjust the number of active layers based on real-time complexity estimation.
If an input is deemed straightforward, only a subset of layers is activated,
reducing inference time. However, if early layers produce low-confidence
outputs, additional layers are engaged to refine the prediction (Jian Wu, Cheng,
and Zhang 2019).

A related approach is dynamic layer scaling, where models progressively
increase computational depth based on uncertainty estimates. This technique
is particularly useful for fine-grained classification tasks, where some inputs
require only coarse-grained processing while others need deeper feature ex-
traction (Contro et al. 2021).

Adaptive inference is particularly effective in latency-sensitive applications
where resource constraints fluctuate dynamically. For instance, in autonomous
systems, tasks such as lane detection may require minimal computation, while
multi-object tracking in dense environments demands additional processing
power. By adjusting computational effort in real-time, adaptive inference en-
sures that models operate within strict timing constraints without unnecessary
resource consumption.

On hardware accelerators such as GPUs and TPUs, adaptive inference lever-
ages parallel processing capabilities by distributing workloads dynamically.
This adaptability maximizes throughput while minimizing energy expenditure,
making it ideal for real-time, power-sensitive applications.

10.6.2.2 Computation Challenges and Limitations

Dynamic computation introduces flexibility and efÏciency by allowing models
to adjust their computational workload based on input complexity. However,
this adaptability comes with several challenges that must be addressed to make
dynamic computation practical and scalable. These challenges arise in training,

Chapter 10. Model Optimizations 489

31 Regularization: A method
used in neural networks to prevent
overfitting in models by adding a
cost term to the loss function.

inference efÏciency, hardware execution, generalization, and evaluation, each
presenting unique difÏculties that impact model design and deployment.

Training and Optimization DifÏculties. Unlike standard neural networks,
which follow a fixed computational path for every input, dynamic computation
requires additional control mechanisms, such as gating networks, confidence
estimators, or expert selection strategies. These mechanisms determine which
parts of the model should be activated or skipped, adding complexity to the
training process. One major difÏculty is that many of these decisions are dis-
crete, meaning they cannot be optimized using standard backpropagation.
Instead, models often rely on techniques like reinforcement learning or continu-
ous approximations, but these approaches introduce additional computational
costs and can slow down convergence.

Training dynamic models also presents instability because different inputs
follow different paths, leading to inconsistent gradient updates across training
examples. This variability can make optimization less efÏcient, requiring careful
regularization strategies31 to maintain smooth learning dynamics. Additionally,
dynamic models introduce new hyperparameters, such as gating thresholds
or confidence scores for early exits. Selecting appropriate values for these
parameters is crucial to ensuring the model effectively balances accuracy and
efÏciency, but it significantly increases the complexity of the training process.

Overhead and Latency Variability. Although dynamic computation reduces
unnecessary operations, the process of determining which computations to
perform introduces additional overhead. Before executing inference, the model
must first decide which layers, paths, or subnetworks to activate. This decision-
making process, often implemented through lightweight gating networks, adds
computational cost and can partially offset the savings gained by skipping
computations. While these overheads are usually small, they become significant
in resource-constrained environments where every operation matters.

An even greater challenge is the variability in inference time. In static mod-
els, inference follows a fixed sequence of operations, leading to predictable
execution times. In contrast, dynamic models exhibit variable processing times
depending on input complexity. For applications with strict real-time con-
straints, such as autonomous driving or robotics, this unpredictability can be
problematic. A model that processes some inputs in milliseconds but others in
significantly longer time frames may fail to meet strict latency requirements,
limiting its practical deployment.

Hardware Execution InefÏciencies. Modern hardware accelerators, such as
GPUs and TPUs, are optimized for uniform, parallel computation patterns.
These accelerators achieve maximum efÏciency by executing identical opera-
tions across large batches of data simultaneously. However, dynamic computa-
tion introduces conditional branching, which can disrupt this parallel execution
model. When different inputs follow different computational paths, some pro-
cessing units may remain idle while others are active, leading to suboptimal
hardware utilization.

This divergent execution pattern creates significant challenges for hardware
efÏciency. For example, in a GPU where multiple threads process data in

https://pytorch.org/xla/master/perf/recompilation.html

10.6. Architectural EfÏciency Optimization 490

parallel, conditional branches cause thread divergence, where some threads
must wait while others complete their operations. Similarly, TPUs are designed
for large matrix operations and achieve peak performance when all processing
units are fully utilized. Dynamic computation can prevent these accelerators
from maintaining high throughput, potentially reducing the cost-effectiveness
of deployment at scale.

The impact is particularly pronounced in scenarios requiring real-time pro-
cessing or high-throughput inference. When hardware resources are not fully
utilized, the theoretical computational benefits of dynamic computation may
not translate into practical performance gains. This inefÏciency becomes more
significant in large-scale deployments where maximizing hardware utiliza-
tion is crucial for managing operational costs and maintaining service-level
agreements.

Memory access patterns also become less predictable in dynamic models.
Standard machine learning models process data in a structured manner, op-
timizing for efÏcient memory access. In contrast, dynamic models require
frequent branching, leading to irregular memory access and increased latency.
Optimizing these models for hardware execution requires specialized schedul-
ing strategies and compiler optimizations to mitigate these inefÏciencies, but
such solutions add complexity to deployment.

Generalization and Robustness. Because dynamic computation allows dif-
ferent inputs to take different paths through the model, there is a risk that
certain data distributions receive less computation than necessary. If the gating
functions are not carefully designed, the model may learn to consistently allo-
cate fewer resources to specific types of inputs, leading to biased predictions.
This issue is particularly concerning in safety-critical applications, where fail-
ing to allocate enough computation to rare but important inputs can result in
catastrophic failures.

Another concern is overfitting to training-time computational paths. If a
model is trained with a certain distribution of computational choices, it may
struggle to generalize to new inputs where different paths should be taken.
Ensuring that a dynamic model remains adaptable to unseen data requires
additional robustness mechanisms, such as entropy-based regularization or
uncertainty-driven gating, but these introduce additional training complexities.

Dynamic computation also creates new vulnerabilities to adversarial attacks.
In standard models, an attacker might attempt to modify an input in a way that
alters the final prediction. In dynamic models, an attacker could manipulate
the gating mechanisms themselves, forcing the model to choose an incorrect
or suboptimal computational path. Defending against such attacks requires
additional security measures that further complicate model design and deploy-
ment.

Evaluation and Benchmarking. Most machine learning benchmarks assume
a fixed computational budget, making it difÏcult to evaluate the performance
of dynamic models. Traditional metrics such as FLOPs or latency do not fully
capture the adaptive nature of these models, where computation varies based
on input complexity. As a result, standard benchmarks fail to reflect the true
trade-offs between accuracy and efÏciency in dynamic architectures.

Chapter 10. Model Optimizations 491

Another issue is reproducibility. Because dynamic models make input-
dependent decisions, running the same model on different hardware or under
slightly different conditions can lead to variations in execution paths. This
variability complicates fair comparisons between models and requires new
evaluation methodologies to accurately assess the benefits of dynamic compu-
tation. Without standardized benchmarks that account for adaptive scaling, it
remains challenging to measure and compare dynamic models against their
static counterparts in a meaningful way.

Despite these challenges, dynamic computation remains a promising direc-
tion for optimizing efÏciency in machine learning. Addressing these limitations
requires more robust training techniques, hardware-aware execution strate-
gies, and improved evaluation frameworks that properly account for dynamic
scaling. As machine learning continues to scale and computational constraints
become more pressing, solving these challenges will be key to unlocking the
full potential of dynamic computation.

10.6.3 Sparsity Exploitation
Sparsity in machine learning refers to the condition where a substantial portion
of the elements within a tensor, such as weight matrices or activation tensors,
are zero or nearly zero. More formally, for a tensor 𝑇 ∈ ℝ𝑚×𝑛 (or higher dimen-
sions), the sparsity 𝑆 can be expressed as:𝑆 = ‖1{𝑇𝑖𝑗=0}‖0𝑚×𝑛
where 1{𝑇𝑖𝑗=0} is an indicator function that yields 1 if 𝑇𝑖𝑗 = 0 and 0 otherwise,
and ‖ ⋅ ‖0 represents the L0 norm, which counts the number of non-zero ele-
ments.

Due to the nature of floating-point representations, we often extend this
definition to include elements that are close to zero. This leads to:𝑆𝜖 = ‖1{|𝑇𝑖𝑗|<𝜖}‖0𝑚×𝑛
where 𝜖 is a small threshold value.

Sparsity can emerge naturally during training, often as a result of regulariza-
tion techniques, or be deliberately introduced through methods like pruning,
where elements below a specific threshold are forced to zero. Effectively exploit-
ing sparsity leads to significant computational efÏciency, memory savings, and
reduced power consumption, which are particularly valuable when deploying
models on devices with limited resources, such as mobile phones, embedded
systems, and edge devices.

10.6.3.1 Sparsity Types

Sparsity in neural networks can be broadly classified into two types: unstruc-
tured sparsity and structured sparsity.

Unstructured sparsity occurs when individual weights are set to zero without
any specific pattern. This type of sparsity can be achieved through techniques

10.6. Architectural EfÏciency Optimization 492

like pruning, where weights that are considered less important (often based
on magnitude or other criteria) are removed. While unstructured sparsity is
highly flexible and can be applied to any part of the network, it can be less
efÏcient on hardware since it lacks a predictable structure. In practice, exploiting
unstructured sparsity requires specialized hardware or software optimizations
to make the most of it.

In contrast, structured sparsity involves removing entire components of the
network, such as filters, neurons, or channels, in a more systematic manner. By
eliminating entire parts of the network, structured sparsity is more efÏcient on
hardware accelerators like GPUs or TPUs, which can leverage this structure
for faster computations. Structured sparsity is often used when there is a need
for predictability and efÏciency in computational resources, as it enables the
hardware to fully exploit regular patterns in the network.

10.6.3.2 Sparsity Exploitation Techniques

To exploit sparsity effectively in neural networks, several key techniques can be
used. These techniques reduce the memory and computational burden of the
model while preserving its performance. However, the successful application
of these techniques often depends on the availability of specialized hardware
support to fully leverage sparsity (Hoefler, Alistarh, Ben-Nun, Dryden, and
Peste 2021).

Pruning is one of the most widely used methods to introduce sparsity in
neural networks. Pruning involves the removal of less important weights or
entire components from the network, effectively reducing the number of pa-
rameters. This process can be applied in either an unstructured or structured
manner. In unstructured pruning, individual weights are removed based on
their importance, while structured pruning involves removing entire filters,
channels, or layers (Han et al. 2015). While pruning is highly effective for
reducing model size and computation, it requires specialized algorithms and
hardware support to fully optimize sparse networks.

Another technique for exploiting sparsity is sparse matrix operations. In
sparse matrices, many elements are zero, and these matrices can be stored and
processed efÏciently, allowing for matrix multiplications with fewer compu-
tations. This can be achieved by skipping over the zero elements during the
calculation, which significantly reduces the number of arithmetic operations.
Specialized hardware, such as GPUs and TPUs, can accelerate these sparse
operations by supporting the efÏcient processing of matrices that contain many
zero values (Baraglia and Konno 2019).

For example, consider multiplying a dense 4×4 matrix with a dense vector. In
a typical dense implementation, 16 multiplications would be required. However,
with sparse-aware implementation, the model only computes the 6 nonzero
multiplications, skipping over the zeros. This leads to significant computational
savings, especially as the size of the matrix grows.⎡⎢⎢⎣

2 0 0 10 3 0 04 0 5 00 0 0 6⎤⎥⎥⎦⎡⎢⎢⎣
𝑥1𝑥2𝑥3𝑥4

⎤⎥⎥⎦ = ⎡⎢⎢⎣
2𝑥1 +𝑥43𝑥24𝑥1 +5𝑥36𝑥4

⎤⎥⎥⎦

Chapter 10. Model Optimizations 493

A third important technique for exploiting sparsity is low-rank approxi-
mation. In this approach, large, dense weight matrices are approximated by
smaller, lower-rank matrices that capture the most important information while
discarding redundant components. This reduces both the storage requirements
and computational cost. For instance, a weight matrix of size 1000×1000 with
one million parameters can be factorized into two smaller matrices, say 𝑈 (size1000×50) and 𝑉 (size 50×1000), which results in only 100,000 parameters—
much fewer than the original one million. This smaller representation retains
the key features of the original matrix while significantly reducing the compu-
tational burden (Emily Denton 2014).

Low-rank approximations, such as Singular Value Decomposition, are com-
monly used to compress weight matrices in neural networks. These approxi-
mations are widely applied in recommendation systems and natural language
processing models to reduce computational complexity and memory usage
without a significant loss in performance (Joulin et al. 2017).

In addition to these core methods, other techniques like sparsity-aware train-
ing can also help models to learn sparse representations during training. For
instance, using sparse gradient descent, where the training algorithm updates
only non-zero elements, can help the model operate with fewer active parame-
ters. While pruning and low-rank approximations directly reduce parameters
or factorize weight matrices, sparsity-aware training helps maintain efÏcient
models throughout the training process (C. Liu et al. 2018).

10.6.3.3 Sparsity Hardware Support
Sparsity is a technique for reducing computational cost, memory usage, and
power consumption. However, the full potential of sparsity can only be realized
when it is supported by hardware designed to efÏciently process sparse data
and operations. While general-purpose processors like CPUs are capable of
handling basic computations, they are not optimized for the specialized tasks
that sparse matrix operations require (Han, Mao, and Dally 2016). This limita-
tion can prevent the potential efÏciency gains of sparse networks from being
fully realized.

To overcome this limitation, hardware accelerators such as GPUs, TPUs,
and FPGAs are increasingly used to accelerate sparse network computations.
These accelerators are designed with specialized architectures that can exploit
sparsity to improve computation speed, memory efÏciency, and power usage.
In particular, GPUs, TPUs, and FPGAs can handle large-scale matrix operations
more efÏciently by skipping over zero elements in sparse matrices, leading
to significant reductions in both computational cost and memory bandwidth
usage (A. Gholami et al. 2021).

The role of hardware support for sparsity is integral to the broader goal of
model optimization. While sparsity techniques, including pruning and low-
rank approximation, serve to simplify and compress neural networks, hardware
accelerators ensure that these optimizations lead to actual performance gains
during training and inference. Therefore, hardware considerations are a critical
component of model optimization, as specialized accelerators are necessary
to efÏciently process sparse data and achieve the desired reductions in both
computation time and resource consumption.

10.6. Architectural EfÏciency Optimization 494

Furthermore, sparse operations can also be well mapped onto hardware
via software. For example, MegaBlocks (Gale et al. 2022) reformulates sparse
Mixture of Experts training into block-sparse operations and develops GPU
specific kernels to efÏciently handle the sparsity of these computations on
hardware and maintain high accelerator utilization.

10.6.3.4 Common Structured Sparsity Patterns

Various sparsity formats have been developed, each with unique structural
characteristics and implications. Two of the most prominent are block sparse
matrices and N:M sparsity patterns. Block sparse matrices generally have
isolated blocks of zero and non-zero dense submatricies such that a matrix
operation on the large sparse matrix can be easily re-expressed as a smaller
(overall arithmetic-wise) number of dense operations on submatrices. This spar-
sity allows more efÏcient storage of the dense submatricies while maintaining
shape compatibility for operations like matrix or vector products. For example,
Figure 10.28 shows how NVIDIA’s cuSPARSE library supports sparse block
matrix operations and storage. Several other works, such as Monarch matrices
(Dao et al. 2022), have extended on this block-sparsity to strike an improved
balance between matrix expressivity and compute/memory efÏciency.

Figure 10.28: Block sparse matrix
multiplication implemented in cuS-
PARSE, showing compressed inter-
nal representation while maintain-
ing compatibility with dense matri-
ces via block indices.

Block sparse

weights

= zero entry

Non-zero

data values

Block

indices

Internal representation

Output

activations

Dot Product

Input

activations

Similarly, the 𝑁:𝑀 sparsity pattern is a structured sparsity format where, in
every set of 𝑀 consecutive elements (e.g., weights or activations), exactly 𝑁
are non-zero, and the other two are zero (Zhou et al. 2021). This deterministic

https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/

Chapter 10. Model Optimizations 495

pattern facilitates efÏcient hardware acceleration, as it allows for predictable
memory access patterns and optimized computations. By enforcing this struc-
ture, models can achieve a balance between sparsity-induced efÏciency gains
and maintaining sufÏcient capacity for learning complex representations. Fig-
ure 10.29 below shows a comparison between accelerating dense versus 2:4
sparsity matrix multiplication, a common sparsity pattern used in model train-
ing. Later works like STEP (Lu et al. 2023) have examined learning more general𝑁:𝑀 sparsity masks for accelerating deep learning inference under the same
principles.

Figure 10.29: Illustration of 2:4
(sparse) matrix multiplication on
NVIDIA GPUs. Source PyTorch
Blog

Accumulator (result)

Dense operation

on Tensor Core

K

A
m

a
tr

ix
(D

e
n

s
e

)

M

Dense M × N × K GEMM
C matrix

(Dense)

N

M

B matrix

(Dense)

K

Accumulator (result)

Choose matching K/2

elements out of K elements
Select

Sparse operation

on Tensor Core

Non-zero data

values

K/2

A
m

a
tr

ix
(p

a
rs

e
)

2-bits

indices

K/2

M

Sparse M × N × K GEMM

C matrix

(Dense)

N

M

B matrix

(Dense)

K

A
m

a
tr

ix
(p

a
rs

e
)

GPUs and Sparse Operations. Graphics Processing Units (GPUs) are widely
recognized for their ability to perform highly parallel computations, making
them ideal for handling the large-scale matrix operations that are common
in machine learning. Modern GPUs, such as NVIDIA’s Ampere architecture,
include specialized Sparse Tensor Cores that accelerate sparse matrix multiplica-
tions. These tensor cores are designed to recognize and skip over zero elements
in sparse matrices, thereby reducing the number of operations required (Ab-
delkhalik et al. 2022). This is particularly advantageous for structured pruning
techniques, where entire filters, channels, or layers are pruned, resulting in a
significant reduction in the amount of computation. By skipping over the zero
values, GPUs can speed up matrix multiplications by a factor of two or more,
resulting in lower processing times and reduced power consumption for sparse
networks.

Furthermore, GPUs leverage their parallel architecture to handle multiple
operations simultaneously. This parallelism is especially beneficial for sparse
operations, as it allows the hardware to exploit the inherent sparsity in the
data more efÏciently. However, the full benefit of sparse operations on GPUs
requires that the sparsity is structured in a way that aligns with the underlying
hardware architecture, making structured pruning more advantageous for
optimization (Hoefler, Alistarh, Ben-Nun, Dryden, and Peste 2021).

TPUs and Sparse Optimization. TPUs, developed by Google, are custom-built
hardware accelerators specifically designed to handle tensor computations at a

https://pytorch.org/blog/accelerating-neural-network-training/
https://pytorch.org/blog/accelerating-neural-network-training/

10.6. Architectural EfÏciency Optimization 496

much higher efÏciency than traditional processors. TPUs, such as TPU v4, have
built-in support for sparse weight matrices, which is particularly beneficial for
models like transformers, including BERT and GPT, that rely on large-scale
matrix multiplications (Jouppi et al. 2021a). TPUs optimize sparse weight
matrices by reducing the computational load associated with zero elements,
enabling faster processing and improved energy efÏciency.

The efÏciency of TPUs comes from their ability to perform operations at
high throughput and low latency, thanks to their custom-designed matrix
multiply units. These units are able to accelerate sparse matrix operations by
directly processing the non-zero elements, making them well-suited for models
that incorporate significant sparsity, whether through pruning or low-rank
approximations. As the demand for larger models increases, TPUs continue to
play a critical role in maintaining performance while minimizing the energy
and computational cost associated with dense computations.

FPGAs and Sparse Computations. Field-Programmable Gate Arrays (FPGAs)
are another important class of hardware accelerators for sparse networks. Un-
like GPUs and TPUs, FPGAs are highly customizable, offering flexibility in their
design to optimize specific computational tasks. This makes them particularly
suitable for sparse operations that require fine-grained control over hardware
execution. FPGAs can be programmed to perform sparse matrix-vector multipli-
cations and other sparse matrix operations with minimal overhead, delivering
high performance for models that use unstructured pruning or require custom
sparse patterns.

One of the main advantages of FPGAs in sparse networks is their ability to be
tailored for specific applications, which allows for optimizations that general-
purpose hardware cannot achieve. For instance, an FPGA can be designed to
skip over zero elements in a matrix by customizing the data path and memory
management, providing significant savings in both computation and memory
usage. FPGAs also allow for low-latency execution, making them well-suited for
real-time applications that require efÏcient processing of sparse data streams.

Memory and Energy Optimization. One of the key challenges in sparse net-
works is managing memory bandwidth, as matrix operations often require
significant memory access. Sparse networks offer a solution by reducing the
number of elements that need to be accessed, thus minimizing memory traf-
fic. Hardware accelerators are optimized for these sparse matrices, utilizing
specialized memory access patterns that skip zero values, reducing the total
amount of memory bandwidth used (Baraglia and Konno 2019).

For example, GPUs and TPUs are designed to minimize memory access
latency by taking advantage of their high memory bandwidth. By accessing
only non-zero elements, these accelerators ensure that memory is used more
efÏciently. The memory hierarchies in these devices are also optimized for
sparse computations, allowing for faster data retrieval and reduced power
consumption.

The reduction in the number of computations and memory accesses directly
translates into energy savings. Sparse operations require fewer arithmetic
operations and fewer memory fetches, leading to a decrease in the energy
consumption required for both training and inference. This energy efÏciency

Chapter 10. Model Optimizations 497

is particularly important for applications that run on edge devices, where
power constraints are critical. Hardware accelerators like TPUs and GPUs are
optimized to handle these operations efÏciently, making sparse networks not
only faster but also more energy-efÏcient (Y. et al. Cheng 2022).

Future: Hardware and Sparse Networks. As hardware continues to evolve,
we can expect more innovations tailored specifically for sparse networks. Fu-
ture hardware accelerators may offer deeper integration with sparsity-aware
training and optimization algorithms, allowing even greater reductions in com-
putational and memory costs. Emerging fields like neuromorphic computing,
inspired by the brain’s structure, may provide new avenues for processing
sparse networks in energy-efÏcient ways (M. et al. Davies 2021). These advance-
ments promise to further enhance the efÏciency and scalability of machine
learning models, particularly in applications that require real-time processing
and run on power-constrained devices.

10.6.3.5 Sparsity Challenges and Limitations

While exploiting sparsity offers significant advantages in reducing compu-
tational cost and memory usage, several challenges and limitations must be
considered for the effective implementation of sparse networks. Table 10.10
summarizes some of the challenges and limitations associated with sparsity
optimizations.

Table 10.10: Challenges and limitations of sparsity optimization for architectural
efÏciency.

Challenge Description Impact

Unstructured
Sparsity
Optimization

Irregular sparse patterns make it difÏcult to
exploit sparsity on hardware.

Limited hardware acceleration and
reduced computational savings.

Algorithmic
Complexity

Sophisticated pruning and sparse matrix
operations require complex algorithms.

High computational overhead and
algorithmic complexity for large models.

Hardware
Support

Hardware accelerators are optimized for
structured sparsity, making unstructured sparsity
harder to optimize.

Suboptimal hardware utilization and
lower performance for unstructured
sparsity.

Accuracy
Trade-off

Aggressive sparsity may degrade model accuracy
if not carefully balanced.

Potential loss in performance, requiring
careful tuning and validation.

Energy
EfÏciency

Overhead from sparse matrix storage and
management can offset the energy savings from
reduced computation.

Power consumption may not improve if
the overhead surpasses savings from
sparse computations.

Limited
Applicability

Sparsity may not benefit all models or tasks,
especially in domains requiring dense
representations.

Not all models or hardware benefit
equally from sparsity.

One of the main challenges of sparsity is the optimization of unstructured
sparsity. In unstructured pruning, individual weights are removed based
on their importance, leading to an irregular sparse pattern. This irregularity
makes it difÏcult to fully exploit the sparsity on hardware, as most hardware
accelerators (like GPUs and TPUs) are designed to work more efÏciently with
structured data. Without a regular structure, these accelerators may not be able
to skip zero elements as effectively, which can limit the computational savings.

Another challenge is the algorithmic complexity involved in pruning and
sparse matrix operations. The process of deciding which weights to prune,

10.6. Architectural EfÏciency Optimization 498

particularly in an unstructured manner, requires sophisticated algorithms that
must balance model accuracy with computational efÏciency. These pruning
algorithms can be computationally expensive themselves, and applying them
across large models can result in significant overhead. The optimization of
sparse matrices also requires specialized techniques that may not always be
easy to implement or generalize across different architectures.

Hardware support is another important limitation. Although modern GPUs,
TPUs, and FPGAs have specialized features designed to accelerate sparse opera-
tions, fully optimizing sparse networks on hardware requires careful alignment
between the hardware architecture and the sparsity format. While structured
sparsity is easier to leverage on these accelerators, unstructured sparsity re-
mains a challenge, as hardware accelerators may struggle to efÏciently handle
irregular sparse patterns. Even when hardware is optimized for sparse opera-
tions, the overhead associated with sparse matrix storage formats and the need
for specialized memory management can still result in suboptimal performance.

Moreover, there is always a trade-off between sparsity and accuracy. Aggres-
sive pruning or low-rank approximation techniques that aggressively reduce
the number of parameters can lead to accuracy degradation. Finding the right
balance between reducing parameters and maintaining high model perfor-
mance is a delicate process that requires extensive experimentation. In some
cases, introducing too much sparsity can result in a model that is too small or
too underfit to achieve high performance.

Additionally, while sparsity can lead to energy savings, energy efÏciency
is not always guaranteed. Although sparse operations require fewer floating-
point operations, the overhead of managing sparse data and ensuring that
hardware optimally skips over zero values can introduce additional power con-
sumption. In edge devices or mobile environments with tight power budgets,
the benefits of sparsity may be less clear if the overhead associated with sparse
data structures and hardware utilization outweighs the energy savings.

Finally, there is a limited applicability of sparsity to certain types of models
or tasks. Not all models benefit equally from sparsity, especially those where
dense representations are crucial for performance. For example, models in
domains such as image segmentation or some types of reinforcement learning
may not show significant gains when sparsity is introduced. Additionally,
sparsity may not be effective for all hardware platforms, particularly for older
or lower-end devices that lack the computational power or specialized features
required to take advantage of sparse matrix operations.

10.6.3.6 Sparsity and Other Optimizations

While sparsity in neural networks is a powerful technique for improving com-
putational efÏciency and reducing memory usage, its full potential is often
realized when it is used alongside other optimization strategies. These opti-
mizations include techniques like pruning, quantization, and efÏcient model
design. Understanding how sparsity interacts with these methods is crucial for
effectively combining them to achieve optimal performance (Hoefler, Alistarh,
Ben-Nun, Dryden, and Ziogas 2021).

Chapter 10. Model Optimizations 499

Sparsity and Pruning. Pruning and sparsity are closely related techniques.
Pruning is the process of removing unimportant weights or entire components
from a network, typically resulting in a sparse model. The goal of pruning is to
reduce the number of parameters and operations required during inference, and
it inherently leads to sparsity in the model. However, the interaction between
pruning and sparsity is not always straightforward.

When pruning is applied, the resulting model may become sparse, but the
sparsity pattern, such as whether it is structured or unstructured, affects how
effectively the model can be optimized for hardware. For example, structured
pruning (e.g., pruning entire filters or layers) typically results in more efÏcient
sparsity, as hardware accelerators like GPUs and TPUs are better equipped to
handle regular patterns in sparse matrices (Elsen et al. 2020). Unstructured
pruning, on the other hand, can introduce irregular sparsity patterns, which
may not be as efÏciently processed by hardware, especially when combined
with other techniques like quantization.

Pruning methods often rely on the principle of removing weights that have
little impact on the model’s performance, but when combined with sparsity,
they require careful coordination with hardware-specific optimizations. For
instance, sparse patterns created by pruning need to align with the underlying
hardware architecture to achieve the desired computational savings (Gale, Elsen,
and Hooker 2019b).

Sparsity and Quantization. Quantization is another optimization technique
that reduces the precision of the model’s weights, typically converting them
from floating-point numbers to lower-precision integers. When sparsity and
quantization are used together, they can complement each other by further
reducing the memory footprint and computational cost.

However, the interaction between sparsity and quantization presents unique
challenges. While sparsity reduces the number of non-zero elements in a model,
quantization reduces the precision of the individual weights. When these two
optimizations are applied together, they can lead to significant reductions
in both memory usage and computation, but also pose trade-offs in model
accuracy (Nagel et al. 2021b). If the sparsity is unstructured, it may exacerbate
the challenges of processing the low-precision weights effectively, especially if
the hardware does not support irregular sparse matrices efÏciently.

Moreover, both sparsity and quantization require hardware that is specifically
optimized for these operations. For instance, GPUs and TPUs can accelerate
sparse matrix operations, but these gains are amplified when combined with
low-precision arithmetic operations. In contrast, CPUs may struggle with the
combined overhead of managing sparse and low-precision data simultaneously
(Yi Zhang et al. 2021).

Sparsity and Model Design. EfÏcient model design focuses on creating ar-
chitectures that are inherently efÏcient, without the need for extensive post-
training optimizations like pruning or quantization. Techniques like depthwise
separable convolutions, low-rank approximation, and dynamic computation
contribute to sparsity indirectly by reducing the number of parameters or the
computational complexity required by a network.

10.7. AutoML and Model Optimization 500

Sparsity enhances the impact of efÏcient design by reducing the memory
and computation requirements even further. For example, using low-rank
approximations to compress weight matrices can result in fewer parameters
and reduced model size, while sparsity ensures that these smaller models are
processed efÏciently (Dettmers and Zettlemoyer 2019). Additionally, when
applied to models designed with efÏcient structures, sparsity ensures that the
reduction in operations is fully realized during both training and inference.

However, a model designed for efÏciency that incorporates sparsity must also
be optimized for hardware that supports sparse operations. Without specialized
hardware support for sparse data, even the most efÏcient models can experience
suboptimal performance. Therefore, efÏcient design and sparsity must be
aligned with the underlying hardware to ensure that both computational cost
and memory usage are minimized (Elsen et al. 2020).

Sparsity and Optimization Challenges. While sparsity can provide signifi-
cant benefits when combined with pruning, quantization, and efÏcient model
design, there are also challenges in coordinating these techniques. One major
challenge is that each optimization method introduces its own set of trade-offs,
particularly when it comes to model accuracy. Sparsity can lead to loss of
information, while quantization can reduce the precision of the weights, both
of which can negatively impact performance if not carefully tuned. Similarly,
pruning can result in overly aggressive reductions that degrade accuracy if not
managed properly (Labarge, n.d.).

Furthermore, hardware support is a key factor in determining how well these
techniques work together. For example, sparsity is more effective when it is
structured in a way that aligns with the architecture of the hardware. Hardware
accelerators like GPUs and TPUs are optimized for structured sparsity, but may
struggle with unstructured patterns or combinations of sparsity and quantiza-
tion. Achieving optimal performance requires selecting the right combination
of sparsity, quantization, pruning, and efÏcient design, as well as ensuring that
the model is aligned with the capabilities of the hardware (Gale, Elsen, and
Hooker 2019b).

In summary, sparsity interacts closely with pruning, quantization, and ef-
ficient model design. While each of these techniques has its own strengths,
combining them requires careful consideration of their impact on model ac-
curacy, computational cost, memory usage, and hardware efÏciency. When
applied together, these optimizations can lead to significant reductions in both
computation and memory usage, but their effectiveness depends on how well
they are coordinated and aligned with hardware capabilities. By understand-
ing the synergies and trade-offs between sparsity and other optimization tech-
niques, practitioners can design more efÏcient models that are well-suited for
deployment in real-world, resource-constrained environments.

10.7 AutoML and Model Optimization
As machine learning models grow in complexity, optimizing them for real-
world deployment requires balancing multiple factors, including accuracy,
efÏciency, and hardware constraints. In this chapter, we have explored various

Chapter 10. Model Optimizations 501

optimization techniques, including pruning, quantization, and neural architec-
ture search, each of which targets specific aspects of model efÏciency. However,
applying these optimizations effectively often requires extensive manual effort,
domain expertise, and iterative experimentation.

Automated Machine Learning (AutoML) aims to streamline this process by
automating the search for optimal model configurations. AutoML frameworks
leverage machine learning algorithms to optimize architectures, hyperparame-
ters, model compression techniques, and other critical parameters, reducing the
need for human intervention (F. Hutter, Kotthoff, and Vanschoren 2019b). By
systematically exploring the vast design space of possible models, AutoML can
improve efÏciency while maintaining competitive accuracy, often discovering
novel solutions that may be overlooked through manual tuning (Zoph and Le
2017b).

AutoML does not replace the need for human expertise but rather enhances
it by providing a systematic and scalable approach to model optimization. As
illustrated in Figure 10.30, the key difference between traditional workflows
and AutoML is that preprocessing, training and evaluation are automated in
the latter. Instead of manually adjusting pruning thresholds, quantization
strategies, or architecture designs, practitioners can define high-level objectives,
including latency constraints, memory limits, and accuracy targets, and allow
AutoML systems to explore configurations that best satisfy these constraints
(Feurer et al. 2019).

Figure 10.30: Comparing AutoML
to the traditional ML training work-
flow.

Define

problem

Collect DataEvaluate

Train model
Preprocess

data

Traditional ML training

worklof

Define

problem

AutoML Collect data

AutoML

workflow

We will explore the core aspects of AutoML, starting with the key dimensions
of optimization, followed by the methodologies used in AutoML systems, and
concluding with challenges and limitations. By the end, we will understand
how AutoML serves as an integrative framework that unifies many of the
optimization strategies discussed earlier in this chapter.

10.7.1 AutoML Optimizations
AutoML is designed to optimize multiple aspects of a machine learning model,
ensuring efÏciency, accuracy, and deployability. Unlike traditional approaches
that focus on individual techniques, such as quantization for reducing numer-
ical precision or pruning for compressing models, AutoML takes a holistic

10.7. AutoML and Model Optimization 502

32 Bayesian Optimization: A
strategy for global optimization of
black-box functions that is particu-
larly suited for hyperparameter tun-
ing.

approach by jointly considering these factors. This enables a more compre-
hensive search for optimal model configurations, balancing performance with
real-world constraints (Yihui He et al. 2018).

One of the primary optimization targets of AutoML is neural network archi-
tecture search. Designing an efÏcient model architecture is a complex process
that requires balancing layer configurations, connectivity patterns, and com-
putational costs. NAS automates this by systematically exploring different
network structures, evaluating their efÏciency, and selecting the most optimal
design (Elsken, Metzen, and Hutter 2019b). This process has led to the discov-
ery of architectures such as MobileNetV3 and EfÏcientNet, which outperform
manually designed models on key efÏciency metrics (Tan and Le 2019c).

Beyond architecture design, AutoML also focuses on hyperparameter op-
timization, which plays a crucial role in determining a model’s performance.
Parameters such as learning rate, batch size, weight decay, and activation func-
tions must be carefully tuned for stability and efÏciency. Instead of relying on
trial and error, AutoML frameworks employ systematic search strategies, includ-
ing Bayesian optimization32, evolutionary algorithms, and adaptive heuristics,
to efÏciently identify the best hyperparameter settings for a given model and
dataset (Bardenet et al. 2015).

Another critical aspect of AutoML is model compression. Techniques such as
pruning and quantization help reduce the memory footprint and computational
requirements of a model, making it more suitable for deployment on resource-
constrained hardware. AutoML frameworks automate the selection of pruning
thresholds, sparsity patterns, and quantization levels, optimizing models for
both speed and energy efÏciency (Jiaxiang Wu et al. 2016). This is particularly
important for edge AI applications, where models need to operate with minimal
latency and power consumption (Chowdhery et al. 2021).

Finally, AutoML considers deployment-aware optimization, ensuring that
the final model is suited for real-world execution. Different hardware platforms
impose varying constraints on model execution, such as memory bandwidth
limitations, computational throughput, and energy efÏciency requirements.
AutoML frameworks incorporate hardware-aware optimization techniques,
tailoring models to specific devices by adjusting computational workloads,
memory access patterns, and execution strategies (H. Cai, Gan, and Han 2020).

Finally, AutoML considers deployment-aware optimization, ensuring that
the final model is suited for real-world execution. Different hardware platforms
impose varying constraints on model execution, such as memory bandwidth
limitations, computational throughput, and energy efÏciency requirements.
AutoML frameworks incorporate hardware-aware optimization techniques,
tailoring models to specific devices by adjusting computational workloads,
memory access patterns, and execution strategies.

Optimization across these dimensions enables AutoML to provide a unified
framework for enhancing machine learning models, streamlining the process to
achieve efÏciency without sacrificing accuracy. This holistic approach ensures
that models are not only theoretically optimal but also practical for real-world
deployment across diverse applications and hardware platforms.

Chapter 10. Model Optimizations 503

33 Meta-learning: Learning
knowledge from previous tasks to
improve future model training efÏ-
ciency.

10.7.2 Optimization Strategies

AutoML systems optimize machine learning models by systematically explor-
ing different configurations and selecting the most efÏcient combination of
architectures, hyperparameters, and compression strategies. Unlike traditional
manual tuning, which requires extensive domain expertise and iterative ex-
perimentation, AutoML leverages algorithmic search methods to automate
this process. The effectiveness of AutoML depends on how it navigates the
vast design space of possible models while balancing accuracy, efÏciency, and
deployment constraints.

The foundation of AutoML lies in search-based optimization strategies that
efÏciently explore different configurations. One of the most well-known tech-
niques within AutoML is NAS, which automates the design of machine learning
models. NAS frameworks employ methods such as reinforcement learning, evo-
lutionary algorithms, and gradient-based optimization to discover architectures
that maximize efÏciency while maintaining high accuracy (Zoph and Le 2017b).
By systematically evaluating candidate architectures, NAS can identify struc-
tures that outperform manually designed models, leading to breakthroughs in
efÏcient machine learning (Real et al. 2019b).

Beyond architecture search, AutoML systems also focus on hyperparame-
ter optimization (HPO), which fine-tunes crucial training parameters such as
learning rate, batch size, and weight decay. Instead of relying on grid search or
manual tuning, AutoML frameworks employ Bayesian optimization, random
search, and adaptive heuristics to efÏciently identify the best hyperparameter
settings (Feurer et al. 2019). These methods allow AutoML to converge on
optimal configurations faster than traditional trial-and-error approaches.

Another key aspect of AutoML is model compression optimization, where
pruning and quantization strategies are automatically selected based on deploy-
ment requirements. By evaluating trade-offs between model size, latency, and
accuracy, AutoML frameworks determine the best way to reduce computational
costs while preserving performance. This enables efÏcient model deployment
on resource-constrained devices without extensive manual tuning.

In addition to optimizing model structures and hyperparameters, AutoML
also incorporates data processing and augmentation strategies. Training data
quality is critical for achieving high model performance, and AutoML frame-
works can automatically determine the best preprocessing techniques to en-
hance generalization. Techniques such as automated feature selection, adaptive
augmentation policies, and dataset balancing are employed to improve model
robustness without introducing unnecessary computational overhead.

Recent advancements in AutoML have also led to meta-learning approaches33,
where knowledge from previous optimization tasks is leveraged to accelerate the
search for new models. By learning from prior experiments, AutoML systems
can intelligently navigate the optimization space, reducing the computational
cost associated with training and evaluation (Vanschoren 2018). This allows for
faster adaptation to new tasks and datasets.

Finally, many modern AutoML frameworks offer end-to-end automation, in-
tegrating architecture search, hyperparameter tuning, and model compression
into a single pipeline. Platforms such as Google AutoML, Amazon SageMaker

10.7. AutoML and Model Optimization 504

Autopilot, and Microsoft Azure AutoML provide fully automated workflows
that streamline the entire model optimization process (L. Li et al. 2017).

The integration of these strategies enables AutoML systems to provide a
scalable and efÏcient approach to model optimization, reducing the reliance on
manual experimentation. This automation not only accelerates model develop-
ment but also enables the discovery of novel architectures and configurations
that might otherwise be overlooked.

10.7.3 AutoML Challenges and Considerations
While AutoML offers a powerful framework for optimizing machine learn-
ing models, it also introduces several challenges and trade-offs that must be
carefully considered. Despite its ability to automate model design and hyper-
parameter tuning, AutoML is not a one-size-fits-all solution. The effectiveness
of AutoML depends on computational resources, dataset characteristics, and
the specific constraints of a given application.

One of the most significant challenges in AutoML is computational cost. The
process of searching for optimal architectures, hyperparameters, and compres-
sion strategies requires evaluating numerous candidate models, each of which
must be trained and validated. Methods like NAS can be particularly expensive,
often requiring thousands of GPU hours to explore a large search space. While
techniques such as early stopping, weight sharing, and surrogate models help
reduce search costs, the computational overhead remains a major limitation,
especially for organizations with limited access to high-performance computing
resources.

Another challenge is bias in search strategies, which can influence the final
model selection. The optimization process in AutoML is guided by heuristics
and predefined objectives, which may lead to biased results depending on
how the search space is defined. If the search algorithm prioritizes certain
architectures or hyperparameters over others, it may fail to discover alternative
configurations that could be more effective for specific tasks. Additionally,
biases in training data can propagate through the AutoML process, reinforcing
unwanted patterns in the final model.

Generalization and transferability present additional concerns. AutoML-
generated models are optimized for specific datasets and deployment con-
ditions, but their performance may degrade when applied to new tasks or
environments. Unlike manually designed models, where human intuition can
guide the selection of architectures that generalize well, AutoML relies on em-
pirical evaluation within a constrained search space. This limitation raises
questions about the robustness of AutoML-optimized models when faced with
real-world variability.

Interpretability is another key consideration. Many AutoML-generated archi-
tectures and configurations are optimized for efÏciency but lack transparency
in their design choices. Understanding why a particular AutoML-discovered
model performs well can be challenging, making it difÏcult for practitioners to
debug issues or adapt models for specific needs. The black-box nature of some
AutoML techniques limits human insight into the underlying optimization
process.

Chapter 10. Model Optimizations 505

Beyond technical challenges, there is also a trade-off between automation
and control. While AutoML reduces the need for manual intervention, it also
abstracts away many decision-making processes that experts might otherwise
fine-tune for specific applications. In some cases, domain knowledge is essential
for guiding model optimization, and fully automated systems may not always
account for subtle but important constraints imposed by the problem domain.

Despite these challenges, AutoML continues to evolve, with ongoing research
focused on reducing computational costs, improving generalization, and en-
hancing interpretability. As these improvements emerge, AutoML is expected
to play an increasingly prominent role in the development of optimized ma-
chine learning models, making AI systems more accessible and efÏcient for a
wide range of applications.

10.8 Software and Framework Support
The theoretical understanding of model optimization techniques like pruning,
quantization, and efÏcient numerics is essential, but their practical implemen-
tation relies heavily on robust software support. Without extensive framework
development and tooling, these optimization methods would remain largely
inaccessible to practitioners. For instance, implementing quantization would
require manual modification of model definitions and careful insertion of quan-
tization operations throughout the network. Similarly, pruning would involve
direct manipulation of weight tensors—tasks that become prohibitively com-
plex as models scale.

The widespread adoption of model optimization techniques has been en-
abled by significant advances in software frameworks, optimization tools, and
hardware integration. Modern machine learning frameworks provide high-
level APIs and automated workflows that abstract away much of the complexity
involved in applying these optimizations. This software infrastructure makes
sophisticated optimization techniques accessible to a broader audience of practi-
tioners, enabling the deployment of efÏcient models across diverse applications.

Framework support addresses several critical challenges in model optimiza-
tion:

1. Implementation Complexity: Frameworks provide pre-built modules
and functions for common optimization techniques, eliminating the need
for custom implementations.

2. Hyperparameter Management: Tools assist in tuning optimization pa-
rameters, such as pruning schedules or quantization bit-widths.

3. Performance Trade-offs: Software helps manage the balance between
model compression and accuracy through automated evaluation pipelines.

4. Hardware Compatibility: Frameworks ensure optimized models remain
compatible with target deployment platforms through device-specific
code generation and validation.

The support provided by frameworks transforms the theoretical optimiza-
tion techniques we learned into practical tools that can be readily applied
in production environments. This accessibility has been crucial in bridging

10.8. Software and Framework Support 506

the gap between academic research and industrial applications, enabling the
widespread deployment of efÏcient machine learning models.

10.8.1 Optimization APIs

Modern machine learning frameworks provide extensive APIs and libraries that
enable practitioners to apply optimization techniques without implementing
complex algorithms from scratch. These built-in optimizations enhance model
efÏciency while ensuring adherence to established best practices. Leading
frameworks such as TensorFlow, PyTorch, and MXNet offer comprehensive
toolkits for model optimization, streamlining the deployment of efÏcient ma-
chine learning systems.

TensorFlow provides robust optimization capabilities through its Model
Optimization Toolkit, which facilitates various techniques, including quantiza-
tion, pruning, and clustering. QAT within the toolkit enables the conversion
of floating-point models to lower-precision formats, such as INT8, while pre-
serving model accuracy. The toolkit systematically manages both weight and
activation quantization, ensuring consistency across diverse model architec-
tures.

Beyond quantization, TensorFlow’s optimization suite includes pruning al-
gorithms that introduce sparsity into neural networks by removing redundant
connections at different levels of granularity, from individual weights to entire
layers. This flexibility allows practitioners to tailor pruning strategies to their
specific requirements. Additionally, weight clustering groups similar weights
together to achieve model compression while preserving core functionality.
By leveraging these optimization techniques, TensorFlow provides multiple
pathways for improving model efÏciency beyond traditional quantization.

Similarly, PyTorch offers comprehensive optimization support through built-
in modules for quantization and pruning. The torch.quantization package
provides tools for converting models to lower-precision representations, sup-
porting both post-training quantization and quantization-aware training, as
shown in Listing 10.1.

For pruning, PyTorch provides the torch.nn.utils.prune module, which
supports both unstructured and structured pruning. An example of both
pruning strategies is given in Listing 10.2.

These tools integrate seamlessly into PyTorch’s training pipelines, enabling
efÏcient experimentation with different optimization strategies.

Built-in optimization APIs offer substantial benefits that make model opti-
mization more accessible and reliable. By providing pre-tested, production-
ready tools, these APIs dramatically reduce the implementation complexity that
practitioners face when optimizing their models. Rather than having to imple-
ment complex optimization algorithms from scratch, developers can leverage
standardized interfaces that have been thoroughly vetted.

The consistency provided by these built-in APIs is particularly valuable when
working across different model architectures. The standardized interfaces
ensure that optimization techniques are applied uniformly, reducing the risk of
implementation errors or inconsistencies that could arise from custom solutions.

Chapter 10. Model Optimizations 507

Listing 10.1: Model preparation for quantization-aware training in PyTorch

import torch
from torch.quantization import QuantStub, DeQuantStub,

prepare_qat

Define a model with quantization support
class QuantizedModel(torch.nn.Module):

def __init__(self):
super().__init__()
self.quant = QuantStub()
self.conv = torch.nn.Conv2d(3, 64, 3)
self.dequant = DeQuantStub()

def forward(self, x):
x = self.quant(x)
x = self.conv(x)
return self.dequant(x)

Prepare model for quantization-aware training
model = QuantizedModel()
model.qconfig = torch.quantization.get_default_qat_qconfig()
model_prepared = prepare_qat(model)

Listing 10.2: Weight pruning techniques in PyTorch

import torch.nn.utils.prune as prune

Apply unstructured pruning
module = torch.nn.Linear(10, 10)
prune.l1_unstructured(module, name='weight', amount=0.3)
Prune 30% of weights

Apply structured pruning
prune.ln_structured(module, name='weight', amount=0.5,

n=2, dim=0)

This standardization helps maintain reliable and reproducible results across
different projects and teams.

These frameworks also serve as a bridge between cutting-edge research and
practical applications. As new optimization techniques emerge from the re-
search community, framework maintainers incorporate these advances into
their APIs, making state-of-the-art methods readily available to practitioners.
This continuous integration of research advances ensures that developers have

10.8. Software and Framework Support 508

access to the latest optimization strategies without needing to implement them
independently.

Furthermore, the comprehensive nature of built-in APIs enables rapid ex-
perimentation with different optimization approaches. Developers can easily
test various strategies, compare their effectiveness, and iterate quickly to find
the optimal configuration for their specific use case. This ability to experiment
efÏciently is crucial for finding the right balance between model performance
and resource constraints.

As model optimization continues to evolve, major frameworks maintain
and expand their built-in support, further reducing barriers to efÏcient model
deployment. The standardization of these APIs has played a crucial role in de-
mocratizing access to model efÏciency techniques while ensuring high-quality
implementations remain consistent and reliable.

10.8.2 Hardware Optimization Libraries

Hardware optimization libraries in modern machine learning frameworks en-
able efÏcient deployment of optimized models across different hardware plat-
forms. These libraries integrate directly with training and deployment pipelines
to provide hardware-specific acceleration for various optimization techniques
across model representation, numerical precision, and architectural efÏciency
dimensions.

For model representation optimizations like pruning, libraries such as Ten-
sorRT, XLA, and OpenVINO provide sparsity-aware acceleration through opti-
mized kernels that efÏciently handle sparse computations. TensorRT specifically
supports structured sparsity patterns, allowing models trained with techniques
like two-out-of-four structured pruning to run efÏciently on NVIDIA GPUs.
Similarly, TPUs leverage XLA’s sparse matrix optimizations, while FPGAs en-
able custom sparse execution through frameworks like Vitis AI.

Knowledge distillation benefits from hardware-aware optimizations that
help compact student models achieve high inference efÏciency. Libraries like
TensorRT, OpenVINO, and SNPE optimize distilled models for low-power
execution, often combining distillation with quantization or architectural re-
structuring to meet hardware constraints. For models discovered through
neural architecture search (NAS), frameworks such as TVM and TIMM provide
compiler support to tune the architectures for various hardware backends.

In terms of numerical precision optimization, these libraries offer extensive
support for both PTQ and QAT. TensorRT and TensorFlow Lite implement INT8
and INT4 quantization during model conversion, reducing computational com-
plexity while leveraging specialized hardware acceleration on mobile SoCs and
edge AI chips. NVIDIA TensorRT incorporates calibration-based quantization
using representative datasets to optimize weight and activation scaling.

More granular quantization approaches like channelwise and groupwise
quantization are supported in frameworks such as SNPE and OpenVINO. Dy-
namic quantization capabilities in PyTorch and ONNX Runtime enable runtime
activation quantization, making models adaptable to varying hardware con-
ditions. For extreme precision reduction, techniques like binarization and

Chapter 10. Model Optimizations 509

ternarization are optimized through libraries such as CMSIS-NN, enabling efÏ-
cient execution of binary-weight models on ARM Cortex-M microcontrollers.

Architectural efÏciency techniques integrate tightly with hardware-specific
execution frameworks. TensorFlow XLA and TVM provide operator-level tun-
ing through aggressive fusion and kernel reordering, improving efÏciency
across GPUs, TPUs, and edge devices. Dynamic computation approaches like
early exit architectures and conditional computation are supported by custom
execution runtimes that optimize control flow.

The widespread support for sparsity-aware execution spans multiple hard-
ware platforms. NVIDIA GPUs utilize specialized sparse tensor cores for
accelerating structured sparse models, while TPUs implement hardware-level
sparse matrix optimizations. On FPGAs, vendor-specific compilers like Vitis
AI enable custom sparse computations to be highly optimized.

This comprehensive integration of hardware optimization libraries with ma-
chine learning frameworks enables developers to effectively implement pruning,
quantization, NAS, dynamic computation, and sparsity-aware execution while
ensuring optimal adaptation to target hardware. The ability to optimize across
multiple dimensions, including model representation, numerical precision,
and architectural efÏciency, is crucial for deploying machine learning models
efÏciently across diverse platforms.

10.8.3 Optimization Visualization
Model optimization techniques fundamentally alter model structure and nu-
merical representations, but their impact can be difÏcult to interpret without
visualization tools. Dedicated visualization frameworks and libraries help prac-
titioners gain insights into how pruning, quantization, and other optimizations
affect model behavior. These tools provide graphical representations of spar-
sity patterns, quantization error distributions, and activation changes, making
optimization more transparent and controllable.

10.8.3.1 Quantization Visualization

Quantization reduces numerical precision, introducing rounding errors that
can impact model accuracy. Visualization tools provide direct insight into how
these errors are distributed, helping diagnose and mitigate precision-related
performance degradation.

One commonly used technique is quantization error histograms, which de-
pict the distribution of errors across weights and activations. These histograms
reveal whether quantization errors follow a Gaussian distribution or contain
outliers, which could indicate problematic layers. TensorFlow’s Quantization
Debugger and PyTorch’s FX Graph Mode Quantization tools allow users to
analyze such histograms and compare error patterns between different quanti-
zation methods.

Activation visualizations also help detect overflow issues caused by reduced
numerical precision. Tools such as ONNX Runtime’s quantization visualization
utilities and NVIDIA’s TensorRT Inspector allow practitioners to color-map
activations before and after quantization, making saturation and truncation

10.8. Software and Framework Support 510

issues visible. This enables calibration adjustments to prevent excessive infor-
mation loss, preserving numerical stability. For example, Figure 10.31 is a color
mapping of the AlexNet convolutional kernels.

Figure 10.31: Color mapping of
activations. Source: Krizhevsky,
Sutskever, and Hinton (2017c).

Beyond static visualizations, tracking quantization error over the training
process is essential. Monitoring mean squared quantization error (MSQE)
during quantization-aware training (QAT) helps identify divergence points
where numerical precision significantly impacts learning. TensorBoard and Py-
Torch’s quantization debugging APIs provide real-time tracking, highlighting
instability during training.

By integrating these visualization tools into optimization workflows, practi-
tioners can identify and correct issues early, ensuring optimized models main-
tain both accuracy and efÏciency. These empirical insights provide a deeper
understanding of how sparsity, quantization, and architectural optimizations
affect models, guiding effective model compression and deployment strategies.

10.8.3.2 Sparsity Visualization

Sparsity visualization tools provide detailed insight into pruned models by
mapping out which weights have been removed and how sparsity is distributed
across different layers. Frameworks such as TensorBoard (for TensorFlow) and
Netron (for ONNX) allow users to inspect pruned networks at both the layer
and weight levels.

One common visualization technique is sparsity heat maps, where color
gradients indicate the proportion of weights removed from each layer. Layers
with higher sparsity appear darker, revealing the model regions most impacted
by pruning, as shown in Figure 10.32. This type of visualization transforms

Chapter 10. Model Optimizations 511

pruning from a black-box operation into an interpretable process, enabling
practitioners to better understand and control sparsity-aware optimizations.

Figure 10.32: Sparse network heat
map. Source: Numenta.

Beyond static snapshots, trend plots track sparsity progression across multi-
ple pruning iterations. These visualizations illustrate how global model sparsity
evolves, often showing an initial rapid increase followed by more gradual re-
finements. Tools like TensorFlow’s Model Optimization Toolkit and SparseML’s
monitoring utilities provide such tracking capabilities, displaying per-layer
pruning levels over time. These insights allow practitioners to fine-tune prun-
ing strategies by adjusting sparsity constraints for individual layers.

Libraries such as DeepSparse’s visualization suite and PyTorch’s pruning
utilities enable the generation of these visualization tools, helping analyze how
pruning decisions affect different model components. By making sparsity data
visually accessible, these tools help practitioners optimize their models more
effectively.

10.9 Conclusion
This chapter has explored the multifaceted landscape of model optimization, a
critical process for translating machine learning advancements into practical,
real-world systems. We began by recognizing the inherent tension between
model accuracy and efÏciency, driven by constraints such as computational cost,
memory limitations, and energy consumption. This necessitates a systematic
approach to refining models, ensuring they remain effective while operating
within the boundaries of real-world deployment environments.

We examined three core dimensions of model optimization: optimizing
model representation, numerical precision, and architectural efÏciency. Within
each dimension, we delved into specific techniques, such as pruning, knowl-
edge distillation, quantization, and dynamic computation, highlighting their
trade-offs and practical considerations. We also emphasized the importance of
hardware-aware model design, recognizing that aligning model architectures
with the underlying hardware capabilities is crucial for maximizing perfor-
mance and efÏciency.

Finally, we explored AutoML as a holistic approach to model optimization,
automating many of the tasks that traditionally require manual effort and

https://www.numenta.com/blog/

10.10. Resources 512

expertise. AutoML frameworks offer a unified approach to architecture search,
hyperparameter tuning, model compression, and data processing, streamlining
the optimization process and potentially leading to novel solutions that might
be overlooked through manual exploration.

As machine learning continues to evolve, model optimization will remain
a critical area of focus. The ongoing development of new techniques, cou-
pled with advancements in hardware and software infrastructure, will further
enhance our ability to deploy efÏcient, scalable, and robust AI systems. By
understanding the principles and practices of model optimization, practitioners
can effectively bridge the gap between theoretical advancements and practi-
cal applications, unlocking the full potential of machine learning to address
real-world challenges.

10.10 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 11

AI Acceleration

Figure 11.1: DALL·E 3 Prompt: Create
an intricate and colorful representation
of a System on Chip (SoC) design in a
rectangular format. Showcase a variety
of specialized machine learning accel-
erators and chiplets, all integrated into
the processor. Provide a detailed view
inside the chip, highlighting the rapid
movement of electrons. Each accelerator
and chiplet should be designed to inter-
act with neural network neurons, lay-
ers, and activations, emphasizing their
processing speed. Depict the neural net-
works as a network of interconnected
nodes, with vibrant data streams flow-
ing between the accelerator pieces, show-
casing the enhanced computation speed.

Purpose
How does hardware acceleration impact machine learning system performance, and what
principles should ML engineers understand to effectively design and deploy systems?

Machine learning systems has driven a fundamental shift in computer ar-
chitecture. Traditional processors, designed for general-purpose computing,
prove inefÏcient for the repeated mathematical operations and data movement
patterns in neural networks. Modern accelerators address this challenge by
matching hardware structures to ML computation patterns. These accelerators
introduce fundamental trade-offs in performance, power consumption, and
flexibility. Effective utilization of hardware acceleration requires an under-
standing of these trade-offs, as well as the architectural principles that govern
accelerator design. By optimizing and learning to map models effectively for
specific hardware platforms, engineers can balance computational efÏciency.

513

11.1. Overview 514

0 While GPUs were initially de-
signed for digital image processing
and accelerating computer graphics,
they proved useful for non-graphic
calculations. The parallel structure
of GPUs is useful in processing the
color of thousands of pixels simulta-
neously. Many computational prob-
lems in ML such as matrix mul-
tiplication or processing of large
datasets share similar characteristics
with graphic processing.

L� Learning Objectives

• Understand the historical context of hardware acceleration.
• Identify key AI compute primitives and their role in model execu-

tion.
• Explain the memory hierarchy and its impact on AI accelerator

performance.
• Describe strategies for mapping neural networks to hardware.
• Analyze the role of compilers and runtimes in optimizing AI work-

loads.
• Compare single-chip and multi-chip AI architectures.

11.1 Overview

Machine learning has driven a fundamental shift in computer architecture,
pushing beyond traditional general-purpose processors toward specialized
acceleration. The computational demands of modern machine learning models
exceed the capabilities of conventional CPUs, which were designed for sequen-
tial execution. Instead, machine learning workloads exhibit massive parallelism,
high memory bandwidth requirements, and structured computation patterns
that demand purpose-built hardware for efÏciency and scalability. Machine
Learning Accelerators (ML Accelerators) have emerged as a response to these
challenges.

�� Definition of ML Accelerator

Machine Learning Accelerator (ML Accelerator) refers to a specialized com-
puting hardware designed to efÏciently execute machine learning workloads.
These accelerators optimize matrix multiplications, tensor operations, and
data movement, enabling high-throughput and energy-efÏcient computation.
ML accelerators operate at various power and performance scales, ranging
from edge devices with milliwatt-level consumption to data center-scale acceler-
ators requiring kilowatts of power. They are specifically designed to address
the computational and memory demands of machine learning models, often
incorporating optimized memory hierarchies, parallel processing units, and
custom instruction sets to maximize performance. ML accelerators are
widely used in training, inference, and real-time AI applications across cloud,
edge, and embedded systems.

Unlike CPUs and GPUs,0 which were originally designed for general-purpose
computing and graphics, ML accelerators are optimized for tensor operations,
matrix multiplications, and memory-efÏcient execution—the core computa-
tions that drive deep learning. These accelerators span a wide range of power
and performance envelopes, from energy-efÏcient edge devices to large-scale

Chapter 11. AI Acceleration 515

1 von Neumann Architecture: A
computing model where programs
and data share the same memory,
leading to a bottleneck in data trans-
fer between the processor and mem-
ory, known as the von Neumann bot-
tleneck.

data center accelerators. Their architectures integrate custom processing ele-
ments, optimized memory hierarchies, and domain-specific execution models,
enabling high-performance training and inference.

As ML models have grown in size and complexity, hardware acceleration has
evolved to keep pace. The shift from von Neumann architectures1 to specialized
accelerators reflects a broader trend in computing: reducing the cost of data
movement, increasing parallelism, and tailoring hardware to domain-specific
workloads. Moving data across memory hierarchies often consumes more
energy than computation itself, making efÏcient memory organization and
computation placement critical to overall system performance.

This chapter explores AI acceleration from a systems perspective, examining
how computational models, hardware optimizations, and software frameworks
interact to enable efÏcient execution. It covers key operations like matrix mul-
tiplications and activation functions, the role of memory hierarchies in data
movement, and techniques for mapping neural networks to hardware. The dis-
cussion extends to compilers, scheduling strategies, and runtime optimizations,
highlighting their impact on performance. Finally, it addresses the challenges of
scaling AI systems from single-chip accelerators to multi-chip and distributed
architectures, integrating real-world examples to illustrate effective AI accelera-
tion.

11.2 Hardware Evolution
The progression of computing architectures follows a recurring pattern: as com-
putational workloads grow in complexity, general-purpose processors become
increasingly inefÏcient, prompting the development of specialized hardware
accelerators. This transition is driven by the need for higher computational
efÏciency, reduced energy consumption, and optimized execution of domain-
specific workloads. Machine learning acceleration is the latest stage in this
ongoing evolution, following a well-established trajectory observed in prior
domains such as floating-point arithmetic, graphics processing, and digital
signal processing.

This evolution is not just of academic interest—it provides essential context
for understanding how modern ML accelerators like GPUs with tensor cores,
Google’s TPUs, and Apple’s Neural Engine came to be. These technologies
now power widely deployed applications such as real-time language transla-
tion, image recognition, and personalized recommendations. The architectural
strategies enabling such capabilities are deeply rooted in decades of hardware
specialization.

At the heart of this transition is hardware specialization, which enhances
performance and efÏciency by optimizing frequently executed computational
patterns through dedicated circuit implementations. While this approach
leads to significant gains, it also introduces trade-offs in flexibility, silicon area
utilization, and programming complexity. As computing demands continue to
evolve, specialized accelerators must balance these factors to deliver sustained
improvements in efÏciency and performance.

Building on this historical trajectory, the evolution of hardware specialization
provides a perspective for understanding modern machine learning acceler-

11.2. Hardware Evolution 516

ators. Many of the principles that shaped the development of early floating-
point and graphics accelerators now inform the design of AI-specific hardware.
Examining these past trends offers a systematic framework for analyzing con-
temporary approaches to AI acceleration and anticipating future developments
in specialized computing.

11.2.1 Specialized Computing
The transition toward specialized computing architectures arises from the fun-
damental limitations of general-purpose processors. Early computing systems
relied on central processing units (CPUs) to execute all computational tasks
sequentially, following a one-size-fits-all approach. However, as computing
workloads diversified and grew in complexity, certain operations, especially
floating-point arithmetic, emerged as critical performance bottlenecks that
could not be efÏciently handled by CPUs alone. These fundamental inefÏcien-
cies prompted the development of specialized hardware architectures designed
to accelerate specific computational patterns (Flynn 1966).

One of the earliest examples of hardware specialization was the Intel 8087
mathematics coprocessor, introduced in 1980. This floating-point unit (FPU)
was designed to ofÒoad arithmetic-intensive computations from the main CPU,
dramatically improving performance for scientific and engineering applications.
The 8087 demonstrated unprecedented efÏciency, achieving performance gains
of up to 100× for floating-point operations compared to software-based imple-
mentations on general-purpose processors (Fisher 1981). This milestone estab-
lished a fundamental principle in computer architecture: carefully designed
hardware specialization could provide order-of-magnitude improvements for
well-defined, computationally intensive tasks.

The success of floating-point coprocessors led to their eventual integration
into mainstream processors. For example, the Intel 486DX, released in 1989,
incorporated an on-chip floating-point unit, eliminating the need for an external
coprocessor. This integration not only improved processing efÏciency but also
marked a recurring pattern in computer architecture: successful specialized
functions tend to become standard features in future generations of general-
purpose processors (D. A. Patterson and Hennessy 2021c).

The principles established through early floating-point acceleration continue
to influence modern hardware specialization. These include:

1. Identification of computational bottlenecks through workload analysis
2. Development of specialized circuits for frequent operations
3. Creation of efÏcient hardware-software interfaces
4. Progressive integration of proven specialized functions

This progression from domain-specific specialization to general-purpose in-
tegration has played a central role in shaping modern computing architectures.
As computational workloads expanded beyond arithmetic operations, these
same fundamental principles were applied to new domains, such as graphics
processing, digital signal processing, and ultimately, machine learning acceler-
ation. Each of these domains introduced specialized architectures tailored to
their unique computational requirements, establishing hardware specialization

Chapter 11. AI Acceleration 517

as a cornerstone strategy for advancing computing performance and efÏciency
in increasingly complex workloads.

The evolution of specialized computing hardware follows a consistent trajec-
tory, wherein architectural innovations are introduced to mitigate emerging
computational bottlenecks and are eventually incorporated into mainstream
computing platforms. As illustrated in Figure 11.2, each computing era gave
rise to accelerators that addressed the dominant workload characteristics of the
time. These developments have not only advanced architectural efÏciency but
have also shaped the foundation upon which contemporary machine learning
systems are built. The computational capabilities required for tasks such as
real-time language translation, personalized recommendations, and on-device
inference rely on the foundational principles and architectural innovations
established in earlier domains, including floating-point computation, graphics
processing, and digital signal processing.

Figure 11.2: Evolution of specialized
computing hardware.

1980s 1990s 2000s 2010s 2020s

Floating-Point & Signal

Processing

Intel 8087 FPU (1980)

Texas Instruments

TMS32010 DSP (1983)

Integration of FPU into

Intel 486DX (1989)

3D Graphics &

Multimedia

Introduction of Early

GPUs

NVIDIA GeForce 256 –

First Programmable

GPU (1999)

Rise of SIMD

Processing Units

Real-time Media Coding

& Network Processing

Media Codecs

(H.264, MP3)

Intel IXP2800 Network

Processor

Dedicated hardware for

streaming and encoding

Deep Learning Tensor

Operations

Google TPU v1 for

ML Inference (2016)

NVIDIA Tensor Cores

for DL Acceleration

AI-specific memory

optimizations

Application-Specific

Acceleration

AI Engines &

SmartNICs

Multi-chip and

wafer-scale ML

acceleration

ML frameworks

optimizing for

specialized hardware

11.2.2 Specialized Computing Expansion
The principles established through floating-point acceleration provided a blueprint
for addressing emerging computational challenges. As computing applications
diversified, new computational patterns emerged that exceeded the capabilities
of general-purpose processors. This expansion of specialized computing mani-
fested across multiple domains, each contributing unique insights to hardware
acceleration strategies.

Graphics processing emerged as a significant driver of hardware specializa-
tion in the 1990s. Early graphics accelerators focused on specific operations
like bitmap transfers and polygon filling. The introduction of programmable
graphics pipelines with NVIDIA’s GeForce 256 in 1999 represented a crucial
advancement in specialized computing. Graphics Processing Units (GPUs)
demonstrated how parallel processing architectures could efÏciently handle
data-parallel workloads. For example, in 3D rendering tasks like texture map-
ping and vertex transformation, GPUs achieved 50-100× speedups over CPU
implementations. By 2004, GPUs could process over 100 million polygons per
second—tasks that would overwhelm even the fastest CPUs of the time (Owens
et al. 2008).

11.2. Hardware Evolution 518

Digital Signal Processing (DSP) represents another fundamental domain of
hardware specialization. DSP processors introduced architectural innovations
specifically designed for efÏcient signal processing operations. These included
specialized multiply-accumulate units, circular buffers, and parallel data paths
optimized for filtering and transform operations. Texas Instruments’ TMS32010,
introduced in 1983, established how domain-specific instruction sets and mem-
ory architectures could dramatically improve performance for signal processing
applications (Lyons 2011).

Network processing introduced additional patterns of specialization. Net-
work processors developed unique architectures to handle packet processing
at line rate, incorporating multiple processing cores, specialized packet manip-
ulation units, and sophisticated memory management systems. Intel’s IXP2800
network processor demonstrated how multiple levels of hardware specializa-
tion could be combined to address complex processing requirements.

These diverse domains of specialization shared several common themes:
1. Identification of domain-specific computational patterns
2. Development of specialized processing elements and memory hierarchies
3. Creation of domain-specific programming models
4. Progressive evolution toward more flexible architectures

This period of expanding specialization demonstrated that hardware acceler-
ation strategies could successfully address diverse computational requirements.
The GPU’s success in parallelizing 3D graphics pipelines directly enabled its
later adoption for training deep neural networks, such as AlexNet in 2012,
which famously ran on consumer-grade NVIDIA GPUs. DSP innovations in
low-power signal processing helped pave the way for real-time inference on
edge devices, such as voice assistants and wearables. These domains not only
informed ML hardware designs but also proved that accelerators could be
deployed across both cloud and embedded contexts—a lesson that continues
to shape today’s AI ecosystem.

11.2.3 Domain-Specific Architectures

The emergence of domain-specific architectures (DSA) marks a fundamental
shift in computer system design, driven by two key factors: the breakdown
of traditional scaling laws and the increasing computational demands of spe-
cialized workloads. The slowdown of Moore’s Law, which previously ensured
predictable enhancements in transistor density every 18 to 24 months, and
the end of Dennard scaling, which permitted frequency increases without
corresponding power increases, created a critical performance and efÏciency
bottleneck in general-purpose computing. As John Hennessy and David Patter-
son noted in their 2017 Turing Lecture (John L. Hennessy and Patterson 2019),
these limitations signaled the onset of a new era in computer architecture—one
centered on domain-specific solutions that optimize hardware for specialized
workloads.

Historically, improvements in processor performance relied on semiconduc-
tor process scaling and increasing clock speeds. However, as power density

Chapter 11. AI Acceleration 519

limitations restricted further frequency scaling, and as transistor miniaturiza-
tion faced increasing physical and economic constraints, architects were forced
to explore alternative approaches to sustain computational growth. The re-
sult was a shift toward domain-specific architectures, which dedicate silicon
resources to optimize computation for specific application domains, trading
flexibility for efÏciency. Domain-specific architectures achieve superior perfor-
mance and energy efÏciency through several key principles:

1. Customized datapaths: Design processing paths specifically optimized
for target application patterns, enabling direct hardware execution of
common operations. For example, matrix multiplication units in AI accel-
erators implement systolic arrays tailored for neural network computa-
tions.

2. Specialized memory hierarchies: Optimize memory systems around
domain-specific access patterns and data reuse characteristics. This in-
cludes custom cache configurations, prefetching logic, and memory con-
trollers tuned for expected workloads.

3. Reduced instruction overhead: Implement domain-specific instruction
sets that minimize decode and dispatch complexity by encoding com-
mon operation sequences into single instructions. This improves both
performance and energy efÏciency.

4. Direct hardware implementation: Create dedicated circuit blocks that
natively execute frequently used operations without software interven-
tion. This eliminates instruction processing overhead and maximizes
throughput.

Perhaps the best-known example of success in domain-specific architectures
is modern smartphones. Introduced in the late 2000s, modern smartphones
can decode 4K video at 60 frames per second while consuming just a few watts
of power—even though video processing requires billions of operations per
second. This remarkable efÏciency is achieved through dedicated hardware
video codecs that implement industry standards such as H.264/AVC (intro-
duced in 2003) and H.265/HEVC (finalized in 2013) (Sullivan et al. 2012). These
specialized circuits offer 100–1000× improvements in both performance and
power efÏciency compared to software-based decoding on general-purpose
processors.

The trend toward specialization continues to accelerate, with new architec-
tures emerging for an expanding range of domains. Genomics processing,
for example, benefits from custom accelerators that optimize sequence align-
ment and variant calling, reducing the time required for DNA analysis (Shang,
Wang, and Liu 2018). Similarly, blockchain computation has given rise to
application-specific integrated circuits (ASICs) optimized for cryptographic
hashing, dramatically increasing the efÏciency of mining operations (Bedford
Taylor 2017). These examples illustrate that domain-specific architecture is
not merely a transient trend but a fundamental transformation in computing
systems, offering tailored solutions that address the growing complexity and
diversity of modern computational workloads.

11.2. Hardware Evolution 520

2 Memory Bandwidth: The rate
at which data can be read from or
written to memory by a processor,
influencing performance in data-
intensive operations.

11.2.4 ML in Computational Domains

Machine learning has emerged as one of the most computationally demanding
fields, demonstrating the need for dedicated hardware that targets its unique
characteristics. Domain-specific architectures, previously developed for video
codecs or other specialized tasks, have now expanded to meet the challenges
posed by ML workloads. These specialized designs optimize the execution of
dense matrix operations and manage data movement efÏciently, a necessity
given the inherent memory bandwidth2 limitations.

A key distinction in ML is the differing requirements between training and
inference. Training demands both forward and backward propagation, with
high numerical precision (e.g., FP32 or FP16) to ensure stable gradient updates
and convergence, while inference can often operate at lower precision (e.g.,
INT8) without major accuracy loss. This variance not only drives the need
for mixed-precision arithmetic hardware but also allows optimizations that
improve throughput and energy efÏciency—often achieving 4–8× gains.

The computational foundation of modern ML accelerators is built on com-
mon patterns such as dense matrix multiplications and consistent data-flow
patterns. These operations underpin architectures like GPUs with tensor cores
and Google’s Tensor Processing Unit (TPU). While GPUs extended their original
graphics capabilities to handle ML tasks via parallel execution and specialized
memory hierarchies, TPUs take a more focused approach. For instance, the
TPU’s systolic array architecture is tailored to excel at matrix multiplication,
effectively aligning hardware performance with the mathematical structure of
neural networks.

11.2.5 Application-Specific Accelerators

The shift toward application-specific hardware is evident in how these accel-
erators are designed for both high-powered data centers and low-power edge
devices. In data centers, powerful training accelerators can reduce model devel-
opment times from weeks to days, thanks to their finely-tuned compute engines
and memory systems. Conversely, edge devices benefit from inference engines
that deliver millisecond-level responses while consuming very little power.

The success of these dedicated solutions reinforces a broader trend—hardware
specialization adapts to the computational demands of evolving applications.
By focusing on the core operations of machine learning, from matrix multipli-
cations to flexible numerical precision, application-specific accelerators ensure
that systems remain efÏcient, scalable, and ready to meet future advancements.

The evolution of specialized hardware architectures illustrates a fundamental
principle in computing systems: as computational patterns emerge and mature,
hardware specialization follows to achieve optimal performance and energy
efÏciency. This progression is particularly evident in machine learning acceler-
ation, where domain-specific architectures have evolved to meet the increasing
computational demands of machine learning models. Unlike general-purpose
processors, which prioritize flexibility, specialized accelerators optimize execu-
tion for well-defined workloads, balancing performance, energy efÏciency, and
integration with software frameworks.

Chapter 11. AI Acceleration 521

Table 11.1 summarizes key milestones in the evolution of hardware spe-
cialization, emphasizing how each era produced architectures tailored to the
prevailing computational demands. While these accelerators initially emerged
to optimize domain-specific workloads, including floating-point operations,
graphics rendering, and media processing, they also introduced architectural
strategies that persist in contemporary systems. Notably, the specialization
principles outlined in earlier generations now underpin the design of modern
AI accelerators. Understanding this historical trajectory provides essential con-
text for analyzing how hardware specialization continues to enable scalable,
efÏcient execution of machine learning workloads across diverse deployment
environments.

Table 11.1: Evolution of hardware specialization across computing eras.

Era Computational Pattern Architecture Examples Key Characteristics

1980s Floating-Point & Signal
Processing

FPU, DSP Single-purpose engines
Focused instruction sets
Coprocessor interfaces

1990s 3D Graphics &
Multimedia

GPU, SIMD Units Many identical compute units
Regular data patterns
Wide memory interfaces

2000s Real-time Media Coding Media Codecs, Network
Processors

Fixed-function pipelines
High throughput processing
Power-performance optimization

2010s Deep Learning Tensor
Operations

TPU, GPU Tensor Cores Matrix multiplication units
Massive parallelism
Memory bandwidth optimization

2020s Application-Specific
Acceleration

ML Engines, Smart NICs,
Domain Accelerators

Workload-specific datapaths
Customized memory hierarchies
Application-optimized designs

This historical progression reveals a recurring pattern: each wave of hard-
ware specialization responded to a computational bottleneck—be it graphics
rendering, media encoding, or neural network inference. What distinguishes
the 2020s is not just specialization, but its pervasiveness: AI accelerators now
underpin everything from product recommendations on YouTube to object
detection in autonomous vehicles. Unlike earlier accelerators, today’s AI hard-
ware must integrate tightly with dynamic software frameworks and scale across
cloud-to-edge deployments. The table illustrates not just the past but also the
trajectory toward increasingly tailored, high-impact computing platforms.

In the case of AI acceleration, this transition has introduced challenges that
extend well beyond the confines of hardware design. Machine learning acceler-
ators must integrate seamlessly into comprehensive ML workflows by aligning
with optimizations at multiple levels of the computing stack. To achieve this,
they are required to operate effectively with widely adopted frameworks such
as TensorFlow, PyTorch, and JAX, thereby ensuring that deployment is smooth
and consistent across varied hardware platforms. In tandem with this, compiler
and runtime support become essential; advanced optimization techniques, such
as graph-level transformations, kernel fusion, and memory scheduling, are
critical for harnessing the full potential of these specialized accelerators.

Moreover, scalability presents an ongoing demand as AI accelerators are
deployed in diverse environments ranging from high-throughput data centers

11.3. AI Compute Primitives 522

to resource-constrained edge and mobile devices, necessitating tailored per-
formance tuning and energy efÏciency strategies. Finally, the integration of
such accelerators into heterogeneous computing environments underscores
the importance of interoperability, ensuring that these specialized units can
function in concert with conventional CPUs and GPUs in distributed systems.

The emergence of AI accelerators is therefore not simply a matter of hardware
optimization but also a system-level transformation, where improvements in
computation must be tightly coupled with advances in compilers, software
frameworks, and distributed computing strategies. Understanding these princi-
ples is essential for designing and deploying efÏcient machine learning systems.
The following sections explore how modern ML accelerators address these chal-
lenges, focusing on their architectural approaches, system-level optimizations,
and integration into the broader machine learning ecosystem.

11.3 AI Compute Primitives
Modern neural networks are built upon a small number of core computational
patterns. Regardless of the layer type, whether fully connected, convolutional,
or attention-based, the underlying operation typically involves multiplying
input values by learned weights and accumulating the results. This repeated
multiply-accumulate process dominates neural network execution and defines
the arithmetic foundation of AI workloads. The regularity and frequency
of these operations have led to the development of AI compute primitive*:
hardware-level abstractions optimized to execute these core computations with
high efÏciency.

Unlike traditional software applications, which often involve irregular control
flow and diverse instruction types, neural networks exhibit highly structured,
data-parallel computations applied across large arrays. This characteristic
enables architectural simplifications and optimizations, where hardware is tai-
lored to the consistent patterns in AI execution. These patterns emphasize par-
allelism, predictable data reuse, and fixed operation sequences—making them
ideal candidates for specialized accelerator design. AI compute primitives dis-
till these patterns into reusable architectural units that support high-throughput
and energy-efÏcient execution.

This decomposition is illustrated in Listing 11.1, which defines a dense layer
at the framework level.

Listing 11.1: Declarative creation of dense layer

dense = Dense(512)(input_tensor)

This high-level call expands into mathematical operations is shown in List-
ing 11.2.

At the processor level, the computation reduces to nested loops that multiply
inputs and weights, sum the results, and apply a nonlinear function, as shown
in Listing 11.3.

Chapter 11. AI Acceleration 523

Listing 11.2: Breaking down layer computation into primitives

output = matmul(input_weights) + bias
output = activation(output)

Listing 11.3: Processor-level nested loop computation

for n in range(batch_size):
for m in range(output_size):

sum = bias[m]
for k in range(input_size):

sum += input[n,k] * weights[k,m]
output[n,m] = activation(sum)

This transformation, from framework-level abstraction to processor-level
implementation, reveals four essential computational characteristics. First,
data-level parallelism enables simultaneous execution across inputs. Second,
structured matrix operations define the computational workload and guide
the need for dedicated datapaths. Third, predictable data movement patterns
drive memory system design to minimize latency and maximize reuse. Fourth,
frequent nonlinear transformations motivate hardware support for activation
and normalization functions.

The design of AI compute primitives is guided by three architectural criteria.
First, the primitive must be used frequently enough to justify dedicated hard-
ware resources. Second, its specialized implementation must offer substantial
performance or energy efÏciency gains relative to general-purpose alternatives.
Third, the primitive must remain stable across generations of neural network
architectures to ensure long-term applicability. These considerations shape
the inclusion of primitives such as vector operations, matrix operations, and
special function units in modern ML accelerators. Together, they serve as the
architectural foundation for efÏcient and scalable neural network execution.

11.3.1 Vector Operations
Vector operations provide the first level of hardware acceleration by processing
multiple data elements simultaneously. This parallelism exists at multiple
scales, from individual neurons to entire layers, making vector processing
essential for efÏcient neural network execution. By examining how framework-
level code translates to hardware instructions, we can understand the critical
role of vector processing in neural accelerators.

11.3.1.1 Framework-Hardware Execution

Machine learning frameworks hide hardware complexity through high-level
abstractions. These abstractions decompose into progressively lower-level oper-

11.3. AI Compute Primitives 524

3 Scalar Processor: A scalar pro-
cessor handles one data element per
cycle, executing operations sequen-
tially rather than in parallel.

ations, revealing opportunities for hardware acceleration. One such abstraction
is shown in Listing 11.4, which illustrates the execution flow of a linear layer.

Listing 11.4: Framework Level: What ML developers write

layer = nn.Linear(256, 512) # Layer transforms 256 inputs to
512 outputs

output = layer(input_tensor) # Process a batch of inputs

This abstraction represents a fully connected layer that transforms input
features through learned weights. As shown in Listing 11.5 the framework
translates this high-level expression into mathematical operations.

Listing 11.5: Internal mathematical representation of a linear layer

Z = matmul(weights, input) + bias # Each output needs all inputs
output = activation(Z) # Transform each result

These mathematical operations decompose into explicit computational steps
during processor execution. See Listing 11.6 for an illustration of these multiply-
accumulate operations.

Listing 11.6: Loop-based execution of a linear layer

for batch in range(32): # Process 32 samples at once
for out_neuron in range(512): # Compute each output neuron

sum = 0.0
for in_feature in range(256): # Each output needs

all inputs
sum += input[batch, in_feature] *

weights[out_neuron, in_feature]
output[batch, out_neuron] = activation(sum +

bias[out_neuron])

11.3.1.2 Sequential Scalar Execution

Traditional scalar processors3 execute these operations sequentially, processing
individual values one at a time. For the linear layer example above with a
batch of 32 samples, computing the outputs requires over 4 million multiply-
accumulate operations. Each operation involves loading an input value and a
weight value, multiplying them, and accumulating the result. This sequential
approach becomes highly inefÏcient when processing the massive number of
identical operations required by neural networks.

Chapter 11. AI Acceleration 525

11.3.1.3 Parallel Vector Execution

Vector processing units transform this execution pattern by operating on mul-
tiple data elements simultaneously. As shown in Listing 11.7, the RISC-V
assembly code demonstrates modern vector processing.

Listing 11.7: RISC-V vectorized multiply-accumulate loop

vsetvli t0, a0, e32 # Process 8 elements at once
loop_batch:

loop_neuron:
vxor.vv v0, v0, v0 # Clear 8 accumulators
loop_feature:

vle32.v v1, (in_ptr) # Load 8 inputs together
vle32.v v2, (wt_ptr) # Load 8 weights together
vfmacc.vv v0, v1, v2 # 8 multiply-adds at once
add in_ptr, in_ptr, 32 # Move to next 8 inputs
add wt_ptr, wt_ptr, 32 # Move to next 8 weights
bnez feature_cnt, loop_feature

This vector implementation processes eight data elements in parallel, reduc-
ing both computation time and energy consumption. Vector load instructions
transfer eight values simultaneously, maximizing memory bandwidth utiliza-
tion. The vector multiply-accumulate instruction processes eight pairs of values
in parallel, dramatically reducing the total instruction count from over 4 million
to approximately 500,000.

To clarify how vector instructions map to common deep learning patterns,
Table 11.2 introduces key vector operations and their typical applications in
neural network computation. These operations, such as reduction, gather, scat-
ter, and masked operations, are frequently encountered in layers like pooling,
embedding lookups, and attention mechanisms. Understanding this termi-
nology is essential for interpreting how low-level vector hardware accelerates
high-level machine learning workloads.

Table 11.2: Vector operations and their neural network applications.

Vector Operation Description Neural Network Application

Reduction Combines elements across a vector (e.g., sum,
max)

Pooling layers, attention score
computation

Gather Loads multiple non-consecutive memory
elements

Embedding lookups, sparse operations

Scatter Writes to multiple non-consecutive memory
locations

Gradient updates for embeddings

Masked operations Selectively operates on vector elements Attention masks, padding handling
Vector-scalar
broadcast

Applies scalar to all vector elements Bias addition, scaling operations

The efÏciency gains from vector processing extend beyond instruction count
reduction. Memory bandwidth utilization improves as vector loads transfer

11.3. AI Compute Primitives 526

multiple values per operation. Energy efÏciency increases because control logic
is shared across multiple operations. These improvements compound across
the deep layers of modern neural networks, where billions of operations execute
for each forward pass.

11.3.1.4 Vector Processing History

The principles underlying vector operations have long played a central role
in high-performance computing. In the 1970s and 1980s, vector processors
emerged as a critical architectural solution for scientific computing, weather
modeling, and physics simulations, where large arrays of data required efÏ-
cient parallel processing. Early systems such as the Cray-1, one of the first
commercially successful supercomputers, introduced dedicated vector units
to perform arithmetic operations on entire data vectors in a single instruction.
This approach dramatically improved computational throughput compared to
traditional scalar execution (Jordan 1982).

These foundational concepts have reemerged in the context of machine learn-
ing, where neural networks exhibit an inherent structure well suited to vec-
torized execution. The same fundamental operations, such as vector addition,
multiplication, and reduction, that once accelerated numerical simulations now
drive the execution of machine learning workloads. While the scale and special-
ization of modern AI accelerators differ from their historical predecessors, the
underlying architectural principles remain the same. The resurgence of vector
processing in neural network acceleration highlights its enduring utility as a
mechanism for achieving high computational efÏciency.

Vector operations establish the foundation for neural network acceleration by
enabling efÏcient parallel processing of independent data elements. However,
the core transformations in neural networks require coordinating computation
across multiple dimensions simultaneously. This need for structured parallel
computation leads to the next architectural primitive: matrix operations.

11.3.2 Matrix Operations
Matrix operations are the computational workhorse of neural networks, trans-
forming high-dimensional data through structured patterns of weights, acti-
vations, and gradients (I. J. Goodfellow, Courville, and Bengio 2013b). While
vector operations process elements independently, matrix operations orches-
trate computations across multiple dimensions simultaneously. Understanding
these operations reveals fundamental patterns that drive hardware acceleration
strategies.

11.3.2.1 Matrix Operations in NNs

Neural network computations decompose into hierarchical matrix operations.
As shown in Listing 11.8, a linear layer demonstrates this hierarchy by trans-
forming input features into output neurons over a batch.

This computation demonstrates the inherent scale of matrix operations in
neural networks. Each output neuron (512 total) must process all input features
(256 total) for every sample in the batch (32 samples). The weight matrix alone

Chapter 11. AI Acceleration 527

Listing 11.8: Framework Level: What ML developers write

layer = nn.Linear(256, 512) # Layer transforms 256 inputs to
512 outputs

output = layer(input_batch) # Process a batch of 32 samples
Framework Internal: Core operations
Z = matmul(weights, input) # Matrix: transforms [256 x 32]

input to [512 x 32] output
Z = Z + bias # Vector: adds bias to each output independently
output = relu(Z) # Vector: applies activation to

each element independently

contains 256 × 512 = 131,072 parameters that define these transformations,
illustrating why efÏcient matrix multiplication becomes crucial for performance.

11.3.2.2 Matrix Computation Types in NNs

Matrix operations appear consistently across modern neural architectures, as
illustrated in Listing 11.9.

Listing 11.9: Linear Layers – Direct matrix multiply

hidden = matmul(weights, inputs)
weights: [out_dim x in_dim], inputs: [in_dim x batch]
Result combines all inputs for each output
Attention Mechanisms - Multiple matrix operations
Q = matmul(Wq, inputs)
Project inputs to query space [query_dim x batch]
K = matmul(Wk, inputs)
Project inputs to key space[key_dim x batch]
attention = matmul(Q, K.T)
Compare all queries with all keys [query_dim x key_dim]
Convolutions - Matrix multiply after reshaping
patches = im2col(input)
Convert [H x W x C] image to matrix of patches
output = matmul(kernel, patches)
Apply kernels to all patches simultaneously

This pervasive pattern of matrix multiplication has direct implications for
hardware design. The need for efÏcient matrix operations drives the develop-
ment of specialized hardware architectures that can handle these computations
at scale. The following sections explore how modern AI accelerators implement
matrix operations, focusing on their architectural features and performance
optimizations.

11.3. AI Compute Primitives 528

11.3.2.3 Matrix Operations Hardware Acceleration

The computational demands of matrix operations have driven specialized hard-
ware optimizations. Modern processors implement dedicated matrix units
that extend beyond vector processing capabilities. An example of such matrix
acceleration is shown in Listing 11.10.

Listing 11.10: Matrix unit operation for block-wise computation in hardware

mload mr1, (weight_ptr) # Load e.g., 16x16 block of
weight matrix

mload mr2, (input_ptr) # Load corresponding input block
matmul.mm mr3, mr1, mr2 # Multiply and accumulate entire

blocks at once
mstore (output_ptr), mr3 # Store computed output block

This matrix processing unit can handle 16 × 16 blocks of the linear layer
computation described earlier, processing 256 multiply-accumulate operations
simultaneously compared to the 8 operations possible with vector processing.
These matrix operations complement vectorized computation by enabling struc-
tured many-to-many transformations. The interplay between matrix and vector
operations shapes the efÏciency of neural network execution.

Table 11.3: Comparison of matrix and vector operation characteristics.

Operation
Type Best For Examples Key Characteristic

Matrix
Operations

Many-to-many
transforms

Layer transformations
Attention computation
Convolutions

Each output depends on multiple
inputs

Vector
Operations

One-to-one
transforms

Activation functions
Layer normalization
Element-wise gradients

Each output depends only on
corresponding input

Matrix operations provide essential computational capabilities for neural
networks through coordinated parallel processing across multiple dimensions
(see Table 11.3). While they enable transformations such as attention mecha-
nisms and convolutions, their performance depends on efÏcient data handling.
Conversely, vector operations are optimized for one-to-one transformations like
activation functions and layer normalization. The distinction between these
operations highlights the importance of dataflow patterns in neural accelerator
design, which we examine next (Hwu 2011).

11.3.2.4 Historical Foundations of Matrix Computation

Matrix operations have long served as a cornerstone of computational mathe-
matics, with applications extending from numerical simulations to graphics
processing (Golub and Loan 1996). The structured nature of matrix multiplica-
tions and transformations made them a natural target for acceleration in early

Chapter 11. AI Acceleration 529

computing architectures. In the 1980s and 1990s, specialized digital signal
processors (DSPs) and graphics processing units (GPUs) optimized for matrix
computations played a critical role in accelerating workloads such as image
processing, scientific computing, and 3D rendering (Owens et al. 2008).

The widespread adoption of machine learning has reinforced the importance
of efÏcient matrix computation. Neural networks, fundamentally built on ma-
trix multiplications and tensor operations, have driven the development of
dedicated hardware architectures that extend beyond traditional vector pro-
cessing. Modern tensor processing units (TPUs) and AI accelerators implement
matrix multiplication at scale, reflecting the same architectural principles that
once underpinned early scientific computing and graphics workloads. The
resurgence of matrix-centric architectures highlights the deep connection be-
tween classical numerical computing and contemporary AI acceleration.

11.3.3 Special Function Units
While vector and matrix operations efÏciently handle the linear transformations
in neural networks, non-linear functions present unique computational chal-
lenges that require dedicated hardware solutions. Special Function Units (SFUs)
provide hardware acceleration for these essential computations, completing the
set of fundamental processing primitives needed for efÏcient neural network
execution.

11.3.3.1 Non-Linear Functions

Non-linear functions play a fundamental role in machine learning by enabling
neural networks to model complex relationships (I. J. Goodfellow, Courville, and
Bengio 2013c). Listing 11.11 illustrates a typical neural network layer sequence.

Listing 11.11: Typical layer sequence with non-linear operations

layer = nn.Sequential(
nn.Linear(256, 512),
nn.ReLU(),
nn.BatchNorm1d(512)

)
output = layer(input_tensor)

This sequence introduces multiple non-linear transformations. As shown in
Listing 11.12, the framework decomposes it into mathematical operations.

11.3.3.2 Non-Linear Functions Implementation

On traditional processors, these seemingly simple mathematical operations
translate into complex sequences of instructions. Consider the computation of
batch normalization: calculating the square root requires multiple iterations
of numerical approximation, while exponential functions in operations like
softmax need series expansion or lookup tables (Ioffe and Szegedy 2015b). Even

11.3. AI Compute Primitives 530

Listing 11.12: Mathematical operations from non-linear layer sequence

Z = matmul(weights, input) + bias # Linear transformation
H = max(0, Z) # ReLU activation
mean = reduce_mean(H, axis=0) # BatchNorm statistics
var = reduce_mean((H - mean)**2) # Variance computation
output = gamma * (H - mean)/sqrt(var + eps) + beta

Normalization

a simple ReLU activation introduces branching logic that can disrupt instruction
pipelining—see Listing 11.13 for an example.

Listing 11.13: Traditional implementation overhead for ReLU and BatchNorm

for batch in range(32):
for feature in range(512):

ReLU: Requires branch prediction and potential
pipeline stalls
z = matmul_output[batch, feature]
h = max(0.0, z) # Conditional operation

BatchNorm: Multiple passes over data
mean_sum[feature] += h # First pass for mean
var_sum[feature] += h * h # Additional pass for variance
temp[batch, feature] = h # Extra memory storage needed

Normalization requires complex arithmetic
for feature in range(512):

mean = mean_sum[feature] / batch_size
var = (var_sum[feature] / batch_size) - mean * mean
Square root computation: Multiple iterations
scale = gamma[feature] / sqrt(var + eps)
Iterative approximation
shift = beta[feature] - mean * scale
Additional pass over data for final computation
for batch in range(32):

output[batch, feature] = temp[batch, feature] *
scale + shift

These operations introduce several key inefÏciencies:
1. Multiple passes over data, increasing memory bandwidth requirements
2. Complex arithmetic requiring many instruction cycles
3. Conditional operations that can cause pipeline stalls
4. Additional memory storage for intermediate results

Chapter 11. AI Acceleration 531

5. Poor utilization of vector processing units

More specifically, each operation introduces distinct challenges. Batch nor-
malization requires multiple passes through data: one for mean computation,
another for variance, and a final pass for output transformation. Each pass loads
and stores data through the memory hierarchy. Operations that appear simple
in mathematical notation often expand into many instructions. The square
root computation typically requires 10-20 iterations of numerical methods like
Newton-Raphson approximation for suitable precision (Goldberg 1991). Condi-
tional operations like ReLU’s max function require branch instructions that can
stall the processor’s pipeline. The implementation needs temporary storage for
intermediate values, increasing memory usage and bandwidth consumption.
While vector units excel at regular computations, functions like exponentials
and square roots often require scalar operations that cannot fully utilize vector
processing capabilities.

11.3.3.3 Hardware Acceleration

SFUs address these inefÏciencies through dedicated hardware implementation.
Modern ML accelerators include specialized circuits that transform these com-
plex operations into single-cycle or fixed-latency computations. The accelerator
can load a vector of values and apply non-linear functions directly, eliminating
the need for multiple passes and complex instruction sequences as shown in
Listing 11.14.

Listing 11.14: Hardware-accelerated non-linear vector operations

vld.v v1, (input_ptr) # Load vector of values
vrelu.v v2, v1 # Single-cycle ReLU on entire vector
vsigm.v v3, v1 # Fixed-latency sigmoid computation
vtanh.v v4, v1 # Direct hardware tanh implementation
vrsqrt.v v5, v1 # Fast reciprocal square root

Each SFU implements a specific function through specialized circuitry. For
instance, a ReLU unit performs the comparison and selection in dedicated logic,
eliminating branching overhead. Square root operations use hardware imple-
mentations of algorithms like Newton-Raphson with fixed iteration counts,
providing guaranteed latency. Exponential and logarithmic functions often
combine small lookup tables with hardware interpolation circuits (Costa et al.
2019). Using these custom instructions, the SFU implementation eliminates
multiple passes over data, removes complex arithmetic sequences, and main-
tains high computational efÏciency. Table 11.4 shows the various hardware
implementations and their typical latencies.

11.3. AI Compute Primitives 532

Table 11.4: Special function unit implementation.

Function Unit Operation Implementation Strategy Typical Latency

Activation Unit ReLU, sigmoid, tanh Piece-wise approximation circuits 1-2 cycles
Statistics Unit Mean, variance Parallel reduction trees log(N) cycles
Exponential Unit exp, log Table lookup + hardware interpolation 2-4 cycles
Root/Power Unit sqrt, rsqrt Fixed-iteration Newton-Raphson 4-8 cycles

11.3.3.4 SFUs History

The need for efÏcient non-linear function evaluation has shaped computer ar-
chitecture for decades. Early processors incorporated hardware support for
complex mathematical functions, such as logarithms and trigonometric oper-
ations, to accelerate workloads in scientific computing and signal processing
(Smith 1997). In the 1970s and 1980s, floating-point co-processors were intro-
duced to handle complex mathematical operations separately from the main
CPU (Palmer 1980). In the 1990s, instruction set extensions such as Intel’s SSE
and ARM’s NEON provided dedicated hardware for vectorized mathematical
transformations, improving efÏciency for multimedia and signal processing
applications.

Machine learning workloads have reintroduced a strong demand for spe-
cialized functional units, as activation functions, normalization layers, and
exponential transformations are fundamental to neural network computations.
Rather than relying on iterative software approximations, modern AI accelera-
tors implement fast, fixed-latency SFUs for these operations, mirroring historical
trends in scientific computing. The reemergence of dedicated special function
units underscores the ongoing cycle in hardware evolution, where domain-
specific requirements drive the reinvention of classical architectural concepts
in new computational paradigms.

The combination of vector, matrix, and special function units provides the
computational foundation for modern AI accelerators. However, the effective
utilization of these processing primitives depends critically on data movement
and access patterns. This leads us to examine the architectures, hierarchies,
and strategies that enable efÏcient data flow in neural network execution.

11.3.4 Compute Units and Execution Models
The vector operations, matrix operations, and special function units examined
previously represent the fundamental computational primitives in AI accelera-
tors. Modern AI processors package these primitives into distinct execution
units, such as SIMD units, tensor cores, and processing elements, which define
how computations are structured and exposed to users. Understanding this
organization reveals both the theoretical capabilities and practical performance
characteristics that developers can leverage in contemporary AI accelerators.

11.3.4.1 Primitive-Execution Unit Mapping

The progression from computational primitives to execution units follows a
structured hierarchy that reflects the increasing complexity and specialization
of AI accelerators:

Chapter 11. AI Acceleration 533

• Vector operations → SIMD/SIMT units that enable parallel processing of
independent data elements

• Matrix operations → Tensor cores and systolic arrays that provide struc-
tured matrix multiplication

• Special functions → Dedicated hardware units integrated within process-
ing elements

Each execution unit combines these computational primitives with special-
ized memory and control mechanisms, optimizing both performance and en-
ergy efÏciency. This structured packaging allows hardware vendors to expose
standardized programming interfaces while implementing diverse underlying
architectures tailored to specific workload requirements. The choice of execu-
tion unit significantly influences overall system efÏciency, affecting data locality,
compute density, and workload adaptability. Subsequent sections examine how
these execution units operate within AI accelerators to maximize performance
across different machine learning tasks.

11.3.4.2 SIMD to SIMT Transition
Single Instruction Multiple Data (SIMD) execution applies identical operations
to multiple data elements in parallel, minimizing instruction overhead while
maximizing data throughput. This execution model is widely used to accelerate
workloads with regular, independent data parallelism, such as neural network
computations. The ARM Scalable Vector Extension (SVE) provides a repre-
sentative example of how modern architectures implement SIMD operations
efÏciently, as illustrated in Listing 11.15.

Listing 11.15: Vector operation implementation using ARM SVE

ptrue p0.s # Create predicate for vector length
ld1w z0.s, p0/z, [x0] # Load vector of inputs
fmul z1.s, z0.s, z0.s # Multiply elements
fadd z2.s, z1.s, z0.s # Add elements
st1w z2.s, p0, [x1] # Store results

Processor architectures continue to expand SIMD capabilities to accommo-
date increasing computational demands. Intel’s Advanced Matrix Extensions
(AMX) and ARM’s SVE2 architecture provide flexible SIMD execution, enabling
software to scale across different hardware implementations (Stephens et al.
2017).

To address these limitations, SIMT extends SIMD principles by enabling
parallel execution across multiple independent threads, each maintaining its
own program counter and architectural state (E. Lindholm et al. 2008). This
model maps naturally to matrix computations, where each thread processes
different portions of a workload while still benefiting from shared instruction
execution. In NVIDIA’s GPU architectures, each Streaming Multiprocessor (SM)
coordinates thousands of threads executing in parallel, allowing for efÏcient
scaling of neural network computations, as demonstrated in Listing 11.16.

11.3. AI Compute Primitives 534

Listing 11.16: CUDA kernel for SIMT execution

__global__ void matrix_multiply(float* C, float* A, float*
B, int N) {

// Each thread processes one output element
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;

float sum = 0.0f;
for (int k = 0; k < N; k++) {

// Threads in a warp execute in parallel
sum += A[row * N + k] * B[k * N + col];

}
C[row * N + col] = sum;

}

SIMT execution allows neural network computations to scale efÏciently across
thousands of threads while maintaining flexibility for divergent execution paths.
Similar execution models appear in AMD’s RDNA and Intel’s Xe architectures,
reinforcing SIMT as a fundamental mechanism for AI acceleration.

11.3.4.3 Tensor Cores
While SIMD and SIMT units provide efÏcient execution of vector operations,
neural networks rely heavily on matrix computations that require specialized
execution units for structured multi-dimensional processing. Tensor processing
units extend SIMD and SIMT principles by enabling efÏcient matrix operations
through dedicated hardware blocks. These units execute matrix multiplications
and accumulations on entire matrix blocks in a single operation, reducing
instruction overhead and optimizing data movement.

Tensor cores, implemented in architectures such as NVIDIA’s Ampere GPUs,
provide an example of this approach. They expose matrix computation capabil-
ities through specialized instructions, such as the tensor core operation shown
in Listing 11.17 on the NVIDIA A100 GPU.

Listing 11.17: Tensor Core operation on NVIDIA A100 GPU

Tensor Core Operation (NVIDIA A100):
mma.sync.aligned.m16n16k16.f16.f16
{d0,d1,d2,d3}, // Destination registers
{a0,a1,a2,a3}, // Source matrix A
{b0,b1,b2,b3}, // Source matrix B
{c0,c1,c2,c3} // Accumulator

A single tensor core instruction processes an entire matrix block while main-
taining intermediate results in local registers, significantly improving com-

Chapter 11. AI Acceleration 535

putational efÏciency compared to implementations based on scalar or vector
operations. This structured approach enables hardware to achieve high through-
put while reducing the burden of explicit loop unrolling and data management
at the software level.

Tensor processing unit architectures differ based on design priorities. NVIDIA’s
Ampere architecture incorporates tensor cores optimized for general-purpose
deep learning acceleration. Google’s TPUv4 utilizes large-scale matrix units
arranged in systolic arrays to maximize sustained training throughput. Apple’s
M1 neural engine integrates smaller matrix processors optimized for mobile
inference workloads, while Intel’s Sapphire Rapids architecture introduces
AMX tiles designed for high-performance datacenter applications.

The increasing specialization of AI hardware has driven significant perfor-
mance improvements in deep learning workloads. Figure 11.3 illustrates the
trajectory of AI accelerator performance in NVIDIA GPUs, highlighting the tran-
sition from general-purpose floating-point execution units to highly optimized
tensor processing cores.

Figure 11.3: Single-chip perfor-
mance scaling.

11.3.4.4 Processing Elements

The highest level of execution unit organization integrates multiple tensor cores
with local memory into processing elements (PEs). A processing element serves
as a fundamental building block in many AI accelerators, combining different
computational units to efÏciently execute neural network operations. Each
PE typically includes vector units for element-wise operations, tensor cores
for matrix computation, special function units for non-linear transformations,
and dedicated memory resources to optimize data locality and minimize data
movement overhead.

Processing elements play an essential role in AI hardware by balancing com-
putational density with memory access efÏciency. Their design varies across
different architectures to support diverse workloads and scalability require-
ments. Graphcore’s Intelligence Processing Unit (IPU) distributes computation

11.3. AI Compute Primitives 536

4 Structured Sparsity: The de-
liberate design of neural network
weight matrices where entire rows,
columns, or blocks are pruned, thus
simplifying hardware implementa-
tion and improving efÏciency.

across 1,472 tiles, each containing independent processing elements optimized
for fine-grained parallelism (Graphcore 2020). Cerebras extends this approach
in the CS-2 system, integrating 850,000 processing elements across a wafer-scale
device to accelerate sparse computations. Tesla’s D1 processor arranges pro-
cessing elements with substantial local memory, optimizing throughput and
latency for real-time autonomous vehicle workloads (T. Inc. 2021).

Processing elements provide the structural foundation for large-scale AI
acceleration. Their efÏciency depends not only on computational capability but
also on interconnect strategies and memory hierarchy design. The next sections
explore how these architectural choices impact performance across different AI
workloads.

Tensor processing units have enabled substantial efÏciency gains in AI work-
loads by leveraging hardware-accelerated matrix computation. Their role con-
tinues to evolve as architectures incorporate support for advanced execution
techniques, including structured sparsity4 and workload-specific optimizations.
The effectiveness of these units, however, depends not only on their computa-
tional capabilities but also on how they interact with memory hierarchies and
data movement mechanisms, which are examined in subsequent sections.

11.3.4.5 Systolic Arrays

While tensor cores package matrix operations into structured computational
units, systolic arrays provide an alternative approach optimized for continuous
data flow and operand reuse. A systolic array arranges processing elements
in a grid pattern, where data flows rhythmically between neighboring units in
a synchronized manner. This structured movement of data enables efÏcient
execution of matrix multiplication, reducing memory access overhead and
maximizing computational throughput.

The concept of systolic arrays was first introduced by H.T. Kung, who formal-
ized their use in parallel computing architectures for efÏcient matrix operations
(Kung 1982). Unlike general-purpose execution units, systolic arrays exploit
spatial and temporal locality by reusing operands as they propagate through
the grid. Google’s Tensor Processing Unit (TPU) exemplifies this architectural
approach. In the TPUv4, a 128×128 systolic array of multiply-accumulate units
processes matrix operations by streaming data through the array in a pipelined
manner, as shown in Figure 11.4.

Each processing element in the array performs a multiply-accumulate opera-
tion in every cycle:

1. Receives an input activation from above
2. Receives a weight value from the left
3. Multiplies these values and adds to its running sum
4. Passes the input activation downward and the weight value rightward to

neighboring elements

This structured computation model minimizes data movement between
global memory and processing elements, improving both efÏciency and scala-
bility. As systolic arrays operate in a streaming fashion, they are particularly

Chapter 11. AI Acceleration 537

Figure 11.4: Data flow movement in
a systolic array.

+ + + +

... Done

...

Control

Data

Partial Sums

effective for high-throughput workloads such as deep learning training and
inference.

While the diagram in Figure 11.4 illustrates one common systolic array imple-
mentation, systolic architectures vary significantly across different accelerator
designs. Training-focused architectures like Google’s TPU employ large arrays
optimized for high computational throughput, while inference-oriented designs
found in edge devices prioritize energy efÏciency with smaller configurations.

The fundamental principle remains consistent: data flows systematically
through processing elements, with inputs moving horizontally and vertically
to compute partial sums in a synchronized fashion. However, the practical
effectiveness of systolic arrays extends beyond their computational structure—it
depends heavily on efÏcient memory access patterns and careful scheduling
strategies, topics we explore in detail in subsequent sections.

11.3.4.6 Numerics in AI Acceleration

The efÏciency of AI accelerators is not determined by computational power
alone but also by the precision of numerical representations. The choice of
numerical format shapes the balance between accuracy, throughput, and energy
consumption, influencing how different execution units, such as SIMD and
SIMT units, tensor cores, and systolic arrays, are designed and deployed.

Precision Trade-offs. Numerical precision represents a critical design parame-
ter in modern AI accelerators. While higher precision formats provide math-
ematical stability and accuracy, they come with substantial costs in terms of

11.3. AI Compute Primitives 538

power consumption, memory bandwidth, and computational throughput. Find-
ing the optimal precision point has become a central challenge in AI hardware
architecture.

Early deep learning models primarily relied on single-precision floating point
(FP32) for both training and inference. While FP32 offers sufÏcient dynamic
range and precision for stable learning, it imposes high computational and
memory costs, limiting efÏciency, especially as model sizes increase. Over time,
hardware architectures evolved to support lower precision formats such as half-
precision floating point (FP16) and bfloat16 (BF16), which reduce memory usage
and increase computational throughput while maintaining sufÏcient accuracy
for deep learning tasks. More recently, integer formats (INT8, INT4) have gained
prominence in inference workloads, where small numerical representations
significantly improve energy efÏciency without compromising model accuracy
beyond acceptable limits.

The transition from high-precision to lower-precision formats is deeply inte-
grated into hardware execution models. SIMD and SIMT units provide flexible
support for multiple precisions, dynamically adapting to workload require-
ments. Tensor cores are designed explicitly for matrix multiplications, accelerat-
ing computation using reduced-precision floating point and integer arithmetic.
Systolic arrays, with their structured data flow, further optimize performance
by minimizing memory bandwidth constraints, often favoring low-precision
formats that maximize operand reuse.

Despite the advantages of reduced precision, deep learning models cannot
always rely solely on low-bit representations. To address this challenge, mod-
ern AI accelerators implement mixed-precision computing, where different
numerical formats are used at different stages of execution. For example, ma-
trix multiplications may be performed in FP16 or BF16, while accumulations
are maintained in FP32 to prevent precision loss. Similarly, inference engines
leverage INT8 arithmetic while preserving key activations in higher precision
when necessary.

Mixed-Precision Computing. Modern AI accelerators increasingly support
mixed-precision execution, allowing different numerical formats to be used at
various stages of computation. Training workloads often leverage FP16 or BF16
for matrix multiplications, while maintaining FP32 accumulations to preserve
precision. Inference workloads, by contrast, optimize for INT8 or even INT4,
achieving high efÏciency while retaining acceptable accuracy.

This shift toward precision diversity is evident in the evolution of AI hard-
ware. Early architectures such as NVIDIA Volta provided limited support for
lower precision beyond FP16, whereas later architectures, including Turing and
Ampere, expanded the range of supported formats. Ampere GPUs introduced
TF32 as a hybrid between FP32 and FP16, alongside broader support for BF16,
INT8, and INT4. Table 11.5 illustrates this trend.

Table 11.5: Tensor core and CUDA core precisions across GPU architectures.

Architecture Year Supported Tensor Core Precisions Supported CUDA Core Precisions

Volta 2017 FP16 FP64, FP32, FP16

Chapter 11. AI Acceleration 539

Architecture Year Supported Tensor Core Precisions Supported CUDA Core Precisions

Turing 2018 FP16, INT8 FP64, FP32, FP16, INT8
Ampere 2020 FP64, TF32, bfloat16, FP16, INT8, INT4 FP64, FP32, FP16, bfloat16, INT8

Table 11.5 highlights how newer architectures incorporate a growing diversity
of numerical formats, reflecting the need for greater flexibility across different
AI workloads. This trend suggests that future AI accelerators will continue
expanding support for adaptive precision, optimizing both computational
efÏciency and model accuracy. The selection now reads:

The precision format used in hardware design has far-reaching implications.
By adopting lower-precision formats, the data transferred between execution
units and memory is reduced, leading to decreased memory bandwidth require-
ments and storage. Moreover, tensor cores and systolic arrays can process more
lower-precision elements in parallel, thereby increasing the effective through-
put in terms of FLOPs. Energy efÏciency is also improved, as integer-based
computations (e.g., INT8) require lower power compared to floating-point
arithmetic—a clear advantage for inference workloads.

As AI models continue to scale in size, accelerator architectures are evolving
to support more efÏcient numerical formats. Future designs are expected to
incorporate adaptive precision techniques, dynamically adjusting computation
precision based on workload characteristics. This evolution promises further
optimization of deep learning performance while striking an optimal balance
between accuracy and energy efÏciency.

11.3.4.7 Architectural Integration

The organization of computational primitives into execution units determines
the efÏciency of AI accelerators. While SIMD, tensor cores, and systolic arrays
serve as fundamental building blocks, their integration into full-chip architec-
tures varies significantly across different AI processors. The choice of execution
units, their numerical precision support, and their connectivity impact how
effectively hardware can scale for deep learning workloads.

Modern AI processors exhibit a range of design trade-offs based on their in-
tended applications. Some architectures, such as NVIDIA’s A100, integrate large
numbers of tensor cores optimized for FP16-based training, while Google’s
TPUv4 prioritizes high-throughput BF16 matrix multiplications. Inference-
focused processors, such as Intel’s Sapphire Rapids, incorporate INT8-optimized
tensor cores to maximize efÏciency. The Apple M1, designed for mobile work-
loads, employs smaller processing elements optimized for low-power FP16
execution. These design choices reflect the growing flexibility in numerical
precision and execution unit organization, as discussed in the previous section.

Table 11.6 summarizes the execution unit configurations across contemporary
AI processors.

11.4. AI Memory Systems 540

Table 11.6: Execution unit configurations across modern AI processors

Processor SIMD Width Tensor Core Size Processing Elements
Primary
Workloads

NVIDIA A100 1024-bit 4×4×4 FP16 108 SMs Training, HPC
Google TPUv4 128-wide 128×128 BF16 2 cores/chip Training
Intel Sapphire 512-bit AVX 32×32 INT8/BF16 56 cores Inference
Apple M1 128-bit NEON 16×16 FP16 8 NPU cores Mobile inference

Table 11.6 highlights how execution unit configurations vary across architec-
tures to optimize for different deep learning workloads. Training accelerators
prioritize high-throughput floating-point tensor operations, whereas inference
processors focus on low-precision integer execution for efÏciency. Meanwhile,
mobile accelerators balance precision and power efÏciency to meet real-time
constraints.

While execution units define the compute potential of an accelerator, their
effectiveness is fundamentally constrained by data movement and memory
hierarchy. Achieving high utilization of compute resources requires efÏcient
memory systems that minimize data transfer overhead and optimize local-
ity. The next section explores these architectural challenges, focusing on how
memory hierarchy impacts AI accelerator performance.

11.4 AI Memory Systems
Machine learning accelerators are designed to maximize computational through-
put, leveraging specialized primitives such as vector units, matrix engines, and
systolic arrays. However, the efÏciency of these compute units is fundamentally
constrained by the availability of data. Unlike conventional workloads, ML
models require frequent access to large volumes of parameters, activations,
and intermediate results, leading to substantial memory bandwidth demands.
If data cannot be delivered to the processing elements at the required rate,
memory bottlenecks can significantly limit performance, regardless of the ac-
celerator’s raw computational capability.

Modern AI hardware leverages advanced memory hierarchies, efÏcient data
movement techniques, and compression strategies to alleviate bottlenecks and
enhance performance. By examining the interplay between ML workloads
and memory systems along with memory bandwidth constraints, we can gain
insights into architectural innovations that promote efÏcient execution and
improved AI acceleration.

11.4.1 AI Memory Wall
Machine learning accelerators are capable of performing vast amounts of com-
putation per cycle, but their efÏciency is increasingly limited by data movement
rather than raw processing power. The disparity between rapid computational
advancements and slower memory performance has led to a growing bottleneck,
often referred to as the AI memory wall. Even the most optimized hardware
architectures struggle to sustain peak throughput if data cannot be delivered at
the required rate. Ensuring that compute units remain fully utilized without

Chapter 11. AI Acceleration 541

5 A 32-bit floating-point ad-
dition consumes approximately 20
fJ, while fetching two 32-bit words
from off-chip DRAM costs around
1.3 nJ–a difference of 65,000.

being stalled by memory latency and bandwidth constraints is one of the central
challenges in AI acceleration.

11.4.1.1 Compute-Memory Imbalance

As we have seen, neural networks rely on specialized computational primitives
such as vector operations, matrix multiplications, and domain-specific func-
tional units that accelerate key aspects of machine learning workloads. These
operations are designed for highly parallel execution, enabling accelerators to
perform vast amounts of computation in each cycle. Given this level of spe-
cialization, one might expect neural networks to execute efÏciently without
significant bottlenecks. However, the primary constraint is not the raw compute
power but rather the ability to continuously supply data to these processing
units.

While these compute units can execute millions of operations per second, they
remain heavily dependent on memory bandwidth to sustain peak performance.
Each matrix multiplication or vector operation requires a steady flow of weights,
activations, and intermediate results, all of which must be fetched from memory.
If data cannot be delivered at the required rate, memory stalls occur, leaving
many compute units idle. This imbalance between computational capability
and data availability is often referred to as the memory wall—a fundamental
challenge in AI acceleration.

Over time, the gap between computation and memory performance has
widened. As illustrated in Figure 11.5, the shaded region, referred to as the “AI
Memory Wall,” highlights the growing disparity between compute performance
and memory bandwidth over time. This visualization underscores the compute-
memory imbalance, where computational capabilities advance rapidly while
memory bandwidth lags, leading to potential bottlenecks in data-intensive
applications. Over the past 20 years, peak server hardware FLOPs have scaled at
3.0x every two years, far outpacing the growth of DRAM bandwidth (1.6x/2yrs)
(A. Gholami et al. 2024). This growing imbalance has made memory bandwidth,
rather than compute, the primary constraint in AI acceleration.

Beyond performance limitations, memory access imposes a significant en-
ergy cost5. Fetching data from off-chip DRAM, in particular, consumes far
more energy than performing arithmetic operations (Horowitz 2014). This
inefÏciency is particularly evident in machine learning models, where large
parameter sizes, frequent memory accesses, and non-uniform data movement
patterns exacerbate memory bottlenecks.

11.4.1.2 Memory-Intensive ML Workloads

Machine learning workloads place substantial demands on memory systems
due to the large volume of data involved in computation. Unlike traditional
compute-bound applications, where performance is often dictated by the speed
of arithmetic operations, ML workloads are characterized by high data move-
ment requirements. The efÏciency of an accelerator is not solely determined
by its computational throughput but also by its ability to continuously supply
data to processing units without introducing stalls or delays.

11.4. AI Memory Systems 542

Figure 11.5: Compute performance
versus memory bandwidth over
time.

M
em

or
y

W
al

l

1e+03

1e+07

1e+11

1e+15

2000 2005 2010 2015 2020 2025
Year

P
er

fo
rm

an
ce

 (
Lo

g
S

ca
le

)

Compute Performance Memory Bandwidth

A neural network processes multiple types of data throughout its execution,
each with distinct memory access patterns:

• Model parameters (weights and biases): Machine learning models, par-
ticularly those used in large-scale applications such as natural language
processing and computer vision, often contain millions to billions of pa-
rameters. Storing and accessing these weights efÏciently is essential for
maintaining throughput.

• Intermediate activations: During both training and inference, each layer
produces intermediate results that must be temporarily stored and re-
trieved for subsequent operations. These activations can contribute sig-
nificantly to memory overhead, particularly in deep architectures.

• Gradients (during training): Backpropagation requires storing and ac-
cessing gradients for every parameter, further increasing the volume of
data movement between compute units and memory.

As models increase in size and complexity, improvements in memory ca-
pacity and bandwidth become essential. Although specialized compute units
accelerate operations like matrix multiplications, their overall performance de-
pends on the continuous, efÏcient delivery of data to the processing elements.
In large-scale applications, such as natural language processing and computer
vision, models often incorporate millions to billions of parameters (T. B. Brown,
Mann, Ryder, Subbiah, Kaplan, Dhariwal, et al. 2020). Consequently, achieving
high performance necessitates minimizing delays and stalls caused by inefÏ-
cient data movement between memory and compute units (D. Narayanan et al.
2021a; Xingyu 2019).

One way to quantify this challenge is by comparing the data transfer time
with the time required for computations. Specifically, we define the memory

Chapter 11. AI Acceleration 543

transfer time as 𝑇mem = 𝑀total𝐵mem
,

where 𝑀total is the total data volume and 𝐵mem is the available memory band-
width. In contrast, the compute time is given by𝑇compute = FLOPs𝑃peak

,
with the number of floating-point operations (FLOPs) divided by the peak hard-
ware throughput, 𝑃peak. When 𝑇mem > 𝑇compute, the system becomes memory-
bound, meaning that the processing elements spend more time waiting for
data than performing computations. This imbalance demonstrates the need
for memory-optimized architectures and efÏcient data movement strategies to
sustain high performance.

Figure 11.6 demonstrates the emerging challenge between model growth
and hardware memory capabilities, illustrating the “AI Memory Wall.” The
figure tracks AI model sizes (red dots) and hardware memory bandwidth (blue
dots) over time on a log scale. Model parameters have grown exponentially,
from AlexNet’s modest 60M parameters in 2012 to Gemini 1’s trillion-scale
parameters in 2023, as shown by the steeper red trend line. In contrast, hard-
ware memory bandwidth, represented by successive generations of NVIDIA
GPUs (~100-200 GB/s) and Google TPUs (~2-3 TB/s), has increased more grad-
ually (blue trend line). The expanding shaded region between these trends
corresponds to the “AI Memory Wall,” which will be an architectural challenge
where model scaling outpaces available memory bandwidth. This growing
disparity necessitates increasingly sophisticated memory management and
model optimization techniques to maintain computational efÏciency.

11.4.1.3 Irregular Memory Access

Unlike traditional computing workloads, where memory access follows well-
structured and predictable patterns, machine learning models often exhibit
irregular memory access behaviors that make efÏcient data retrieval a challenge.
These irregularities arise due to the nature of ML computations, where memory
access patterns are influenced by factors such as batch size, layer type, and
sparsity. As a result, standard caching mechanisms and memory hierarchies
often struggle to optimize performance, leading to increased memory latency
and inefÏcient bandwidth utilization.

To better understand how ML workloads differ from traditional computing
workloads, it is useful to compare their respective memory access patterns (Ta-
ble 11.7). Traditional workloads, such as scientific computing, general-purpose
CPU applications, and database processing, typically exhibit well-defined mem-
ory access characteristics that benefit from standard caching and prefetching
techniques. ML workloads, on the other hand, introduce highly dynamic access
patterns that challenge conventional memory optimization strategies.

11.4. AI Memory Systems 544

Figure 11.6: Model growth (in
parameters) versus memory band-
width (in GB/s).

NVIDIA Tesla K80

Google TPU v2

NVIDIA Tesla V100

NVIDIA A100

Google TPU v4
NVIDIA H100

Google TPU v6e

AlexNet

VGG−16

ResNet−50

BERT Large

GPT−3

PaLM
GPT−4

Gemini 1

AI Memory Wall

2

4

6

2015 2020 2025
Year

Lo
g

S
ca

le
 (

B
as

e
10

)

Table 11.7: Memory access patterns in traditional vs. ML workloads.

Feature Traditional Computing Workloads Machine Learning Workloads

Memory Access
Pattern

Regular and predictable (e.g., sequential reads,
structured patterns)

Irregular and dynamic (e.g., sparsity,
attention mechanisms)

Cache Locality High temporal and spatial locality Often low locality, especially in large
models

Data Reuse Structured loops with frequent data reuse Sparse and dynamic reuse depending
on layer type

Data Dependencies Well-defined dependencies allow efÏcient
prefetching

Variable dependencies based on
network structure

Workload Example Scientific computing (e.g., matrix factorizations,
physics simulations)

Neural networks (e.g., CNNs,
Transformers, sparse models)

Memory Bottleneck DRAM latency, cache misses Off-chip bandwidth constraints,
memory fragmentation

Impact on Energy
Consumption

Moderate, driven by FLOP-heavy execution High, dominated by data movement
costs

One key source of irregularity in ML workloads stems from batch size and
execution order. The way input data is processed in batches directly affects
memory reuse, creating a complex optimization challenge. Small batch sizes
decrease the likelihood of reusing cached activations and weights, resulting
in frequent memory fetches from slower, off-chip memory. Larger batch sizes
can improve reuse and amortize memory access costs, but simultaneously
place higher demands on available memory bandwidth, potentially creating
congestion at different memory hierarchy levels. This delicate balance requires
careful consideration of model architecture and available hardware resources.

In addition to batch size, different neural network layers interact with memory
in distinct ways. Convolutional layers benefit from spatial locality, as neigh-
boring pixels in an image are processed together, allowing for efÏcient caching
of small weight kernels. Conversely, fully connected layers require frequent
access to large weight matrices, often leading to more randomized memory
access patterns that poorly align with standard caching policies. Transformers

Chapter 11. AI Acceleration 545

6 Mixture of Experts: A model
design where different inputs are
routed to specialized subnetworks
based on gating mechanisms.

7 Adaptive Computation Time:
Allowing a network to dynamically
allocate varying amounts of compu-
tation to different inputs based on
their complexity.

introduce additional complexity, as attention mechanisms demand accessing
large key-value pairs stored across varied memory locations. The dynamic
nature of sequence length and attention span renders traditional prefetching
strategies ineffective, resulting in unpredictable memory latencies.

Another significant factor contributing to irregular memory access is sparsity
in neural networks. Many modern ML models employ techniques such as
weight pruning, activation sparsity, and structured sparsity to reduce compu-
tational overhead. However, these optimizations often lead to non-uniform
memory access, as sparse representations necessitate fetching scattered ele-
ments rather than sequential blocks, making hardware caching less effective.
Furthermore, models that incorporate dynamic computation paths, such as
Mixture of Experts6 and Adaptive Computation Time7, introduce highly non-
deterministic memory access patterns, where the active neurons or model
components can vary with each inference step. This variability challenges
efÏcient prefetching and caching strategies.

The consequences of these irregularities are significant. ML workloads of-
ten experience reduced cache efÏciency, as activations and weights may not
be accessed in predictable sequences. This leads to increased reliance on off-
chip memory trafÏc, which not only slows down execution but also consumes
more energy. Additionally, irregular access patterns contribute to memory frag-
mentation, where the way data is allocated and retrieved results in inefÏcient
utilization of available memory resources. The combined effect of these factors
is that ML accelerators frequently encounter memory bottlenecks that limit
their ability to fully utilize available compute power.

11.4.2 Memory Hierarchy
To address the memory challenges in ML acceleration, hardware designers
implement sophisticated memory hierarchies that balance speed, capacity, and
energy efÏciency. Understanding this hierarchy is essential before examining
how different ML architectures utilize memory resources. Unlike general-
purpose computing, where memory access patterns are often unpredictable,
ML workloads exhibit structured reuse patterns that can be optimized through
careful organization of data across multiple memory levels.

Unlike general-purpose computing, where memory access patterns are often
unpredictable, machine learning workloads exhibit structured reuse patterns
that can be optimized by carefully organizing data across multiple levels of
memory. At the highest level, large-capacity but slow storage devices provide
long-term model storage. At the lowest level, high-speed registers and caches
ensure that compute units can access operands with minimal latency. Between
these extremes, intermediate memory levels, such as scratchpad memory, high-
bandwidth memory, and off-chip DRAM, offer trade-offs between performance
and capacity.

Table 11.8 summarizes the key characteristics of different memory levels in
modern AI accelerators. Each level in the hierarchy has distinct latency, band-
width, and capacity properties, which directly influence how neural network
data, such as weights, activations, and intermediate results, should be allocated.

11.4. AI Memory Systems 546

Table 11.8: Memory hierarchy characteristics and their impact on machine learn-
ing.

Memory Level
Approx.
Latency

Band-
width Capacity Example Use in Deep Learning

Registers ~1 cycle Highest Few
values

Storing operands for immediate
computation

L1/L2 Cache
(SRAM)

~1-10 ns High KBs-
MBs

Caching frequently accessed activations
and small weight blocks

Scratchpad Memory ~5-20 ns High MBs Software-managed storage for
intermediate computations

High-Bandwidth
Memory (HBM)

~100 ns Very High GBs Storing large model parameters and
activations for high-speed access

Off-Chip DRAM
(DDR, GDDR,
LPDDR)

~50-150 ns Moderate GBs-TBs Storing entire model weights that do not fit
on-chip

Flash Storage
(SSD/NVMe)

~100 µs - 1 ms Low TBs Storing pre-trained models and
checkpoints for later loading

11.4.2.1 On-Chip Memory

Each level of the memory hierarchy serves a distinct role in AI acceleration, with
different trade-offs in speed, capacity, and accessibility. Registers, located within
compute cores, provide the fastest access but can only store a few operands at a
time. These are best utilized for immediate computations, where the operands
needed for an operation can be loaded and consumed within a few cycles.
However, because register storage is so limited, frequent memory accesses are
required to fetch new operands and store intermediate results.

To reduce the need for constant data movement between registers and exter-
nal memory, small but fast caches serve as an intermediary buffer. These caches
store recently accessed activations, weights, and intermediate values, ensuring
that frequently used data remains available with minimal delay. However, the
size of caches is limited, making them insufÏcient for storing full feature maps
or large weight tensors in machine learning models. As a result, only the most
frequently used portions of a model’s parameters or activations can reside here
at any given time.

For larger working datasets, many AI accelerators include scratchpad mem-
ory, which offers more storage than caches but with a crucial difference: it allows
explicit software control over what data is stored and when it is evicted. Unlike
caches, which rely on hardware-based eviction policies, scratchpad memory
enables machine learning workloads to retain key values such as activations
and filter weights for multiple layers of computation. This capability is partic-
ularly useful in models like convolutional neural networks, where the same
input feature maps and filter weights are reused across multiple operations. By
keeping this data in scratchpad memory rather than reloading it from external
memory, accelerators can significantly reduce unnecessary memory transfers
and improve overall efÏciency (Y.-H. Chen, Emer, and Sze 2017).

11.4.2.2 Off-Chip Memory

Beyond on-chip memory, high-bandwidth memory provides rapid access to
larger model parameters and activations that do not fit within caches or scratch-
pad buffers. HBM achieves its high performance by stacking multiple memory

Chapter 11. AI Acceleration 547

dies and using wide memory interfaces, allowing it to transfer large amounts
of data with minimal latency compared to traditional DRAM. Because of its
high bandwidth and lower latency, HBM is often used to store entire layers of
machine learning models that must be accessed quickly during execution. How-
ever, its cost and power consumption limit its use primarily to high-performance
AI accelerators, making it less common in power-constrained environments
such as edge devices.

When a machine learning model exceeds the capacity of on-chip memory
and HBM, it must rely on off-chip DRAM, such as DDR, GDDR, or LPDDR.
While DRAM offers significantly greater storage capacity, its access latency is
higher, meaning that frequent retrievals from DRAM can introduce execution
bottlenecks. To make effective use of DRAM, models must be structured so
that only the necessary portions of weights and activations are retrieved at any
given time, minimizing the impact of long memory fetch times.

At the highest level of the hierarchy, flash storage and solid-state drives (SSDs)
store large pre-trained models, datasets, and checkpointed weights. These
storage devices offer large capacities but are too slow for real-time execution,
requiring models to be loaded into faster memory tiers before computation
begins. For instance, in training scenarios, checkpointed models stored in
SSDs must be loaded into DRAM or HBM before resuming computation, as
direct execution from SSDs would be too slow to maintain efÏcient accelerator
utilization (D. Narayanan et al. 2021a).

The memory hierarchy balances competing objectives of speed, capacity,
and energy efÏciency. However, moving data through multiple memory lev-
els introduces bottlenecks that limit accelerator performance. Data transfers
between memory levels incur latency costs, particularly for off-chip accesses.
Limited bandwidth restricts data flow between memory tiers. Memory capacity
constraints force constant data movement as models exceed local storage.

11.4.3 Host-Accelerator Communication

Machine learning accelerators, such as GPUs and TPUs, achieve high compu-
tational throughput through parallel execution. However, their efÏciency is
fundamentally constrained by data movement between the host (CPU) and accel-
erator memory. Unlike general-purpose workloads that operate entirely within
a CPU’s memory subsystem, AI workloads require frequent data transfers be-
tween CPU main memory and the accelerator, introducing latency, consuming
bandwidth, and affecting overall performance.

Host-accelerator data movement follows a structured sequence, as illustrated
in Figure 11.7. Before computation begins, data is copied from CPU memory
to the accelerator’s memory. The CPU then issues execution instructions, and
the accelerator processes the data in parallel. Once computation completes,
the results are stored in accelerator memory and transferred back to the CPU.
Each step introduces potential inefÏciencies that must be managed to optimize
performance.

The key challenges in host-accelerator data movement include latency, band-
width constraints, and synchronization overheads. Optimizing data transfers

11.4. AI Memory Systems 548

Figure 11.7: Host-accelerator mem-
ory access interactions.

Main Memory CPU Memory for GPU GPU

Main Memory CPU Memory for GPU GPU

Copy processing data (1)

Instruct the processing (2)

Store results

Copy the result (4)

Execute parallel in each core (3)

through efÏcient memory management and interconnect technologies is essen-
tial for maximizing accelerator utilization.

11.4.3.1 Data Transfer Patterns

The efÏciency of ML accelerators depends not only on their computational
power but also on the continuous supply of data. Even high-performance
GPUs and TPUs remain underutilized if data transfers are inefÏcient. Host
and accelerator memory exist as separate domains, requiring explicit transfers
over interconnects such as PCIe, NVLink, or proprietary links. Ineffective data
movement can cause execution stalls, making transfer optimization critical.

Figure 11.7 illustrates this structured sequence. In step (1), data is copied
from CPU memory to accelerator memory, as GPUs cannot directly access
host memory at high speeds. A direct memory access (DMA) engine typically
handles this transfer without consuming CPU cycles. In step (2), the CPU
issues execution commands via APIs like CUDA, ROCm, or OpenCL. Step (3)
involves parallel execution on the accelerator, where stalls can occur if data is
not available when needed. Finally, in step (4), computed results are copied
back to CPU memory for further processing.

Latency and bandwidth limitations significantly impact AI workloads. PCIe,
with a peak bandwidth of 32 GB/s (PCIe 4.0), is much slower than an accelera-
tor’s high-bandwidth memory, which can exceed 1 TB/s. Large data transfers
exacerbate bottlenecks, particularly in deep learning tasks. Additionally, syn-
chronization overheads arise when computation must wait for data transfers to
complete. EfÏcient scheduling and overlapping transfers with execution are
essential to mitigate these inefÏciencies.

11.4.3.2 Data Transfer Mechanisms

The movement of data between the host (CPU) and the accelerator (GPU, TPU,
or other AI hardware) depends on the interconnect technology that links the
two processing units. The choice of interconnect determines the bandwidth
available for transfers, the latency of communication, and the overall efÏciency
of host-accelerator execution. The most commonly used transfer mechanisms

Chapter 11. AI Acceleration 549

include PCIe (Peripheral Component Interconnect Express), NVLink, Direct
Memory Access, and Unified Memory Architectures. Each of these plays a
crucial role in optimizing the four-step data movement process illustrated in
Figure 11.7.

PCIe Interface. Most accelerators communicate with the CPU via PCIe, the
industry-standard interconnect for data movement. PCIe 4.0 provides up to 32
GB/s bandwidth, while PCIe 5.0 doubles this to 64 GB/s. However, this is still
significantly lower than HBM bandwidth within accelerators, making PCIe a
bottleneck for large AI workloads.

PCIe also introduces latency overheads due to its packet-based communica-
tion and memory-mapped I/O model. Frequent small transfers are inefÏcient,
so batching data movement reduces overhead. Computation commands, is-
sued over PCIe, further contribute to latency, requiring careful optimization of
execution scheduling.

NVLink Interface. To address the bandwidth limitations of PCIe, NVIDIA
developed NVLink, a proprietary high-speed interconnect that provides signif-
icantly higher bandwidth between GPUs and, in some configurations, between
the CPU and GPU. Unlike PCIe, which operates as a shared bus, NVLink enables
direct point-to-point communication between connected devices, reducing con-
tention and improving efÏciency for AI workloads.

For host-accelerator transfers, NVLink can be used in step (1) to transfer
input data from main memory to GPU memory at speeds far exceeding PCIe,
with bandwidths reaching up to 600 GB/s in NVLink 4.0. This significantly
reduces the data movement bottleneck, allowing accelerators to access input
data with lower latency. In multi-GPU configurations, NVLink also accelerates
peer-to-peer transfers, allowing accelerators to exchange data without routing
through main memory, thereby optimizing step (3) of the computation process.

Although NVLink offers substantial performance benefits, it is not universally
available. Unlike PCIe, which is an industry standard across all accelerators,
NVLink is specific to NVIDIA hardware, limiting its applicability to systems
designed with NVLink-enabled GPUs.

DMA for Data Transfers. In conventional memory transfers, the CPU issues
load/store instructions, consuming processing cycles. DMA ofÒoads this task,
enabling asynchronous data movement without CPU intervention.

During data transfers, the CPU initiates a DMA request, allowing data to be
copied to accelerator memory in the background. Similarly, result transfers back
to main memory occur without blocking execution. This enables overlapping
computation with data movement, reducing idle time and improving accelerator
utilization.

DMA is essential for enabling asynchronous data movement, which allows
transfers to overlap with computation. Instead of waiting for transfers to com-
plete before execution begins, AI workloads can stream data into the accelerator
while earlier computations are still in progress, reducing idle time and improv-
ing accelerator utilization.

Unified Memory. While PCIe, NVLink, and DMA optimize explicit mem-
ory transfers, some AI workloads require a more flexible memory model that

11.4. AI Memory Systems 550

eliminates the need for manual data copying. Unified Memory provides an
abstraction that allows both the host and accelerator to access a single, shared
memory space, automatically handling data movement when needed.

With Unified Memory, data does not need to be explicitly copied between
CPU and GPU memory before execution. Instead, when a computation requires
a memory region that is currently located in host memory, the system automat-
ically migrates it to the accelerator, handling step (1) transparently. Similarly,
when computed results are accessed by the CPU, step (4) occurs automatically,
eliminating the need for manual memory management.

Although Unified Memory simplifies programming, it introduces perfor-
mance trade-offs. Since memory migrations occur on demand, they can lead
to unpredictable latencies, particularly if large datasets need to be transferred
frequently. Additionally, since Unified Memory is implemented through page
migration techniques, small memory accesses can trigger excessive data move-
ment, further reducing efÏciency.

For AI workloads that require fine-grained memory control, explicit data
transfers using PCIe, NVLink, and DMA often provide better performance.
However, for applications where ease of development is more important than
absolute speed, Unified Memory offers a convenient alternative.

11.4.3.3 Data Transfer Overheads

Host-accelerator data movement introduces overheads that impact AI workload
execution. Unlike on-chip memory accesses, which occur at nanosecond laten-
cies, host-accelerator transfers traverse system interconnects, adding latency,
bandwidth constraints, and synchronization delays.

Interconnect latency affects transfer speed, with PCIe, the standard host-
accelerator link, incurring significant overhead due to packet-based transactions
and memory-mapped I/O. This makes frequent small transfers inefÏcient.
Faster alternatives like NVLink reduce latency and improve bandwidth but are
limited to specific hardware ecosystems.

Synchronization delays further contribute to inefÏciencies. Synchronous
transfers block execution until data movement completes, ensuring data consis-
tency but introducing idle time. Asynchronous transfers allow computation and
data movement to overlap, reducing stalls but requiring careful coordination to
avoid execution mismatches.

These factors, including interconnect latency, bandwidth limitations, and
synchronization overheads, determine AI workload efÏciency. While optimiza-
tion techniques mitigate these limitations, understanding these fundamental
transfer mechanics is essential for improving performance.

11.4.4 Model Memory Pressure
Machine learning models impose varying memory access patterns that sig-
nificantly influence accelerator performance. The way data is transferred be-
tween the host and accelerator, how frequently memory is accessed, and the
efÏciency of caching mechanisms all determine overall execution efÏciency.
While multilayer perceptrons (MLPs), convolutional neural networks (CNNs),
and transformer networks each require large parameter sets, their distinct

Chapter 11. AI Acceleration 551

memory demands necessitate tailored optimization strategies for accelerators.
Understanding these differences provides insight into why different hardware
architectures exhibit varying levels of efÏciency across workloads.

11.4.4.1 Multilayer Perceptrons

MLPs, also referred to as fully connected networks, are among the simplest
neural architectures. Each layer consists of a dense matrix multiplication, re-
quiring every neuron to interact with all neurons in the preceding layer. This
results in high memory bandwidth demands, particularly for weights, as every
input activation contributes to a large set of computations.

From a memory perspective, MLPs rely on large, dense weight matrices that
frequently exceed on-chip memory capacity, necessitating off-chip memory
accesses. Since accelerators cannot directly access host memory at high speed,
data transfers must be explicitly managed via interconnects such as PCIe or
NVLink. These transfers introduce latency and consume bandwidth, affecting
execution efÏciency.

Despite their bandwidth-heavy nature, MLPs exhibit regular and predictable
memory access patterns, making them amenable to optimizations such as
prefetching and streaming memory accesses. Dedicated AI accelerators mit-
igate transfer overhead by staging weight matrices in fast SRAM caches and
overlapping data movement with computation through direct memory access
engines, reducing execution stalls. These optimizations allow accelerators to
sustain high throughput even when handling large parameter sets (Y.-H. Chen,
Emer, and Sze 2017).

11.4.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are widely used in image processing
and computer vision tasks. Unlike MLPs, which require dense matrix multipli-
cations, CNNs process input feature maps using small filter kernels that slide
across the image. This localized computation structure results in high spatial
data reuse, where the same input pixels contribute to multiple convolutions.

CNN accelerators benefit from on-chip memory optimizations, as convolution
filters exhibit extensive reuse, allowing weights to be stored in fast local SRAM
instead of frequently accessing off-chip memory. However, activation maps
require careful management due to their size. Since accessing main memory
over interconnects like PCIe introduces latency and bandwidth bottlenecks,
CNN accelerators employ tiling techniques to divide feature maps into smaller
regions that fit within on-chip buffers. This minimizes costly external memory
transfers, improving overall efÏciency (Y.-H. Chen, Emer, and Sze 2017).

While CNN workloads are more memory-efÏcient than MLPs, managing
intermediate activations remains a challenge. Accelerators use hierarchical
caching strategies and DMA engines to optimize memory movement, ensuring
that computations are not stalled by inefÏcient host-accelerator data transfers.
These memory optimizations help CNN accelerators maintain high throughput
by reducing reliance on off-chip memory bandwidth (Y.-H. Chen, Emer, and
Sze 2017).

11.4. AI Memory Systems 552

11.4.4.3 Transformer Networks

Transformers have become the dominant architecture for natural language
processing and are increasingly used in other domains such as vision and speech
recognition. Unlike CNNs, which rely on local computations, transformers
perform global attention mechanisms, where each token in an input sequence
can interact with all other tokens. This leads to irregular and bandwidth-
intensive memory access patterns, as large key-value matrices must be fetched
and updated frequently.

These models are particularly challenging for accelerators due to their mas-
sive parameter sizes, which often exceed on-chip memory capacity. As a result,
frequent memory transfers between host and accelerator introduce substantial
latency overheads, particularly when relying on interconnects such as PCIe.
Unified Memory architectures can mitigate some of these issues by dynam-
ically handling data movement, but they introduce additional latency due
to unpredictable on-demand memory migrations. Because transformers are
memory-bound rather than compute-bound, accelerators optimized for them
rely on high-bandwidth memory, tensor tiling, and memory partitioning to
sustain performance (T. B. Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, et
al. 2020).

Additionally, attention caching mechanisms and specialized tensor layouts
reduce redundant memory fetches, improving execution efÏciency. Given the
bandwidth limitations of traditional interconnects, NVLink-enabled architec-
tures offer significant advantages for large-scale transformer training, as they
provide higher throughput and lower latency compared to PCIe. Furthermore,
DMA-based asynchronous memory transfers enable overlapping computation
with data movement, reducing execution stalls (D. Narayanan et al. 2021a).

11.4.5 ML Accelerators Implications
The diverse memory requirements of MLPs, CNNs, and Transformers high-
light the need to tailor memory architectures to specific workloads. Table 11.9
compares the memory access patterns across these different models.

Table 11.9: Memory access characteristics across different ML models.

Model
Type Weight Size

Activation
Reuse Memory Access Pattern Primary Bottleneck

MLP
(Dense)

Large, dense Low Regular, sequential
(streamed)

Bandwidth (off-chip)

CNN Small, reused High Spatial locality Feature map movement
Trans-
former

Massive,
sparse

Low Irregular, high-bandwidth Memory capacity +
Interconnect

Each model type presents unique challenges that directly impact accelerator
design. MLPs benefit from fast streaming access to dense weight matrices,
making memory bandwidth a critical factor in performance, especially when
transferring large weights from host memory to accelerator memory. CNNs,
with their high activation reuse and structured memory access patterns, can
leverage on-chip caching and tiling strategies to minimize off-chip memory

Chapter 11. AI Acceleration 553

transfers. Transformers, however, impose significant demands on both band-
width and capacity, as attention mechanisms require frequent access to large
key-value matrices, leading to high interconnect trafÏc and increased memory
pressure.

To address these challenges, modern AI accelerators incorporate multi-tier
memory hierarchies that balance speed, capacity, and energy efÏciency. On-
chip SRAM caches and scratchpad memories store frequently accessed data,
while high-bandwidth external memory provides scalability for large models.
EfÏcient interconnects, such as NVLink, help alleviate host-accelerator transfer
bottlenecks, particularly in transformer workloads where memory movement
constraints can dominate execution time.

As ML workloads continue to grow in complexity, memory efÏciency is
becoming as critical as raw compute power. EfÏcient data movement strategies,
asynchronous memory transfers (DMA), and unified memory architectures
play a fundamental role in sustaining high performance. The following section
explores the design of memory hierarchies in AI accelerators, detailing how
different levels of memory interact to optimize execution efÏciency.

11.5 Neural Networks Mapping
EfÏcient execution of machine learning models on specialized AI acceleration
hardware requires a structured approach to computation, ensuring that avail-
able resources are fully utilized while minimizing performance bottlenecks.
Unlike general-purpose processors, which rely on dynamic task scheduling,
AI accelerators operate under a structured execution model that maximizes
throughput by carefully assigning computations to processing elements. This
process, known as mapping, dictates how computations are distributed across
hardware resources, influencing execution speed, memory access patterns, and
overall efÏciency.

�� Definition of Mapping in AI Acceleration

Mapping in AI Acceleration refers to the assignment of machine learning
computations to hardware processing units to optimize execution efÏciency.
This process involves spatial allocation, which distributes computations
across processing elements; temporal scheduling, which sequences opera-
tions to maintain balanced workloads; and memory-aware execution, which
strategically places data to minimize access latency. Effective mapping
ensures high resource utilization, reduced memory stalls, and energy-efÏcient
execution, making it a critical factor in AI acceleration.

Mapping machine learning models onto AI accelerators presents several
challenges due to hardware constraints and the diversity of model architec-
tures. Given the hierarchical memory system of modern accelerators, mapping
strategies must carefully manage when and where data is accessed to minimize
latency and power overhead while ensuring that compute units remain actively
engaged. Poor mapping decisions can lead to underutilized compute resources,

11.5. Neural Networks Mapping 554

excessive data movement, and increased execution time, ultimately reducing
overall efÏciency.

Mapping encompasses three interrelated aspects that form the foundation of
effective AI accelerator design.

• Computation Placement: Systematically assigns operations (e.g., ma-
trix multiplications, convolutions) to processing elements to maximize
parallelism and reduce idle time.

• Memory Allocation: Carefully determines where model parameters,
activations, and intermediate results reside within the memory hierarchy
to optimize access efÏciency.

• Dataflow and Execution Scheduling: Structures the movement of data
between compute units to reduce bandwidth bottlenecks and ensure
smooth, continuous execution.

Effective mapping strategies minimize off-chip memory accesses, maximize
compute utilization, and efÏciently manage data movement across different
levels of the memory hierarchy. The following sections explore the key map-
ping choices that influence execution efÏciency and lay the groundwork for
optimization strategies that refine these decisions.

11.5.1 Computation Placement
Modern AI accelerators are designed to execute machine learning models with
massive parallelism, leveraging thousands to millions of processing elements to
perform computations simultaneously. However, simply having a large number
of compute units is not enough—how computations are assigned to these units
determines overall efÏciency.

Without careful placement, some processing elements may sit idle while
others are overloaded, leading to wasted resources, increased memory trafÏc,
and reduced performance. Computation placement is the process of strategi-
cally mapping operations onto available hardware resources to sustain high
throughput, minimize stalls, and optimize execution efÏciency.

11.5.1.1 Computation Placement Definition

AI accelerators contain thousands to millions of processing elements, making
computation placement a large-scale problem. Modern GPUs, such as the
NVIDIA H100, feature over 16,000 CUDA cores and more than 500 specialized
tensor cores, each designed to accelerate matrix operations (Jouppi, Young, et al.
2017c). TPUs utilize systolic arrays composed of thousands of interconnected
multiply-accumulate (MAC) units, while wafer-scale processors like Cerebras’
CS-2 push parallelism even further, integrating over 850,000 cores on a single
chip (Systems 2021b). In these architectures, even minor inefÏciencies in com-
putation placement can lead to significant performance losses, as idle cores or
excessive memory movement compound across the system.

Computation placement ensures that all processing elements contribute
effectively to execution. This means that workloads must be distributed in
a way that avoids imbalanced execution, where some processing elements
sit idle while others remain overloaded. Similarly, placement must minimize

Chapter 11. AI Acceleration 555

unnecessary data movement, as excessive memory transfers introduce latency
and power overheads that degrade system performance.

Neural network computations vary significantly based on the model archi-
tecture, influencing how placement strategies are applied. For example, in a
convolutional neural network (CNN), placement focuses on dividing image
regions across processing elements to maximize parallelism. A 256×256 image
processed through thousands of GPU cores might be broken into small tiles,
each mapped to a different processing unit to execute convolutional operations
simultaneously. In contrast, a transformer-based model requires placement
strategies that accommodate self-attention mechanisms, where each token in a
sequence interacts with all others, leading to irregular and memory-intensive
computation patterns. Meanwhile, Graph Neural Networks (GNNs) introduce
additional complexity, as computations depend on sparse and dynamic graph
structures that require adaptive workload distribution (Zheng et al. 2020).

Because computation placement directly impacts resource utilization, exe-
cution speed, and power efÏciency, it is one of the most critical factors in AI
acceleration. A well-placed computation can reduce latency by orders of mag-
nitude, while a poorly placed one can render thousands of processing units
underutilized. The next section explores why efÏcient computation placement
is essential and the consequences of suboptimal mapping strategies.

11.5.1.2 Computation Placement Importance

While computation placement is a hardware-driven process, its importance is
fundamentally shaped by the structure of neural network workloads. Different
types of machine learning models exhibit distinct computation patterns, which
directly influence how efÏciently they can be mapped onto accelerators. Without
careful placement, workloads can become unbalanced, memory access patterns
can become inefÏcient, and the overall performance of the system can degrade
significantly.

For models with structured computation patterns, such as CNNs, computa-
tion placement is relatively straightforward. CNNs process images using filters
that are applied to small, localized regions, meaning their computations can
be evenly distributed across processing elements. Because these operations
are highly parallelizable, CNNs benefit from spatial partitioning, where the
input is divided into tiles that are processed independently. This structured
execution makes CNNs well-suited for accelerators that favor regular dataflows,
minimizing the complexity of placement decisions.

However, for models with irregular computation patterns, such as transform-
ers and GNNs, computation placement becomes significantly more challenging.
Transformers, which rely on self-attention mechanisms, require each token in
a sequence to interact with all others, resulting in non-uniform computation
demands. Unlike CNNs, where each processing element performs a similar
amount of work, transformers introduce workload imbalance, where certain
operations, including the computation of attention scores, require far more
computation than others. Without careful placement, this imbalance can lead
to stalls, where some processing elements remain idle while others struggle to
keep up.

11.5. Neural Networks Mapping 556

The challenge is even greater in graph neural networks (GNNs), where com-
putation depends on sparse and dynamically changing graph structures. Unlike
CNNs, which operate on dense and regularly structured data, GNNs must pro-
cess nodes and edges with highly variable degrees of connectivity. Some regions
of a graph may require significantly more computation than others, making
workload balancing across processing elements difÏcult (Zheng et al. 2020).
If computations are not placed strategically, some compute units will sit idle
while others remain overloaded, leading to underutilization and inefÏciencies
in execution.

Poor computation placement adversely affects AI execution by creating work-
load imbalance, inducing excessive data movement, and causing execution stalls
and bottlenecks. Specifically, an uneven distribution of computations can lead
to idle processing elements, thereby preventing full hardware utilization and di-
minishing throughput. In addition, inefÏcient execution assignment increases
memory trafÏc by necessitating frequent data transfers between memory hierar-
chies, which in turn introduces latency and raises power consumption. Finally,
such misallocation can cause operations to wait on data dependencies, resulting
in pipeline inefÏciencies that ultimately lower overall system performance.

Ultimately, computation placement is not just about assigning operations
to processing elements—it is about ensuring that models execute efÏciently
given their unique computational structure. A well-placed workload reduces
execution time, memory overhead, and power consumption, while a poorly
placed one can lead to stalled execution pipelines and inefÏcient resource
utilization. The next section explores the key considerations that must be
addressed to ensure that computation placement is both efÏcient and adaptable
to different model architectures.

11.5.1.3 Effective Computation Placement

Computation placement is a balancing act between hardware constraints and
workload characteristics. To achieve high efÏciency, placement strategies must
account for parallelism, memory access, and workload variability while en-
suring that processing elements remain fully utilized. Poor placement leads
to imbalanced execution, increased data movement, and performance degra-
dation, making it essential to consider key factors when designing placement
strategies.

As summarized in Table 11.10, computation placement faces several critical
challenges that impact execution efÏciency. Effective mapping strategies must
address these challenges by balancing workload distribution, minimizing data
movement, and optimizing communication across processing elements.

Table 11.10: Primary challenges in computation placement and key considera-
tions for effective mapping strategies.

Challenge Impact on Execution Key Considerations for Placement

Workload
Imbalance

Some processing elements finish early while others
remain overloaded, leading to idle compute
resources.

Distribute operations evenly to prevent
stalls and ensure full utilization of PEs.

Chapter 11. AI Acceleration 557

Challenge Impact on Execution Key Considerations for Placement

Irregular
Computation
Patterns

Models like transformers and GNNs introduce
non-uniform computation demands, making static
placement difÏcult.

Use adaptive placement strategies that
adjust execution based on workload
characteristics.

Excessive
Data
Movement

Frequent memory transfers introduce latency and
increase power consumption.

Keep frequently used data close to the
compute units and minimize off-chip
memory accesses.

Limited
Interconnect
Bandwidth

Poorly placed operations can create congestion,
slowing data movement between PEs.

Optimize spatial and temporal placement
to reduce communication overhead.

Model-
Specific
Execution
Needs

CNNs, transformers, and GNNs require different
execution patterns, making a single placement
strategy ineffective.

Tailor placement strategies to match the
computational structure of each model
type.

Each of these challenges highlights a core trade-off in computation place-
ment: maximizing parallelism while minimizing memory overhead. For CNNs,
placement strategies prioritize structured tiling to maintain efÏcient data reuse.
For transformers, placement must ensure balanced execution across attention
layers. For GNNs, placement must dynamically adjust to sparse computation
patterns.

Beyond model-specific needs, effective computation placement must also be
scalable. As models grow in size and complexity, placement strategies must
adapt dynamically rather than relying on static execution patterns. Future
AI accelerators increasingly integrate runtime-aware scheduling mechanisms,
where placement is optimized based on real-time workload behavior rather
than predetermined execution plans.

Ultimately, effective computation placement requires a holistic approach that
balances hardware capabilities with model characteristics. The next section
explores how computation placement interacts with memory allocation and
data movement, ensuring that AI accelerators operate at peak efÏciency.

11.5.2 Memory Allocation
EfÏcient memory allocation is a key requirement for high-performance AI ac-
celeration. As AI models grow in complexity, accelerators must manage vast
amounts of data movement—loading model parameters, storing intermediate
activations, and handling gradient computations. The way this data is allo-
cated across the memory hierarchy directly affects execution efÏciency, power
consumption, and overall system throughput.

11.5.2.1 Memory Allocation Definition

While computation placement determines where operations are executed, mem-
ory allocation defines where data is stored and how it is accessed throughout
execution. As discussed earlier, all AI accelerators rely on hierarchical memory
systems, ranging from on-chip caches and scratchpads to HBM and DRAM.
Poor memory allocation can lead to excessive off-chip memory accesses, increas-
ing bandwidth contention and slowing down execution. Since AI accelerators
operate at teraflop and petaflop scales, inefÏcient memory access patterns can
result in substantial performance bottlenecks.

The primary goal of memory allocation is to minimize latency and reduce
power consumption by keeping frequently accessed data as close as possible to

11.5. Neural Networks Mapping 558

the processing elements. Different hardware architectures implement memory
hierarchies tailored for AI workloads. GPUs rely on a mix of global memory,
shared memory, and registers, requiring careful tiling strategies to optimize
locality. TPUs use on-chip SRAM scratchpads, where activations and weights
must be efÏciently preloaded to sustain systolic array execution. Wafer-scale
processors, with their hundreds of thousands of cores, demand sophisticated
memory partitioning strategies to avoid excessive interconnect trafÏc. In all
cases, the effectiveness of memory allocation determines the overall throughput,
power efÏciency, and scalability of AI execution.

11.5.2.2 Memory Allocation Importance
Memory allocation is important in AI acceleration because how and where
data is stored directly impacts execution efÏciency. Unlike general-purpose
computing, where memory management is abstracted by caches and dynamic
allocation, AI accelerators require explicit data placement strategies to sustain
high throughput and avoid unnecessary stalls. When memory is not allocated
efÏciently, AI workloads suffer from latency overhead, excessive power con-
sumption, and bottlenecks that limit computational performance.

Neural network architectures have varying memory demands, which in-
fluence the importance of proper allocation. CNNs rely on structured and
localized data access patterns, meaning that inefÏcient memory allocation can
lead to redundant data loads and cache inefÏciencies. In contrast, transformer
models require frequent access to large model parameters and intermediate
activations, making them highly sensitive to memory bandwidth constraints.
GNNs introduce even greater challenges, as their irregular and sparse data
structures result in unpredictable memory access patterns that can lead to in-
efÏcient use of memory resources. Poor memory allocation has three major
consequences for AI execution:

1. Increased Memory Latency: When frequently accessed data is not stored
in the right location, accelerators must retrieve it from higher-latency
memory, slowing down execution.

2. Higher Power Consumption: Off-chip memory accesses consume sig-
nificantly more energy than on-chip storage, leading to inefÏciencies at
scale.

3. Reduced Computational Throughput: If data is not available when
needed, processing elements remain idle, reducing the overall perfor-
mance of the system.

As AI models continue to grow in size and complexity, the importance of
scalable and efÏcient memory allocation increases. Memory limitations can
dictate how large of a model can be deployed on a given accelerator, affecting
feasibility and performance. The next section explores the key considerations
that impact memory allocation strategies and the constraints that must be
addressed to optimize execution efÏciency.

11.5.2.3 Effective Memory Allocation
InefÏcient allocation leads to frequent stalls, excessive memory trafÏc, and
power inefÏciencies, all of which degrade overall performance. As summarized

Chapter 11. AI Acceleration 559

in Table 11.11, memory allocation in AI accelerators must address several key
challenges that influence execution efÏciency. Effective allocation strategies
mitigate high latency, bandwidth limitations, and irregular access patterns by
carefully managing data placement and movement. Ensuring that frequently ac-
cessed data is stored in faster memory locations while minimizing unnecessary
transfers is essential for maintaining performance and energy efÏciency.

Each of these challenges requires careful memory management to balance
execution efÏciency with hardware constraints. While structured models may
benefit from well-defined memory layouts that facilitate predictable access,
others, like transformer-based and graph-based models, require more adaptive
allocation strategies to handle variable and complex memory demands.

Table 11.11: Key challenges in memory allocation and considerations for efÏ-
cient execution.

Challenge Impact on Execution Key Considerations for Allocation

High Memory
Latency

Slow data access delays execution and
reduces throughput.

Prioritize placing frequently accessed data in
faster memory locations.

Limited
On-Chip Storage

Small local memory constrains the amount
of data available near compute units.

Allocate storage efÏciently to maximize data
availability without exceeding hardware limits.

High Off-Chip
Bandwidth
Demand

Frequent access to external memory
increases delays and power consumption.

Reduce unnecessary memory transfers by
carefully managing when and how data is
moved.

Irregular
Memory Access
Patterns

Some models require accessing data
unpredictably, leading to inefÏcient
memory usage.

Organize memory layout to align with access
patterns and minimize unnecessary data
movement.

Model-Specific
Memory Needs

Different models require different
allocation strategies to optimize
performance.

Tailor allocation decisions based on the
structure and execution characteristics of the
workload.

Beyond workload-specific considerations, memory allocation must also be
scalable. As model sizes continue to grow, accelerators must dynamically
manage memory resources rather than relying on static allocation schemes.
Ensuring that frequently used data is accessible when needed without over-
whelming memory capacity is essential for maintaining high efÏciency.

In summary, mapping neural network computations to specialized hardware
is a foundational step in AI acceleration, directly influencing performance,
memory efÏciency, and energy consumption. However, selecting an effective
mapping strategy is not a trivial task—hardware constraints, workload vari-
ability, and execution dependencies create a vast and complex design space.

While the principles of computation placement, memory allocation, and
data movement provide a structured foundation, optimizing these decisions
requires advanced techniques to navigate the trade-offs involved. The next
section explores optimization strategies that refine mapping decisions, focusing
on techniques that efÏciently search the design space to maximize execution
efÏciency while balancing hardware constraints.

11.5.3 Combinatorial Complexity
The efÏcient execution of machine learning models on AI accelerators requires
careful consideration of placement and allocation. Placement involves spa-
tial assignment of computations and data, while allocation covers temporal

11.5. Neural Networks Mapping 560

distribution of resources. These decisions are interdependent, and each intro-
duces trade-offs that impact performance, energy efÏciency, and scalability.
Table 11.12 outlines the fundamental trade-offs between computation place-
ment and resource allocation in AI accelerators. Placement decisions influence
parallelism, memory access patterns, and communication overhead, while allo-
cation strategies determine how resources are distributed over time to balance
execution efÏciency. The interplay between these factors shapes overall per-
formance, requiring a careful balance to avoid bottlenecks such as excessive
synchronization, memory congestion, or underutilized compute resources. Op-
timizing these trade-offs is essential for ensuring that AI accelerators operate at
peak efÏciency.

Table 11.12: Trade-offs between computation placement and resource allocation
in AI accelerators.

Dimension Placement Considerations Allocation Considerations

Computational
Granularity

Fine-grained placement enables greater
parallelism but increases synchronization
overhead.

Coarse-grained allocation reduces
synchronization overhead but may limit
flexibility.

Spatial
vs. Temporal
Mapping

Spatial placement enhances parallel execution
but can lead to resource contention and
memory congestion.

Temporal allocation balances resource
sharing but may reduce overall throughput.

Memory and
Data Locality

Placing data closer to compute units minimizes
latency but may reduce overall memory
availability.

Allocating data across multiple memory
levels increases capacity but introduces
higher access costs.

Communica-
tion and
Synchroniza-
tion

Co-locating compute units reduces
communication latency but may introduce
contention.

Allocating synchronization mechanisms
mitigates stalls but can introduce additional
overhead.

Dataflow and
Execution
Ordering

Static placement simplifies execution but limits
adaptability to workload variations.

Dynamic allocation improves adaptability
but adds scheduling complexity.

Each of these dimensions requires balancing trade-offs between placement
and allocation. For instance, spatially distributing computations across multiple
processing elements can increase throughput; however, if data allocation is
not optimized, memory bandwidth limitations may introduce bottlenecks.
Likewise, allocating resources for fine-grained computations may enhance
flexibility but, without appropriate placement strategies, may lead to excessive
synchronization overhead.

Because AI accelerator architectures impose constraints on both where com-
putations execute and how resources are assigned over time, selecting an effec-
tive mapping strategy necessitates a coordinated approach to placement and
allocation. Understanding how these trade-offs influence execution efÏciency
is essential for optimizing performance on AI accelerators.

11.5.3.1 Configuration Space Mapping

The efÏciency of AI accelerators is determined not only by their computational
capabilities but also by how neural network computations are mapped to hard-
ware resources. Mapping defines how computations are assigned to processing
elements, how data is placed and moved through the memory hierarchy, and
how execution is scheduled. The choices made in this process significantly

Chapter 11. AI Acceleration 561

impact performance, influencing compute utilization, memory bandwidth efÏ-
ciency, and energy consumption.

Mapping machine learning models to hardware presents a large and complex
design space. Unlike traditional computational workloads, model execution
involves multiple interacting factors, including computation, data movement,
parallelism, and scheduling, each introducing constraints and trade-offs. The
hierarchical memory structure of accelerators, as discussed in the Memory Sys-
tems section, further complicates this process by imposing limits on bandwidth,
latency, and data reuse. As a result, effective mapping strategies must carefully
balance competing objectives to maximize efÏciency.

At the heart of this design space lie three interconnected aspects: data place-
ment, computation scheduling, and data movement timing. Data placement
refers to the allocation of data across various memory hierarchies, such as
on-chip buffers, caches, and off-chip DRAM, and its effective management is
critical because it influences both latency and energy consumption. InefÏcient
placement often results in frequent, costly memory accesses, whereas strategic
placement ensures that data used regularly remains in fast-access storage. Com-
putation scheduling governs the order in which operations execute, impacting
compute efÏciency and memory access patterns; for instance, some execution
orders may optimize parallelism while introducing synchronization overheads,
and others may improve data locality at the expense of throughput. Meanwhile,
timing in data movement is equally essential, as transferring data between
memory levels incurs significant latency and energy costs. EfÏcient mapping
strategies thus focus on minimizing unnecessary transfers by reusing data and
overlapping communication with computation to enhance overall performance.

These factors define a vast combinatorial design space, where small varia-
tions in mapping decisions can lead to large differences in performance and
energy efÏciency. A poor mapping strategy can result in underutilized compute
resources, excessive data movement, or imbalanced workloads, creating bot-
tlenecks that degrade overall efÏciency. Conversely, a well-designed mapping
maximizes both throughput and resource utilization, making efÏcient use of
available hardware.

Because of the interconnected nature of mapping decisions, there is no single
optimal solution—different workloads and hardware architectures demand
different approaches. The next sections examine the structure of this design
space and how different mapping choices shape the execution of machine
learning workloads.

Mapping machine learning computations onto specialized hardware requires
balancing multiple constraints, including compute efÏciency, memory band-
width, and execution scheduling. The challenge arises from the vast number of
possible ways to assign computations to processing elements, order execution,
and manage data movement. Each decision contributes to a high-dimensional
search space, where even minor variations in mapping choices can significantly
impact performance.

Unlike traditional workloads with predictable execution patterns, machine
learning models introduce diverse computational structures that require flexible
mappings adapted to data reuse, parallelization opportunities, and memory
constraints. The search space grows combinatorially, making exhaustive search

11.5. Neural Networks Mapping 562

infeasible. To understand this complexity, we analyze three key sources of
variation:

11.5.3.2 Computation and Execution Ordering

Machine learning workloads are often structured as nested loops, iterating
over various dimensions of computation. For instance, a matrix multiplication
kernel may loop over batch size (𝑁), input features (𝐶), and output features (𝐾).
The order in which these loops execute has a profound effect on data locality,
reuse patterns, and computational efÏciency.

The number of ways to arrange 𝑑 loops follows a factorial growth pattern:𝒪 = 𝑑!
which scales rapidly. A typical convolutional layer may involve up to seven
loop dimensions, leading to:7! = 5,040 possible execution orders.

Furthermore, when considering multiple memory levels, the search space
expands as: (𝑑!)𝑙
where 𝑙 is the number of memory hierarchy levels. This rapid expansion high-
lights why execution order optimization is crucial—poor loop ordering can
lead to excessive memory trafÏc, while an optimized order improves cache
utilization (Sze et al. 2017a).

11.5.3.3 Processing Elements Parallelization

Modern AI accelerators leverage thousands of processing elements to maximize
parallelism, but determining which computations should be parallelized is
non-trivial. Excessive parallelization can introduce synchronization overheads
and increased bandwidth demands, while insufÏcient parallelization leads to
underutilized hardware.

The number of ways to distribute computations among parallel units follows
the binomial coefÏcient: 𝒫 = 𝑑!(𝑑 −𝑘)!
where 𝑑 is the number of loops, and 𝑘 is the number selected for parallel
execution. For a six-loop computation where three loops are chosen for parallel
execution, the number of valid configurations is:6!(6−3)! = 120.

Even for a single layer, there can be hundreds of valid parallelization strate-
gies, each affecting data synchronization, memory contention, and overall com-
pute efÏciency. Expanding this across multiple layers and model architectures
further magnifies the complexity.

Chapter 11. AI Acceleration 563

11.5.3.4 Memory Placement and Data Movement

The hierarchical memory structure of AI accelerators introduces additional
constraints, as data must be efÏciently placed across registers, caches, shared
memory, and off-chip DRAM. Data placement impacts latency, bandwidth
consumption, and energy efÏciency—frequent access to slow memory creates
bottlenecks, while optimized placement reduces costly memory transfers.

The number of ways to allocate data across memory levels follows an expo-
nential growth function: ℳ = 𝑛𝑑×𝑙
where:

• 𝑛 = number of placement choices per level,
• 𝑑 = number of computational dimensions,
• 𝑙 = number of memory hierarchy levels.

For a model with:
• 𝑑 = 5 computational dimensions,
• 𝑙 = 3 memory levels,
• 𝑛 = 4 possible placement choices per level,

the number of possible memory allocations is:45×3 = 415 = 1,073,741,824.
This highlights how even a single layer may have over a billion possible

memory configurations, making manual optimization impractical.

11.5.3.5 Mapping Search Space

By combining the complexity from computation ordering, parallelization, and
memory placement, the total mapping search space can be approximated as:𝒮 = (𝑛𝑑 ×𝑑!× 𝑑!(𝑑 −𝑘)!)𝑙
where:

• 𝑛𝑑 represents memory placement choices,
• 𝑑! accounts for computation ordering choices,
• 𝑑!(𝑑−𝑘)! captures parallelization possibilities,
• 𝑙 is the number of memory hierarchy levels.

This equation illustrates the exponential growth of the search space, making
brute-force search infeasible for all but the simplest cases.

11.6 Optimization Strategies
EfÏciently mapping machine learning computations onto hardware is a complex
challenge due to the vast number of possible configurations. As models grow
in complexity, the number of potential mappings increases exponentially. Even

11.6. Optimization Strategies 564

for a single layer, there are thousands of ways to order computation loops,
hundreds of parallelization strategies, and an exponentially growing number
of memory placement choices. This combinatorial explosion makes exhaustive
search impractical.

To overcome this challenge, AI accelerators rely on structured mapping
strategies that systematically balance computational efÏciency, data locality, and
parallel execution. Rather than evaluating every possible configuration, these
approaches use a combination of heuristic, analytical, and machine learning-
based techniques to find high-performance mappings efÏciently.

The key to effective mapping lies in understanding and applying a set of core
techniques that optimize data movement, memory access, and computation.
These building blocks of mapping strategies provide a structured foundation
for efÏcient execution, which we explore in the next section.

11.6.1 Mapping Strategies Building Blocks
To navigate the complexity of mapping decisions, a set of foundational tech-
niques is leveraged that optimizes execution across data movement, memory
access, and computation efÏciency. These techniques provide the necessary
structure for mapping strategies that maximize hardware performance while
minimizing bottlenecks.

Key techniques include data movement strategies, which determine where
data is staged during computation in order to reduce redundant transfers, such
as in weight stationary, output stationary, and input stationary approaches.
Memory-aware tensor layouts also play an important role by influencing mem-
ory access patterns and cache efÏciency through the organization of data in
formats such as row-major or channel-major.

Other strategies involve kernel fusion, a method that minimizes redundant
memory writes by combining multiple operations into a single computational
step. Tiling is employed as a technique that partitions large computations
into smaller, memory-friendly blocks to improve cache efÏciency and reduce
memory bandwidth requirements. Finally, balancing computation and com-
munication is essential for managing the trade-offs between parallel execution
and memory access to achieve high throughput.

Each of these building blocks plays a crucial role in structuring high-performance
execution, forming the basis for both heuristic and model-driven optimization
techniques. In the next section, we explore how these strategies are adapted to
different types of AI models.

11.6.1.1 Data Movement Patterns

While computational mapping determines where and when operations occur,
its success depends heavily on how efÏciently data is accessed and transferred
across the memory hierarchy. Unlike traditional computing workloads, which
often exhibit structured and predictable memory access patterns, machine
learning workloads present irregular access behaviors due to frequent retrieval
of weights, activations, and intermediate values.

Even when computational units are mapped efÏciently, poor data movement
strategies can severely degrade performance, leading to frequent memory stalls

Chapter 11. AI Acceleration 565

and underutilized hardware resources. If data cannot be supplied to processing
elements at the required rate, computational units remain idle, increasing
latency, memory trafÏc, and energy consumption (Y.-H. Chen et al. 2016).

To illustrate the impact of data movement inefÏciencies, consider a typical ma-
trix multiplication operation shown in Listing 11.18, which forms the backbone
of many machine learning models.

Listing 11.18: Matrix multiplication illustrating data movement bottlenecks

Matrix multiplication where:
weights: [512 x 256] - model parameters
input: [256 x 32] - batch of activations
Z: [512 x 32] - output activations

Computing each output element Z[i,j]:
for i in range(512):

for j in range(32):
for k in range(256):

Z[i,j] += weights[i,k] * input[k,j]

This computation reveals several critical dataflow challenges.
The first challenge is the number of memory accesses required. For each

output 𝑍[𝑖,𝑗], the computation must fetch an entire row of weights from the
weight matrix and a full column of activations from the input matrix. Since the
weight matrix contains 512 rows and the input matrix contains 32 columns, this
results in repeated memory accesses that place a significant burden on memory
bandwidth.

The second challenge comes from weight reuse. The same weights are applied
to multiple inputs, meaning that an ideal mapping strategy should maximize
weight locality to avoid redundant memory fetches. Without proper reuse, the
accelerator would waste bandwidth loading the same weights multiple times
(Tianqi et al. 2018).

The third challenge involves the accumulation of intermediate results. Since
each element in 𝑍[𝑖,𝑗] requires contributions from 256 different weight-input
pairs, partial sums must be stored and retrieved before the final value is com-
puted. If these intermediate values are stored inefÏciently, the system will
require frequent memory accesses, further increasing bandwidth demands.

A natural way to mitigate these challenges is to leverage SIMD and SIMT exe-
cution models, which allow multiple values to be fetched in parallel. However,
even with these optimizations, data movement remains a bottleneck. The issue
is not just how quickly data is retrieved but how often it must be moved and
where it is placed within the memory hierarchy (Han et al. 2016).

To address these constraints, accelerators implement dataflow strategies that
determine which data remains fixed in memory and which data is streamed
dynamically. These strategies aim to maximize reuse of frequently accessed data,
thereby reducing the need for redundant memory fetches. The effectiveness
of a given dataflow strategy depends on the specific workload—for example,

11.6. Optimization Strategies 566

deep convolutional networks benefit from keeping weights stationary, while
fully connected layers may require a different approach.

Weight Stationary. The Weight Stationary strategy keeps weights fixed in local
memory, while input activations and partial sums are streamed through the
system. This approach is particularly beneficial in CNNs and matrix multipli-
cations, where the same set of weights is applied across multiple inputs. By
ensuring weights remain stationary, this method reduces redundant memory
fetches, which helps alleviate bandwidth bottlenecks and improves energy
efÏciency.

A key advantage of the weight stationary approach is that it maximizes weight
reuse, reducing the frequency of memory accesses to external storage. Since
weight parameters are often shared across multiple computations, keeping
them in local memory eliminates unnecessary data movement, lowering the
overall energy cost of computation. This makes it particularly effective for
architectures where weights represent the dominant memory overhead, such
as systolic arrays and custom accelerators designed for machine learning.

A simplified Weight Stationary implementation for matrix multiplication is
illustrated in Listing 11.19.

Listing 11.19: Weight Stationary implementation for matrix multiplication

Weight Stationary Matrix Multiplication
- Weights remain fixed in local memory
- Input activations stream through
- Partial sums accumulate for final output

for weight_block in weights: # Load and keep weights stationary
load_to_local(weight_block) # Fixed in local storage
for input_block in inputs: # Stream inputs dynamically

for output_block in outputs: # Compute results
output_block += compute(weight_block, input_block)
Reuse weights across inputs

In weight stationary execution, weights are loaded once into local memory
and remain fixed throughout the computation, while inputs are streamed dy-
namically, thereby reducing redundant memory accesses. At the same time,
partial sums are accumulated in an efÏcient manner that minimizes unneces-
sary data movement, ensuring that the system maintains high throughput and
energy efÏciency.

By keeping weights fixed in local storage, memory bandwidth requirements
are significantly reduced, as weights do not need to be reloaded for each new
computation. Instead, the system efÏciently reuses the stored weights across
multiple input activations, allowing for high throughput execution. This makes
weight stationary dataflow highly effective for workloads with heavy weight
reuse patterns, such as CNNs and matrix multiplications.

Chapter 11. AI Acceleration 567

However, while this strategy reduces weight-related memory trafÏc, it intro-
duces trade-offs in input and output movement. Since inputs must be streamed
dynamically while weights remain fixed, the efÏciency of this approach de-
pends on how well input activations can be delivered to the computational
units without causing stalls. Additionally, partial sums, which represent in-
termediate results, must be carefully accumulated to avoid excessive memory
trafÏc. The total performance gain depends on the size of available on-chip
memory, as storing larger weight matrices locally can become a constraint in
models with millions or billions of parameters.

The weight stationary strategy is well-suited for workloads where weights ex-
hibit high reuse and memory bandwidth is a limiting factor. It is commonly em-
ployed in CNNs, systolic arrays, and matrix multiplication kernels, where struc-
tured weight reuse leads to significant performance improvements. However,
for models where input or output reuse is more critical, alternative dataflow
strategies, such as output stationary or input stationary, may provide better
trade-offs.

Output Stationary. The Output Stationary strategy keeps partial sums fixed in
local memory, while weights and input activations stream through the system.
This approach is particularly effective for fully connected layers, systolic arrays,
and other operations where an output element accumulates contributions from
multiple weight-input pairs. By keeping partial sums stationary, this method
reduces redundant memory writes, minimizing bandwidth consumption and
improving energy efÏciency (Y.-H. Chen et al. 2016).

A key advantage of the output stationary approach is that it optimizes accu-
mulation efÏciency, ensuring that each output element is computed as efÏciently
as possible before being written to memory. Unlike Weight Stationary, which
prioritizes weight reuse, Output Stationary execution is designed to minimize
memory bandwidth overhead caused by frequent writes of intermediate results.
This makes it well-suited for workloads where accumulation dominates the
computational pattern, such as fully connected layers and matrix multiplica-
tions in transformer-based models.

Listing 11.20 shows a simplified Output Stationary implementation for matrix
multiplication.

Listing 11.20: Output Stationary implementation for matrix multiplication

- Partial sums remain in local memory
- Weights and input activations stream through dynamically
- Final outputs are written only once

for output_block in outputs: # Keep partial sums stationary
accumulator = 0 # Initialize accumulation buffer
for weight_block, input_block in zip(weights, inputs):

accumulator += compute(weight_block, input_block)
Accumulate partial sums

store_output(accumulator) # Single write to memory

11.6. Optimization Strategies 568

This implementation follows the core principles of output stationary exe-
cution: - Partial sums are kept in local memory throughout the computation.
- Weights and inputs are streamed dynamically, ensuring that intermediate
results remain locally accessible. - Final outputs are written back to memory
only once, reducing unnecessary memory trafÏc.

By accumulating partial sums locally, this approach eliminates excessive
memory writes, improving overall system efÏciency. In architectures such as
systolic arrays, where computation progresses through a grid of processing
elements, keeping partial sums stationary aligns naturally with structured
accumulation workflows, reducing synchronization overhead.

However, while Output Stationary reduces memory write trafÏc, it introduces
trade-offs in weight and input movement. Since weights and activations must
be streamed dynamically, the efÏciency of this approach depends on how well
data can be fed into the system without causing stalls. Additionally, parallel
implementations must carefully synchronize updates to partial sums, especially
in architectures where multiple processing elements contribute to the same
output.

The Output Stationary strategy is most effective for workloads where accu-
mulation is the dominant operation and minimizing intermediate memory
writes is critical. It is commonly employed in fully connected layers, attention
mechanisms, and systolic arrays, where structured accumulation leads to sig-
nificant performance improvements. However, for models where input reuse
is more critical, alternative dataflow strategies, such as Input Stationary, may
provide better trade-offs.

Input Stationary. The Input Stationary strategy keeps input activations fixed
in local memory, while weights and partial sums stream through the system.
This approach is particularly effective for batch processing, transformer models,
and sequence-based architectures, where input activations are reused across
multiple computations. By ensuring that activations remain in local memory,
this method reduces redundant input fetches, improving data locality and
minimizing memory trafÏc.

A key advantage of the Input Stationary approach is that it maximizes input
reuse, reducing the frequency of memory accesses for activations. Since many
models, especially those in natural language processing (NLP) and recommen-
dation systems, process the same input data across multiple computations,
keeping inputs stationary eliminates unnecessary memory transfers, thereby
lowering energy consumption. This strategy is particularly useful when dealing
with large batch sizes, where a single batch of input activations contributes to
multiple weight transformations.

A simplified Input Stationary implementation for matrix multiplication is
illustrated in Listing 11.21.

This implementation follows the core principles of input stationary execution:
• Input activations are loaded into local memory and remain fixed during

computation.
• Weights are streamed dynamically, ensuring efÏcient application across

multiple inputs.

Chapter 11. AI Acceleration 569

Listing 11.21: Input Stationary implementation for matrix multiplication

- Input activations remain in local memory
- Weights stream through dynamically
- Partial sums accumulate and are written out

for input_block in inputs: # Keep input activations stationary
load_to_local(input_block) # Fixed in local storage
for weight_block in weights: # Stream weights dynamically

for output_block in outputs: # Compute results
output_block += compute(weight_block, input_block)
Reuse inputs across weights

• Partial sums are accumulated andwritten out, optimizing memory band-
width usage.

By keeping input activations stationary, this strategy minimizes redundant
memory accesses to input data, significantly reducing external memory band-
width requirements. This is particularly beneficial in transformer architectures,
where each token in an input sequence is used across multiple attention heads
and layers. Additionally, in batch processing scenarios, keeping input activa-
tions in local memory improves data locality, making it well-suited for fully
connected layers and matrix multiplications.

However, while Input Stationary reduces memory trafÏc for activations, it
introduces trade-offs in weight and output movement. Since weights must be
streamed dynamically while inputs remain fixed, the efÏciency of this approach
depends on how well weights can be delivered to the computational units with-
out causing stalls. Additionally, partial sums must be accumulated efÏciently
before being written back to memory, which may require additional buffering
mechanisms.

The Input Stationary strategy is most effective for workloads where input
activations exhibit high reuse, and memory bandwidth for inputs is a critical
constraint. It is commonly employed in transformers, recurrent networks, and
batch processing workloads, where structured input reuse leads to significant
performance improvements. However, for models where output accumulation
is more critical, alternative dataflow strategies, such as Output Stationary, may
provide better trade-offs.

11.6.1.2 Memory-Aware Tensor Layouts

EfÏcient execution of machine learning workloads depends not only on how
data moves (dataflow strategies) but also on how data is stored and accessed in
memory. Tensor layouts, which refers to the arrangement of multidimensional
data in memory, can significantly impact memory access efÏciency, cache per-
formance, and computational throughput. Poorly chosen layouts can lead to
excessive memory stalls, inefÏcient cache usage, and increased data movement
costs.

11.6. Optimization Strategies 570

In AI accelerators, tensor layout optimization is particularly important be-
cause data is frequently accessed in patterns dictated by the underlying hard-
ware architecture. Choosing the right layout ensures that memory accesses
align with hardware-friendly access patterns, minimizing overhead from costly
memory transactions (N. Corporation 2021).

While developers can sometimes manually specify tensor layouts, the choice
is often determined automatically by machine learning frameworks (e.g., Ten-
sorFlow, PyTorch, JAX), compilers, or AI accelerator runtimes. Low-level opti-
mization tools such as cuDNN (for NVIDIA GPUs), XLA (for TPUs), and MLIR
(for custom accelerators) may rearrange tensor layouts dynamically to optimize
performance (X. He 2023a). In high-level frameworks, layout transformations
are typically applied transparently, but developers working with custom kernels
or low-level libraries (e.g., CUDA, Metal, or OpenCL) may have direct control
over tensor format selection.

For example, in PyTorch, users can manually modify layouts using tensor.per-
mute() or tensor.contiguous() to ensure efÏcient memory access (Paszke et al.
2019). In TensorFlow, layout optimizations are often applied internally by the
XLA compiler, choosing between NHWC (row-major) and NCHW (channel-
major) based on the target hardware (Brain 2022). Hardware-aware machine
learning libraries, such as cuDNN for GPUs or OneDNN for CPUs, enforce
specific memory layouts to maximize cache locality and SIMD efÏciency. Ulti-
mately, while developers may have some control over tensor layout selection,
most layout decisions are driven by the compiler and runtime system, ensur-
ing that tensors are stored in memory in a way that best suits the underlying
hardware.

Row-Major Layout. Row-major layout refers to the way multi-dimensional
tensors are stored in memory, where elements are arranged row by row, en-
suring that all values in a given row are placed contiguously before moving to
the next row. This storage format is widely used in general-purpose CPUs and
some machine learning frameworks because it aligns naturally with sequential
memory access patterns, making it more cache-efÏcient for certain types of
operations (I. Corporation 2021).

To understand how row-major layout works, consider a single RGB image
represented as a tensor of shape (Height, Width, Channels). If the image has a
size of 3×3 pixels with 3 channels (RGB), the corresponding tensor is structured
as (3, 3, 3). The values are stored in memory as follows:𝐼(0,0,0),𝐼(0,0,1),𝐼(0,0,2),𝐼(0,1,0),𝐼(0,1,1),𝐼(0,1,2),𝐼(0,2,0),𝐼(0,2,1),𝐼(0,2,2),…

Each row is stored contiguously, meaning all pixel values in the first row
are placed sequentially in memory before moving on to the second row. This
ordering is advantageous because CPUs and cache hierarchies are optimized for
sequential memory access. When data is accessed in a row-wise fashion, such
as when applying element-wise operations like activation functions or basic
arithmetic transformations, memory fetches are efÏcient, and cache utilization
is maximized (Sodani 2015).

Chapter 11. AI Acceleration 571

The efÏciency of row-major storage becomes particularly evident in CPU-
based machine learning workloads, where operations such as batch normaliza-
tion, matrix multiplications, and element-wise arithmetic frequently process
rows of data sequentially. Since modern CPUs employ cache prefetching mech-
anisms, a row-major layout allows the next required data values to be preloaded
into cache ahead of execution, reducing memory latency and improving overall
computational throughput.

However, row-major layout can introduce inefÏciencies when performing
operations that require accessing data across channels rather than across rows.
Consider a convolutional layer that applies a filter across multiple channels
of an input image. Since channel values are interleaved in row-major storage,
the convolution operation must jump across memory locations to fetch all the
necessary channel values for a given pixel. These strided memory accesses
can be costly on hardware architectures that rely on vectorized execution and
coalesced memory access, such as GPUs and TPUs.

Despite these limitations, row-major layout remains a dominant storage for-
mat in CPU-based machine learning frameworks. TensorFlow, for instance,
defaults to the NHWC (row-major) format on CPUs, ensuring that cache lo-
cality is optimized for sequential processing. However, when targeting GPUs,
frameworks often rearrange data dynamically to take advantage of more efÏ-
cient memory layouts, such as channel-major storage, which aligns better with
parallelized computation.

Channel-Major Layout. In contrast to row-major layout, channel-major layout
arranges data in memory such that all values for a given channel are stored
together before moving to the next channel. This format is particularly beneficial
for GPUs, TPUs, and other AI accelerators, where vectorized operations and
memory coalescing significantly impact computational efÏciency.

To understand how channel-major layout works, consider the same RGB
image tensor of size (Height, Width, Channels) = (3, 3, 3). Instead of storing
pixel values row by row, the data is structured channel-first in memory as
follows: 𝐼(0,0,0),𝐼(1,0,0),𝐼(2,0,0),𝐼(0,1,0),𝐼(1,1,0),𝐼(2,1,0),…,𝐼(0,0,1),𝐼(1,0,1),𝐼(2,0,1),…,𝐼(0,0,2),𝐼(1,0,2),𝐼(2,0,2),…

In this format, all red channel values for the entire image are stored first,
followed by all green values, and then all blue values. This ordering allows
hardware accelerators to efÏciently load and process data across channels in par-
allel, which is crucial for convolution operations and SIMD (Single Instruction,
Multiple Data) execution models (Chetlur et al. 2014).

The advantage of channel-major layout becomes clear when performing
convolutions in machine learning models. Convolutional layers process images
by applying a shared set of filters across all channels. When the data is stored
in a channel-major format, a convolution kernel can load an entire channel
efÏciently, reducing the number of scattered memory fetches. This reduces
memory latency, improves throughput, and enhances data locality for matrix
multiplications, which are fundamental to machine learning workloads.

11.6. Optimization Strategies 572

Because GPUs and TPUs rely on memory coalescing, a technique in which
consecutive threads fetch contiguous memory addresses, channel-major layout
aligns naturally with the way these processors execute parallel computations.
For example, in NVIDIA GPUs, each thread in a warp (a group of threads
executed simultaneously) processes different elements of the same channel,
ensuring that memory accesses are efÏcient and reducing the likelihood of
strided memory accesses, which can degrade performance.

Despite its advantages in machine learning accelerators, channel-major lay-
out can introduce inefÏciencies when running on general-purpose CPUs. Since
CPUs optimize for sequential memory access, storing all values for a single
channel before moving to the next disrupts cache locality for row-wise op-
erations. This is why many machine learning frameworks (e.g., TensorFlow,
PyTorch) default to row-major (NHWC) on CPUs and channel-major (NCHW)
on GPUs—optimizing for the strengths of each hardware type.

Modern AI frameworks and compilers often transform tensor layouts dynam-
ically depending on the execution environment. For instance, TensorFlow and
PyTorch automatically switch between NHWC and NCHW based on whether
a model is running on a CPU, GPU, or TPU, ensuring that the memory layout
aligns with the most efÏcient execution path.
Row-Major vs Channel-Major Layouts. Both row-major (NHWC) and channel-
major (NCHW) layouts serve distinct purposes in machine learning workloads,
with their efÏciency largely determined by the hardware architecture, mem-
ory access patterns, and computational requirements. The choice of layout
directly influences cache utilization, memory bandwidth efÏciency, and pro-
cessing throughput. Table 11.13 summarizes the differences between row-major
(NHWC) and channel-major (NCHW) layouts in terms of performance trade-
offs and hardware compatibility.

Table 11.13: Comparison of row-major (NHWC) vs. channel-major (NCHW)
layouts.

Feature Row-Major (NHWC) Channel-Major (NCHW)

Memory Storage
Order

Pixels are stored row-by-row, channel
interleaved

All values for a given channel are stored
together first

Best for CPUs, element-wise operations GPUs, TPUs, convolution operations
Cache EfÏciency High cache locality for sequential row

access
Optimized for memory coalescing across
channels

Convolution
Performance

Requires strided memory accesses
(inefÏcient on GPUs)

EfÏcient for GPU convolution kernels

Memory Fetching Good for operations that process rows
sequentially

Optimized for SIMD execution across
channels

Default in
Frameworks

Default on CPUs (e.g., TensorFlow NHWC) Default on GPUs (e.g., cuDNN prefers
NCHW)

The decision to use row-major (NHWC) or channel-major (NCHW) layouts
is not always made manually by developers. Instead, machine learning frame-
works and AI compilers often determine the optimal layout dynamically based
on the target hardware and operation type. CPUs tend to favor NHWC due
to cache-friendly sequential memory access, while GPUs perform better with
NCHW, which reduces memory fetch overhead for machine learning computa-
tions.

Chapter 11. AI Acceleration 573

In practice, modern AI compilers such as TensorFlow’s XLA and PyTorch’s
TorchScript perform automatic layout transformations, converting tensors be-
tween NHWC and NCHW as needed to optimize performance across different
processing units. This ensures that machine learning models achieve the highest
possible throughput without requiring developers to manually specify tensor
layouts.

11.6.1.3 Kernel Fusion

Intermediate Memory Write. Optimizing memory access is a fundamental
challenge in AI acceleration. While AI models rely on high-throughput com-
putation, their performance is often constrained by memory bandwidth and
intermediate memory writes rather than pure arithmetic operations. Every time
an operation produces an intermediate result that must be written to memory
and later read back, execution stalls occur due to data movement overhead.

To better understand why kernel fusion is necessary, consider a simple se-
quence of operations in a machine learning model. Many AI workloads, partic-
ularly those involving element-wise transformations, introduce unnecessary
intermediate memory writes, leading to increased memory bandwidth con-
sumption and reduced execution efÏciency (N. Corporation 2017).

Listing 11.22 illustrates a naïve execution model in which each operation is
treated as a separate kernel, meaning that each intermediate result is written to
memory and then read back for the next operation.

Listing 11.22: Naïve kernel-by-kernel execution

import torch

Input tensor
X = torch.randn(1024, 1024).cuda()

Step-by-step execution (naïve approach)
X1 = torch.relu(X) # Intermediate tensor stored

in memory
X2 = torch.batch_norm(X1) # Another intermediate tensor stored
Y = 2.0 * X2 + 1.0 # Final result

Each operation produces an intermediate tensor that must be written to
memory and retrieved for the next operation. On large tensors, this overhead
of moving data can outweigh the computational cost of the operations (Shazeer
et al. 2018). Table 11.14 illustrates the memory overhead in a naïve execution
model. While only the final result 𝑌 is needed, storing multiple intermediate
tensors creates unnecessary memory trafÏc and inefÏcient memory usage. This
data movement bottleneck significantly impacts performance, making memory
optimization crucial for AI accelerators.

11.6. Optimization Strategies 574

Table 11.14: Memory footprint of a naïve execution model with intermediate
tensor storage.

Tensor Size (MB) for 1024 × 1024 Tensor

X 4 MB
X’ 4 MB
X’ ’ 4 MB
Y 4 MB
Total Memory 16 MB

Even though only the final result 𝑌 is needed, three additional intermediate
tensors consume extra memory without contributing to final output storage.
This excessive memory usage limits scalability and wastes memory bandwidth,
particularly in AI accelerators where minimizing data movement is critical.

Kernel Fusion for Memory EfÏciency. Kernel fusion is a key optimization
technique that aims to minimize intermediate memory writes, reducing the
memory footprint and bandwidth consumption of machine learning workloads
(Zhihao Jia, Zaharia, and Aiken 2018).

Kernel fusion involves merging multiple computation steps into a single, op-
timized operation, eliminating the need for storing and reloading intermediate
tensors. Instead of executing each layer or element-wise operation separately, in
which each step writes its output to memory before the next step begins, fusion
enables direct data propagation between operations, keeping computations
within high-speed registers or local memory.

A common machine learning sequence might involve applying a nonlinear
activation function (e.g., ReLU), followed by batch normalization, and then
scaling the values for input to the next layer. In a naïve implementation, each
of these steps generates an intermediate tensor, which is written to memory,
read back, and then modified again:𝑋′ = ReLU(𝑋)𝑋″ = BatchNorm(𝑋′)𝑌 = 𝛼 ⋅𝑋″ +𝛽

With kernel fusion, these operations are combined into a single computation
step, allowing the entire transformation to occur without generating unneces-
sary intermediate tensors:𝑌 = 𝛼⋅ BatchNorm(ReLU(𝑋))+𝛽

Table 11.15 highlights the impact of operation fusion on memory efÏciency.
By keeping intermediate results in registers or local memory rather than writing
them to main memory, fusion significantly reduces memory trafÏc. This opti-
mization is especially beneficial on highly parallel architectures like GPUs and
TPUs, where minimizing memory accesses translates directly into improved
execution throughput. Compared to the naïve execution model, fused execution
eliminates the need for storing intermediate tensors, dramatically lowering the
total memory footprint and improving overall efÏciency.

Chapter 11. AI Acceleration 575

Table 11.15: Reduction in memory usage through operation fusion.

Execution Model Intermediate Tensors Stored Total Memory Usage (MB)

Naïve Execution X’, X’ ’ 16 MB
Fused Execution None 4 MB

Kernel fusion reduces total memory consumption from 16 MB to 4 MB,
eliminating redundant memory writes while improving execution efÏciency.

Performance Benefits and Constraints. Kernel fusion brings several key ad-
vantages that enhance memory efÏciency and computation throughput. By
reducing memory accesses, fused kernels ensure that intermediate values stay
within registers instead of being repeatedly written to and read from memory.
This significantly lowers memory trafÏc, which is one of the primary bottle-
necks in machine learning workloads. GPUs and TPUs, in particular, benefit
from kernel fusion because high-bandwidth memory is a scarce resource, and
reducing memory transactions leads to better utilization of compute units (X.
Qi, Kantarci, and Liu 2017).

However, not all operations can be fused. Element-wise operations, such as
ReLU, batch normalization, and simple arithmetic transformations, are ideal
candidates for fusion since their computations depend only on single elements
from the input tensor. In contrast, operations with complex data dependencies,
such as matrix multiplications and convolutions, involve global data movement,
making direct fusion impractical. These operations require values from multiple
input elements to compute a single output, which prevents them from being
executed as a single fused kernel.

Another major consideration is register pressure. Fusing multiple operations
means all temporary values must be kept in registers rather than memory. While
this eliminates redundant memory writes, it also increases register demand.
If a fused kernel exceeds the available registers per thread, the system must
spill excess values into shared memory, introducing additional latency and
potentially negating the benefits of fusion. On GPUs, where thread occupancy
(the number of threads that can run in parallel) is limited by available registers,
excessive fusion can reduce parallelism, leading to diminishing returns.

Different AI accelerators and compilers handle fusion in distinct ways. NVIDIA
GPUs, for example, favor warp-level parallelism, where element-wise fusion
is straightforward. TPUs, on the other hand, prioritize systolic array execu-
tion, which is optimized for matrix-matrix operations rather than element-wise
fusion (X. Qi, Kantarci, and Liu 2017). AI compilers such as XLA (Tensor-
Flow), TorchScript (PyTorch), TensorRT (NVIDIA), and MLIR automatically
detect fusion opportunities and apply heuristics to balance memory savings
and execution efÏciency (X. He 2023b).

Despite its advantages, fusion is not always beneficial. Some AI frameworks
allow developers to disable fusion selectively, especially when debugging per-
formance issues or making frequent model modifications. The decision to fuse
operations must consider trade-offs between memory efÏciency, register usage,
and hardware execution constraints to ensure that fusion leads to tangible
performance improvements.

11.6. Optimization Strategies 576

11.6.1.4 Tiling for Memory EfÏciency
While modern AI accelerators offer high computational throughput, their per-
formance is often limited by memory bandwidth rather than raw processing
power. If data cannot be supplied to processing units fast enough, execution
stalls occur, leading to wasted cycles and inefÏcient hardware utilization.

Tiling is a technique used to mitigate this issue by restructuring computations
into smaller, memory-friendly subproblems. Instead of processing entire matri-
ces or tensors at once, which leads to excessive memory trafÏc, tiling partitions
computations into smaller blocks (tiles) that fit within fast local memory (e.g.,
caches, shared memory, or registers) (Lam, Rothberg, and Wolf 1991). By doing
so, tiling increases data reuse, minimizes memory fetches, and improves overall
computational efÏciency.

A classic example of inefÏcient memory access is matrix multiplication, which
is widely used in AI models. Without tiling, the naïve approach results in
repeated memory accesses for the same data, leading to unnecessary bandwidth
consumption (Listing 11.23).

Listing 11.23: Naïve matrix multiplication without tiling

for i in range(N):
for j in range(N):

for k in range(N):
C[i, j] += A[i, k] * B[k, j] # Repeatedly fetching

A[i, k] and B[k, j]

Each iteration requires loading elements from matrices 𝐴 and 𝐵 multiple
times from memory, causing excessive data movement. As the size of the
matrices increases, the memory bottleneck worsens, limiting performance.

Tiling addresses this problem by ensuring that smaller portions of matrices
are loaded into fast memory, reused efÏciently, and only written back to main
memory when necessary. This technique is especially crucial in AI accelera-
tors, where memory accesses dominate execution time. By breaking up large
matrices into smaller tiles, as illustrated in Figure 11.8, computation can be per-
formed more efÏciently on hardware by maximizing data reuse in fast memory.
In the following sections, we will explore the fundamental principles of tiling,
its different strategies, and the key trade-offs involved in selecting an effective
tiling approach.

Tiling Fundamentals. Tiling is based on a simple but powerful principle: in-
stead of operating on an entire data structure at once, computations are divided
into smaller tiles that fit within the available fast memory. By structuring execu-
tion around these tiles, data reuse is maximized, reducing redundant memory
accesses and improving overall efÏciency.

Consider matrix multiplication, a key operation in machine learning work-
loads. The operation computes the output matrix 𝐶 from two input matrices 𝐴
and 𝐵: 𝐶 = 𝐴×𝐵

Chapter 11. AI Acceleration 577

Figure 11.8: Example of how matrix
multiplication can be tiled for bet-
ter parallelization and memory ac-
cesses.

N

K

Ktile

Ntile

B matrix

Mtile

Ntile

Block m,n

C matrix

K

M

Mtile

Ktile

A matrix

where each element 𝐶[𝑖,𝑗] is computed as:𝐶[𝑖,𝑗] = ∑𝑘 𝐴[𝑖,𝑘]×𝐵[𝑘,𝑗]
A naïve implementation follows this formula directly (Listing 11.24).

Listing 11.24: Naïve matrix multiplication

for i in range(N):
for j in range(N):

for k in range(N):
C[i, j] += A[i, k] * B[k, j] # Repeatedly fetching

A[i, k] and B[k, j]

At first glance, this approach seems correct—it computes the desired result
and follows the mathematical definition. However, the issue lies in how memory
is accessed. Every time the innermost loop runs, it fetches an element from
matrix 𝐴 and matrix 𝐵 from memory, performs a multiplication, and updates
an element in matrix 𝐶. Because matrices are large, the processor frequently

11.6. Optimization Strategies 578

reloads the same values from memory, even though they were just used in
previous computations.

This unnecessary data movement is expensive. Fetching values from main
memory (DRAM) is hundreds of times slower than accessing values stored in
on-chip cache or registers. If the same values must be reloaded multiple times
instead of being stored in fast memory, execution slows down significantly.

Tiling Performance Improvement. Instead of computing one element at a
time and constantly moving data in and out of slow memory, tiling processes
submatrices (tiles) at a time, keeping frequently used values in fast memory. The
idea is to divide the matrices into smaller blocks that fit within the processor’s
cache or shared memory, ensuring that once a block is loaded, it is reused
multiple times before moving to the next one.

Listing 11.25 illustrates a tiled version of matrix multiplication, which im-
proves memory locality by processing blocks of data.

Listing 11.25: Tiled matrix multiplication

TILE_SIZE = 32 # Choose a tile size based on
hardware constraints

for i in range(0, N, TILE_SIZE):
for j in range(0, N, TILE_SIZE):

for k in range(0, N, TILE_SIZE):
Compute the submatrix
C[i:i+TILE_SIZE, j:j+TILE_SIZE]

for ii in range(i, i + TILE_SIZE):
for jj in range(j, j + TILE_SIZE):

for kk in range(k, k + TILE_SIZE):
C[ii, jj] += A[ii, kk] * B[kk, jj]

This restructuring significantly improves performance for three main reasons:
1. Better Memory Reuse: Instead of fetching elements from 𝐴 and 𝐵 repeat-

edly from slow memory, this approach loads a small tile of data into fast
memory, performs multiple computations using it, and only then moves
on to the next tile. This minimizes redundant memory accesses.

2. Reduced Memory Bandwidth Usage: Since each tile is used multiple
times before being evicted, memory trafÏc is reduced. Instead of repeat-
edly accessing DRAM, most required data is available in L1/L2 cache or
shared memory, leading to faster execution.

3. Increased Compute EfÏciency: Processors spend less time waiting for
data and more time performing useful computations. In architectures
like GPUs and TPUs, where thousands of parallel processing units op-
erate simultaneously, tiling ensures that data is read and processed in a
structured manner, avoiding unnecessary stalls.

Chapter 11. AI Acceleration 579

This technique is particularly effective in AI accelerators, where machine
learning workloads consist of large matrix multiplications and tensor trans-
formations. Without tiling, these workloads quickly become memory-bound,
meaning performance is constrained by how fast data can be retrieved rather
than by the raw computational power of the processor.

Tiling Methods. While the general principle of tiling remains the same, which
involves partitioning large computations into smaller subproblems to improve
memory reuse, there are different ways to apply tiling based on the structure of
the computation and hardware constraints. The two primary tiling strategies
are spatial tiling and temporal tiling. These strategies optimize different aspects
of computation and memory access, and in practice, they are often combined
to achieve the best performance.

Spatial Tiling. Spatial tiling focuses on partitioning data structures into smaller
blocks that fit within the fast memory of the processor. This approach ensures
that each tile is fully processed before moving to the next, reducing redundant
memory accesses. Spatial tiling is widely used in operations such as matrix
multiplication, convolutions, and attention mechanisms in transformer models.

Spatial tiling is illustrated in Listing 11.26, where the computation proceeds
over blocks of the input matrices.

Listing 11.26: Tiled matrix multiplication with spatial tiling

TILE_SIZE = 32 # Tile size chosen based on available
fast memory

for i in range(0, N, TILE_SIZE):
for j in range(0, N, TILE_SIZE):

for k in range(0, N, TILE_SIZE):
Process a submatrix (tile) at a time
for ii in range(i, i + TILE_SIZE):

for jj in range(j, j + TILE_SIZE):
for kk in range(k, k + TILE_SIZE):

C[ii, jj] += A[ii, kk] * B[kk, jj]

In this implementation, each tile of 𝐴 and 𝐵 is loaded into cache or shared
memory before processing, ensuring that the same data does not need to be
fetched repeatedly from slower memory. The tile is fully used before moving to
the next block, minimizing redundant memory accesses. Since data is accessed
in a structured, localized way, cache efÏciency improves significantly.

Spatial tiling is particularly beneficial when dealing with large tensors that
do not fit entirely in fast memory. By breaking them into smaller tiles, compu-
tations remain localized, avoiding excessive data movement between memory
levels. This technique is widely used in AI accelerators where machine learning
workloads involve large-scale tensor operations that require careful memory
management to achieve high performance.

11.6. Optimization Strategies 580

Temporal Tiling. While spatial tiling optimizes how data is partitioned, temporal
tiling focuses on reorganizing the computation itself to improve data reuse
over time. Many machine learning workloads involve operations where the
same data is accessed repeatedly across multiple iterations. Without temporal
tiling, this often results in redundant memory fetches, leading to inefÏciencies.
Temporal tiling, also known as loop blocking, restructures the computation to
ensure that frequently used data stays in fast memory for as long as possible
before moving on to the next computation.

A classic example where temporal tiling is beneficial is convolutional op-
erations, where the same set of weights is applied to multiple input regions.
Without loop blocking, these weights might be loaded from memory multiple
times for each computation. With temporal tiling, the computation is reordered
so that the weights remain in fast memory across multiple inputs, reducing
unnecessary memory fetches and improving overall efÏciency.

Listing 11.27 illustrates a simplified example of loop blocking in matrix mul-
tiplication.

Listing 11.27: Matrix Multiplication with Temporal Tiling (Loop Blocking)

for i in range(0, N, TILE_SIZE):
for j in range(0, N, TILE_SIZE):

for k in range(0, N, TILE_SIZE):
Load tile into fast memory before computation
A_tile = A[i:i+TILE_SIZE, k:k+TILE_SIZE]
B_tile = B[k:k+TILE_SIZE, j:j+TILE_SIZE]

for ii in range(TILE_SIZE):
for jj in range(TILE_SIZE):

for kk in range(TILE_SIZE):
C[i+ii, j+jj] += A_tile[ii, kk] *

B_tile[kk, jj]

Temporal tiling improves performance by ensuring that the data loaded into
fast memory is used multiple times before being evicted. In this implemen-
tation, small tiles of matrices 𝐴 and 𝐵 are explicitly loaded into temporary
storage before performing computations, reducing memory fetch overhead.
This restructuring allows the computation to process an entire tile before mov-
ing to the next, thereby reducing the number of times data must be loaded from
slower memory.

This technique is particularly useful in workloads where certain values are
used repeatedly, such as convolutions, recurrent neural networks (RNNs), and
self-attention mechanisms in transformers. By applying loop blocking, AI
accelerators can significantly reduce memory stalls and improve execution
throughput.

Tiling Challenges and Trade-offs. While tiling significantly improves perfor-
mance by optimizing memory reuse and reducing redundant memory accesses,

Chapter 11. AI Acceleration 581

it introduces several challenges and trade-offs. Selecting the right tile size is
a critical decision, as it directly affects computational efÏciency and memory
bandwidth usage. If the tile size is too small, the benefits of tiling diminish, as
memory fetches still dominate execution time. On the other hand, if the tile size
is too large, it may exceed the available fast memory, causing cache thrashing
and performance degradation.

Load balancing is another key concern. In architectures such as GPUs and
TPUs, computations are executed in parallel across thousands of processing
units. If tiles are not evenly distributed, some units may remain idle while others
are overloaded, leading to suboptimal utilization of computational resources.
Effective tile scheduling ensures that parallel execution remains balanced and
efÏcient.

Data movement overhead is also an important consideration. Although
tiling reduces the number of slow memory accesses, transferring tiles between
different levels of memory still incurs a cost. This is especially relevant in
hierarchical memory systems, where accessing data from cache is much faster
than accessing it from DRAM. EfÏcient memory prefetching and scheduling
strategies are required to minimize latency and ensure that data is available
when needed.

Beyond spatial and temporal tiling, hybrid approaches combine elements
of both strategies to achieve optimal performance. Hybrid tiling adapts to
workload-specific constraints by dynamically adjusting tile sizes or reordering
computations based on real-time execution conditions. For example, some
AI accelerators use spatial tiling for matrix multiplications while employing
temporal tiling for weight reuse in convolutional layers.

In addition to tiling, there are other methods for optimizing memory usage
and computational efÏciency. Techniques such as register blocking, double
buffering, and hierarchical tiling extend the basic tiling principles to further
optimize execution. AI compilers and runtime systems, such as TensorFlow
XLA, TVM, and MLIR, automatically select tiling strategies based on hardware
constraints, allowing for fine-tuned performance optimization without manual
intervention.

Table 11.16 provides a comparative overview of spatial, temporal, and hybrid
tiling approaches, highlighting their respective benefits and trade-offs.

Table 11.16: Comparative analysis of spatial, temporal, and hybrid tiling strate-
gies.

Aspect Spatial Tiling (Data Tiling)
Temporal Tiling (Loop
Blocking) Hybrid Tiling

Primary
Goal

Reduce memory accesses by keeping
data in fast memory longer

Increase data reuse across
loop iterations

Adapt dynamically to
workload constraints

Opti-
mization
Focus

Partitioning data structures into
smaller, memory-friendly blocks

Reordering computations to
maximize reuse before
eviction

Balancing spatial and
temporal reuse strategies

Memory
Usage

Improves cache locality and reduces
DRAM access

Keeps frequently used data
in fast memory for multiple
iterations

Minimizes data
movement while ensuring
high reuse

Common
Use Cases

Matrix multiplications, CNNs,
self-attention in transformers

Convolutions, recurrent
neural networks (RNNs),
iterative computations

AI accelerators with
hierarchical memory,
mixed workloads

11.6. Optimization Strategies 582

Aspect Spatial Tiling (Data Tiling)
Temporal Tiling (Loop
Blocking) Hybrid Tiling

Perfor-
mance
Gains

Reduced memory bandwidth
requirements, better cache utilization

Lower memory fetch latency,
improved data locality

Maximized efÏciency
across multiple hardware
types

Chal-
lenges

Requires careful tile size selection,
inefÏcient for workloads with
minimal spatial reuse

Can increase register
pressure, requires loop
restructuring

Complexity in tuning tile
size and execution order
dynamically

Best
When

Data is large and needs to be
partitioned for efÏcient processing

The same data is accessed
multiple times across
iterations

Both data partitioning
and iteration-based reuse
are important

As machine learning models continue to grow in size and complexity, tiling
remains a critical tool for improving hardware efÏciency, ensuring that AI ac-
celerators operate at their full potential. While manual tiling strategies can
provide substantial benefits, modern compilers and hardware-aware optimiza-
tion techniques further enhance performance by automatically selecting the
most effective tiling strategies for a given workload.

11.6.2 Mapping Strategies Application
While the foundational mapping techniques we discussed apply broadly, their
effectiveness varies based on the computational structure, data access patterns,
and parallelization opportunities of different neural network architectures.
Each architecture imposes distinct constraints on data movement, memory
hierarchy, and computation scheduling, requiring tailored mapping strategies
to optimize performance.

A structured approach to mapping is essential to address the combinatorial
explosion of choices that arise when assigning computations to AI accelerators.
Rather than treating each model as a separate optimization problem, we recog-
nize that the same fundamental principles apply across different architectures—
only their priority shifts based on workload characteristics. The goal is to sys-
tematically select and apply mapping strategies that maximize efÏciency for
different types of machine learning models.

To demonstrate these principles, we examine three representative AI work-
loads, each characterized by distinct computational demands. CNNs benefit
from spatial data reuse, making weight-stationary execution and the appli-
cation of tiling techniques especially effective. In contrast, Transformers are
inherently memory-bound and rely on strategies such as efÏcient KV-cache
management, fused attention mechanisms, and highly parallel execution to
mitigate memory trafÏc. MLPs, which involve substantial matrix multiplication
operations, demand the use of structured tiling, optimized weight layouts, and
memory-aware execution to enhance overall performance.

Despite their differences, each of these models follows a common set of
mapping principles, with variations in how optimizations are prioritized. The
following table provides a structured mapping between different optimization
strategies and their suitability for CNNs, Transformers, and MLPs. This table
serves as a roadmap for selecting appropriate mapping strategies for different
machine learning workloads.

Chapter 11. AI Acceleration 583

Optimiza-
tion
Technique CNNs

Trans-
formers MLPs Rationale

Dataflow
Strategy

Weight
Station-
ary

Activa-
tion
Station-
ary

Weight
Sta-
tionary

CNNs reuse filters across spatial locations; Transformers
reuse activations (KV-cache); MLPs reuse weights across
batches.

Memory-
Aware
Tensor
Layouts

NCHW
(Channel-
Major)

NHWC
(Row-
Major)

NHWC CNNs favor channel-major for convolution efÏciency;
Transformers and MLPs prioritize row-major for fast
memory access.

Kernel
Fusion

Convolu-
tion +
Activa-
tion

Fused
Atten-
tion

GEMM
Fusion

CNNs optimize convolution+activation fusion; Transformers
fuse attention mechanisms; MLPs benefit from fused matrix
multiplications.

Tiling for
Memory
EfÏciency

Spatial
Tiling

Tempo-
ral
Tiling

Blocked
Tiling

CNNs tile along spatial dimensions; Transformers use loop
blocking to improve sequence memory efÏciency; MLPs use
blocked tiling for large matrix multiplications.

This table highlights that each machine learning model benefits from a dif-
ferent combination of optimization techniques, reinforcing the importance of
tailoring execution strategies to the computational and memory characteristics
of the workload.

In the following sections, we explore how these optimizations apply to each
network type, explaining how CNNs, Transformers, and MLPs leverage specific
mapping strategies to improve execution efÏciency and hardware utilization.

11.6.2.1 Convolutional Neural Networks

CNNs are characterized by their structured spatial computations, where small
filters (or kernels) are repeatedly applied across an input feature map. This
structured weight reuse makes weight stationary execution the most effective
strategy for CNNs. Keeping filter weights in fast memory while streaming
activations ensures that weights do not need to be repeatedly fetched from
slower external memory, significantly reducing memory bandwidth demands.
Since each weight is applied to multiple spatial locations, weight stationary
execution maximizes arithmetic intensity and minimizes redundant memory
transfers.

Memory-aware tensor layouts also play a critical role in CNN execution.
Convolution operations benefit from a channel-major memory format, often
represented as NCHW (batch, channels, height, width). This layout aligns with
the access patterns of convolutions, enabling efÏcient memory coalescing on
accelerators such as GPUs and TPUs. By storing data in a format that optimizes
cache locality, accelerators can fetch contiguous memory blocks efÏciently,
reducing latency and improving throughput.

Kernel fusion is another important optimization for CNNs. In a typical ma-
chine learning pipeline, convolution operations are often followed by activation
functions such as ReLU and batch normalization. Instead of treating these
operations as separate computational steps, fusing them into a single kernel
reduces intermediate memory writes and improves execution efÏciency. This
optimization minimizes memory bandwidth pressure by keeping intermediate
values in registers rather than writing them to memory and fetching them back
in subsequent steps.

11.6. Optimization Strategies 584

Given the size of input images and feature maps, tiling is necessary to ensure
that computations fit within fast memory hierarchies. Spatial tiling, where
input feature maps are processed in smaller subregions, allows for efÏcient
utilization of on-chip memory while avoiding excessive off-chip memory trans-
fers. This technique ensures that input activations, weights, and intermediate
outputs remain within high-speed caches or shared memory as long as possible,
reducing memory stalls and improving overall performance.

Together, these optimizations ensure that CNNs make efÏcient use of avail-
able compute resources by maximizing weight reuse, optimizing memory access
patterns, reducing redundant memory writes, and structuring computation to
fit within fast memory constraints.

11.6.2.2 Transformer Architectures

Unlike CNNs, which rely on structured spatial computations, Transformers
process variable-length sequences and rely heavily on attention mechanisms.
The primary computational bottleneck in Transformers is memory bandwidth,
as attention mechanisms require frequent access to stored key-value pairs
across multiple query vectors. Given this access pattern, activation stationary
execution is the most effective strategy. By keeping key-value activations in
fast memory and streaming query vectors dynamically, activation reuse is
maximized while minimizing redundant memory fetches. This approach is
critical in reducing bandwidth overhead, especially in long-sequence tasks such
as natural language processing.

Memory layout optimization is equally important for Transformers. Unlike
CNNs, which benefit from channel-major layouts, Transformers require efÏcient
access to sequences of activations, making a row-major format (NHWC) the
preferred choice. This layout ensures that activations are accessed contiguously
in memory, reducing cache misses and improving memory coalescing for matrix
multiplications.

Kernel fusion plays a key role in optimizing Transformer execution. In self-
attention, multiple computational steps, such as query-key dot products, soft-
max normalization, and weighted summation, can be fused into a single op-
eration. Fused attention kernels eliminate intermediate memory writes by
computing attention scores and performing weighted summations within a
single execution step. This optimization significantly reduces memory trafÏc,
particularly for large batch sizes and long sequences.

Due to the nature of sequence processing, tiling must be adapted to improve
memory efÏciency. Instead of spatial tiling, which is effective for CNNs, Trans-
formers benefit from temporal tiling, where computations are structured to
process sequence blocks efÏciently. This method ensures that activations are
loaded into fast memory in manageable chunks, reducing excessive memory
transfers. Temporal tiling is particularly beneficial for long-sequence models,
where the memory footprint of key-value activations grows significantly. By
tiling sequences into smaller segments, memory locality is improved, enabling
efÏcient cache utilization and reducing bandwidth pressure.

These optimizations collectively address the primary bottlenecks in Trans-
former models by prioritizing activation reuse, structuring memory layouts for

Chapter 11. AI Acceleration 585

efÏcient batched computations, fusing attention operations to reduce intermedi-
ate memory writes, and employing tiling techniques suited to sequence-based
processing.

11.6.2.3 Multi-Layer Perceptrons

MLPs primarily consist of fully connected layers, where large matrices of
weights and activations are multiplied to produce output representations.
Given this structure, weight stationary execution is the most effective strat-
egy for MLPs. Similar to CNNs, MLPs benefit from keeping weights in local
memory while streaming activations dynamically, as this ensures that weight
matrices, which are typically reused across multiple activations in a batch, do
not need to be frequently reloaded.

The preferred memory layout for MLPs aligns with that of Transformers,
as matrix multiplications are more efÏcient when using a row-major (NHWC)
format. Since activation matrices are processed in batches, this layout ensures
that input activations are accessed efÏciently without introducing memory
fragmentation. By aligning tensor storage with compute-friendly memory
access patterns, cache utilization is improved, reducing memory stalls.

Kernel fusion in MLPs is primarily applied to General Matrix Multiplication
(GEMM) operations. Since dense layers are often followed by activation func-
tions and bias additions, fusing these operations into a single computation step
reduces memory trafÏc. GEMM fusion ensures that activations, weights, and
biases are processed within a single optimized kernel, avoiding unnecessary
memory writes and reloads.

To further improve memory efÏciency, MLPs rely on blocked tiling strategies,
where large matrix multiplications are divided into smaller sub-blocks that fit
within the accelerator’s shared memory. This method ensures that frequently
accessed portions of matrices remain in fast memory throughout computation,
reducing external memory accesses. By structuring computations in a way that
balances memory utilization with efÏcient parallel execution, blocked tiling
minimizes bandwidth limitations and maximizes throughput.

These optimizations ensure that MLPs achieve high computational efÏciency
by structuring execution around weight reuse, optimizing memory layouts for
dense matrix operations, reducing redundant memory writes through kernel
fusion, and employing blocked tiling strategies to maximize on-chip memory
utilization.

11.6.3 Hybrid Mapping Strategies
While general mapping strategies provide a structured framework for optimiz-
ing machine learning models, real-world architectures often involve diverse
computational requirements that cannot be effectively addressed with a single,
fixed approach. Hybrid mapping strategies allow AI accelerators to dynami-
cally apply different optimizations to specific layers or components within a
model, ensuring that each computation is executed with maximum efÏciency.

Machine learning models typically consist of multiple layer types, each ex-
hibiting distinct memory access patterns, data reuse characteristics, and par-
allelization opportunities. By tailoring mapping strategies to these specific

11.6. Optimization Strategies 586

properties, hybrid approaches achieve higher computational efÏciency, im-
proved memory bandwidth utilization, and reduced data movement overhead
compared to a uniform mapping approach (Sze et al. 2017b).

11.6.3.1 Layer-Specific Mapping

Hybrid mapping strategies are particularly beneficial in models that combine
spatially localized computations, such as convolutions, with fully connected
operations, such as dense layers or attention mechanisms. These operations
possess distinct characteristics that require different mapping strategies for
optimal performance.

In convolutional neural networks, hybrid strategies are frequently employed
to optimize performance. Specifically, weight stationary execution is applied
to convolutional layers, ensuring that filters remain in local memory while
activations are streamed dynamically. For fully connected layers, output sta-
tionary execution is utilized to minimize redundant memory writes during
matrix multiplications. Additionally, kernel fusion is integrated to combine
activation functions, batch normalization, and element wise operations into
a single computational step, thereby reducing intermediate memory trafÏc.
Collectively, these approaches enhance computational efÏciency and memory
utilization, contributing to the overall performance of the network.

Transformers employ several strategies to enhance performance by optimiz-
ing memory usage and computational efÏciency. Specifically, they use activation
stationary mapping in self-attention layers to maximize the reuse of stored key-
value pairs, thereby reducing memory fetches. In feedforward layers, weight
stationary mapping is applied to ensure that large weight matrices are efÏ-
ciently reused across computations. Additionally, these models incorporate
fused attention kernels that integrate softmax and weighted summation into a
single computation step, significantly enhancing execution speed (Jacobs et al.
2002).

For multilayer perceptrons, hybrid mapping strategies are employed to op-
timize performance through a combination of techniques that enhance both
memory efÏciency and computational throughput. Specifically, weight station-
ary execution is utilized to maximize the reuse of weights across activations,
ensuring that these frequently accessed parameters remain readily available
and reduce redundant memory accesses. In addition, blocked tiling strategies
are implemented for large matrix multiplications, which significantly improve
cache locality by partitioning the computation into manageable sub-blocks
that fit within fast memory. Complementing these approaches, general matrix
multiplication fusion is applied, effectively reducing memory stalls by merging
consecutive matrix multiplication operations with subsequent functional trans-
formations. Collectively, these optimizations illustrate how tailored mapping
strategies can systematically balance memory constraints with computational
demands in multilayer perceptron architectures.

Hybrid mapping strategies are widely employed in vision transformers,
which seamlessly integrate convolutional and self-attention operations. In
these models, the patch embedding layer performs a convolution-like operation
that benefits from weight stationary mapping (Dosovitskiy et al. 2020). The

Chapter 11. AI Acceleration 587

self-attention layers, on the other hand, require activation stationary execution
to efÏciently reuse the key-value cache across multiple queries. Additionally,
the MLP component leverages general matrix multiplication fusion and blocked
tiling to execute dense matrix multiplications efÏciently. This layer-specific
optimization framework effectively balances memory locality with computa-
tional efÏciency, rendering vision transformers particularly well-suited for AI
accelerators.

11.6.4 Hybrid Strategies Hardware Implementations

Several modern AI accelerators incorporate hybrid mapping strategies to op-
timize execution by tailoring layer-specific techniques to the unique compu-
tational requirements of diverse neural network architectures. For example,
Google TPUs employ weight stationary mapping for convolutional layers and
activation stationary mapping for attention layers within transformer models,
ensuring that the most critical data remains in fast memory. Likewise, NVIDIA
GPUs leverage fused kernels alongside hybrid memory layouts, which enable
the application of different mapping strategies within the same model to maxi-
mize performance. In addition, Graphcore IPUs dynamically select execution
strategies on a per-layer basis to optimize memory access, thereby enhancing
overall computational efÏciency.

These real-world implementations illustrate how hybrid mapping strategies
bridge the gap between different types of machine learning computations, en-
suring that each layer executes with maximum efÏciency. However, hardware
support is essential for these techniques to be practical. Accelerators must
provide architectural features such as programmable memory hierarchies, efÏ-
cient interconnects, and specialized execution pipelines to fully exploit hybrid
mapping.

Hybrid mapping provides a flexible and efÏcient approach to deep learn-
ing execution, enabling AI accelerators to adapt to the diverse computational
requirements of modern architectures. By selecting the optimal mapping tech-
nique for each layer, hybrid strategies help reduce memory bandwidth con-
straints, improve data locality, and maximize parallelism.

While hybrid mapping strategies offer an effective way to optimize compu-
tations at a layer-specific level, they remain static design-time optimizations.
In real-world AI workloads, execution conditions can change dynamically due
to varying input sizes, memory contention, or hardware resource availabil-
ity. Machine learning compilers and runtime systems extend these mapping
techniques by introducing dynamic scheduling, memory optimizations, and au-
tomatic tuning mechanisms. These systems ensure that hybrid strategies are not
just predefined execution choices, but rather adaptive mechanisms that allow
deep learning workloads to operate efÏciently across different accelerators and
deployment environments. In the next section, we explore how machine learn-
ing compilers and runtime stacks enable these adaptive optimizations through
just-in-time scheduling, memory-aware execution, and workload balancing
strategies.

11.7. Compiler Support 588

11.7 Compiler Support
The performance of machine learning acceleration depends not only on hard-
ware capabilities but also on how efÏciently models are translated into exe-
cutable operations. The optimizations discussed earlier in this chapter, includ-
ing kernel fusion, tiling, memory scheduling, and data movement strategies,
are essential for maximizing efÏciency. However, these optimizations must be
systematically applied before execution to ensure they align with hardware
constraints and computational requirements.

This process is handled by machine learning compilers, which form the
software stack responsible for bridging high-level model representations with
low-level hardware execution. The compiler optimizes the model by restructur-
ing computations, selecting efÏcient execution kernels, and placing operations
in a way that maximizes hardware utilization (0001 et al. 2018a).

While traditional compilers are designed for general-purpose computing, ma-
chine learning workloads require specialized approaches due to their reliance
on tensor computations, parallel execution, and memory-intensive operations.
To understand how these systems differ, we first compare machine learning
compilers to their traditional counterparts.

11.7.1 ML vs Traditional Compilers
Machine learning workloads introduce unique challenges that traditional com-
pilers were not designed to handle. Unlike conventional software execution,
which primarily involves sequential or multi-threaded program flow, machine
learning models are expressed as computation graphs that describe large-scale
tensor operations. These graphs require specialized optimizations that tradi-
tional compilers cannot efÏciently apply (Cui, Li, and Xie 2019).

Table 11.18 outlines the fundamental differences between traditional com-
pilers and those designed for machine learning workloads. While traditional
compilers optimize linear program execution through techniques like instruc-
tion scheduling and register allocation, ML compilers focus on optimizing
computation graphs for efÏcient tensor operations. This distinction is critical,
as ML compilers must incorporate domain-specific transformations such as
kernel fusion, memory-aware scheduling, and hardware-accelerated execution
plans to achieve high performance on specialized accelerators like GPUs and
TPUs.

Table 11.18: Traditional vs. machine learning compilers and their optimization
priorities.

Aspect Traditional Compiler Machine Learning Compiler

Input
Representation

Linear program code (C, Python) Computational graph (ML models)

Execution Model Sequential or multi-threaded execution Massively parallel tensor-based execution
Optimization
Priorities

Instruction scheduling, loop unrolling,
register allocation

Graph transformations, kernel fusion,
memory-aware execution

Memory
Management

Stack and heap memory allocation Tensor layout transformations, tiling,
memory-aware scheduling

Target Hardware CPUs (general-purpose execution) GPUs, TPUs, and custom accelerators
Compilation
Output

CPU-specific machine code Hardware-specific execution plan (kernels,
memory scheduling)

Chapter 11. AI Acceleration 589

This comparison highlights why machine learning models require a differ-
ent compilation approach. Instead of optimizing instruction-level execution,
machine learning compilers must transform entire computation graphs, apply
tensor-aware memory optimizations, and schedule operations across thousands
of parallel processing elements. These requirements make traditional compiler
techniques insufÏcient for modern deep learning workloads.

11.7.2 ML Compilation Pipeline
Machine learning models, as defined in frameworks such as TensorFlow and Py-
Torch, are initially represented in a high-level computation graph that describes
operations on tensors. However, these representations are not directly exe-
cutable on hardware accelerators such as GPUs, TPUs, and custom AI chips. To
achieve efÏcient execution, models must go through a compilation process that
transforms them into optimized execution plans suited for the target hardware
(Brain 2020).

The machine learning compilation workflow consists of several key stages,
each responsible for applying specific optimizations that ensure minimal mem-
ory overhead, maximum parallel execution, and optimal compute utilization.
These stages include:

1. GraphOptimization: The computation graph is restructured to eliminate
inefÏciencies.

2. Kernel Selection: Each operation is mapped to an optimized hardware-
specific implementation.

3. Memory Planning: Tensor layouts and memory access patterns are opti-
mized to reduce bandwidth consumption.

4. Computation Scheduling: Workloads are distributed across parallel
processing elements to maximize hardware utilization.

5. CodeGeneration: The optimized execution plan is translated into machine-
specific instructions for execution.

At each stage, the compiler applies theoretical optimizations discussed earlier,
including kernel fusion, tiling, data movement strategies, and computation
placement, ensuring that these optimizations are systematically incorporated
into the final execution plan.

By understanding this workflow, we can see how machine learning acceler-
ation is realized not just through hardware improvements but also through
compiler-driven software optimizations.

11.7.3 Graph Optimization
AI accelerators provide specialized hardware to speed up computation, but
raw model representations are not inherently optimized for execution on these
accelerators. Machine learning frameworks define models using high-level
computation graphs, where nodes represent operations (such as convolutions,
matrix multiplications, and activations), and edges define data dependencies.
However, if executed as defined, these graphs often contain redundant opera-
tions, inefÏcient memory access patterns, and suboptimal execution sequences
that can prevent the hardware from operating at peak efÏciency.

11.7. Compiler Support 590

For example, in a Transformer model, the self-attention mechanism involves
repeated accesses to the same key-value pairs across multiple attention heads. If
compiled naïvely, the model may reload the same data multiple times, leading
to excessive memory trafÏc (Shoeybi et al. 2019a). Similarly, in a Convolutional
Neural Network (CNN), applying batch normalization and activation functions
as separate operations after each convolution leads to unnecessary intermediate
memory writes, increasing memory bandwidth usage. These inefÏciencies
are addressed during graph optimization, where the compiler restructures the
computation graph to eliminate unnecessary operations and improve memory
locality (0001 et al. 2018a).

The graph optimization phase of compilation is responsible for transforming
this high-level computation graph into an optimized execution plan before
it is mapped to hardware. Rather than requiring manual optimization, the
compiler systematically applies transformations that improve data movement,
reduce redundant computations, and restructure operations for efÏcient parallel
execution (NVIDIA 2021).

At this stage, the compiler is still working at a hardware-agnostic level, focus-
ing on high-level restructuring that improves efÏciency before more hardware-
specific optimizations are applied later.

11.7.3.1 Computation Graph Optimization

Graph optimization transforms the computation graph through a series of
structured techniques designed to enhance execution efÏciency. One key tech-
nique, which we discussed earlier, is kernel fusion, which merges consecutive
operations to eliminate unnecessary memory writes and reduce the number of
kernel launches. This approach is particularly effective in convolutional neu-
ral networks, where fusing convolution, batch normalization, and activation
functions notably accelerates processing. Another important technique is com-
putation reordering, which adjusts the execution order of operations to improve
data locality and maximize parallel execution. For instance, in Transformer
models, such reordering enables the reuse of cached key-value pairs rather
than reloading them repeatedly from memory, thereby reducing latency.

Additionally, redundant computation elimination plays an important role. By
identifying and removing duplicate or unnecessary operations, this method is
especially beneficial in models with residual connections where common subex-
pressions might otherwise be redundantly computed. Furthermore, memory-
aware dataflow adjustments enhance overall performance by refining tensor
layouts and optimizing memory movement. For example, tiling matrix multi-
plications to meet the structural requirements of systolic arrays in TPUs ensures
that hardware resources are utilized optimally. This combined approach not
only reduces unnecessary processing but also aligns data storage and movement
with the accelerator’s strengths, leading to efÏcient execution across diverse AI
workloads. Together, these techniques prepare the model for acceleration by
minimizing overhead and ensuring an optimal balance between computational
and memory resources.

Chapter 11. AI Acceleration 591

11.7.3.2 AI Compilers Implementation
Modern AI compilers perform graph optimization through the use of automated
pattern recognition and structured rewrite rules, systematically transforming
computation graphs to maximize efÏciency without manual intervention. For
example, Google’s XLA (Accelerated Linear Algebra) in TensorFlow applies
graph-level transformations such as fusion and layout optimizations that stream-
line execution on TPUs and GPUs. Similarly, TVM (Tensor Virtual Machine)
not only refines tensor layouts and adjusts computational structures but also
tunes execution strategies across diverse hardware backends, which is particu-
larly beneficial for deploying models on embedded Tiny ML devices with strict
memory constraints.

NVIDIA’s TensorRT, another specialized deep learning compiler, focuses
on minimizing kernel launch overhead by fusing operations and optimizing
execution scheduling on GPUs, thereby improving utilization and reducing
inference latency in large-scale convolutional neural network applications. Ad-
ditionally, MLIR (Multi-Level Intermediate Representation) facilitates flexible
graph optimization across various AI accelerators by enabling multi-stage trans-
formations that improve execution order and memory access patterns, thus
easing the transition of models from CPU-based implementations to accelerator-
optimized versions. These compilers preserve the mathematical integrity of the
models while rewriting the computation graph to ensure that the subsequent
hardware-specific optimizations can be effectively applied.

11.7.3.3 Graph Optimization Importance
Graph optimization enables AI accelerators to operate at peak efÏciency. With-
out this phase, even the most optimized hardware would be underutilized, as
models would be executed in a way that introduces unnecessary memory stalls,
redundant computations, and inefÏcient data movement. By systematically re-
structuring computation graphs, the compiler arranges operations for efÏcient
execution that mitigates bottlenecks before mapping to hardware, minimizes
memory movement to keep tensors in high-speed memory, and optimizes par-
allel execution to reduce unnecessary serialization while enhancing hardware
utilization. For instance, without proper graph optimization, a large Trans-
former model running on an edge device may experience excessive memory
stalls due to suboptimal data access patterns; however, through effective graph
restructuring, the model can operate with significantly reduced memory band-
width consumption and latency, thus enabling real-time inference on devices
with constrained resources.

With the computation graph now fully optimized, the next step in compilation
is kernel selection, where the compiler determines which hardware-specific
implementation should be used for each operation. This ensures that the
structured execution plan is translated into optimized low-level instructions
for the target accelerator.

11.7.4 Kernel Selection
At this stage, the compiler translates the abstract operations in the computation
graph into optimized low-level functions, ensuring that execution is performed

11.7. Compiler Support 592

as efÏciently as possible given the constraints of the target accelerator. A kernel
is a specialized implementation of a computational operation designed to run
efÏciently on a particular hardware architecture. Most accelerators, including
GPUs, TPUs, and custom AI chips, provide multiple kernel implementations for
the same operation, each optimized for different execution scenarios. Choosing
the right kernel for each operation is essential for maximizing computational
throughput, minimizing memory stalls, and ensuring that the accelerator’s
specialized processing elements are fully utilized (NVIDIA 2021).

Kernel selection builds upon the graph optimization phase, ensuring that
the structured execution plan is mapped to the most efÏcient implementation
available. While graph optimization eliminates inefÏciencies at the model level,
kernel selection ensures that each individual operation is executed using the
most efÏcient hardware-specific routine. The effectiveness of this process di-
rectly impacts the model’s overall performance, as poor kernel choices can
nullify the benefits of prior optimizations by introducing unnecessary compu-
tation overhead or memory bottlenecks (0001 et al. 2018a).

In a Transformer model, the matrix multiplications that dominate self-attention
computations can be executed using different strategies depending on the avail-
able hardware. On a CPU, a general-purpose matrix multiplication routine is
typically employed, exploiting vectorized execution to improve efÏciency. In
contrast, on a GPU, the compiler may select an implementation that leverages
tensor cores to accelerate matrix multiplications using mixed-precision arith-
metic. When the model is deployed on a TPU, the operation can be mapped onto
a systolic array, ensuring that data flows through the accelerator in a manner
that maximizes reuse and minimizes off-chip memory accesses. Additionally,
for inference workloads, an integer arithmetic kernel may be preferable, as it
facilitates computations in INT8 instead of floating-point precision, thereby
reducing power consumption without significantly compromising accuracy.

In many cases, compilers do not generate custom kernels from scratch but
instead select from vendor-optimized kernel libraries that provide highly tuned
implementations for different architectures. For instance, cuDNN and cuBLAS
offer optimized kernels for deep learning on NVIDIA GPUs, while oneDNN
provides optimized execution for Intel architectures. Similarly, ACL (Arm
Compute Library) is optimized for Arm-based devices, and Eigen and BLIS
provide efÏcient CPU-based implementations of deep learning operations.
These libraries allow the compiler to choose pre-optimized, high-performance
kernels rather than having to reinvent execution strategies for each hardware
platform.

11.7.4.1 Kernel Selection in AI Compilers

AI compilers use heuristics, profiling, and cost models to determine the best
kernel for each operation. These strategies ensure that each computation is exe-
cuted in a way that maximizes throughput and minimizes memory bottlenecks.

In rule-based selection, the compiler applies predefined heuristics based on
the known capabilities of the hardware. For instance, XLA, the compiler used
in TensorFlow, automatically selects tensor core-optimized kernels for NVIDIA
GPUs when mixed-precision execution is enabled. These predefined rules allow

Chapter 11. AI Acceleration 593

the compiler to make fast, reliable decisions about which kernel to use without
requiring extensive analysis.

Profile-guided selection takes a more dynamic approach, benchmarking
different kernel options and choosing the one that performs best for a given
workload. TVM, an open-source AI compiler, uses AutoTVM to empirically
evaluate kernel performance, tuning execution strategies based on real-world
execution times. By testing different kernels before deployment, profile-guided
selection helps ensure that operations are assigned to the most efÏcient imple-
mentation under actual execution conditions.

Another approach, cost model-based selection, relies on performance predic-
tions to estimate execution time and memory consumption for various kernels
before choosing the most efÏcient one. MLIR, a compiler infrastructure de-
signed for machine learning workloads, applies this technique to determine the
most effective tiling and memory access strategies (Lattner et al. 2020). By mod-
eling how different kernels interact with the accelerator’s compute units and
memory hierarchy, the compiler can select the kernel that minimizes execution
cost while maximizing performance.

Many AI compilers also incorporate precision-aware kernel selection, where
the selected kernel is optimized for specific numerical formats such as FP32,
FP16, BF16, or INT8. Training workloads often prioritize higher precision (FP32,
BF16) to maintain model accuracy, whereas inference workloads favor lower
precision (FP16, INT8) to increase speed and reduce power consumption. For
example, an NVIDIA GPU running inference with TensorRT can dynamically
select FP16 or INT8 kernels based on a model’s accuracy constraints. This
trade-off between precision and performance is a key aspect of kernel selection,
especially when deploying models in resource-constrained environments.

Some compilers go beyond static kernel selection and implement adaptive
kernel tuning, where execution strategies are adjusted at runtime based on
the system’s workload and available resources. AutoTVM in TVM measures
kernel performance across different workloads and dynamically refines execu-
tion strategies. TensorRT applies real-time optimizations based on batch size,
memory constraints, and GPU load, adjusting kernel selection dynamically.
Google’s TPU compiler takes a similar approach, optimizing kernel selection
based on cloud resource availability and execution environment constraints.

11.7.4.2 Kernel Selection Importance

The efÏciency of AI acceleration depends not only on how computations are
structured but also on how they are executed. Even the best-designed compu-
tation graph will fail to achieve peak performance if the selected kernels do not
fully utilize the hardware’s capabilities.

Proper kernel selection allows models to execute using the most efÏcient
algorithms available for the given hardware, ensuring that memory is accessed
in a way that avoids unnecessary stalls and that specialized acceleration fea-
tures, such as tensor cores or systolic arrays, are leveraged wherever possible.
Selecting an inappropriate kernel can lead to underutilized compute resources,
excessive memory transfers, and increased power consumption, all of which
limit the performance of AI accelerators.

11.7. Compiler Support 594

For instance, if a Transformer model running on a GPU is assigned a non-
tensor-core kernel for its matrix multiplications, it may execute at only a fraction
of the possible performance. Conversely, if a model designed for FP32 execution
is forced to run on an INT8-optimized kernel, it may experience significant
numerical instability, degrading accuracy. These choices illustrate why kernel
selection is as much about maintaining numerical correctness as it is about
optimizing performance.

With kernel selection complete, the next stage in compilation involves execu-
tion scheduling and memory management, where the compiler determines how
kernels are launched and how data is transferred between different levels of
the memory hierarchy. These final steps in the compilation pipeline ensure that
computations run with maximum parallelism while minimizing the overhead
of data movement. As kernel selection determines what to execute, execution
scheduling and memory management dictate when and how those kernels are
executed, ensuring that AI accelerators operate at peak efÏciency.

11.7.5 Memory Planning
The memory planning phase ensures that data is allocated and accessed in a
way that minimizes memory bandwidth consumption, reduces latency, and
maximizes cache efÏciency (Y. Zhang, Li, and Ouyang 2020). Even with the
most optimized execution plan, a model can still suffer from severe performance
degradation if memory is not managed efÏciently.

Machine learning workloads are often memory-intensive. They require fre-
quent movement of large tensors between different levels of the memory hi-
erarchy. The compiler must determine how tensors are stored, how they are
accessed, and how intermediate results are handled to ensure that memory
does not become a bottleneck.

The memory planning phase focuses on optimizing tensor layouts, memory
access patterns, and buffer reuse to prevent unnecessary stalls and memory
contention during execution. In this phase, tensors are arranged in a memory-
efÏcient format that aligns with hardware access patterns, thereby minimizing
the need for format conversions. Additionally, memory accesses are structured
to reduce cache misses and stalls, which in turn lowers overall bandwidth con-
sumption. Buffer reuse is also a critical aspect, as it reduces redundant memory
allocations by intelligently managing intermediate results. Together, these
strategies ensure that data is efÏciently placed and accessed, thereby enhancing
both computational performance and energy efÏciency in AI workloads.

11.7.5.1 Memory Planning in AI Compilers

Memory planning is a complex problem because AI models must balance
memory availability, reuse, and access efÏciency while operating across multiple
levels of the memory hierarchy. AI compilers use several key strategies to
manage memory effectively and prevent unnecessary data movement.

The first step in memory planning is tensor layout optimization, where the
compiler determines how tensors should be arranged in memory to maximize
locality and prevent unnecessary data format conversions. Different hardware
accelerators have different preferred storage layouts—for instance, NVIDIA

Chapter 11. AI Acceleration 595

GPUs often use row-major storage (NHWC format), while TPUs favor channel-
major layouts (NCHW format) to optimize memory coalescing (Martı́n Abadi,
Agarwal, et al. 2016). The compiler automatically transforms tensor layouts
based on the expected access patterns of the target hardware, ensuring that
memory accesses are aligned for maximum efÏciency.

Beyond layout optimization, memory planning also includes buffer alloca-
tion and reuse, where the compiler minimizes memory footprint by reusing
intermediate storage whenever possible. Deep learning workloads generate
many temporary tensors, such as activations and gradients, which can quickly
overwhelm on-chip memory if not carefully managed. Instead of allocating
new memory for each tensor, the compiler analyzes the computation graph to
identify opportunities for buffer reuse, ensuring that intermediate values are
stored and overwritten efÏciently (G. A. Jones 2018).

Another critical aspect of memory planning is minimizing data movement
between different levels of the memory hierarchy. AI accelerators typically
have a mix of high-speed on-chip memory (such as caches or shared SRAM)
and larger, but slower, external DRAM. If tensor data is repeatedly moved be-
tween these memory levels, the model may become memory-bound, reducing
computational efÏciency. To prevent this, compilers use tiling strategies that
break large computations into smaller, memory-friendly chunks, allowing exe-
cution to fit within fast, local memory and reducing the need for costly off-chip
memory accesses.

11.7.5.2 Memory Planning Importance

Without proper memory planning, even the most optimized computation graph
and kernel selection will fail to deliver high performance. Excessive memory
transfers, inefÏcient memory layouts, and redundant memory allocations can
all lead to bottlenecks that prevent AI accelerators from reaching their peak
throughput.

For instance, a CNN running on a GPU may achieve high computational
efÏciency in theory, but if its convolutional feature maps are stored in an in-
compatible format, for example, if it uses a row-major layout that necessitates
conversion to a channel-friendly format such as NCHW or a variant like NHCW,
constant tensor format conversions can introduce significant overhead. Simi-
larly, a Transformer model deployed on an edge device may struggle to meet
real-time inference requirements if memory is not carefully planned, leading to
frequent off-chip memory accesses that increase latency and power consump-
tion.

Through careful management of tensor placement, optimizing memory ac-
cess patterns, and reducing unnecessary data movement, memory planning
guarantees efÏcient operation of AI accelerators, leading to tangible perfor-
mance improvements in real-world applications.

11.7.6 Computation Scheduling
With graph optimization completed, kernels selected, and memory planning
finalized, the next step in the compilation pipeline is computation schedul-
ing. This phase determines when and where each computation should be

11.7. Compiler Support 596

executed, ensuring that workloads are efÏciently distributed across available
processing elements while avoiding unnecessary stalls and resource contention
(Rajbhandari et al. 2020; Zheng et al. 2020).

AI accelerators achieve high performance through massive parallelism, but
without an effective scheduling strategy, computational units may sit idle, mem-
ory bandwidth may be underutilized, and execution efÏciency may degrade.
Computation scheduling is responsible for ensuring that all processing elements
remain active, execution dependencies are managed correctly, and workloads
are distributed optimally (Ziheng Jia et al. 2019).

In the scheduling phase, parallel execution, synchronization, and resource
allocation are managed systematically. Task partitioning decomposes exten-
sive computations into smaller, manageable tasks that can be distributed ef-
ficiently among multiple compute cores. Execution order optimization then
determines the most effective sequence for launching these operations, maxi-
mizing hardware performance while reducing execution stalls. Additionally,
resource allocation and synchronization are orchestrated to ensure that compute
cores, memory bandwidth, and shared caches are utilized effectively, avoiding
contention. Through these coordinated strategies, computation scheduling
achieves optimal hardware utilization, minimizes memory access delays, and
supports a streamlined and efÏcient execution process.

11.7.6.1 Computation Scheduling in AI Compilers
Computation scheduling is highly dependent on the underlying hardware
architecture, as different AI accelerators have unique execution models that
must be considered when determining how workloads are scheduled. AI
compilers implement several key strategies to optimize scheduling for efÏcient
execution.

One of the most fundamental aspects of scheduling is task partitioning, where
the compiler divides large computational graphs into smaller, manageable units
that can be executed in parallel. On GPUs, this typically means mapping matrix
multiplications and convolutions to thousands of CUDA cores, while on TPUs,
tasks are partitioned to fit within systolic arrays that operate on structured data
flows (Norrie et al. 2021). In CPUs, partitioning is often focused on breaking
computations into vectorized chunks that align with SIMD execution. The goal
is to map workloads to available processing units efÏciently, ensuring that each
core remains active throughout execution.

In addition to task partitioning, scheduling also involves optimizing execu-
tion order to minimize dependencies and maximize throughput. Many AI
models include operations that can be computed independently (e.g., different
batches in a batch processing pipeline) alongside operations that have strict
dependencies (e.g., recurrent layers in an RNN). AI compilers analyze these
dependencies and attempt to rearrange execution where possible, reducing idle
time and improving parallel efÏciency. For example, in Transformer models,
scheduling may prioritize preloading attention matrices into memory while ear-
lier layers are still executing, ensuring that data is ready when needed (Shoeybi
et al. 2019b).

Another crucial aspect of computation scheduling is resource allocation and
synchronization, where the compiler determines how compute cores share

Chapter 11. AI Acceleration 597

memory and coordinate execution. Modern AI accelerators often support
overlapping computation and data transfers, meaning that while one task
executes, the next task can begin fetching its required data. Compilers take
advantage of this by scheduling tasks in a way that hides memory latency,
ensuring that execution remains compute-bound rather than memory-bound
(0001 et al. 2018b). TensorRT and XLA, for example, employ streaming execution
strategies where multiple kernels are launched in parallel, and synchronization
is carefully managed to prevent execution stalls (Google, n.d.).

11.7.6.2 Computation Scheduling Importance

Without effective scheduling, even the most optimized model can suffer from
underutilized compute resources, memory bottlenecks, and execution inef-
ficiencies. Poor scheduling decisions can lead to idle processing elements,
forcing expensive compute cores to wait for data or synchronization events
before continuing execution.

For instance, a CNN running on a GPU may have highly optimized kernels
and efÏcient memory layouts, but if its execution is not scheduled correctly,
compute units may remain idle between kernel launches, reducing throughput.
Similarly, a Transformer model deployed on a TPU may perform matrix multi-
plications efÏciently but could experience performance degradation if attention
layers are not scheduled to overlap efÏciently with memory transfers.

Effective computation scheduling occupies a central role in the orchestration
of parallel workloads, ensuring that processing elements are utilized to their
fullest capacity while preventing idle cores—a critical aspect for maximizing
overall throughput. By strategically overlapping computation with data move-
ment, the scheduling mechanism effectively conceals memory latency, thereby
preventing operational stalls during data retrieval. Moreover, by resolving exe-
cution dependencies with precision, it minimizes waiting periods and enhances
the concurrent progression of computation and data transfer. This systematic
integration of scheduling and data handling serves to not only elevate perfor-
mance but also exemplify the rigorous engineering principles that underpin
modern accelerator design.

11.7.6.3 Code Generation

Unlike the previous phases, which required AI-specific optimizations, code
generation follows many of the same principles as traditional compilers. This
process includes instruction selection, register allocation, and final optimization
passes, ensuring that execution makes full use of hardware-specific features
such as vectorized execution, memory prefetching, and instruction reordering.

For CPUs and GPUs, AI compilers typically generate machine code or opti-
mized assembly instructions, while for TPUs, FPGAs, and other accelerators,
the output may be optimized bytecode or execution graphs that are interpreted
by the hardware’s runtime system.

At this point, the compilation pipeline is complete: the original high-level
model representation has been transformed into an optimized, executable for-
mat tailored for efÏcient execution on the target hardware. The combination

11.8. Runtime Support 598

of graph transformations, kernel selection, memory-aware execution, and par-
allel scheduling ensures that AI accelerators run workloads with maximum
efÏciency, minimal memory overhead, and optimal computational throughput.

11.7.7 Compilation-Runtime Support
The compiler plays a fundamental role in AI acceleration, transforming high-
level machine learning models into optimized execution plans tailored to the
constraints of specialized hardware. Throughout this section, we have seen
how graph optimization restructures computation, kernel selection maps op-
erations to hardware-efÏcient implementations, memory planning optimizes
data placement, and computation scheduling ensures efÏcient parallel execu-
tion. Each of these phases is crucial in enabling AI models to fully leverage
modern accelerators, ensuring high throughput, minimal memory overhead,
and efÏcient execution pipelines.

However, compilation alone is not enough to guarantee efÏcient execution
in real-world AI workloads. While compilers statically optimize computation
based on known model structures and hardware capabilities, AI execution envi-
ronments are often dynamic and unpredictable. Batch sizes fluctuate, hardware
resources may be shared across multiple workloads, and accelerators must
adapt to real-time performance constraints. In these cases, a static execution
plan is insufÏcient, and runtime management becomes critical in ensuring that
models execute optimally under real-world conditions.

This transition from static compilation to adaptive execution is where AI run-
times come into play. Runtimes provide dynamic memory allocation, real-time
kernel selection, workload scheduling, and multi-chip coordination, allowing
AI models to adapt to varying execution conditions while maintaining efÏciency.
In the next section, we explore how AI runtimes extend the capabilities of com-
pilers, enabling models to run effectively in diverse and scalable deployment
scenarios.

11.8 Runtime Support
While compilers optimize AI models before execution, real-world deployment
introduces dynamic and unpredictable conditions that static compilation alone
cannot fully address (NVIDIA 2021). AI workloads operate in varied execution
environments, where factors such as fluctuating batch sizes, shared hardware
resources, memory contention, and latency constraints necessitate real-time
adaptation. Precompiled execution plans, optimized for a fixed set of assump-
tions, may become suboptimal when actual runtime conditions change.

To bridge this gap, AI runtimes provide a dynamic layer of execution manage-
ment, extending the optimizations performed at compile time with real-time
decision-making. Unlike traditional compiled programs that execute a fixed
sequence of instructions, AI workloads require adaptive control over memory al-
location, kernel execution, and resource scheduling. AI runtimes continuously
monitor execution conditions and make on-the-fly adjustments to ensure that
machine learning models fully utilize available hardware while maintaining
efÏciency and performance guarantees.

At a high level, AI runtimes manage three critical aspects of execution:

Chapter 11. AI Acceleration 599

1. Kernel Execution Management: AI runtimes dynamically select and
dispatch computation kernels based on the current system state, ensuring
that workloads are executed with minimal latency.

2. Memory Adaptation and Allocation: Since AI workloads frequently
process large tensors with varying memory footprints, runtimes adjust
memory allocation dynamically to prevent bottlenecks and excessive data
movement (Y. Huang et al. 2019).

3. Execution Scaling: AI runtimes handle workload distribution across mul-
tiple accelerators, supporting large-scale execution in multi-chip, multi-
node, or cloud environments (Mirhoseini et al. 2017).

By dynamically handling these execution aspects, AI runtimes complement
compiler-based optimizations, ensuring that models continue to perform ef-
ficiently under varying runtime conditions. The next section explores how
AI runtimes differ from traditional software runtimes, highlighting why ma-
chine learning workloads require fundamentally different execution strategies
compared to conventional CPU-based programs.

11.8.1 ML vs Traditional Runtimes
Traditional software runtimes are designed for managing general-purpose pro-
gram execution, primarily handling sequential and multi-threaded workloads
on CPUs. These runtimes allocate memory, schedule tasks, and optimize ex-
ecution at the level of individual function calls and instructions. In contrast,
AI runtimes are specialized for machine learning workloads, which require
massively parallel computation, large-scale tensor operations, and dynamic
memory management.

Table 11.19 highlights the fundamental differences between traditional and AI
runtimes. One of the key distinctions lies in execution flow. Traditional software
runtimes operate on a predictable, structured execution model where function
calls and CPU threads follow a predefined control path. AI runtimes, however,
execute computational graphs, requiring complex scheduling decisions that
account for dependencies between tensor operations, parallel kernel execution,
and efÏcient memory access.

Table 11.19: Key differences between traditional and AI runtimes.

Aspect Traditional Runtime AI Runtime

Execution Model Sequential or multi-threaded
execution

Massively parallel tensor execution

Task Scheduling CPU thread management Kernel dispatch across accelerators
Memory Management Static allocation (stack/heap) Dynamic tensor allocation, buffer reuse
Optimization
Priorities

Low-latency instruction execution Minimizing memory stalls, maximizing parallel
execution

Adaptability Mostly static execution plan Adapts to batch size and hardware availability
Target Hardware CPUs (general-purpose execution) GPUs, TPUs, and custom accelerators

Memory management is another major differentiator. Traditional software
runtimes handle small, frequent memory allocations, optimizing for cache
efÏciency and low-latency access. AI runtimes, in contrast, must dynamically

11.8. Runtime Support 600

allocate, reuse, and optimize large tensors, ensuring that memory access pat-
terns align with accelerator-friendly execution. Poor memory management in
AI workloads can lead to performance bottlenecks, particularly due to excessive
off-chip memory transfers and inefÏcient cache usage.

Moreover, AI runtimes are inherently designed for adaptability. While tra-
ditional runtimes often follow a mostly static execution plan, AI workloads
typically operate in highly variable execution environments, such as cloud-
based accelerators or multi-tenant hardware. As a result, AI runtimes must
continuously adjust batch sizes, reallocate compute resources, and manage
real-time scheduling decisions to maintain high throughput and minimize
execution delays.

These distinctions demonstrate why AI runtimes require fundamentally
different execution strategies compared to traditional software runtimes. Rather
than simply managing CPU processes, AI runtimes must oversee large-scale
tensor execution, multi-device coordination, and real-time workload adaptation
to ensure that machine learning models can run efÏciently under diverse and
ever-changing deployment conditions.

11.8.2 Dynamic Kernel Execution
Dynamic kernel execution is the process of mapping machine learning models to
hardware and optimizing runtime execution. While static compilation provides
a solid foundation, efÏcient execution of machine learning workloads requires
real-time adaptation to fluctuating conditions such as available memory, data
sizes, and computational loads. The runtime functions as an intermediary that
continuously adjusts execution strategies to match both the constraints of the
underlying hardware and the characteristics of the workload.

When mapping a machine learning model to hardware, individual computa-
tional operations, including matrix multiplications, convolutions, and activation
functions, must be assigned to the most appropriate processing units. This
mapping is not fixed; it must be modified during runtime in response to changes
in input data, memory availability, and overall system load. Dynamic kernel
execution allows the runtime to make real-time decisions regarding kernel
selection, execution order, and memory management, ensuring that workloads
remain efÏcient despite these changing conditions.

For example, consider an AI accelerator executing a deep neural network
(DNN) for image classification. If an incoming batch of high-resolution images
requires significantly more memory than expected, a statically planned execu-
tion may cause cache thrashing or excessive off-chip memory accesses. Instead,
a dynamic runtime can adjust tiling strategies on the fly, breaking down tensor
operations into smaller tiles that fit within the high-speed on-chip memory.
This prevents memory stalls and ensures optimal utilization of caches.

Similarly, when running a transformer-based natural language processing
(NLP) model, the sequence length of input text may vary between inference
requests. A static execution plan optimized for a fixed sequence length may lead
to underutilization of compute resources when processing shorter sequences or
excessive memory pressure with longer sequences. Dynamic kernel execution
can mitigate this by selecting different kernel implementations based on the ac-

Chapter 11. AI Acceleration 601

tual sequence length, dynamically adjusting memory allocations and execution
strategies to maintain efÏciency.

Moreover, overlapping computation with memory movement is a vital strat-
egy to mitigate performance bottlenecks. AI workloads often encounter delays
due to memory-bound issues, where data movement between memory hier-
archies limits computation speed. To combat this, AI runtimes implement
techniques like asynchronous execution and double buffering, ensuring that
computations proceed without waiting for memory transfers to complete. In a
large-scale model, for instance, image data can be prefetched while computa-
tions are performed on the previous batch, thus maintaining a steady flow of
data and avoiding pipeline stalls.

Another practical example is the execution of convolutional layers in a CNN
on a GPU. If multiple convolution kernels need to be scheduled, a static schedul-
ing approach may lead to inefÏcient resource utilization due to variation in layer
sizes and compute requirements. By dynamically scheduling kernel execution,
AI runtimes can prioritize smaller kernels when compute units are partially
occupied, improving hardware utilization. For instance, in NVIDIA’s TensorRT
runtime, fusion of small kernels into larger execution units is done dynamically
to avoid launch overhead, optimizing latency-sensitive inference tasks.

Dynamic kernel execution plays an essential role in ensuring that machine
learning models are executed efÏciently. By dynamically adjusting execution
strategies in response to real-time system conditions, AI runtimes optimize
both training and inference performance across various hardware platforms.

11.8.3 Runtime Kernel Selection
While compilers may perform an initial selection of kernels based on static
analysis of the machine learning model and hardware target, AI runtimes often
need to override these decisions during execution. Real-time factors, such as
available memory, hardware utilization, and workload priorities, may differ
significantly from the assumptions made during compilation. By dynamically
selecting and switching kernels at runtime, AI runtimes can adapt to these
changing conditions, ensuring that models continue to perform efÏciently.

For instance, consider transformer-based language models, where a signif-
icant portion of execution time is spent on matrix multiplications. The AI
runtime must determine the most efÏcient way to execute these operations
based on the current system state. If the model is running on a GPU with
specialized Tensor Cores, the runtime may switch from a standard FP32 kernel
to an FP16 kernel to take advantage of hardware acceleration (Shoeybi et al.
2019a). Conversely, if the lower precision of FP16 causes unacceptable numeri-
cal instability, the runtime can opt for mixed-precision execution, selectively
using FP32 where higher precision is necessary.

Memory constraints also influence kernel selection. When memory band-
width is limited, the runtime may adjust its execution strategy, reordering
operations or changing the tiling strategy to fit computations into the avail-
able cache rather than relying on slower main memory. For example, a large
matrix multiplication may be broken into smaller chunks, ensuring that the
computation fits into the on-chip memory of the GPU, reducing overall latency.

11.9. Multi-Chip AI Acceleration 602

Additionally, batch size can influence kernel selection. For workloads that
handle a mix of small and large batches, the AI runtime may choose a latency-
optimized kernel for small batches and a throughput-optimized kernel for
large-scale batch processing. This adjustment ensures that the model continues
to operate efÏciently across different execution scenarios, without the need for
manual tuning.

11.8.4 Kernel Scheduling and Utilization
Once the AI runtime selects an appropriate kernel, the next step is scheduling it
in a way that maximizes parallelism and resource utilization. Unlike traditional
task schedulers, which are designed to manage CPU threads, AI runtimes must
coordinate a much larger number of tasks across parallel execution units such
as GPU cores, tensor processing units, or custom AI accelerators (Jouppi et al.
2017). Effective scheduling ensures that these computational resources are kept
fully engaged, preventing bottlenecks and maximizing throughput.

For example, in image recognition models that use convolutional layers, op-
erations can be distributed across multiple processing units, enabling different
filters to run concurrently. This parallelization ensures that the available hard-
ware is fully utilized, speeding up execution. Similarly, batch normalization
and activation functions must be scheduled efÏciently to avoid unnecessary
delays. If these operations are not interleaved with other computations, they
may block the pipeline and reduce overall throughput.

EfÏcient kernel scheduling can also be influenced by real-time memory man-
agement . AI runtimes ensure that intermediate data, such as feature maps in
deep neural networks, are preloaded into cache before they are needed. This
proactive management helps prevent delays caused by waiting for data to be
loaded from slower memory tiers, ensuring continuous execution.

These techniques enable AI runtimes to ensure optimal resource utilization
and efÏcient parallel computation, which are essential for the high-performance
execution of machine learning models, particularly in environments that require
scaling across multiple hardware accelerators.

11.9 Multi-Chip AI Acceleration
Modern AI workloads increasingly demand computational resources that ex-
ceed the capabilities of single-chip accelerators. This section examines how AI
systems scale from individual processors to multi-chip architectures, analyzing
the motivation behind different scaling approaches and their impact on system
design. By understanding this progression, we can better appreciate how each
component of the AI hardware stack, ranging from compute units to memory
systems, must adapt to support large-scale machine learning workloads.

The scaling of AI systems follows a natural progression, starting with in-
tegration within a single package through chiplet architectures, extending to
multi-GPU configurations within a server, expanding to distributed accelera-
tor pods, and culminating in wafer-scale integration. Each approach presents
unique trade-offs between computational density, communication overhead,
and system complexity. For instance, chiplet architectures maintain high-speed

Chapter 11. AI Acceleration 603

interconnects within a package, while distributed systems sacrifice communi-
cation latency for massive parallelism.

Understanding these scaling strategies is essential for several reasons. First, it
provides insight into how different hardware architectures address the growing
computational demands of AI workloads. Second, it reveals the fundamental
challenges that arise when extending beyond single-chip execution, such as
managing inter-chip communication and coordinating distributed computa-
tion. Finally, it establishes the foundation for subsequent discussions on how
mapping strategies, compilation techniques, and runtime systems evolve to
support efÏcient execution at scale.

11.9.0.1 Chiplet-Based Architectures
The first step in scaling AI accelerators is to move beyond a single monolithic
chip while still maintaining a compact, tightly integrated design. Chiplet archi-
tectures achieve this by partitioning large designs into smaller, modular dies
that are interconnected within a single package, as illustrated in Figure 11.9.

Figure 11.9: AMD’s chiplet-based
architecture.

Modern AI accelerators, such as AMD’s Instinct MI300, take this approach
by integrating multiple compute chiplets alongside memory chiplets, linked by
high-speed die-to-die interconnects (Kannan, Dubey, and Horowitz 2023). This
modular design allows manufacturers to bypass the manufacturing limits of
monolithic chips while still achieving high-density compute.

However, even within a single package, scaling is not without challenges.
Inter-chiplet communication latency, memory coherence, and thermal man-
agement become critical factors as more chiplets are integrated. Unlike tradi-
tional multi-chip systems, chiplet-based designs must carefully balance latency-
sensitive workloads across multiple dies without introducing excessive bottle-
necks.

11.9.0.2 Multi-GPU Systems
Beyond chiplet-based designs, AI workloads often require multiple discrete
GPUs working together. In multi-GPU systems, each accelerator has its own

11.9. Multi-Chip AI Acceleration 604

8 NVLink: A high-speed in-
terconnect that enables faster data
transfers between GPUs, reducing
communication bottlenecks.

9 PCIe (Peripheral Component
Interconnect Express): A common
interface for connecting high-speed
components; however, it typically
offers lower bandwidth compared
to NVLink for GPU-to-GPU commu-
nication.

dedicated memory and compute resources, but they must efÏciently share data
and synchronize execution.

A common example is NVIDIA DGX systems, which integrate multiple GPUs
connected via NVLink8 or PCIe9. This architecture enables workloads to be
split across GPUs, typically using data parallelism (where each GPU processes
a different batch of data) or model parallelism (where different GPUs handle
different parts of a neural network) (Ben-Nun and Hoefler 2019).

As illustrated in Figure 11.10, NVSwitch interconnects enable high-speed
communication between GPUs, reducing bottlenecks in distributed training.
However, scaling up the number of GPUs introduces new challenges. Cross-
GPU communication bandwidth, memory consistency, and workload schedul-
ing become critical constraints, particularly for large-scale models requiring
frequent data exchanges. Unlike chiplets, which leverage high-speed die-to-die
interconnects, discrete GPUs rely on external links, incurring higher latency
and synchronization overhead.

Figure 11.10: Multi-GPU architec-
ture with NVSwitch interconnects.

CPU
System

RAM

CPU

Interconnect

P
C

Ie

In
te

rc
o

n
n

e
c
t

GPU

GPU

GPU

GPU

NVSwitch

NVSwitch

NVSwitch

NVSwitch

NVSwitch

NVSwitch

GPU

GPU

GPU

GPU

CPU

P
C

Ie

In
te

rc
o

n
n

e
c
t

CPU

Interconnect

System

RAM

CPU Interconnect

Host to Device Copy & Retrieving Results Host to Device Copy & Retrieving Results

Distributed Training Communication

11.9.0.3 TPU Pods

As models and datasets continue to expand, training and inference workloads
must extend beyond single-server configurations. This scaling requirement has
led to the development of sophisticated distributed systems where multiple
accelerators communicate across networks. Google’s TPU Pods represent a
pioneering approach to this challenge, interconnecting hundreds of TPUs to
function as a unified system (Jouppi et al. 2020).

The architectural design of TPU Pods differs fundamentally from traditional
multi-GPU systems. While multi-GPU configurations typically rely on NVLink
or PCIe connections within a single machine, TPU Pods employ high-bandwidth
optical links to interconnect accelerators at data center scale. This design im-
plements a 2D torus interconnect topology, enabling efÏcient data exchange
between accelerators while minimizing communication bottlenecks as work-
loads scale across nodes.

Chapter 11. AI Acceleration 605

The effectiveness of this architecture is demonstrated in its performance scal-
ing capabilities. As illustrated in Figure 11.11, TPU Pod performance exhibits
near-linear scaling when running ResNet-50, from quarter-pod to full-pod con-
figurations. The system achieves a remarkable 33.0x speedup when scaled to
1024 chips compared to a 16-TPU baseline. This scaling efÏciency is particularly
noteworthy in larger configurations, where performance continues to scale
strongly even as the system expands from 128 to 1024 chips.

Figure 11.11: Cloud TPU v3 pods
and their performance on ResNet-50
across a range of slice sizes relative
to a 16-TPU-chip baseline.

However, distributing AI workloads across an entire data center introduces
unique challenges. Systems must contend with interconnect congestion, syn-
chronization delays, and the complexities of efÏcient workload partitioning.
Unlike multi-GPU setups where accelerators share memory hierarchies, TPU
Pods operate in a fully distributed memory system. This architecture necessi-
tates explicit communication strategies to manage data movement effectively,
requiring careful consideration of data placement and transfer patterns to main-
tain scaling efÏciency.

11.9.0.4 Wafer-Scale AI

At the frontier of AI scaling, wafer-scale integration represents a paradigm
shift—abandoning traditional multi-chip architectures in favor of a single, mas-
sive AI processor. Rather than partitioning computation across discrete chips,
this approach treats an entire silicon wafer as a unified compute fabric, elimi-
nating the inefÏciencies of inter-chip communication.

As shown in Figure 11.12, Cerebras’ Wafer-Scale Engine (WSE) processors
break away from the historical transistor scaling trends of CPUs, GPUs, and
TPUs. While these architectures have steadily increased transistor counts along
an exponential trajectory, WSE introduces an entirely new scaling paradigm,
integrating trillions of transistors onto a single wafer—far surpassing even the
most advanced GPUs and TPUs. With WSE-3, this trajectory continues, pushing
wafer-scale AI to unprecedented levels (Systems 2021a).

The fundamental advantage of wafer-scale AI is its ultra-fast, on-die com-
munication. Unlike chiplets, GPUs, or TPU Pods, where data must traverse
physical boundaries between separate devices, wafer-scale AI enables near-
instantaneous data transfer across its vast compute array. This architecture
drastically reduces communication latency, unlocking performance levels that
are unachievable with conventional multi-chip systems.

11.9. Multi-Chip AI Acceleration 606

However, achieving this level of integration introduces formidable engineer-
ing challenges. Thermal dissipation, fault tolerance, and manufacturing yield
become major constraints when fabricating a processor of this scale. Unlike
distributed TPU systems, which mitigate failures by dynamically re-routing
workloads, wafer-scale AI must incorporate built-in redundancy mechanisms
to tolerate localized defects in the silicon. Successfully addressing these chal-
lenges is essential to realizing the full potential of wafer-scale computing as the
next frontier in AI acceleration.

Figure 11.12: Processor transistor
count over time.

Intel 4004

Intel Pentium

Intel Core i7

Google TPU v2

NVIDIA Tesla V100

Cerebras WSE−1

NVIDIA A100

Google TPU v4

NVIDIA H100

Cerebras WSE−3

0

100

100,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030
Year

Tr
an

si
st

or
 C

ou
nt

 (
lo

g
sc

al
e)

Processor Type CPU GPU TPU WSE

11.9.0.5 AI Systems Scaling Trajectory

Table 11.20 illustrates the progressive scaling of AI acceleration, from single-
chip processors to increasingly complex architectures such as chiplet-based
designs, multi-GPU systems, TPU Pods, and wafer-scale AI. Each step in this
evolution introduces new challenges related to data movement, memory ac-
cess, interconnect efÏciency, and workload distribution. While chiplets enable
modular scaling within a package, they introduce latency and memory coher-
ence issues. Multi-GPU systems rely on high-speed interconnects like NVLink
but face synchronization and communication bottlenecks. TPU Pods push
scalability further by distributing workloads across clusters, yet they must con-
tend with interconnect congestion and workload partitioning. At the extreme
end, wafer-scale AI integrates an entire wafer into a single computational unit,
presenting unique challenges in thermal management and fault tolerance.

Chapter 11. AI Acceleration 607

Table 11.20: Scaling trajectory of AI systems and associated challenges.

Scaling Approach Key Feature Challenges

Chiplets Modular scaling within a package Inter-chiplet latency, memory coherence
Multi-GPU External GPU interconnects

(NVLink)
Synchronization overhead, communication
bottlenecks

TPU Pods Distributed accelerator clusters Interconnect congestion, workload partitioning
Wafer-Scale AI Entire wafer as a single processor Thermal dissipation, fault tolerance

11.9.1 Computation and Memory Scaling Changes
As AI systems scale from single-chip accelerators to multi-chip architectures, the
fundamental challenges in computation and memory evolve. In a single acceler-
ator, execution is primarily optimized for locality—ensuring that computations
are mapped efÏciently to available processing elements while minimizing mem-
ory access latency. However, as AI systems extend beyond a single chip, the
scope of these optimizations expands significantly. Computation must now be
distributed across multiple accelerators, and memory access patterns become
constrained by interconnect bandwidth and communication overhead.

11.9.1.1 Multi-chip Execution Mapping
In single-chip AI accelerators, computation placement is concerned with map-
ping workloads to PEs, vector units, and tensor cores. Mapping strategies aim
to maximize data locality, ensuring that computations access nearby memory
to reduce costly data movement.

As AI systems scale to multi-chip execution, computation placement must
consider several critical factors. Workloads need to be partitioned across multi-
ple accelerators, which requires explicit coordination of execution order and
dependencies. This division is essential due to the inherent latency associ-
ated with cross-chip communication, which contrasts sharply with single-chip
systems that benefit from shared on-chip memory. Accordingly, computa-
tion scheduling must be interconnect-aware to manage these delays effectively.
Additionally, achieving load balancing across accelerators is vital; an uneven
distribution of tasks can result in some accelerators remaining underutilized
while others operate at full capacity, ultimately hindering overall system per-
formance.

For example, in multi-GPU training, computation mapping must ensure that
each GPU has a balanced portion of the workload while minimizing expensive
cross-GPU communication. Similarly, in TPU Pods, mapping strategies must
align with the torus interconnect topology, ensuring that computation is placed
to minimize long-distance data transfers.

Thus, while computation placement in single-chip systems is a local opti-
mization problem, in multi-chip architectures, it becomes a global optimization
challenge where execution efÏciency depends on minimizing inter-chip com-
munication and balancing workload distribution.

11.9.1.2 Distributed Access Memory Allocation
Memory allocation strategies in single-chip AI accelerators are designed to
minimize off-chip memory accesses by leveraging on-chip caches, SRAM, and

11.9. Multi-Chip AI Acceleration 608

HBM. Techniques such as tiling, data reuse, and kernel fusion ensure that
computations make efÏcient use of fast local memory.

In multi-chip AI systems, each accelerator manages its own local memory,
which necessitates the explicit allocation of model parameters, activations, and
intermediate data across the devices. Unlike single-chip execution where data
is fetched once and reused, multi-chip setups require deliberate strategies to
minimize redundant data transfers, as data must be communicated between
accelerators. Additionally, when overlapping data is processed by multiple
accelerators, the synchronization of shared data can introduce significant over-
head that must be carefully managed to ensure efÏcient execution.

For instance, in multi-GPU deep learning, gradient synchronization across
GPUs is a memory-intensive operation that must be optimized to avoid network
congestion (Shallue, Lee, et al. 2019). In wafer-scale AI, memory allocation
must account for fault tolerance and redundancy mechanisms, ensuring that
defective regions of the wafer do not disrupt execution.

Thus, while memory allocation in single-chip accelerators focuses on local
cache efÏciency, in multi-chip architectures, it must be explicitly coordinated
across accelerators to balance memory bandwidth, minimize redundant trans-
fers, and reduce synchronization overhead.

11.9.1.3 Data Movement Constraints
In single-chip AI accelerators, data movement optimization is largely focused
on minimizing on-chip memory access latency. Techniques such as weight
stationarity, input stationarity, and tiling ensure that frequently used data
remains close to the execution units, reducing off-chip memory trafÏc.

In multi-chip architectures, data movement transcends being merely an intra-
chip issue and becomes a significant system-wide bottleneck. Scaling introduces
several critical challenges, foremost among them being inter-chip bandwidth
constraints; communication links such as PCIe, NVLink, and TPU interconnects
operate at speeds that are considerably slower than those of on-chip memory ac-
cesses. Additionally, when accelerators share model parameters or intermediate
computations, the resulting data synchronization overhead, which encompass
latency and contention, can markedly impede execution. Finally, optimizing
collective communication is essential for workloads that require frequent data
exchanges, such as gradient updates in deep learning training, where mini-
mizing synchronization penalties is imperative for achieving efÏcient system
performance.

For example, in TPU Pods, systolic execution models ensure that data moves
in structured patterns, reducing unnecessary off-chip transfers. In multi-GPU
inference, techniques like asynchronous data fetching and overlapping compu-
tation with communication help mitigate inter-chip latency.

Thus, while data movement optimization in single-chip systems focuses on
cache locality and tiling, in multi-chip architectures, the primary challenge is
reducing inter-chip communication overhead to maximize efÏciency.

11.9.1.4 Compilers and Runtimes Adaptation
As AI acceleration extends beyond a single chip, compilers and runtimes must
adapt to manage computation placement, memory organization, and execution

Chapter 11. AI Acceleration 609

scheduling across multiple accelerators. The fundamental principles of locality,
parallelism, and efÏcient scheduling remain essential, but their implementation
requires new strategies for distributed execution.

One of the primary challenges in scaling AI execution is computation place-
ment. In a single-chip accelerator, workloads are mapped to processing ele-
ments, vector units, and tensor cores with an emphasis on minimizing on-chip
data movement and maximizing parallel execution. However, in a multi-chip
system, computation must be partitioned hierarchically, where workloads are
distributed not just across cores within a chip, but also across multiple acceler-
ators. Compilers handle this by implementing interconnect-aware scheduling,
optimizing workload placement to minimize costly inter-chip communication.

Similarly, memory management evolves as scaling extends beyond a single
accelerator. In a single-chip system, local caching, HBM reuse, and efÏcient
tiling strategies ensure that frequently accessed data remains close to compu-
tation units. However, in a multi-chip system, each accelerator has its own
independent memory, requiring explicit memory partitioning and coordination.
Compilers optimize memory layouts for distributed execution, while runtimes
introduce data prefetching and caching mechanisms to reduce inter-chip mem-
ory access overhead.

Beyond computation and memory, data movement becomes a major bot-
tleneck at scale. In a single-chip accelerator, efÏcient on-chip caching and
minimized DRAM accesses ensure that data is reused efÏciently. However, in a
multi-chip system, communication-aware execution becomes critical, requiring
compilers to generate execution plans that overlap computation with data trans-
fers. Runtimes handle inter-chip synchronization, ensuring that workloads are
not stalled by waiting for data to arrive from remote accelerators.

Finally, execution scheduling must be extended for global coordination. In
single-chip AI execution, scheduling is primarily concerned with parallelism
and maximizing compute occupancy within the accelerator. However, in a
multi-chip system, scheduling must balance workload distribution across ac-
celerators while taking interconnect bandwidth and synchronization latency
into account. Runtimes manage this complexity by implementing adaptive
scheduling strategies that dynamically adjust execution plans based on system
state and network congestion.

Table 11.21 summarizes these key adaptations, highlighting how compilers
and runtimes extend their capabilities to efÏciently support multi-chip AI
execution.

Thus, while the fundamentals of AI acceleration remain intact, compilers and
runtimes must extend their functionality to operate efÏciently across distributed
systems. The next section will explore how mapping strategies evolve to further
optimize multi-chip AI execution.

11.9. Multi-Chip AI Acceleration 610

Table 11.21: Adaptations in computation placement, memory management, and
scheduling for multi-chip AI execution.

Aspect Single-Chip AI Accelerator
Multi-Chip AI System & How
Compilers/Runtimes Adapt

Computation
Placement

Local PEs, tensor cores, vector units Hierarchical mapping, interconnect-aware
scheduling

Memory
Management

Caching, HBM reuse, local tiling Distributed allocation, prefetching, caching

Data Movement On-chip reuse, minimal DRAM
access

Communication-aware execution, overlap
transfers

Execution Scheduling Parallelism, compute occupancy Global scheduling, interconnect-aware balancing

11.9.2 Execution Models Adaptation
As AI accelerators scale beyond a single chip, execution models must evolve to
account for the complexities introduced by distributed computation, memory
partitioning, and inter-chip communication. In single-chip accelerators, exe-
cution is optimized for local processing elements, with scheduling strategies
that balance parallelism, locality, and data reuse. However, in multi-chip AI
systems, execution must now be coordinated across multiple accelerators, in-
troducing new challenges in workload scheduling, memory coherence, and
interconnect-aware execution.

This section explores how execution models change as AI acceleration scales,
focusing on scheduling, memory coordination, and runtime management in
multi-chip systems.

11.9.2.1 Cross-Accelerator Scheduling

In single-chip AI accelerators, execution scheduling is primarily aimed at opti-
mizing parallelism within the processor. This involves ensuring that workloads
are effectively mapped to tensor cores, vector units, and special function units
by employing techniques designed to enhance data locality and resource uti-
lization. For instance, static scheduling uses a predetermined execution order
that is carefully optimized for locality and reuse, while dynamic scheduling
adapts in real time to variations in workload demands. Additionally, pipeline
execution divides computations into stages, thereby maximizing hardware
utilization by maintaining a continuous flow of operations.

In contrast, scheduling in multi-chip architectures must address the addi-
tional challenges posed by inter-chip dependencies. Workload partitioning
in such systems involves distributing tasks across various accelerators such
that each receives an optimal share of the workload, all while minimizing the
overhead caused by excessive communication. Moreover, interconnect-aware
scheduling is essential to align execution timing with the constraints of inter-
chip bandwidth, thus preventing performance stalls. Latency hiding techniques
also play a critical role, as they enable the overlapping of computation with
communication, effectively reducing waiting times.

For example, in multi-GPU inference scenarios, execution scheduling is im-
plemented in a way that allows data to be prefetched concurrently with com-
putation, thereby mitigating memory stalls. Similarly, TPU Pods leverage the
systolic array model to tightly couple execution scheduling with data flow,

Chapter 11. AI Acceleration 611

ensuring that each TPU core receives its required data precisely when needed.
Therefore, while single-chip execution scheduling is focused largely on maxi-
mizing internal parallelism, multi-chip systems require a more holistic approach
that explicitly manages communication overhead and synchronizes workload
distribution across accelerators.

11.9.2.2 Cross-Accelerator Coordination

In single-chip AI accelerators, memory coordination is managed through sophis-
ticated local caching strategies that keep frequently used data in close proximity
to the execution units. Techniques such as tiling, kernel fusion, and data reuse
are employed to reduce the dependency on slower memory hierarchies, thereby
enhancing performance and reducing latency.

In contrast, multi-chip architectures present a distributed memory coordina-
tion challenge that necessitates more deliberate management. Each accelerator
in such a system possesses its own independent memory, which must be or-
ganized through explicit memory partitioning to minimize cross-chip data
accesses. Additionally, ensuring consistency and synchronization of shared
data across accelerators is essential to maintain computational correctness. EfÏ-
cient communication mechanisms must also be implemented to schedule data
transfers in a way that limits overhead associated with synchronization delays.

For instance, in distributed deep learning training, model parameters must be
synchronized across multiple GPUs using methods such as all-reduce, where
gradients are aggregated across accelerators while reducing communication
latency. In wafer-scale AI, memory coordination must further address fault-
tolerant execution, ensuring that defective areas do not compromise overall
system performance. Consequently, while memory coordination in single-
chip systems is primarily concerned with cache optimization, multi-chip ar-
chitectures require comprehensive management of distributed memory access,
synchronization, and communication to achieve efÏcient execution.

11.9.2.3 Cross-Accelerator Execution Management

Execution in single-chip AI accelerators is managed by AI runtimes that handle
workload scheduling, memory allocation, and hardware execution. These
runtimes optimize execution at the kernel level, ensuring that computations
are executed efÏciently within the available resources.

In multi-chip AI systems, runtimes must incorporate a comprehensive strat-
egy for distributed execution orchestration. This approach ensures that both
computation and memory access are seamlessly coordinated across multiple ac-
celerators, enabling efÏcient utilization of hardware resources and minimizing
bottlenecks associated with data transfers.

Furthermore, these systems require robust mechanisms for cross-chip work-
load synchronization. Careful management of dependencies and timely coor-
dination between accelerators are essential to prevent stalls in execution that
may arise from delays in inter-chip communication. Such synchronization is
critical for maintaining the flow of computation, particularly in environments
where latency can significantly impact overall performance.

11.9. Multi-Chip AI Acceleration 612

Finally, adaptive execution models play a pivotal role in contemporary multi-
chip architectures. These models dynamically adjust execution plans based on
current hardware availability and communication constraints, ensuring that
the system can respond to changing conditions and optimize performance in
real time. Together, these strategies provide a resilient framework for managing
the complexities of distributed AI execution.

For example, in Google’s TPU Pods, the TPU runtime is responsible for
scheduling computations across multiple TPU cores, ensuring that workloads
are executed in a way that minimizes communication bottlenecks. In multi-GPU
frameworks like PyTorch and TensorFlow, runtime execution must synchronize
operations across GPUs, ensuring that data is transferred efÏciently while
maintaining execution order.

Thus, while single-chip runtimes focus on optimizing execution within a
single processor, multi-chip runtimes must handle system-wide execution,
balancing computation, memory, and interconnect performance.

11.9.2.4 Computation Placement Adaptation
As AI systems expand beyond single-chip execution, computation placement
must adapt to account for inter-chip workload distribution and interconnect
efÏciency. In single-chip accelerators, compilers optimize placement by map-
ping workloads to tensor cores, vector units, and PEs, ensuring maximum
parallelism while minimizing on-chip data movement. However, in multi-chip
systems, placement strategies must address interconnect bandwidth constraints,
synchronization latency, and hierarchical workload partitioning across multiple
accelerators.

Table 11.22 highlights these adaptations. To reduce expensive cross-chip
communication, compilers now implement interconnect-aware workload parti-
tioning, strategically assigning computations to accelerators based on communi-
cation cost. For instance, in multi-GPU training, compilers optimize placement
to minimize NVLink or PCIe trafÏc, whereas TPU Pods leverage the torus
interconnect topology to enhance data exchanges.

Table 11.22: Adaptations in computation placement strategies for multi-chip AI
execution.

Aspect Single-Chip AI Accelerator
Multi-Chip AI System & How Compilers/Runtimes
Adapt

Computation
Placement

Local PEs, tensor cores, vector
units

Hierarchical mapping, interconnect-aware scheduling

Workload
Distribution

Optimized within a single chip Partitioning across accelerators, minimizing inter-chip
communication

Synchronization Managed within local
execution units

Runtimes dynamically balance workloads, adjust
execution plans

Runtimes complement this by dynamically managing execution workloads,
adjusting placement in real-time to balance loads across accelerators. Unlike
static compilation, which assumes a fixed hardware topology, AI runtimes
continuously monitor system conditions and migrate tasks as needed to pre-
vent bottlenecks. This ensures efÏcient execution even in environments with
fluctuating workload demands or varying hardware availability.

Chapter 11. AI Acceleration 613

By extending local execution strategies to multi-chip environments, compu-
tation placement now requires a careful balance between parallel execution,
memory locality, and interconnect-aware scheduling. The next section explores
how memory hierarchy must evolve to support efÏcient execution across dis-
tributed AI architectures.

Thus, computation placement at scale builds upon local execution optimiza-
tions while introducing new challenges in inter-chip coordination, communication-
aware execution, and dynamic load balancing. In the next section, we explore
how memory hierarchy must adapt to support efÏcient execution across multi-
chip architectures.

11.9.3 Navigating Multi-Chip AI Complexities
The evolution of AI hardware, from single-chip accelerators to multi-chip sys-
tems and wafer-scale integration, highlights the increasing complexity of efÏ-
ciently executing large-scale machine learning workloads. As we’ve explored
in this chapter, scaling AI systems introduces new challenges in computation
placement, memory management, and data movement. While the fundamental
principles of AI acceleration remain consistent, their implementation must
adapt to the constraints of distributed execution, interconnect bandwidth limi-
tations, and synchronization overhead.

Multi-chip AI architectures represent a significant step forward in addressing
the computational demands of modern machine learning models. By distribut-
ing workloads across multiple accelerators, these systems offer increased per-
formance, memory capacity, and scalability. However, realizing these benefits
requires careful consideration of how computations are mapped to hardware,
how memory is partitioned and accessed, and how execution is scheduled
across a distributed system.

While we an overview of the key concepts and challenges in multi-chip AI
acceleration as they extend beyond a single system, there is still much more
to explore. As AI models continue to grow in size and complexity, new archi-
tectural innovations, mapping strategies, and runtime optimizations will be
needed to sustain efÏcient execution. The ongoing development of AI hard-
ware and software reflects a broader trend in computing, where specialization
and domain-specific architectures are becoming increasingly important for
addressing the unique demands of emerging workloads.

Understanding the principles and trade-offs involved in multi-chip AI accel-
eration enables machine learning engineers and system designers to make in-
formed decisions about how to best deploy and optimize their models. Whether
training large language models on TPU pods or deploying computer vision
applications on multi-GPU systems, the ability to efÏciently map computations
to hardware will continue to be a critical factor in realizing the full potential of
AI.

11.10 Conclusion
The rapid advancement of machine learning has fundamentally reshaped com-
puter architecture and system design, driving the need for specialized hardware

11.10. Conclusion 614

and optimized software to support the increasing computational demands of
AI workloads. This chapter has explored the foundational principles of AI
acceleration, analyzing how domain-specific architectures, memory hierarchies,
and data movement strategies work in concert to maximize performance and
mitigate bottlenecks.

We began by examining the historical progression of AI hardware, tracing
the shift from general-purpose processors to specialized accelerators tailored
for machine learning workloads. This evolution has been driven by the com-
putational intensity of AI models, necessitating vectorized execution, matrix
processing, and specialized function units to accelerate key operations.

Memory systems play a pivotal role in AI acceleration, as modern workloads
require efÏcient management of large-scale tensor data across hierarchical
memory structures. This chapter detailed the challenges posed by memory
bandwidth limitations, irregular access patterns, and off-chip communication,
highlighting techniques such as tiling, kernel fusion, and memory-aware data
placement that optimize data movement and reuse.

Mapping neural networks to hardware requires balancing computation place-
ment, memory allocation, and execution scheduling. We analyzed key map-
ping strategies, including weight-stationary, output-stationary, and hybrid
approaches, and explored how compilers and runtimes transform high-level
models into optimized execution plans that maximize hardware utilization.

As AI workloads scale beyond single-chip accelerators, new challenges emerge
in distributed execution, memory coherence, and inter-chip communication.
This chapter examined how multi-GPU architectures, TPU pods, and wafer-
scale AI systems address these challenges by leveraging hierarchical work-
load partitioning, distributed memory management, and interconnect-aware
scheduling. We also explored how compilers and runtimes must adapt to or-
chestrate execution across multiple accelerators, ensuring efÏcient workload
distribution and minimizing communication overhead.

The increasing complexity of AI models and the growing scale of machine
learning workloads underscore a broader shift in computing—one where spe-
cialization and hardware-software co-design are essential for achieving efÏ-
ciency and scalability. Understanding the fundamental trade-offs in AI acceler-
ation enables system designers, researchers, and engineers to make informed
decisions about deploying and optimizing AI models across diverse hardware
platforms.

This chapter has provided a comprehensive foundation in AI acceleration,
equipping readers with the knowledge to navigate the evolving intersection of
machine learning systems, hardware design, and system optimization. As AI
continues to advance, the ability to efÏciently map computations to hardware
will remain a key determinant of performance, scalability, and future innovation
in artificial intelligence.

Chapter 11. AI Acceleration 615

11.11 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 12

Benchmarking AI

Figure 12.1: DALL·E 3 Prompt: Photo
of a podium set against a tech-themed
backdrop. On each tier of the podium,
there are AI chips with intricate designs.
The top chip has a gold medal hang-
ing from it, the second one has a sil-
ver medal, and the third has a bronze
medal. Banners with ‘AI Olympics’
are displayed prominently in the back-
ground.

Purpose
How can quantitative evaluation reshape the development of machine learning systems,
and what metrics reveal true system capabilities?

The measurement and analysis of AI system performance represent a critical
element in bridging theoretical capabilities with practical outcomes. System-
atic evaluation approaches reveal fundamental relationships between model
behavior, resource utilization, and operational reliability. These measurements
draw out the essential trade-offs across accuracy, efÏciency, and scalability, pro-
viding insights that guide architectural decisions throughout the development
lifecycle. These evaluation frameworks establish core principles for assessing
and validating system design choices and enable the creation of robust solu-
tions that meet increasingly complex performance requirements across diverse
deployment scenarios.

617

12.1. Overview 618

L� Learning Objectives

• Understand the objectives of AI benchmarking, including perfor-
mance evaluation, resource assessment, and validation.

• Differentiate between training and inference benchmarking and
their respective evaluation methodologies.

• Identify key benchmarking metrics and trends, including accuracy,
fairness, complexity, and efÏciency.

• Recognize system benchmarking concepts, including throughput,
latency, power consumption, and computational efÏciency.

• Understand the limitations of isolated evaluations and the necessity
of integrated benchmarking frameworks.

12.1 Overview
Computing systems continue to evolve and grow in complexity. Understanding
their performance becomes essential to engineer them better. System evaluation
measures how computing systems perform relative to specified requirements
and goals. Engineers and researchers examine metrics like processing speed, re-
source usage, and reliability to understand system behavior under different con-
ditions and workloads. These measurements help teams identify bottlenecks,
optimize performance, and verify that systems meet design specifications.

Standardized measurement forms the backbone of scientific and engineer-
ing progress. The metric system enables precise communication of physical
quantities. Organizations like the National Institute of Standards and Technol-
ogy maintain fundamental measures from the kilogram to the second. This
standardization extends to computing, where benchmarks provide uniform
methods to quantify system performance. Standard performance tests measure
processor operations, memory bandwidth, network throughput, and other com-
puting capabilities. These benchmarks allow meaningful comparison between
different hardware and software configurations.

Machine learning systems present distinct measurement challenges. Unlike
traditional computing tasks, ML systems integrate hardware performance,
algorithmic behavior, and data characteristics. Performance evaluation must
account for computational efÏciency and statistical effectiveness. Training time,
model accuracy, and generalization capabilities all factor into system assessment.
The interdependence between computing resources, algorithmic choices, and
dataset properties creates new dimensions for measurement and comparison.

These considerations lead us to define machine learning benchmarking as
follows:

Chapter 12. Benchmarking AI 619

0 Introduced in 1964, the Whet-
stone benchmark was one of the first
synthetic benchmarks designed to
measure floating-point arithmetic
performance, influencing early com-
puter architecture improvements.

�� Definition of ML Benchmarking

Machine Learning Benchmarking (ML Benchmarking) is the systematic
evaluation of compute performance, algorithmic effectiveness, and data quality
in machine learning systems. It assesses system capabilities, model accuracy
and convergence, and data scalability and representativeness to optimize sys-
tem performance across diverse workloads. ML benchmarking enables
engineers and researchers to quantify trade-offs, improve deployment efÏ-
ciency, and ensure reproducibility in both research and production settings.
As ML systems evolve, benchmarks also incorporate fairness, robustness,
and energy efÏciency, reflecting the increasing complexity of AI evaluation.

This chapter focuses primarily on benchmarking machine learning systems,
examining how computational resources affect training and inference perfor-
mance. While the main emphasis remains on system-level evaluation, under-
standing the role of algorithms and data proves essential for comprehensive
ML benchmarking.

12.2 Historical Context
The evolution of computing benchmarks mirrors the development of computer
systems themselves, progressing from simple performance metrics to increas-
ingly specialized evaluation frameworks. As computing expanded beyond
scientific calculations into diverse applications, benchmarks evolved to mea-
sure new capabilities, constraints, and use cases. This progression reflects
three major shifts in computing: the transition from mainframes to personal
computers, the rise of energy efÏciency as a critical concern, and the emergence
of specialized computing domains such as machine learning.

Early benchmarks focused primarily on raw computational power, measuring
basic operations like floating-point calculations. As computing applications
diversified, benchmark development branched into distinct specialized cate-
gories, each designed to evaluate specific aspects of system performance. This
specialization accelerated with the emergence of graphics processing, mobile
computing, and eventually, cloud services and machine learning.

12.2.1 Performance Benchmarks
The evolution of benchmarks in computing illustrates how systematic perfor-
mance measurement has shaped technological progress. During the 1960s
and 1970s, when mainframe computers dominated the computing landscape,
performance benchmarks focused primarily on fundamental computational
tasks. The Whetstone benchmark0, introduced in 1964 to measure floating-point
arithmetic performance, became a definitive standard that demonstrated how
systematic testing could drive improvements in computer architecture (Curnow
1976).

The introduction of the LINPACK benchmark in 1979 expanded the focus
of performance evaluation, offering a means to assess how efÏciently systems

https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://en.wikipedia.org/wiki/LINPACK_benchmark

12.2. Historical Context 620

1 Launched in 1989, the SPEC
CPU benchmark suite shifted per-
formance evaluation towards real-
world workloads, significantly influ-
encing processor design and opti-
mization.

solved linear equations. As computing shifted toward personal computers in
the 1980s, the need for standardized performance measurement grew. The
Dhrystone benchmark, introduced in 1984, provided one of the first integer-
based benchmarks, complementing floating-point evaluations (Weicker 1984).

The late 1980s and early 1990s saw the emergence of systematic benchmarking
frameworks that emphasized real-world workloads. The SPEC CPU bench-
marks1, introduced in 1989 by the System Performance Evaluation Cooperative
(SPEC), fundamentally changed hardware evaluation by shifting the focus from
synthetic tests to a standardized suite designed to measure performance using
practical computing workloads. This approach enabled manufacturers to op-
timize their systems for real applications, accelerating advances in processor
design and software optimization.

The increasing demand for graphics-intensive applications and mobile com-
puting in the 1990s and early 2000s presented new benchmarking challenges.
The introduction of 3DMark in 1998 established an industry standard for eval-
uating graphics performance, shaping the development of programmable
shaders and modern GPU architectures. Mobile computing introduced an
additional constraint, namely, power efÏciency, necessitating benchmarks that
assessed both computational performance and energy consumption. The re-
lease of MobileMark by BAPCo provided a means to evaluate power efÏciency
in laptops and mobile devices, influencing the development of energy-efÏcient
architectures such as ARM.

The focus of benchmarking in the past decade has shifted toward cloud
computing, big data, and artificial intelligence. Cloud service providers such
as Amazon Web Services and Google Cloud optimize their platforms based
on performance, scalability, and cost-effectiveness (Ranganathan and Hölzle
2024). Benchmarks like CloudSuite have become critical for evaluating cloud
infrastructure, measuring how well systems handle distributed workloads.
Machine learning has introduced another dimension of performance evaluation.
The introduction of MLPerf in 2018 established a widely accepted standard for
measuring machine learning training and inference efÏciency across different
hardware architectures.

12.2.2 Energy Benchmarks
As computing scaled from personal devices to massive data centers, energy
efÏciency emerged as a critical dimension of performance evaluation. The
mid-2000s marked a shift in benchmarking methodologies, moving beyond
raw computational speed to assess power efÏciency across diverse computing
platforms. The increasing thermal constraints in processor design, coupled
with the scaling demands of large-scale internet services, underscored energy
consumption as a fundamental consideration in system evaluation (Barroso
and Hölzle 2007b).

Power benchmarking addresses three interconnected challenges: environ-
mental sustainability, operational efÏciency, and device usability. The growing
energy demands of the technology sector have intensified concerns about sus-
tainability, while energy costs continue to shape the economics of data center
operations. In mobile computing, power efÏciency directly determines battery

https://en.wikipedia.org/wiki/Dhrystone
https://www.spec.org/cpu/
https://www.spec.org/cpu/
https://www.spec.org/
https://www.spec.org/
https://www.3dmark.com/
https://bapco.com/products/mobilemark-2014/
https://bapco.com/
https://www.arm.com/
http://cloudsuite.ch/
https://mlcommons.org/

Chapter 12. Benchmarking AI 621

2 Established in 2007, the
Green500 ranks supercomputers
based on energy efÏciency, high-
lighting advances in power-efÏcient
high-performance computing.

life and user experience, reinforcing the importance of energy-aware perfor-
mance measurement.

The industry has responded with several standardized benchmarks that quan-
tify energy efÏciency. SPEC Power provides a widely accepted methodology for
measuring server efÏciency across varying workload levels, allowing for direct
comparisons of power-performance trade-offs. The Green500 ranking2 applies
similar principles to high-performance computing, ranking the world’s most
powerful supercomputers based on their energy efÏciency rather than their raw
performance. The ENERGY STAR certification program has also established
foundational energy standards that have shaped the design of consumer and
enterprise computing systems.

Power benchmarking faces distinct challenges, particularly in accounting for
the diverse workload patterns and system configurations encountered across
different computing environments. Recent advancements, such as the MLPerf
Power benchmark, have introduced specialized methodologies for measuring
the energy impact of machine learning workloads, addressing the growing
importance of energy efÏciency in AI-driven computing. As artificial intelli-
gence and edge computing continue to evolve, power benchmarking will play
an increasingly crucial role in driving energy-efÏcient hardware and software
innovations.

12.2.3 Domain-Specific Benchmarks
The evolution of computing applications, particularly in artificial intelligence,
has highlighted the limitations of general-purpose benchmarks and led to the
development of domain-specific evaluation frameworks. Standardized bench-
marks, while effective for assessing broad system performance, often fail to
capture the unique constraints and operational requirements of specialized
workloads. This gap has resulted in the emergence of tailored benchmark-
ing methodologies designed to evaluate performance in specific computing
domains (John L. Hennessy and Patterson 2003).

Machine learning presents one of the most prominent examples of this tran-
sition. Traditional CPU and GPU benchmarks are insufÏcient for assessing
workloads, which involve complex interactions between computation, memory
bandwidth, and data movement. The introduction of MLPerf has standardized
performance measurement for machine learning models, providing detailed
insights into training and inference efÏciency.

Beyond AI, domain-specific benchmarks have been adopted across various in-
dustries. Healthcare organizations have developed benchmarking frameworks
to evaluate machine learning models used in medical diagnostics, ensuring
that performance assessments align with real-world patient data. In financial
computing, specialized benchmarking methodologies assess transaction latency
and fraud detection accuracy, ensuring that high-frequency trading systems
meet stringent timing requirements. Autonomous vehicle developers imple-
ment evaluation frameworks that test AI models under varying environmental
conditions and trafÏc scenarios, ensuring the reliability of self-driving systems.

The strength of domain-specific benchmarks lies in their ability to capture
workload-specific performance characteristics that general benchmarks may

https://www.spec.org/power/
https://top500.org/lists/green500/
https://www.energystar.gov/products/computers
https://mlcommons.org/
https://mlcommons.org/

12.3. AI Benchmarks 622

overlook. By tailoring performance evaluation to sector-specific requirements,
these benchmarks provide insights that drive targeted optimizations in both
hardware and software. As computing continues to expand into new domains,
specialized benchmarking will remain a key tool for assessing and improving
performance in emerging fields.

12.3 AI Benchmarks

The evolution of benchmarks reaches its apex in machine learning, reflecting a
journey that parallels the field’s development towards domain-specific applica-
tions. Early machine learning benchmarks focused primarily on algorithmic
performance, measuring how well models could perform specific tasks (Lecun
et al. 1998). As machine learning applications scaled and computational de-
mands grew, the focus expanded to include system performance and hardware
efÏciency (Jouppi, Young, et al. 2017a). Most recently, the critical role of data
quality has emerged as the third essential dimension of evaluation (Gebru et al.
2021b).

What sets AI benchmarks apart from traditional performance metrics is their
inherent variability, introducing accuracy as a fundamental dimension of eval-
uation. Unlike conventional benchmarks, which measure fixed, deterministic
characteristics like computational speed or energy consumption, AI benchmarks
must account for the probabilistic nature of machine learning models. The
same system can produce different results depending on the data it encounters,
making accuracy a defining factor in performance assessment. This distinction
adds complexity, as benchmarking AI systems requires not only measuring raw
computational efÏciency but also understanding trade-offs between accuracy,
generalization, and resource constraints.

The growing complexity and ubiquity of machine learning systems demand
comprehensive benchmarking across all three dimensions: algorithmic models,
hardware systems, and training data. This multifaceted evaluation approach
represents a significant departure from earlier benchmarks that could focus
on isolated aspects like computational speed or energy efÏciency (Hernandez
and Brown 2020). Modern machine learning benchmarks must address the
sophisticated interplay between these dimensions, as limitations in any one
area can fundamentally constrain overall system performance.

This evolution in benchmark complexity mirrors the field’s deepening under-
standing of what drives machine learning system success. While algorithmic
innovations initially dominated progress metrics, the challenges of deploying
models at scale revealed the critical importance of hardware efÏciency (Jouppi
et al. 2021b). Subsequently, high-profile failures of machine learning systems
in real-world deployments highlighted how data quality and representation
fundamentally determine system reliability and fairness (Bender et al. 2021).
Understanding how these dimensions interact has become essential for accu-
rately assessing machine learning system performance, informing development
decisions, and measuring technological progress in the field.

Chapter 12. Benchmarking AI 623

12.3.1 Algorithmic Benchmarks
AI algorithms must balance multiple interconnected performance objectives,
including accuracy, speed, resource efÏciency, and generalization capability.
As machine learning applications span diverse domains, including computer
vision, natural language processing, speech recognition, and reinforcement
learning, evaluating these objectives requires standardized methodologies tai-
lored to each domain’s unique challenges. Algorithmic benchmarks, such as
ImageNet (J. Deng et al. 2009), establish these evaluation frameworks, providing
a consistent basis for comparing different machine learning approaches.

�� Definition of Machine Learning Algorithmic Benchmarks

MLAlgorithmic benchmarks refer to the evaluation of machine learning
models on standardized tasks using predefined datasets and metrics. These
benchmarks measure accuracy, efÏciency, and generalization to ensure ob-
jective comparisons across different models. Algorithmic benchmarks
provide performance baselines, enabling systematic assessment of trade-offs
between model complexity and computational cost. They drive technological
progress by tracking improvements over time and identifying limitations
in existing approaches.

Algorithmic benchmarks serve several critical functions in advancing AI.
They establish clear performance baselines, enabling objective comparisons
between competing approaches. By systematically evaluating trade-offs be-
tween model complexity, computational requirements, and task performance,
they help researchers and practitioners identify optimal design choices. More-
over, they track technological progress by documenting improvements over
time, guiding the development of new techniques while exposing limitations
in existing methodologies.

For instance, the graph in Figure 12.2 illustrates the significant reduction in
error rates on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
classification task over the years. Starting from the baseline models in 2010 and
2011, the introduction of AlexNet in 2012 marked a substantial improvement,
reducing the error rate from 25.8% to 16.4%. Subsequent models like ZFNet,
VGGNet, GoogleNet, and ResNet continued this trend, with ResNet achieving
a remarkable error rate of 3.57% by 2015. This progression highlights how
algorithmic benchmarks not only measure current capabilities but also drive
continuous advancements in AI performance.

12.3.2 System Benchmarks
AI computations, particularly in machine learning, place extraordinary de-
mands on computational resources. The underlying hardware infrastructure,
encompassing general-purpose CPUs, graphics processing units (GPUs), tensor
processing units (TPUs), and application-specific integrated circuits (ASICs),
fundamentally determines the speed, efÏciency, and scalability of AI solutions.
System benchmarks establish standardized methodologies for evaluating hard-
ware performance across diverse AI workloads, measuring critical metrics

https://www.image-net.org/challenges/LSVRC/

12.3. AI Benchmarks 624

Figure 12.2: ImageNet accuracy im-
provements over the years.

Baseline

Baseline

AlexNet

ZFNet

VGGNet
GoogleNet

ResNet

0

10

20

30

2010 2011 2012 2013 2014 2015
Year

To
p−

5
E

rr
or

 (
%

)

including computational throughput, memory bandwidth, power efÏciency,
and scaling characteristics (Reddi et al. 2019; Mattson et al. 2020).

�� Definition of Machine Learning System Benchmarks

MLSystembenchmarks refer to the evaluation of computational infrastruc-
ture used to execute AI workloads, assessing performance, efÏciency, and
scalability under standardized conditions. These benchmarks measure
throughput, latency, and resource utilization to ensure objective comparisons
across different system configurations. System benchmarks provide
insights into workload efÏciency, guiding infrastructure selection, system opti-
mization, and advancements in computational architectures.

These benchmarks fulfill two essential functions in the AI ecosystem. First,
they enable developers and organizations to make informed decisions when
selecting hardware platforms for their AI applications by providing compre-
hensive comparative performance data across system configurations. Critical
evaluation factors include training speed, inference latency, energy efÏciency,
and cost-effectiveness. Second, hardware manufacturers rely on these bench-
marks to quantify generational improvements and guide the development of
specialized AI accelerators, driving continuous advancement in computational
capabilities.

System benchmarks evaluate performance across multiple scales, ranging
from single-chip configurations to large distributed systems, and diverse AI
workloads including both training and inference tasks. This comprehensive
evaluation approach ensures that benchmarks accurately reflect real-world
deployment scenarios and deliver actionable insights that inform both hardware
selection decisions and system architecture design. For example, Figure 12.3

Chapter 12. Benchmarking AI 625

illustrates the correlation between ImageNet classification error rates and GPU
adoption from 2010 to 2014. These results clearly highlight how improved
hardware capabilities, combined with algorithmic advances, drove significant
progress in computer vision performance.

Figure 12.3: ImageNet accuracy im-
provements and use of GPUs since
the dawn of AlexNet in 2012.

0

10

20

30

0

25

50

75

100

125

2010 2011 2012 2013 2014
Year

To
p−

5
E

rr
or

 R
at

e
(%

)

of E
ntries U

sing G
P

U
s

ImageNet Classification Error and GPU Entries

12.3.3 Data Benchmarks
Data quality, scale, and diversity fundamentally shape machine learning sys-
tem performance, directly influencing how effectively algorithms learn and
generalize to new situations. Data benchmarks establish standardized datasets
and evaluation methodologies that enable consistent comparison of different
approaches. These frameworks assess critical aspects of data quality, including
domain coverage, potential biases, and resilience to real-world variations in
input data (Gebru et al. 2021b).

�� Definition of Machine Learning Data Benchmarks

ML Data benchmarks refer to the evaluation of datasets and data quality
in machine learning, assessing coverage, bias, and robustness under stan-
dardized conditions. These benchmarks measure data representativeness,
consistency, and impact on model performance to ensure objective comparisons
across different AI approaches. Data benchmarks provide insights into
data reliability, guiding dataset selection, bias mitigation, and improvements
in data-driven AI systems.

Data benchmarks serve an essential function in understanding AI system
behavior under diverse data conditions. Through systematic evaluation, they
help identify common failure modes, expose gaps in data coverage, and reveal

12.3. AI Benchmarks 626

3 IEEE 2416-2019: A standard
defining methodologies for param-
eterized power modeling, enabling
system-level power analysis and op-
timization in electronic design, in-
cluding AI hardware.

underlying biases that could impact model behavior in deployment. By provid-
ing common frameworks for data evaluation, these benchmarks enable the AI
community to systematically improve data quality and address potential issues
before deploying systems in production environments. This proactive approach
to data quality assessment has become increasingly critical as AI systems take
on more complex and consequential tasks across different domains.

12.3.4 Community Consensus
The proliferation of benchmarks spanning performance, energy efÏciency, and
domain-specific applications creates a fundamental challenge: establishing
industry-wide standards. While early computing benchmarks primarily mea-
sured processor speed and memory bandwidth, modern benchmarks evaluate
sophisticated aspects of system performance, from power consumption profiles
to application-specific capabilities. This evolution in scope and complexity
necessitates comprehensive validation and consensus from the computing com-
munity, particularly in rapidly evolving fields like machine learning where
performance must be evaluated across multiple interdependent dimensions.

The lasting impact of a benchmark depends fundamentally on its acceptance
by the research community, where technical excellence alone proves insufÏ-
cient. Benchmarks developed without broad community input often fail to
gain traction, frequently missing metrics that leading research groups consider
essential. Successful benchmarks emerge through collaborative development
involving academic institutions, industry partners, and domain experts. This
inclusive approach ensures benchmarks evaluate capabilities most crucial for
advancing the field, while balancing theoretical and practical considerations.

Benchmarks developed through extensive collaboration among respected
institutions carry the authority necessary to drive widespread adoption, while
those perceived as advancing particular corporate interests face skepticism
and limited acceptance. The success of ImageNet demonstrates how sustained
community engagement through workshops and challenges establishes long-
term viability. This community-driven development creates a foundation for
formal standardization, where organizations like IEEE and ISO transform these
benchmarks into ofÏcial standards.

The standardization process provides crucial infrastructure for benchmark
formalization and adoption. IEEE working groups transform community-
developed benchmarking methodologies into formal industry standards, estab-
lishing precise specifications for measurement and reporting. The IEEE 2416-
2019 standard for system power modeling3 exemplifies this process, codifying
best practices developed through community consensus. Similarly, ISO/IEC
technical committees develop international standards for benchmark validation
and certification, ensuring consistent evaluation across global research and
industry communities. These organizations bridge the gap between community-
driven innovation and formal standardization, providing frameworks that en-
able reliable comparison of results across different institutions and geographic
regions.

Successful community benchmarks establish clear governance structures
for managing their evolution. Through rigorous version control systems and

https://standards.ieee.org/develop/wg/
https://standards.ieee.org/ieee/2416/7065/
https://standards.ieee.org/ieee/2416/7065/
https://www.iso.org/committee/45020.html
https://www.iso.org/committee/45020.html

Chapter 12. Benchmarking AI 627

detailed change documentation, benchmarks maintain backward compatibility
while incorporating new advances. This governance includes formal processes
for proposing, reviewing, and implementing changes, ensuring that bench-
marks remain relevant while maintaining stability. Modern benchmarks in-
creasingly emphasize reproducibility requirements, incorporating automated
verification systems and standardized evaluation environments.

Open access accelerates benchmark adoption and ensures consistent im-
plementation. Projects that provide open-source reference implementations,
comprehensive documentation, validation suites, and containerized evaluation
environments reduce barriers to entry. This standardization enables research
groups to evaluate solutions using uniform methods and metrics. Without such
coordinated implementation frameworks, organizations might interpret bench-
marks inconsistently, compromising result reproducibility and meaningful
comparison across studies.

The most successful benchmarks strike a careful balance between academic
rigor and industry practicality. Academic involvement ensures theoretical
soundness and comprehensive evaluation methodology, while industry partici-
pation grounds benchmarks in practical constraints and real-world applications.
This balance proves particularly crucial in machine learning benchmarks, where
theoretical advances must translate to practical improvements in deployed sys-
tems (D. Patterson et al. 2021b).

Community consensus establishes enduring benchmark relevance, while
fragmentation impedes scientific progress. Through collaborative development
and transparent operation, benchmarks evolve into authoritative standards for
measuring advancement. The most successful benchmarks in energy efÏciency
and domain-specific applications share this foundation of community devel-
opment and governance, demonstrating how collective expertise and shared
purpose create lasting impact in rapidly advancing fields.

12.4 Benchmark Components

An AI benchmark provides a structured framework for evaluating artificial
intelligence systems. While individual benchmarks vary in their specific fo-
cus, they share common components that enable systematic evaluation and
comparison of AI models.

Figure 12.4 illustrates the structured workflow of a benchmark implementa-
tion, showcasing how components like task definition, dataset selection, model
selection, and evaluation interconnect to form a complete evaluation pipeline.
This visualization highlights how each phase builds upon the previous one,
ensuring systematic and reproducible AI performance assessment.

12.4.1 Problem Definition

A benchmark implementation begins with a formal specification of the machine
learning task and its evaluation criteria. In machine learning, tasks represent
well-defined problems that AI systems must solve. Consider an anomaly de-
tection system that processes audio signals to identify deviations from normal

12.4. Benchmark Components 628

Figure 12.4: Example of benchmark
components.

operation patterns, as shown in Figure 12.4. This industrial monitoring ap-
plication exemplifies how formal task specifications translate into practical
implementations.

The formal definition of a benchmark task encompasses both the computa-
tional problem and its evaluation framework. While the specific tasks vary
by domain, well-established categories have emerged across fields. Natural
language processing tasks, for example, include machine translation, question
answering (Hirschberg and Manning 2015), and text classification. Computer
vision similarly employs standardized tasks such as object detection, image
segmentation, and facial recognition (Everingham et al. 2009).

Every benchmark task specification must define three fundamental elements.
The input specification determines what data the system processes. In Fig-
ure 12.4, this consists of audio waveform data. The output specification de-
scribes the required system response, such as the binary classification of normal
versus anomalous patterns. The performance specification establishes quantita-
tive requirements for accuracy, processing speed, and resource utilization.

Task design directly impacts the benchmark’s ability to evaluate AI systems
effectively. The audio anomaly detection example illustrates this relationship
through its specific requirements: processing continuous signal data, adapt-
ing to varying noise conditions, and operating within strict time constraints.
These practical constraints create a detailed framework for assessing model
performance, ensuring evaluations reflect real-world operational demands.

The implementation of a benchmark proceeds systematically from this task
definition. Each subsequent phase - from dataset selection through deployment
- builds upon these initial specifications, ensuring that evaluations maintain con-
sistency while addressing the defined requirements across different approaches
and implementations.

12.4.2 Standardized Datasets
Building upon the problem definition, standardized datasets provide the foun-
dation for training and evaluating models. These carefully curated collections
ensure all models undergo testing under identical conditions, enabling direct

Chapter 12. Benchmarking AI 629

comparisons across different approaches and architectures. Figure 12.4 demon-
strates this through an audio anomaly detection example, where waveform
data serves as the standardized input for evaluating detection performance.

In computer vision, datasets such as ImageNet (J. Deng et al. 2009), COCO
(T.-Y. Lin et al. 2014), and CIFAR-10 (Krizhevsky, Hinton, et al. 2009) serve
as reference standards. For natural language processing, collections such as
SQuAD (Rajpurkar et al. 2016), GLUE (A. Wang et al. 2018), and WikiText
(Merity et al. 2016) fulfill similar functions. These datasets encompass a range of
complexities and edge cases to thoroughly evaluate machine learning systems.

The strategic selection of datasets, shown early in the workflow of Figure 12.4,
shapes all subsequent implementation steps and determines the benchmark’s
effectiveness. In the audio anomaly detection example, the dataset must include
representative waveform samples of normal operation alongside examples of
various anomalous conditions. Notable examples include datasets like ToyAD-
MOS for industrial manufacturing anomalies and Google Speech Commands
for general sound recognition. Regardless of the specific dataset chosen, the
data volume must sufÏce for both model training and validation, while in-
corporating real-world signal characteristics and noise patterns that reflect
deployment conditions.

The selection of benchmark datasets fundamentally shapes experimental
outcomes and model evaluation. Effective datasets must balance two key re-
quirements: accurately representing real-world challenges while maintaining
sufÏcient complexity to differentiate model performance meaningfully. While
research often utilizes simplified datasets like ToyADMOS (Koizumi et al. 2019),
these controlled environments, though valuable for methodological develop-
ment, may not fully capture real-world deployment complexities. Benchmark
development frequently necessitates combining multiple datasets due to access
limitations on proprietary industrial data. As machine learning capabilities
advance, benchmark datasets must similarly evolve to maintain their utility in
evaluating contemporary systems and emerging challenges.

12.4.3 Model Selection
The benchmark process advances systematically from initial task definition
to model architecture selection and implementation. This critical phase estab-
lishes performance baselines and determines the optimal modeling approach.
Figure 12.4 illustrates this progression through the model selection stage and
subsequent training code development.

Baseline models serve as the reference points for evaluating novel approaches.
These span from basic implementations, including linear regression for contin-
uous predictions and logistic regression for classification tasks, to advanced
architectures with proven success in comparable domains. In natural language
processing applications, transformer-based models like BERT have emerged as
standard benchmarks for comparative analysis.

Selecting the right baseline model requires careful evaluation of architectures
against benchmark requirements. This selection process directly informs the
development of training code, which forms the cornerstone of benchmark repro-
ducibility. The training implementation must thoroughly document all aspects

http://www.image-net.org/
https://cocodataset.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://rajpurkar.github.io/SQuAD-explorer/
https://gluebenchmark.com/
https://www.salesforce.com/blog/the-wikitext-long-term-dependency-language-modeling-dataset/

12.4. Benchmark Components 630

of the model pipeline, from data preprocessing through training procedures,
enabling precise replication of model behavior across research teams.

Model development follows two primary optimization paths: training and
inference. During training optimization, efforts concentrate on achieving target
accuracy metrics while operating within computational constraints. The train-
ing implementation must demonstrate consistent achievement of performance
thresholds under specified conditions.

The inference optimization path addresses deployment considerations, par-
ticularly the transition from development to production environments. A key
example involves precision reduction through quantization, progressing from
FP32 to INT8 representations to enhance deployment efÏciency. This process de-
mands careful calibration to maintain model accuracy while reducing resource
requirements. The benchmark must detail both the quantization methodology
and verification procedures that confirm preserved performance.

The intersection of these optimization paths with real-world constraints
shapes deployment strategy. Comprehensive benchmarks must therefore spec-
ify requirements for both training and inference scenarios, ensuring models
maintain consistent performance from development through deployment. This
crucial connection between development and production metrics naturally
leads to the establishment of evaluation criteria.

The optimization process must balance four key objectives: model accuracy,
computational speed, memory utilization, and energy efÏciency. This complex
optimization landscape necessitates robust evaluation metrics that can effec-
tively quantify performance across all dimensions. As models transition from
development to deployment, these metrics serve as critical tools for guiding
optimization decisions and validating performance enhancements.

12.4.4 Evaluation Metrics

While model selection establishes the architectural framework, evaluation met-
rics provide the quantitative measures needed to assess machine learning model
performance. These metrics establish objective standards for comparing dif-
ferent approaches, enabling researchers and practitioners to gauge solution
effectiveness. The selection of appropriate metrics represents a fundamental
aspect of benchmark design, as they must align with task objectives while
providing meaningful insights into model behavior across both training and
deployment scenarios.

Task-specific metrics quantify a model’s performance on its intended function.
Classification tasks employ metrics including accuracy (overall correct predic-
tions), precision (positive prediction accuracy), recall (positive case detection
rate), and F1 score (precision-recall harmonic mean) (Sokolova and Lapalme
2009). Regression problems utilize error measurements like Mean Squared
Error (MSE) and Mean Absolute Error (MAE) to assess prediction accuracy.
Domain-specific applications often require specialized metrics - for example,
machine translation uses the BLEU score to evaluate the semantic and syntac-
tic similarity between machine-generated and human reference translations
(Papineni et al. 2001).

Chapter 12. Benchmarking AI 631

As models transition from research to production deployment, implementa-
tion metrics become equally important. Model size, measured in parameters
or memory footprint, affects deployment feasibility across different hardware
platforms. Processing latency, typically measured in milliseconds per infer-
ence, determines whether the model meets real-time requirements. Energy
consumption, measured in watts or joules per inference, indicates operational
efÏciency. These practical considerations reflect the growing need for solutions
that balance accuracy with computational efÏciency.

The selection of appropriate metrics requires careful consideration of task
requirements and deployment constraints. A single metric rarely captures all
relevant aspects of performance. For instance, in anomaly detection systems,
high accuracy alone may not indicate good performance if the model generates
frequent false alarms. Similarly, a fast model with poor accuracy fails to provide
practical value.

Figure 12.4 demonstrates this multi-metric evaluation approach. The anomaly
detection system reports performance across multiple dimensions: model size
(270 Kparameters), processing speed (10.4 ms/inference), and detection accu-
racy (0.86 AUC). This combination of metrics ensures the model meets both
technical and operational requirements in real-world deployment scenarios.

12.4.5 Benchmark Harness
Evaluation metrics provide the measurement framework, while a benchmark
harness implements the systematic infrastructure for evaluating model per-
formance under controlled conditions. This critical component ensures repro-
ducible testing by managing how inputs are delivered to the system under
test and how measurements are collected, effectively transforming theoretical
metrics into quantifiable measurements.

The harness design should align with the intended deployment scenario
and usage patterns. For server deployments, the harness implements request
patterns that simulate real-world trafÏc, typically generating inputs using a
Poisson distribution to model random but statistically consistent server work-
loads. The harness manages concurrent requests and varying load intensities
to evaluate system behavior under different operational conditions.

For embedded and mobile applications, the harness generates input pat-
terns that reflect actual deployment conditions. This might involve sequential
image injection for mobile vision applications or synchronized multi-sensor
streams for autonomous systems. Such precise input generation and timing
control ensures the system experiences realistic operational patterns, revealing
performance characteristics that would emerge in actual device deployment.

The harness must also accommodate different throughput models. Batch
processing scenarios require the ability to evaluate system performance on large
volumes of parallel inputs, while real-time applications need precise timing
control for sequential processing. Figure 12.4 illustrates this in the embedded
implementation phase, where the harness must support precise measurement
of inference time and energy consumption per operation.

Reproducibility demands that the harness maintain consistent testing condi-
tions across different evaluation runs. This includes controlling environmental

12.4. Benchmark Components 632

factors such as background processes, thermal conditions, and power states that
might affect performance measurements. The harness must also provide mech-
anisms for collecting and logging performance metrics without significantly
impacting the system under test.

12.4.6 System Specifications
Beyond the benchmark harness that controls test execution, system specifi-
cations are fundamental components of machine learning benchmarks that
directly impact model performance, training time, and experimental repro-
ducibility. These specifications encompass the complete computational envi-
ronment, ensuring that benchmarking results can be properly contextualized,
compared, and reproduced by other researchers.

Hardware specifications typically include:
1. Processor type and speed (e.g., CPU model, clock rate)
2. GPUs, or TPUs, including model, memory capacity, and quantity if used

for distributed training
3. Memory capacity and type (e.g., RAM size, DDR4)
4. Storage type and capacity (e.g., SSD, HDD)
5. Network configuration, if relevant for distributed computing

Software specifications generally include:
1. Operating system and version
2. Programming language and version
3. Machine learning frameworks and libraries (e.g., TensorFlow, PyTorch)

with version numbers
4. Compiler information and optimization flags
5. Custom software or scripts used in the benchmark process
6. Environment management tools and configuration (e.g., Docker contain-

ers, virtual environments)

The precise documentation of these specifications is essential for experimental
validity and reproducibility. This documentation enables other researchers
to replicate the benchmark environment with high fidelity, provides critical
context for interpreting performance metrics, and facilitates understanding of
resource requirements and scaling characteristics across different models and
tasks.

In many cases, benchmarks may include results from multiple hardware con-
figurations to provide a more comprehensive view of model performance across
different computational environments. This approach is particularly valuable as
it highlights the trade-offs between model complexity, computational resources,
and performance.

As the field evolves, hardware and software specifications increasingly in-
corporate detailed energy consumption metrics and computational efÏciency
measures, such as FLOPS/watt and total power usage over training time. This
expansion reflects growing concerns about the environmental impact of large-
scale machine learning models and supports the development of more sus-
tainable AI practices. Comprehensive specification documentation thus serves

Chapter 12. Benchmarking AI 633

multiple purposes: enabling reproducibility, supporting fair comparisons, and
advancing both the technical and environmental aspects of machine learning
research.

12.4.7 Run Rules
Run rules establish the procedural framework that ensures benchmark results
can be reliably replicated by researchers and practitioners, complementing the
technical environment defined by system specifications. These guidelines are
fundamental for validating research claims, building upon existing work, and
advancing machine learning. Central to reproducibility in AI benchmarks is the
management of controlled randomness—the systematic handling of stochastic
processes such as weight initialization and data shufÒing that ensures consistent,
verifiable results.

Comprehensive documentation of hyperparameters forms a critical compo-
nent of reproducibility. Hyperparameters are configuration settings that govern
the learning process independently of the training data, including learning
rates, batch sizes, and network architectures. Given that minor hyperparameter
adjustments can significantly impact model performance, their precise docu-
mentation is essential. Additionally, benchmarks mandate the preservation
and sharing of training and evaluation datasets. When direct data sharing
is restricted by privacy or licensing constraints, benchmarks must provide
detailed specifications for data preprocessing and selection criteria, enabling
researchers to construct comparable datasets or understand the characteristics
of the original experimental data.

Code provenance and availability constitute another vital aspect of repro-
ducibility guidelines. Contemporary benchmarks typically require researchers
to publish implementation code in version-controlled repositories, encompass-
ing not only the model implementation but also comprehensive scripts for data
preprocessing, training, and evaluation. Advanced benchmarks often provide
containerized environments that encapsulate all dependencies and configu-
rations. Furthermore, detailed experimental logging is mandatory, including
systematic recording of training metrics, model checkpoints, and documenta-
tion of any experimental adjustments.

These reproducibility guidelines serve multiple crucial functions: they en-
hance transparency, enable rigorous peer review, and accelerate scientific progress
in AI research. By following these protocols, the research community can ef-
fectively verify results, iterate on successful approaches, and identify method-
ological limitations. In the rapidly evolving landscape of machine learning,
these robust reproducibility practices form the foundation for reliable and
progressive research.

12.4.8 Result Interpretation
Building upon the foundation established by run rules, result interpretation
guidelines provide the essential framework for understanding and contextualiz-
ing benchmark outcomes. These guidelines help researchers and practitioners
draw meaningful conclusions from benchmark results, ensuring fair and infor-
mative comparisons between different models or approaches. A fundamental

12.4. Benchmark Components 634

aspect is understanding the statistical significance of performance differences.
Benchmarks typically specify protocols for conducting statistical tests and re-
porting confidence intervals, enabling practitioners to distinguish between
meaningful improvements and variations attributable to random factors.

Result interpretation requires careful consideration of real-world applications.
While a 1% improvement in accuracy might be crucial for medical diagnostics or
financial systems, other applications might prioritize inference speed or model
efÏciency over marginal accuracy gains. Understanding these context-specific
requirements is essential for meaningful interpretation of benchmark results.
Users must also recognize inherent benchmark limitations, as no single evalu-
ation framework can encompass all possible use cases. Common limitations
include dataset biases, task-specific characteristics, and constraints of evaluation
metrics.

Modern benchmarks often necessitate multi-dimensional analysis across var-
ious performance metrics. For instance, when a model demonstrates superior
accuracy but requires substantially more computational resources, interpre-
tation guidelines help practitioners evaluate these trade-offs based on their
specific constraints and requirements. The guidelines also address the critical
issue of benchmark overfitting, where models might be excessively optimized
for specific benchmark tasks at the expense of real-world generalization. To
mitigate this risk, guidelines often recommend evaluating model performance
on related but distinct tasks and considering practical deployment scenarios.

These comprehensive interpretation frameworks ensure that benchmarks
serve their intended purpose: providing standardized performance measure-
ments while enabling nuanced understanding of model capabilities. This bal-
anced approach supports evidence-based decision-making in both research
contexts and practical machine learning applications.

12.4.9 Example Benchmark

A benchmark run evaluates system performance by synthesizing multiple com-
ponents under controlled conditions to produce reproducible measurements.
Figure 12.4 illustrates this integration through an audio anomaly detection
system. It shows how performance metrics are systematically measured and
reported within a framework that encompasses problem definition, datasets,
model selection, evaluation criteria, and standardized run rules.

The benchmark measures several key performance dimensions. For compu-
tational resources, the system reports a model size of 270 Kparameters and
requires 10.4 milliseconds per inference. For task effectiveness, it achieves a
detection accuracy of 0.86 AUC (Area Under Curve) in distinguishing normal
from anomalous audio patterns. For operational efÏciency, it consumes 516 µJ
of energy per inference.

The relative importance of these metrics varies by deployment context. En-
ergy consumption per inference is critical for battery-powered devices but less
consequential for systems with constant power supply. Model size constraints
differ significantly between cloud deployments with abundant resources and
embedded devices with limited memory. Processing speed requirements de-

Chapter 12. Benchmarking AI 635

pend on whether the system must operate in real-time or can process data in
batches.

The benchmark reveals inherent trade-offs between performance metrics
in machine learning systems. For instance, reducing the model size from
270 Kparameters might improve processing speed and energy efÏciency but
could decrease the 0.86 AUC detection accuracy. Figure 12.4 illustrates how
these interconnected metrics contribute to overall system performance in the
deployment phase.

Whether these measurements constitute a “passing” benchmark depends on
the specific requirements of the intended application. The benchmark frame-
work provides the structure and methodology for consistent evaluation, while
the acceptance criteria must align with deployment constraints and performance
requirements.

12.5 Benchmarking Granularity
While benchmarking components individually provides detailed insights into
model selection, dataset efÏciency, and evaluation metrics, a complete assess-
ment of machine learning systems requires analyzing performance across differ-
ent levels of abstraction. Benchmarks can range from fine-grained evaluations
of individual tensor operations to holistic end-to-end measurements of full AI
pipelines.

System level benchmarking provides a structured and systematic approach
to assessing a ML system’s performance across various dimensions. Given the
complexity of ML systems, we can dissect their performance through different
levels of granularity and obtain a comprehensive view of the system’s efÏciency,
identify potential bottlenecks, and pinpoint areas for improvement. To this
end, various types of benchmarks have evolved over the years and continue to
persist.

Figure 12.5 shows the different layers of granularity of an ML system. At
the application level, end-to-end benchmarks assess the overall system per-
formance, considering factors like data preprocessing, model training, and
inference. While at the model layer, benchmarks focus on assessing the efÏ-
ciency and accuracy of specific models. This includes evaluating how well
models generalize to new data and their computational efÏciency during train-
ing and inference. Furthermore, benchmarking can extend to hardware and
software infrastructure, examining the performance of individual components
like GPUs or TPUs.

Figure 12.5: ML system granularity.

12.5. Benchmarking Granularity 636

12.5.1 Micro Benchmarks
Micro-benchmarks are specialized evaluation tools that assess distinct com-
ponents or specific operations within a broader machine learning process.
These benchmarks isolate individual tasks to provide detailed insights into
the computational demands of particular system elements, from neural net-
work layers to optimization techniques to activation functions. For example,
micro-benchmarks might measure the time required to execute a convolutional
layer in a deep learning model or evaluate the speed of data preprocessing
operations that prepare training data.

A key area of micro-benchmarking focuses on tensor operations, which are the
computational foundation of deep learning. Libraries like cuDNN by NVIDIA
provide benchmarks for measuring fundamental computations such as convo-
lutions and matrix multiplications across different hardware configurations.
These measurements help developers understand how their hardware handles
the core mathematical operations that dominate ML workloads.

Micro-benchmarks also examine activation functions and neural network lay-
ers in isolation. This includes measuring the performance of various activation
functions like ReLU, Sigmoid, and Tanh under controlled conditions, as well as
evaluating the computational efÏciency of distinct neural network components
such as LSTM cells or Transformer blocks when processing standardized inputs.

DeepBench, developed by Baidu, was one of the first to demonstrate the
value of comprehensive micro-benchmarking. It evaluates these fundamental
operations across different hardware platforms, providing detailed performance
data that helps developers optimize their deep learning implementations. By
isolating and measuring individual operations, DeepBench enables precise
comparison of hardware platforms and identification of potential performance
bottlenecks.

12.5.2 Macro Benchmarks
While micro-benchmarks examine individual operations like tensor computa-
tions and layer performance, macro benchmarks evaluate complete machine
learning models. This shift from component-level to model-level assessment
provides insights into how architectural choices and component interactions af-
fect overall model behavior. For instance, while micro-benchmarks might show
optimal performance for individual convolutional layers, macro-benchmarks
reveal how these layers work together within a complete convolutional neural
network.

Macro-benchmarks measure multiple performance dimensions that emerge
only at the model level. These include prediction accuracy, which shows how
well the model generalizes to new data; memory consumption patterns across
different batch sizes and sequence lengths; throughput under varying compu-
tational loads; and latency across different hardware configurations. Under-
standing these metrics helps developers make informed decisions about model
architecture, optimization strategies, and deployment configurations.

The assessment of complete models occurs under standardized conditions
using established datasets and tasks. For example, computer vision models
might be evaluated on ImageNet, measuring both computational efÏciency and

https://developer.nvidia.com/cudnn
https://github.com/baidu-research/DeepBench
https://www.image-net.org/

Chapter 12. Benchmarking AI 637

4 EEMBC (Embedded Micropro-
cessor Benchmark Consortium): A
nonprofit industry group that devel-
ops benchmarks for embedded sys-
tems, including MLMark for evalu-
ating machine learning workloads.

prediction accuracy. Natural language processing models might be assessed
on translation tasks, examining how they balance quality and speed across
different language pairs.

Several industry-standard benchmarks enable consistent model evaluation
across platforms. MLPerf Inference provides comprehensive testing suites
adapted for different computational environments (Reddi et al. 2019). MLPerf
Mobile focuses on mobile device constraints (Janapa Reddi et al. 2022), while
MLPerf Tiny addresses microcontroller deployments (C. Banbury et al. 2021).
For embedded systems, EEMBC’s MLMark4 emphasizes both performance
and power efÏciency. The AI-Benchmark suite specializes in mobile platforms,
evaluating models across diverse tasks from image recognition to face parsing.

12.5.3 End-to-End Benchmarks
End-to-end benchmarks provide an all-inclusive evaluation that extends be-
yond the boundaries of the ML model itself. Rather than focusing solely on a
machine learning model’s computational efÏciency or accuracy, these bench-
marks encompass the entire pipeline of an AI system. This includes initial ETL
(Extract-Transform-Load) or ELT (Extract-Load-Transform) data processing, the
core model’s performance, post-processing of results, and critical infrastructure
components like storage and network systems.

Data processing is the foundation of all AI systems, transforming raw data
into a format suitable for model training or inference. In ETL pipelines, data
undergoes extraction from source systems, transformation through cleaning
and feature engineering, and loading into model-ready formats. These pre-
processing steps’ efÏciency, scalability, and accuracy significantly impact over-
all system performance. End-to-end benchmarks must assess standardized
datasets through these pipelines to ensure data preparation doesn’t become a
bottleneck.

The post-processing phase plays an equally important role. This involves
interpreting the model’s raw outputs, converting scores into meaningful cat-
egories, filtering results based on predefined tasks, or integrating with other
systems. For instance, a computer vision system might need to post-process
detection boundaries, apply confidence thresholds, and format results for down-
stream applications. In real-world deployments, this phase proves crucial for
delivering actionable insights.

Beyond core AI operations, infrastructure components heavily influence over-
all performance and user experience. Storage solutions, whether cloud-based,
on-premises, or hybrid, can significantly impact data retrieval and storage times,
especially with vast AI datasets. Network interactions, vital for distributed
systems, can become performance bottlenecks if not optimized. End-to-end
benchmarks must evaluate these components under specified environmental
conditions to ensure reproducible measurements of the entire system.

To date, there are no public, end-to-end benchmarks that fully account for
data storage, network, and compute performance. While MLPerf Training
and Inference approach end-to-end evaluation, they primarily focus on model
performance rather than real-world deployment scenarios. Nonetheless, they
provide valuable baseline metrics for assessing AI system capabilities.

https://github.com/mlcommons/inference
https://github.com/mlcommons/mobile_app_open
https://github.com/mlcommons/mobile_app_open
https://github.com/mlcommons/tiny
https://github.com/eembc/mlmark
https://ai-benchmark.com/

12.6. Training Benchmarks 638

Given the inherent specificity of end-to-end benchmarking, organizations
typically perform these evaluations internally by instrumenting production
deployments. This allows engineers to develop result interpretation guidelines
based on realistic workloads, but given the sensitivity and specificity of the
information, these benchmarks rarely appear in public settings.

12.5.4 Trade-offs
As shown in Table 12.1, different challenges emerge at different stages of an
AI system’s lifecycle. Each benchmarking approach provides unique insights:
micro-benchmarks help engineers optimize specific components like GPU ker-
nel implementations or data loading operations, macro-benchmarks guide
model architecture decisions and algorithm selection, while end-to-end bench-
marks reveal system-level bottlenecks in production environments.

Table 12.1: Comparison of benchmarking approaches across different dimen-
sions. Each approach offers distinct advantages and focuses on
different aspects of ML system evaluation.

Compo-
nent Micro Benchmarks Macro Benchmarks End-to-End Benchmarks

Focus Individual operations Complete models Full system pipeline
Scope Tensor ops, layers, activations Model architecture, training,

inference
ETL, model, infrastructure

Example Conv layer performance on
cuDNN

ResNet-50 on ImageNet Production recommendation
system

Advan-
tages

Precise bottleneck
identification, Component
optimization

Model architecture
comparison, Standardized
evaluation

Realistic performance
assessment, System-wide
insights

Challenges May miss interaction effects Limited infrastructure
insights

Complex to standardize,
Often proprietary

Typical Use Hardware selection, Operation
optimization

Model selection, Research
comparison

Production system evaluation

Component interaction often produces unexpected behaviors. For example,
while micro-benchmarks might show excellent performance for individual
convolutional layers, and macro-benchmarks might demonstrate strong accu-
racy for the complete model, end-to-end evaluation could reveal that data pre-
processing creates unexpected bottlenecks during high-trafÏc periods. These
system-level insights often remain hidden when components undergo isolated
testing.

Component interaction often produces unexpected behaviors. For example,
while micro-benchmarks might show excellent performance for individual
convolutional layers, and macro-benchmarks might demonstrate strong accu-
racy for the complete model, end-to-end evaluation could reveal that data pre-
processing creates unexpected bottlenecks during high-trafÏc periods. These
system-level insights often remain hidden when components undergo isolated
testing.

12.6 Training Benchmarks
Training benchmarks provide a systematic approach to evaluating the efÏciency,
scalability, and resource demands of the training phase. They allow practition-

Chapter 12. Benchmarking AI 639

ers to assess how different design choices, including model architectures, data
loading mechanisms, hardware configurations, and distributed training strate-
gies, impact performance. These benchmarks are particularly vital as machine
learning systems grow in scale, requiring billions of parameters, terabytes of
data, and distributed computing environments.

For instance, large-scale models like OpenAI’s GPT-3 (T. B. Brown, Mann,
Ryder, Subbiah, Kaplan, and al. 2020), which consists of 175 billion parameters
trained on 45 terabytes of data, highlight the immense computational demands
of training. Benchmarks enable systematic evaluation of the underlying systems
to ensure that hardware and software configurations can meet these demands
efÏciently.

�� Definition of ML Training Benchmarks

ML Training Benchmarks are standardized tools used to evaluate the
performance, efÏciency, and scalability of machine learning systems during
the training phase. These benchmarks measure key system-level metrics,
such as time-to-accuracy, throughput, resource utilization, and energy con-
sumption. By providing a structured evaluation framework, training
benchmarks enable fair comparisons across hardware platforms, software
frameworks, and distributed computing setups. They help identify bottle-
necks and optimize training processes for large-scale machine learning models,
ensuring that computational resources are used effectively.

EfÏcient data storage and delivery during training also play a major role in the
training process. For instance, in a machine learning model that predicts bound-
ing boxes around objects in an image, thousands of images may be required.
However, loading an entire image dataset into memory is typically infeasible,
so practitioners rely on data loaders from ML frameworks. Successful model
training depends on timely and efÏcient data delivery, making it essential to
benchmark tools like data pipelines, preprocessing speed, and storage retrieval
times to understand their impact on training performance.

Hardware selection is another key factor in training machine learning systems,
as it can significantly impact training time. Training benchmarks evaluate CPU,
GPU, memory, and network utilization during the training phase to guide
system optimizations. Understanding how resources are used is essential:
Are GPUs being fully leveraged? Is there unnecessary memory overhead?
Benchmarks can uncover bottlenecks or inefÏciencies in resource utilization,
leading to cost savings and performance improvements.

In many cases, using a single hardware accelerator, such as a single GPU, is
insufÏcient to meet the computational demands of large-scale model training.
Machine learning models are often trained in data centers with multiple GPUs
or TPUs, where distributed computing enables parallel processing across nodes.
Training benchmarks assess how efÏciently the system scales across multiple
nodes, manages data sharding, and handles challenges like node failures or
drop-offs during training.

https://arxiv.org/abs/2005.14165

12.6. Training Benchmarks 640

To illustrate these benchmarking principles, we will reference MLPerf Train-
ing throughout this section. Briefly, MLPerf is an industry-standard benchmark
suite designed to evaluate machine learning system performance. It provides
standardized tests for training and inference across a range of deep learning
workloads, including image classification, language modeling, object detection,
and recommendation systems.

12.6.1 Motivation
From a systems perspective, training machine learning models is a compu-
tationally intensive process that requires careful optimization of resources.
Training benchmarks serve as essential tools for evaluating system efÏciency,
identifying bottlenecks, and ensuring that machine learning systems can scale
effectively. They provide a standardized approach to measuring how various
system components, including hardware accelerators, memory, storage, and
network infrastructure, affect training performance.

Training benchmarks enable researchers and engineers to push the state-
of-the-art, optimize configurations, improve scalability, and reduce overall
resource consumption by systematically evaluating these factors. As shown in
Figure 12.6, the performance improvements in progressive versions of MLPerf
Training benchmarks have consistently outpaced Moore’s Law, which demon-
strates that what gets measured gets improved. Using standardized bench-
marking trends allows us to rigorously showcase the rapid evolution of ML
computing.

Figure 12.6: MLPerf Training perfor-
mance trends. Source: Tschand et
al. (2024).

12.6.1.1 Importance of Training Benchmarks

As machine learning models grow in complexity, training becomes increasingly
demanding in terms of compute power, memory, and data storage. The ability
to measure and compare training efÏciency is critical to ensuring that systems
can effectively handle large-scale workloads. Training benchmarks provide a
structured methodology for assessing performance across different hardware
platforms, software frameworks, and optimization techniques.

https://mlcommons.org/benchmarks/training/
https://mlcommons.org/benchmarks/training/

Chapter 12. Benchmarking AI 641

5 TensorFloat-32 (TF32): Intro-
duced in NVIDIA Ampere GPUs,
provides higher throughput than
FP32 but may introduce numerical
stability issues affecting model con-
vergence.

One of the fundamental challenges in training machine learning models is the
efÏcient allocation of computational resources. Training a transformer-based
model such as GPT-3, which consists of 175 billion parameters and requires
processing terabytes of data, places an enormous burden on modern computing
infrastructure. Without standardized benchmarks, it becomes difÏcult to deter-
mine whether a system is fully utilizing its resources or whether inefÏciencies,
including slow data loading, underutilized accelerators, and excessive memory
overhead, are limiting performance.

Training benchmarks help uncover such inefÏciencies by measuring key
performance indicators, including system throughput, time-to-accuracy, and
hardware utilization. These benchmarks allow practitioners to analyze whether
GPUs, TPUs, and CPUs are being leveraged effectively or whether specific bot-
tlenecks, such as memory bandwidth constraints or inefÏcient data pipelines,
are reducing overall system performance. For example, a system using TF325

precision1 may achieve higher throughput than one using FP32, but if TF32
introduces numerical instability that increases the number of iterations re-
quired to reach the target accuracy, the overall training time may be longer. By
providing insights into these factors, benchmarks support the design of more ef-
ficient training workflows that maximize hardware potential while minimizing
unnecessary computation.

12.6.1.2 Hardware & Software Optimization
The performance of machine learning training is heavily influenced by the
choice of hardware and software. Training benchmarks guide system designers
in selecting optimal configurations by measuring how different architectures,
including GPUs, TPUs, and emerging AI accelerators, handle computational
workloads. These benchmarks also evaluate how well deep learning frame-
works, such as TensorFlow and PyTorch, optimize performance across different
hardware setups.

For example, the MLPerf Training benchmark suite is widely used to compare
the performance of different accelerator architectures on tasks such as image
classification, natural language processing, and recommendation systems. By
running standardized benchmarks across multiple hardware configurations,
engineers can determine whether certain accelerators are better suited for spe-
cific training workloads. This information is particularly valuable in large-scale
data centers and cloud computing environments, where selecting the right
combination of hardware and software can lead to significant performance
gains and cost savings.

Beyond hardware selection, training benchmarks also inform software op-
timizations. Machine learning frameworks implement various low-level opti-
mizations, including mixed-precision training, memory-efÏcient data loading,
and distributed training strategies, that can significantly impact system perfor-
mance. Benchmarks help quantify the impact of these optimizations, ensuring
that training systems are configured for maximum efÏciency.

12.6.1.3 Scalability & EfÏciency
As machine learning workloads continue to grow, efÏcient scaling across dis-
tributed computing environments has become a key concern. Many modern

12.6. Training Benchmarks 642

deep learning models are trained across multiple GPUs or TPUs, requiring
efÏcient parallelization strategies to ensure that additional computing resources
lead to meaningful performance improvements. Training benchmarks measure
how well a system scales by evaluating system throughput, memory efÏciency,
and overall training time as additional computational resources are introduced.

Effective scaling is not always guaranteed. While adding more GPUs or TPUs
should, in theory, reduce training time, issues such as communication over-
head, data synchronization latency, and memory bottlenecks can limit scaling
efÏciency. Training benchmarks help identify these challenges by quantifying
how performance scales with increasing hardware resources. A well-designed
system should exhibit near-linear scaling, where doubling the number of GPUs
results in a near-halving of training time. However, real-world inefÏciencies
often prevent perfect scaling, and benchmarks provide the necessary insights
to optimize system design accordingly.

Another crucial factor in training efÏciency is time-to-accuracy, which mea-
sures how quickly a model reaches a target accuracy level. Achieving faster
convergence with fewer computational resources is a key goal in training opti-
mization, and benchmarks help compare different training methodologies to
determine which approaches strike the best balance between speed and accu-
racy. By leveraging training benchmarks, system designers can assess whether
their infrastructure is capable of handling large-scale workloads efÏciently
while maintaining training stability and accuracy.

12.6.1.4 Cost & Energy Factors

The computational cost of training large-scale models has risen sharply in recent
years, making cost-efÏciency a critical consideration. Training a model such as
GPT-3 can require millions of dollars in cloud computing resources, making it
imperative to evaluate cost-effectiveness across different hardware and software
configurations. Training benchmarks provide a means to quantify the cost per
training run by analyzing computational expenses, cloud pricing models, and
energy consumption.

Beyond financial cost, energy efÏciency has become an increasingly impor-
tant metric. Large-scale training runs consume vast amounts of electricity,
contributing to significant carbon emissions. Benchmarks help evaluate en-
ergy efÏciency by measuring power consumption per unit of training progress,
allowing organizations to identify sustainable approaches to AI development.

For example, MLPerf includes an energy benchmarking component that
tracks the power consumption of various hardware accelerators during training.
This allows researchers to compare different computing platforms not only in
terms of raw performance but also in terms of their environmental impact. By
integrating energy efÏciency metrics into benchmarking studies, organizations
can design AI systems that balance computational power with sustainability
goals.

12.6.1.5 Fair ML Systems Comparison

One of the primary functions of training benchmarks is to establish a standard-
ized framework for comparing ML systems. Given the wide variety of hardware

Chapter 12. Benchmarking AI 643

architectures, deep learning frameworks, and optimization techniques available
today, ensuring fair and reproducible comparisons is essential.

Standardized benchmarks provide a common evaluation methodology, al-
lowing researchers and practitioners to assess how different training systems
perform under identical conditions. For example, MLPerf Training benchmarks
enable vendor-neutral comparisons by defining strict evaluation criteria for
deep learning tasks such as image classification, language modeling, and rec-
ommendation systems. This ensures that performance results are meaningful
and not skewed by differences in dataset preprocessing, hyperparameter tuning,
or implementation details.

Furthermore, reproducibility is a major concern in machine learning research.
Training benchmarks help address this challenge by providing clearly defined
methodologies for performance evaluation, ensuring that results can be con-
sistently reproduced across different computing environments. By adhering
to standardized benchmarks, researchers can make informed decisions when
selecting hardware, software, and training methodologies, ultimately driving
progress in AI systems development.

12.6.2 Metrics
Evaluating the performance of machine learning training requires a set of well-
defined metrics that go beyond conventional algorithmic measures. From a
systems perspective, training benchmarks assess how efÏciently and effectively
a machine learning model can be trained to a predefined accuracy threshold.
Metrics such as throughput, scalability, and energy efÏciency are only mean-
ingful in relation to whether the model successfully reaches its target accuracy.
Without this constraint, optimizing for raw speed or resource utilization may
lead to misleading conclusions.

Training benchmarks, such as MLPerf Training, define specific accuracy
targets for different machine learning tasks, ensuring that performance mea-
surements are made in a fair and reproducible manner. A system that trains a
model quickly but fails to reach the required accuracy is not considered a valid
benchmark result. Conversely, a system that achieves the best possible accuracy
but takes an excessive amount of time or resources may not be practically use-
ful. Effective benchmarking requires balancing speed, efÏciency, and accuracy
convergence.

12.6.2.1 Time and Throughput

One of the fundamental metrics for evaluating training efÏciency is the time
required to reach a predefined accuracy threshold. Training time (𝑇train) mea-
sures how long a model takes to converge to an acceptable performance level,
reflecting the overall computational efÏciency of the system. It is formally
defined as: 𝑇train = argmin𝑡 {accuracy(𝑡) ≥ target accuracy}

This metric ensures that benchmarking focuses on how quickly and effectively
a system can achieve meaningful results.

12.6. Training Benchmarks 644

Throughput, often expressed as the number of training samples processed
per second, provides an additional measure of system performance:𝑇 = 𝑁samples𝑇train

where 𝑁samples is the total number of training samples processed. However,
throughput alone does not guarantee meaningful results, as a model may
process a large number of samples quickly without necessarily reaching the
desired accuracy.

For example, in MLPerf Training, the benchmark for ResNet-50 may require
reaching an accuracy target like 75.9% top-1 on the ImageNet dataset. A system
that processes 10,000 images per second but fails to achieve this accuracy is
not considered a valid benchmark result, while a system that processes fewer
images per second but converges efÏciently is preferable. This highlights why
throughput must always be evaluated in relation to time-to-accuracy rather
than as an independent performance measure.

12.6.2.2 Scalability & Parallelism

As machine learning models increase in size, training workloads often require
distributed computing across multiple processors or accelerators. Scalability
measures how effectively training performance improves as more computa-
tional resources are added. An ideal system should exhibit near-linear scaling,
where doubling the number of GPUs or TPUs leads to a proportional reduction
in training time. However, real-world performance is often constrained by
factors such as communication overhead, memory bandwidth limitations, and
inefÏciencies in parallelization strategies.

When training large-scale models such as GPT-3, OpenAI employed thou-
sands of GPUs in a distributed training setup. While increasing the number of
GPUs provided more raw computational power, the performance improvements
were not perfectly linear due to network communication overhead between
nodes. Benchmarks such as MLPerf quantify how well a system scales across
multiple GPUs, providing insights into where inefÏciencies arise in distributed
training.

Parallelism in training is categorized into data parallelism, model parallelism,
and pipeline parallelism, each presenting distinct challenges. Data parallelism,
the most commonly used strategy, involves splitting the training dataset across
multiple compute nodes. The efÏciency of this approach depends on syn-
chronization mechanisms and gradient communication overhead. In contrast,
model parallelism partitions the neural network itself, requiring efÏcient coor-
dination between processors. Benchmarks evaluate how well a system manages
these parallelism strategies without degrading accuracy convergence.

12.6.2.3 Resource Utilization

The efÏciency of machine learning training depends not only on speed and
scalability but also on how well available hardware resources are utilized.
Compute utilization measures the extent to which processing units, such as

Chapter 12. Benchmarking AI 645

GPUs or TPUs, are actively engaged during training. Low utilization may
indicate bottlenecks in data movement, memory access, or inefÏcient workload
scheduling.

For instance, when training BERT on a TPU cluster, researchers observed
that input pipeline inefÏciencies were limiting overall throughput. Although
the TPUs had high raw compute power, the system was not keeping them
fully utilized due to slow data retrieval from storage. By profiling the resource
utilization, engineers identified the bottleneck and optimized the input pipeline
using TFRecord and data prefetching, leading to improved performance.

Memory bandwidth is another critical factor, as deep learning models require
frequent access to large volumes of data during training. If memory bandwidth
becomes a limiting factor, increasing compute power alone will not improve
training speed. Benchmarks assess how well models leverage available memory,
ensuring that data transfer rates between storage, main memory, and processing
units do not become performance bottlenecks.

I/O performance also plays a significant role in training efÏciency, partic-
ularly when working with large datasets that cannot fit entirely in memory.
Benchmarks evaluate the efÏciency of data loading pipelines, including prepro-
cessing operations, caching mechanisms, and storage retrieval speeds. Systems
that fail to optimize data loading can experience significant slowdowns, regard-
less of computational power.

12.6.2.4 Energy EfÏciency & Cost

Training large-scale machine learning models requires substantial computa-
tional resources, leading to significant energy consumption and financial costs.
Energy efÏciency metrics quantify the power usage of training workloads, help-
ing identify systems that optimize computational efÏciency while minimizing
energy waste. The increasing focus on sustainability has led to the inclusion of
energy-based benchmarks, such as those in MLPerf Training, which measure
power consumption per training run.

Training GPT-3 was estimated to consume 1,287 MWh of electricity, which is
comparable to the yearly energy usage of 100 US households. If a system can
achieve the same accuracy with fewer training iterations, it directly reduces
energy consumption. Energy-aware benchmarks help guide the development
of hardware and training strategies that optimize power efÏciency while main-
taining accuracy targets.

Cost considerations extend beyond electricity usage to include hardware
expenses, cloud computing costs, and infrastructure maintenance. Training
benchmarks provide insights into the cost-effectiveness of different hardware
and software configurations by measuring training time in relation to resource
expenditure. Organizations can use these benchmarks to balance performance
and budget constraints when selecting training infrastructure.

12.6.2.5 Fault Tolerance & Robustness

Training workloads often run for extended periods, sometimes spanning days or
weeks, making fault tolerance an essential consideration. A robust system must
be capable of handling unexpected failures, including hardware malfunctions,

12.6. Training Benchmarks 646

network disruptions, and memory errors, without compromising accuracy
convergence.

In large-scale cloud-based training, node failures are common due to hard-
ware instability. If a GPU node in a distributed cluster fails, training must
continue without corrupting the model. MLPerf Training includes evaluations
of fault-tolerant training strategies, such as checkpointing, where models peri-
odically save their progress. This ensures that failures do not require restarting
the entire training process.

12.6.2.6 Reproducibility & Standardization

For benchmarks to be meaningful, results must be reproducible across different
runs, hardware platforms, and software frameworks. Variability in training
results can arise due to stochastic processes, hardware differences, and software
optimizations. Ensuring reproducibility requires standardizing evaluation
protocols, controlling for randomness in model initialization, and enforcing
consistency in dataset processing.

MLPerf Training enforces strict reproducibility requirements, ensuring that
accuracy results remain stable across multiple training runs. When NVIDIA
submitted benchmark results for MLPerf, they had to demonstrate that their
ResNet-50 ImageNet training time remained consistent across different GPUs.
This ensures that benchmarks measure true system performance rather than
noise from randomness.

12.6.3 Training Performance Evaluation
Evaluating the performance of machine learning training systems involves more
than just measuring how fast a model can be trained. A comprehensive bench-
marking approach considers multiple dimensions—each capturing a different
aspect of system behavior. The specific metrics used depend on the goals of the
evaluation, whether those are optimizing speed, improving resource efÏciency,
reducing energy consumption, or ensuring robustness and reproducibility.

Table 12.2 provides an overview of the core categories and associated metrics
commonly used to benchmark system-level training performance. These cate-
gories serve as a framework for understanding how training systems behave
under different workloads and configurations.

Table 12.2: Training benchmark metrics and evaluation dimensions.

Category Key Metrics Example Benchmark Use

Training Time and
Throughput

Time-to-accuracy (seconds, minutes, hours); Throughput
(samples/sec)

Comparing training speed
across different GPU
architectures

Scalability and
Parallelism

Scaling efÏciency (% of ideal speedup); Communication
overhead (latency, bandwidth)

Analyzing distributed
training performance for large
models

Resource
Utilization

Compute utilization (% GPU/TPU usage); Memory
bandwidth (GB/s); I/O efÏciency (data loading speed)

Optimizing data pipelines to
improve GPU utilization

Energy EfÏciency
and Cost

Energy consumption per run (MWh, kWh); Performance
per watt (TOPS/W)

Evaluating energy-efÏcient
training strategies

Fault Tolerance
and Robustness

Checkpoint overhead (time per save); Recovery success rate
(%)

Assessing failure recovery in
cloud-based training systems

Chapter 12. Benchmarking AI 647

Category Key Metrics Example Benchmark Use

Reproducibility
and
Standardization

Variance across runs (% difference in accuracy, training
time); Framework consistency (TensorFlow vs. PyTorch
vs. JAX)

Ensuring consistency in
benchmark results across
hardware

Training time and throughput are often the first metrics considered when
evaluating system performance. Time-to-accuracy, the duration required for
a model to achieve a specified accuracy level, is a practical and widely used
benchmark. Throughput, typically measured in samples per second, provides
insight into how efÏciently data is processed during training. For example,
when comparing a ResNet-50 model trained on NVIDIA A100 versus V100
GPUs, the A100 generally offers higher throughput and faster convergence.
However, it is important to ensure that increased throughput does not come
at the expense of convergence quality, especially when reduced numerical
precision (e.g., TF32) is used to speed up computation.

As model sizes continue to grow, scalability becomes a critical performance
dimension. EfÏcient use of multiple GPUs or TPUs is essential for training
large models such as GPT-3 or T5. In this context, scaling efÏciency and com-
munication overhead are key metrics. A system might scale linearly up to
64 GPUs, but beyond that, performance gains may taper off due to increased
synchronization and communication costs. Benchmarking tools that monitor
interconnect bandwidth and gradient aggregation latency can reveal how well
a system handles distributed training.

Resource utilization complements these measures by examining how effec-
tively a system leverages its compute and memory resources. Metrics such as
GPU utilization, memory bandwidth, and data loading efÏciency help identify
performance bottlenecks. For instance, a BERT pretraining task that exhibits
only moderate GPU utilization may be constrained by an underperforming
data pipeline. Optimizations like sharding input files or prefetching data into
device memory can often resolve these inefÏciencies.

In addition to raw performance, energy efÏciency and cost have become
increasingly important considerations. Training large models at scale can con-
sume significant power, raising environmental and financial concerns. Metrics
such as energy consumed per training run and performance per watt (e.g.,
TOPS/W) help evaluate the sustainability of different hardware and system
configurations. For example, while two systems may reach the same accuracy
in the same amount of time, the one that uses significantly less energy may be
preferred for long-term deployment.

Fault tolerance and robustness address how well a system performs under
non-ideal conditions, which are common in real-world deployments. Training
jobs frequently encounter hardware failures, preemptions, or network instability.
Metrics like checkpoint overhead and recovery success rate provide insight into
the resilience of a training system. In practice, checkpointing can introduce
non-trivial overhead—for example, pausing training every 30 minutes to write
a full checkpoint may reduce overall throughput by 5-10%. Systems must strike
a balance between failure recovery and performance impact.

Finally, reproducibility and standardization ensure that benchmark results
are consistent, interpretable, and transferable. Even minor differences in soft-

12.6. Training Benchmarks 648

ware libraries, initialization seeds, or floating-point behavior can affect training
outcomes. Comparing the same model across frameworks, such as comparing
PyTorch with Automatic Mixed Precision to TensorFlow with XLA, can reveal
variation in convergence rates or final accuracy. Reliable benchmarking requires
careful control of these variables, along with repeated runs to assess statistical
variance.

Together, these dimensions provide a holistic view of training performance.
They help researchers, engineers, and system designers move beyond simplistic
comparisons and toward a more nuanced understanding of how machine
learning systems behave under realistic conditions. As training workloads
continue to scale, such multidimensional evaluation will be essential for guiding
hardware choices, software optimizations, and infrastructure design.

12.6.3.1 Training Benchmark Pitfalls

Despite the availability of well-defined benchmarking methodologies, certain
misconceptions and flawed evaluation practices often lead to misleading con-
clusions. Understanding these pitfalls is important for interpreting benchmark
results correctly.

Overemphasis on Raw Throughput. A common mistake in training bench-
marks is assuming that higher throughput always translates to better train-
ing performance. It is possible to artificially increase throughput by using
lower numerical precision, reducing synchronization, or even bypassing certain
computations. However, these optimizations do not necessarily lead to faster
convergence.

For example, a system using TF32 precision may achieve higher throughput
than one using FP32, but if TF32 introduces numerical instability that increases
the number of iterations required to reach the target accuracy, the overall train-
ing time may be longer. The correct way to evaluate throughput is in relation to
time-to-accuracy, ensuring that speed optimizations do not come at the expense
of convergence efÏciency.

Isolated Single-Node Performance. Benchmarking training performance on a
single node without considering how well it scales in a distributed setting can
lead to misleading conclusions. A GPU may demonstrate excellent through-
put when used independently, but when deployed across hundreds of nodes,
communication overhead and synchronization constraints may diminish these
efÏciency gains.

For instance, a system optimized for single-node performance may employ
memory optimizations that do not generalize well to multi-node environments.
Large-scale models such as GPT-3 require efÏcient gradient synchronization
across multiple nodes, making it essential to assess scalability rather than
relying solely on single-node performance metrics.

Ignoring Failures & Interference. Many benchmarks assume an idealized
training environment where hardware failures, memory corruption, network in-
stability, or interference from other processes do not occur. However, real-world
training jobs often experience unexpected failures and workload interference
that require checkpointing, recovery mechanisms, and resource management.

Chapter 12. Benchmarking AI 649

A system optimized for ideal-case performance but lacking fault tolerance
and interference handling may achieve impressive benchmark results under
controlled conditions, but frequent failures, inefÏcient recovery, and resource
contention could make it impractical for large-scale deployment. Effective
benchmarking should consider checkpointing overhead, failure recovery efÏ-
ciency, and the impact of interference from other processes rather than assuming
perfect execution conditions.

Linear Scaling Assumption. When evaluating distributed training, it is often
assumed that increasing the number of GPUs or TPUs will result in proportional
speedups. In practice, communication bottlenecks, memory contention, and
synchronization overheads lead to diminishing returns as more compute nodes
are added.

For example, training a model across 1,000 GPUs does not necessarily provide
100 times the speed of training on 10 GPUs. At a certain scale, gradient com-
munication costs become a limiting factor, offsetting the benefits of additional
parallelism. Proper benchmarking should assess scalability efÏciency rather
than assuming idealized linear improvements.

Ignoring Reproducibility. Benchmark results are often reported without veri-
fying their reproducibility across different hardware and software frameworks.
Even minor variations in floating-point arithmetic, memory layouts, or opti-
mization strategies can introduce statistical differences in training time and
accuracy.

For example, a benchmark run on TensorFlow with XLA optimizations
may exhibit different convergence characteristics compared to the same model
trained using PyTorch with Automatic Mixed Precision (AMP). Proper bench-
marking requires evaluating results across multiple frameworks to ensure that
software-specific optimizations do not distort performance comparisons.

12.6.3.2 Final Thoughts
Training benchmarks provide valuable insights into machine learning system
performance, but their interpretation requires careful consideration of real-
world constraints. High throughput does not necessarily mean faster training
if it compromises accuracy convergence. Similarly, scaling efÏciency must be
evaluated holistically, taking into account both computational efÏciency and
communication overhead.

Avoiding common benchmarking pitfalls and employing structured evalu-
ation methodologies allows machine learning practitioners to gain a deeper
understanding of how to optimize training workflows, design efÏcient AI sys-
tems, and develop scalable machine learning infrastructure. As models con-
tinue to increase in complexity, benchmarking methodologies must evolve to
reflect real-world challenges, ensuring that benchmarks remain meaningful
and actionable in guiding AI system development.

12.7 Inference Benchmarks
Inference benchmarks provide a systematic approach to evaluating the efÏ-
ciency, latency, and resource demands of the inference phase in machine learn-

12.7. Inference Benchmarks 650

ing systems. Unlike training, where the focus is on optimizing large-scale
computations over extensive datasets, inference involves deploying trained
models to make real-time or batch predictions efÏciently. These benchmarks
help assess how various factors, including model architectures, hardware config-
urations, quantization techniques, and runtime optimizations, impact inference
performance.

As deep learning models grow in complexity and size, efÏcient inference be-
comes a key challenge, particularly for applications requiring real-time decision-
making, such as autonomous driving, healthcare diagnostics, and conversa-
tional AI. For example, serving large-scale models like OpenAI’s GPT-4 involves
handling billions of parameters while maintaining low latency. Inference bench-
marks enable systematic evaluation of the underlying hardware and software
stacks to ensure that models can be deployed efÏciently across different envi-
ronments, from cloud data centers to edge devices.

�� Definition of ML Inference Benchmarks

ML Inference Benchmarks are standardized tools used to evaluate the
performance, efÏciency, and scalability of machine learning systems during
the inference phase. These benchmarks measure key system-level metrics,
such as latency, throughput, energy consumption, and memory footprint. By
providing a structured evaluation framework, inference benchmarks
enable fair comparisons across hardware platforms, software runtimes, and
deployment configurations. They help identify bottlenecks and optimize
inference pipelines for real-time and large-scale machine learning applications,
ensuring that computational resources are utilized effectively.

Unlike training, which is often conducted in large-scale data centers with
ample computational resources, inference must be optimized for diverse de-
ployment scenarios, including mobile devices, IoT systems, and embedded
processors. EfÏcient inference depends on multiple factors, such as optimized
data pipelines, quantization, pruning, and hardware acceleration. Benchmarks
help evaluate how well these optimizations improve real-world deployment
performance.

Hardware selection plays an important role in inference efÏciency. While
GPUs and TPUs are widely used for training, inference workloads often re-
quire specialized accelerators like NPUs (Neural Processing Units), FPGAs, and
dedicated inference chips such as Google’s Edge TPU. Inference benchmarks
evaluate the utilization and performance of these hardware components, help-
ing practitioners choose the right configurations for their deployment needs.

Scaling inference workloads across cloud servers, edge platforms, mobile
devices, and tinyML systems introduces additional challenges. As illustrated
in Figure 12.7, there is a significant differential in power consumption among
these systems, ranging from microwatts to megawatts. Inference benchmarks
evaluate the trade-offs between latency, cost, and energy efÏciency, thereby
assisting organizations in making informed deployment decisions.

https://arxiv.org/abs/2303.08774

Chapter 12. Benchmarking AI 651

Figure 12.7: Energy consumption by
system type.

10

100

1,000

10,000

100,000

Datacenter Edge Tiny Training
System Type

P
ow

er
 C

on
su

m
pt

io
n

(L
og

 S
ca

le
)

Power Type Maximum Power Minimum Power

As with training, we will reference MLPerf Inference throughout this section
to illustrate benchmarking principles. MLPerf provides standardized inference
tests across different workloads, including image classification, object detection,
speech recognition, and language processing. A full discussion of MLPerf’s
methodology and structure is presented later in this chapter.

12.7.1 Motivation

Deploying machine learning models for inference introduces a unique set of
challenges distinct from training. While training optimizes large-scale com-
putation over extensive datasets, inference must deliver predictions efÏciently
and at scale in real-world environments. Inference benchmarks provide a sys-
tematic approach to evaluating system performance, identifying bottlenecks,
and ensuring that models can operate effectively across diverse deployment
scenarios.

Unlike training, which typically runs on dedicated high-performance hard-
ware, inference must adapt to varying constraints. A model deployed in a
cloud server might prioritize high-throughput batch processing, while the
same model running on a mobile device must operate under strict latency
and power constraints. On edge devices with limited compute and memory,
optimizations such as quantization and pruning become critical. Benchmarks
help assess these trade-offs, ensuring that inference systems maintain the right
balance between accuracy, speed, and efÏciency across different platforms.

Inference benchmarks help answer fundamental questions about model de-
ployment. How quickly can a model generate predictions in real-world condi-
tions? What are the trade-offs between inference speed and accuracy? Can an
inference system handle increasing demand while maintaining low latency?
By evaluating these factors, benchmarks guide optimizations in both hardware
and software to improve overall efÏciency (Reddi et al. 2019).

12.7. Inference Benchmarks 652

12.7.1.1 Importance of Inference Benchmarks

Inference plays a critical role in AI applications, where performance directly
affects usability and cost. Unlike training, which is often performed ofÒine,
inference typically operates in real-time or near real-time, making latency a
primary concern. A self-driving car processing camera feeds must react within
milliseconds, while a voice assistant generating responses should feel instanta-
neous to users.

Different applications impose varying constraints on inference. Some work-
loads require single-instance inference, where predictions must be made as
quickly as possible for each individual input. This is crucial in real-time sys-
tems such as robotics, augmented reality, and conversational AI, where even
small delays can impact responsiveness. Other workloads, such as large-scale
recommendation systems or search engines, process massive batches of queries
simultaneously, prioritizing throughput over per-query latency. Benchmarks
allow engineers to evaluate both scenarios and ensure models are optimized
for their intended use case.

A key difference between training and inference is that inference workloads
often run continuously in production, meaning that small inefÏciencies can
compound over time. Unlike a training job that runs once and completes, an
inference system deployed in the cloud may serve millions of queries daily,
and a model running on a smartphone must manage battery consumption over
extended use. Benchmarks provide a structured way to measure inference efÏ-
ciency under these real-world constraints, helping developers make informed
choices about model optimization, hardware selection, and deployment strate-
gies.

12.7.1.2 Hardware & Software Optimization

EfÏcient inference depends on both hardware acceleration and software opti-
mizations. While GPUs and TPUs dominate training, inference is more diverse
in its hardware needs. A cloud-based AI service might leverage powerful accel-
erators for large-scale workloads, whereas mobile devices rely on specialized
inference chips like NPUs or optimized CPU execution. On embedded sys-
tems, where resources are constrained, achieving high performance requires
careful memory and compute efÏciency. Benchmarks help evaluate how well
different hardware platforms handle inference workloads, guiding deployment
decisions.

Software optimizations are just as important. Frameworks like TensorRT,
ONNX Runtime, and TVM apply optimizations such as operator fusion, quanti-
zation, and kernel tuning to improve inference speed and reduce computational
overhead. These optimizations can make a significant difference, especially in
environments with limited resources. Benchmarks allow developers to measure
the impact of such techniques on latency, throughput, and power efÏciency,
ensuring that optimizations translate into real-world improvements without
degrading model accuracy.

Chapter 12. Benchmarking AI 653

12.7.1.3 Scalability & EfÏciency

Inference workloads vary significantly in their scaling requirements. A cloud-
based AI system handling millions of queries per second must ensure that
increasing demand does not cause delays, while a mobile application running
a model locally must execute quickly even under power constraints. Unlike
training, which is typically performed on a fixed set of high-performance ma-
chines, inference must scale dynamically based on usage patterns and available
computational resources.

Benchmarks evaluate how inference systems scale under different conditions.
They measure how well performance holds up under increasing query loads,
whether additional compute resources improve inference speed, and how ef-
ficiently models run across different deployment environments. Large-scale
inference deployments often involve distributed inference servers, where multi-
ple copies of a model process incoming requests in parallel. Benchmarks assess
how efÏciently this scaling occurs and whether additional resources lead to
meaningful improvements in latency and throughput.

Another key factor in inference efÏciency is cold-start performance—the time
it takes for a model to load and begin processing queries. This is especially
relevant for applications that do not run inference continuously but instead
load models on demand. Benchmarks help determine whether a system can
quickly transition from idle to active execution without significant overhead.

12.7.1.4 Cost & Energy Factors

Because inference workloads run continuously, operational cost and energy
efÏciency are critical factors. Unlike training, where compute costs are incurred
once, inference costs accumulate over time as models are deployed in produc-
tion. Running an inefÏcient model at scale can significantly increase cloud
compute expenses, while an inefÏcient mobile inference system can drain bat-
tery life quickly. Benchmarks provide insights into cost per inference request,
helping organizations optimize for both performance and affordability.

Energy efÏciency is also a growing concern, particularly for mobile and edge
AI applications. Many inference workloads run on battery-powered devices,
where excessive computation can impact usability. A model running on a smart-
phone, for example, must be optimized to minimize power consumption while
maintaining responsiveness. Benchmarks help evaluate inference efÏciency per
watt, ensuring that models can operate sustainably across different platforms.

12.7.1.5 Fair ML Systems Comparison

With many different hardware platforms and optimization techniques available,
standardized benchmarking is essential for fair comparisons. Without well-
defined benchmarks, it becomes difÏcult to determine whether performance
gains come from genuine improvements or from optimizations that exploit spe-
cific hardware features. Inference benchmarks provide a consistent evaluation
methodology, ensuring that comparisons are meaningful and reproducible.

For example, MLPerf Inference defines rigorous evaluation criteria for tasks
such as image classification, object detection, and speech recognition, making

12.7. Inference Benchmarks 654

it possible to compare different systems under controlled conditions. These
standardized tests prevent misleading results caused by differences in dataset
preprocessing, proprietary optimizations, or vendor-specific tuning. By en-
forcing reproducibility, benchmarks allow researchers and engineers to make
informed decisions when selecting inference frameworks, hardware accelera-
tors, and optimization techniques.

12.7.2 Metrics
Evaluating the performance of inference systems requires a distinct set of
metrics from those used for training. While training benchmarks emphasize
throughput, scalability, and time-to-accuracy, inference benchmarks must focus
on latency, efÏciency, and resource utilization in practical deployment settings.
These metrics ensure that machine learning models perform well across dif-
ferent environments, from cloud data centers handling millions of requests to
mobile and edge devices operating under strict power and memory constraints.

Unlike training, where the primary goal is to optimize learning speed, infer-
ence benchmarks evaluate how efÏciently a trained model can process inputs
and generate predictions at scale. The following sections describe the most
important inference benchmarking metrics, explaining their relevance and how
they are used to compare different systems.

12.7.2.1 Latency & Tail Latency

Latency is one of the most critical performance metrics for inference, particularly
in real-time applications where delays can negatively impact user experience
or system safety. Latency refers to the time taken for an inference system to
process an input and produce a prediction. While the average latency of a
system is useful, it does not capture performance in high-demand scenarios
where occasional delays can degrade reliability.

To account for this, benchmarks often measure tail latency, which reflects the
worst-case delays in a system. These are typically reported as the 95th percentile
(p95) or 99th percentile (p99) latency, meaning that 95% or 99% of inferences are
completed within a given time. For applications such as autonomous driving or
real-time trading, maintaining low tail latency is essential to avoid unpredictable
delays that could lead to catastrophic outcomes.

12.7.2.2 Throughput & Batch Processing EfÏciency

While latency measures the speed of individual inference requests, throughput
measures how many inference requests a system can process per second. It
is typically expressed in queries per second (QPS) or frames per second (FPS)
for vision tasks. Some inference systems operate on a single-instance basis,
where each input is processed independently as soon as it arrives. Other systems
process multiple inputs in parallel using batch inference, which can significantly
improve efÏciency by leveraging hardware optimizations.

For example, cloud-based services handling millions of queries per second
benefit from batch inference, where large groups of inputs are processed to-
gether to maximize computational efÏciency. In contrast, applications like

Chapter 12. Benchmarking AI 655

6 Cold-Start Time: The time re-
quired for a model to initialize and
become ready to process the first in-
ference request after being loaded
from disk or a low-power state.

robotics, interactive AI, and augmented reality require low-latency single-
instance inference, where the system must respond immediately to each new
input.

Benchmarks must consider both single-instance and batch throughput to pro-
vide a comprehensive understanding of inference performance across different
deployment scenarios.

12.7.2.3 Precision & Accuracy Trade-offs

Optimizing inference performance often involves reducing numerical precision,
which can significantly accelerate computation while reducing memory and
energy consumption. However, lower-precision calculations can introduce
accuracy degradation, making it essential to benchmark the trade-offs between
speed and predictive quality.

Inference benchmarks evaluate how well models perform under different
numerical settings, such as FP32, FP16, and INT8. Many modern AI accel-
erators support mixed-precision inference, allowing systems to dynamically
adjust numerical representation based on workload requirements. Quantiza-
tion and pruning techniques further improve efÏciency, but their impact on
model accuracy varies depending on the task and dataset. Benchmarks help de-
termine whether these optimizations are viable for deployment, ensuring that
improvements in efÏciency do not come at the cost of unacceptable accuracy
loss.

12.7.2.4 Memory Footprint & Model Size

Beyond computational optimizations, memory footprint is another critical con-
sideration for inference systems, particularly for devices with limited resources.
EfÏcient inference depends not only on speed but also on memory usage. Un-
like training, where large models can be distributed across powerful GPUs or
TPUs, inference often requires models to run within strict memory budgets.
The total model size determines how much storage is required for deployment,
while RAM usage reflects the working memory needed during execution. Some
models require large memory bandwidth to efÏciently transfer data between
processing units, which can become a bottleneck if the hardware lacks sufÏcient
capacity.

Inference benchmarks evaluate these factors to ensure that models can be
deployed effectively across a range of devices. A model that achieves high
accuracy but exceeds memory constraints may be impractical for real-world use.
To address this, compression techniques such as quantization, pruning, and
knowledge distillation are often applied to reduce model size while maintaining
accuracy. Benchmarks help assess whether these optimizations strike the right
balance between memory efÏciency and predictive performance.

12.7.2.5 Cold-Start & Model Load Time

Once memory requirements are optimized, cold-start performance6 becomes
critical for ensuring inference systems are ready to respond quickly upon deploy-
ment. In many deployment scenarios, models are not always kept in memory

12.7. Inference Benchmarks 656

7 Serverless AI: A deployment
model where inference workloads
are executed on demand, eliminat-
ing the need for dedicated compute
resources but introducing cold-start
latency challenges.

but instead loaded on demand when needed. This can introduce significant de-
lays, particularly in serverless AI7 environments, where resources are allocated
dynamically based on incoming requests. Cold-start performance measures
how quickly a system can transition from idle to active execution, ensuring that
inference is available without excessive wait times.

Model load time refers to the duration required to load a trained model into
memory before it can process inputs. In some cases, particularly on resource-
limited devices, models must be reloaded frequently to free up memory for other
applications. The time taken for the first inference request is also an important
consideration, as it reflects the total delay users experience when interacting
with an AI-powered service. Benchmarks help quantify these delays, ensuring
that inference systems can meet real-world responsiveness requirements.

12.7.2.6 Scalability & Dynamic Workload Handling

While cold-start latency addresses initial responsiveness, scalability ensures that
inference systems can handle fluctuating workloads and concurrent demands
over time Inference workloads must scale effectively across different usage
patterns. In cloud-based AI services, this means efÏciently handling millions of
concurrent users, while on mobile or embedded devices, it involves managing
multiple AI models running simultaneously without overloading the system.

Scalability measures how well inference performance improves when addi-
tional computational resources are allocated. In some cases, adding more GPUs
or TPUs increases throughput significantly, but in other scenarios, bottlenecks
such as memory bandwidth limitations or network latency may limit scaling
efÏciency. Benchmarks also assess how well a system balances multiple concur-
rent models in real-world deployment, where different AI-powered features
may need to run at the same time without interference.

For cloud-based AI, benchmarks evaluate how efÏciently a system handles
fluctuating demand, ensuring that inference servers can dynamically allocate
resources without compromising latency. In mobile and embedded AI, efÏcient
multi-model execution is essential for running multiple AI-powered features
simultaneously without degrading system performance.

12.7.2.7 Power Consumption & Energy EfÏciency

Since inference workloads run continuously in production, power consumption
and energy efÏciency are critical considerations. This is particularly important
for mobile and edge devices, where battery life and thermal constraints limit
available computational resources. Even in large-scale cloud environments,
power efÏciency directly impacts operational costs and sustainability goals.

The energy required for a single inference is often measured in joules per
inference, reflecting how efÏciently a system processes inputs while minimizing
power draw. In cloud-based inference, efÏciency is commonly expressed as
queries per second per watt (QPS/W) to quantify how well a system balances
performance and energy consumption. For mobile AI applications, optimizing
inference power consumption extends battery life and allows models to run
efÏciently on resource-constrained devices. Reducing energy use also plays

Chapter 12. Benchmarking AI 657

a key role in making large-scale AI systems more environmentally sustain-
able, ensuring that computational advancements align with energy-conscious
deployment strategies. By balancing power consumption with performance,
energy-efÏcient inference systems enable AI to scale sustainably across diverse
applications, from data centers to edge devices.

12.7.3 Inference Performance Evaluation
Evaluating inference performance is a critical step in understanding how well
machine learning systems meet the demands of real-world applications. Unlike
training, which is typically conducted ofÒine, inference systems must process
inputs and generate predictions efÏciently across a wide range of deployment
scenarios. Metrics such as latency, throughput, memory usage, and energy
efÏciency provide a structured way to measure system performance and identify
areas for improvement.

Table 12.3 below summarizes the key metrics used to evaluate inference
systems, highlighting their relevance to different contexts. While each metric
offers unique insights, it is important to approach inference benchmarking
holistically. Trade-offs between metrics, including speed versus accuracy and
throughput versus power consumption, are common, and understanding these
trade-offs is essential for effective system design.

Table 12.3: Inference benchmark metrics and evaluation dimensions.

Category Key Metrics Example Benchmark Use

Latency and Tail
Latency

Mean latency (ms/request); Tail latency (p95,
p99, p99.9)

Evaluating real-time performance for
safety-critical AI

Throughput and
EfÏciency

Queries per second (QPS); Frames per second
(FPS); Batch throughput

Comparing large-scale cloud inference
systems

Numerical
Precision Impact

Accuracy degradation (FP32 vs. INT8); Speedup
from reduced precision

Balancing accuracy vs. efÏciency in
optimized inference

Memory Footprint Model size (MB/GB); RAM usage (MB);
Memory bandwidth utilization

Assessing feasibility for edge and
mobile deployments

Cold-Start and
Load Time

Model load time (s); First inference latency (s) Evaluating responsiveness in serverless
AI

Scalability EfÏciency under load; Multi-model serving
performance

Measuring robustness for dynamic,
high-demand systems

Power and Energy
EfÏciency

Power consumption (Watts); Performance per
Watt (QPS/W)

Optimizing energy use for mobile and
sustainable AI

12.7.3.1 Inference Systems Considerations

Inference systems face unique challenges depending on where and how they are
deployed. Real-time applications, such as self-driving cars or voice assistants,
require low latency to ensure timely responses, while large-scale cloud deploy-
ments focus on maximizing throughput to handle millions of queries. Edge
devices, on the other hand, are constrained by memory and power, making
efÏciency critical.

One of the most important aspects of evaluating inference performance is
understanding the trade-offs between metrics. For example, optimizing for
high throughput might increase latency, making a system unsuitable for real-
time applications. Similarly, reducing numerical precision improves power

12.7. Inference Benchmarks 658

efÏciency and speed but may lead to minor accuracy degradation. A thoughtful
evaluation must balance these trade-offs to align with the intended application.

The deployment environment also plays a significant role in determining
evaluation priorities. Cloud-based systems often prioritize scalability and
adaptability to dynamic workloads, while mobile and edge systems require
careful attention to memory usage and energy efÏciency. These differing priori-
ties mean that benchmarks must be tailored to the context of the system’s use,
rather than relying on one-size-fits-all evaluations.

Ultimately, evaluating inference performance requires a holistic approach.
Focusing on a single metric, such as latency or energy efÏciency, provides an in-
complete picture. Instead, all relevant dimensions must be considered together
to ensure that the system meets its functional, resource, and performance goals
in a balanced way.

12.7.3.2 Inference Benchmark Pitfalls

Even with well-defined metrics, benchmarking inference systems can be chal-
lenging. Missteps during the evaluation process often lead to misleading con-
clusions. Below are common pitfalls that students and practitioners should be
aware of when analyzing inference performance.

Overemphasis on Average Latency. While average latency provides a baseline
measure of response time, it fails to capture how a system performs under peak
load. In real-world scenarios, worst-case latency, which is captured through
metrics such as p95 or p99 tail latency, can significantly impact system reliability.
For instance, a conversational AI system may fail to provide timely responses if
occasional latency spikes exceed acceptable thresholds.

Ignoring Memory & Energy Constraints. A model with excellent throughput
or latency may be unsuitable for mobile or edge deployments if it requires
excessive memory or power. For example, an inference system designed for
cloud environments might fail to operate efÏciently on a battery-powered device.
Proper benchmarks must consider memory footprint and energy consumption
to ensure practicality across deployment contexts.

Ignoring Cold-Start Performance. In serverless environments, where models
are loaded on demand, cold-start latency is a critical factor. Ignoring the time
it takes to initialize a model and process the first request can result in unre-
alistic expectations for responsiveness. Evaluating both model load time and
first-inference latency ensures that systems are designed to meet real-world
responsiveness requirements.

Isolated Metrics Evaluation. Benchmarking inference systems often involves
balancing competing metrics. For example, maximizing batch throughput
might degrade latency, while aggressive quantization could reduce accuracy.
Focusing on a single metric without considering its impact on others can lead
to incomplete or misleading evaluations. Comprehensive benchmarks must
account for these interactions.

Chapter 12. Benchmarking AI 659

Linear Scaling Assumption. Inference performance does not always scale pro-
portionally with additional resources. Bottlenecks such as memory bandwidth,
thermal limits, or communication overhead can limit the benefits of adding
more GPUs or TPUs. Benchmarks that assume linear scaling behavior may
overestimate system performance, particularly in distributed deployments.

Ignoring Application Requirements. Generic benchmarking results may fail
to account for the specific needs of an application. For instance, a benchmark
optimized for cloud inference might be irrelevant for edge devices, where energy
and memory constraints dominate. Tailoring benchmarks to the deployment
context ensures that results are meaningful and actionable.

12.7.3.3 Final Thoughts

Inference benchmarks are essential tools for understanding system performance,
but their utility depends on careful and holistic evaluation. Metrics like latency,
throughput, memory usage, and energy efÏciency provide valuable insights,
but their importance varies depending on the application and deployment
context. Students should approach benchmarking as a process of balancing
multiple priorities, rather than optimizing for a single metric.

Avoiding common pitfalls and considering the trade-offs between differ-
ent metrics allows practitioners to design inference systems that are reliable,
efÏcient, and suitable for real-world deployment. The ultimate goal of bench-
marking is to guide system improvements that align with the demands of the
intended application.

12.7.4 MLPerf Inference Benchmarks

The MLPerf Inference benchmark, developed by MLCommons, provides a stan-
dardized framework for evaluating machine learning inference performance
across a range of deployment environments. Initially, MLPerf started with a
single inference benchmark, but as machine learning systems expanded into
diverse applications, it became clear that a one-size-fits-all benchmark was in-
sufÏcient. Different inference scenarios, including cloud-based AI services and
resource-constrained embedded devices, demanded tailored evaluations. This
realization led to the development of a family of MLPerf inference benchmarks,
each designed to assess performance within a specific deployment setting.

12.7.4.1 MLPerf Inference

MLPerf Inference serves as the baseline benchmark, originally designed to
evaluate large-scale inference systems. It primarily focuses on data center and
cloud-based inference workloads, where high throughput, low latency, and
efÏcient resource utilization are essential. The benchmark assesses performance
across a range of deep learning models, including image classification, object
detection, natural language processing, and recommendation systems. This
version of MLPerf remains the gold standard for comparing AI accelerators,
GPUs, TPUs, and CPUs in high-performance computing environments.

https://mlcommons.org/en/
https://mlcommons.org/en/inference-datacenter/

12.7. Inference Benchmarks 660

12.7.4.2 MLPerf Mobile
MLPerf Mobile extends MLPerf’s evaluation framework to smartphones and
other mobile devices. Unlike cloud-based inference, mobile inference operates
under strict power and memory constraints, requiring models to be optimized
for efÏciency without sacrificing responsiveness. The benchmark measures
latency and responsiveness for real-time AI tasks, such as camera-based scene
detection, speech recognition, and augmented reality applications. MLPerf
Mobile has become an industry standard for assessing AI performance on
flagship smartphones and mobile AI chips, helping developers optimize models
for on-device AI workloads.

12.7.4.3 MLPerf Client
MLPerf Client focuses on inference performance on consumer computing de-
vices, such as laptops, desktops, and workstations. This benchmark addresses
local AI workloads that run directly on personal devices, eliminating reliance
on cloud inference. Tasks such as real-time video editing, speech-to-text tran-
scription, and AI-enhanced productivity applications fall under this category.
Unlike cloud-based benchmarks, MLPerf Client evaluates how AI workloads
interact with general-purpose hardware, such as CPUs, discrete GPUs, and
integrated Neural Processing Units (NPUs), making it relevant for consumer
and enterprise AI applications.

12.7.4.4 MLPerf Tiny
MLPerf Tiny was created to benchmark embedded and ultra-low-power AI sys-
tems, such as IoT devices, wearables, and microcontrollers. Unlike other MLPerf
benchmarks, which assess performance on powerful accelerators, MLPerf Tiny
evaluates inference on devices with limited compute, memory, and power re-
sources. This benchmark is particularly relevant for applications such as smart
sensors, AI-driven automation, and real-time industrial monitoring, where
models must run efÏciently on hardware with minimal processing capabilities.
MLPerf Tiny plays a crucial role in the advancement of AI at the edge, helping
developers optimize models for constrained environments.

12.7.4.5 Continued Expansion
The evolution of MLPerf Inference from a single benchmark to a spectrum
of benchmarks reflects the diversity of AI deployment scenarios. Different
environments, including cloud, mobile, desktop, and embedded environments,
have unique constraints and requirements, and MLPerf provides a structured
way to evaluate AI models accordingly.

MLPerf is an essential tool for:
• Understanding how inference performance varies across deployment

settings.
• Learning which performance metrics are most relevant for different AI

applications.
• Optimizing models and hardware choices based on real-world usage

constraints.

https://mlcommons.org/en/mlperf-mobile/
https://mlcommons.org/en/inference-edge/
https://mlcommons.org/en/inference-tiny/

Chapter 12. Benchmarking AI 661

Recognizing the necessity of tailored inference benchmarks deepens our
understanding of AI deployment challenges and highlights the importance of
benchmarking in developing efÏcient, scalable, and practical machine learning
systems.

12.8 Energy EfÏciency Measurement
As machine learning expands into diverse applications, concerns about its
growing power consumption and ecological footprint have intensified. While
performance benchmarks help optimize speed and accuracy, they do not always
account for energy efÏciency, which is an increasingly critical factor in real-
world deployment. EfÏcient inference is particularly important in scenarios
where power is a limited resource, such as mobile devices, embedded AI,
and cloud-scale inference workloads. The need to optimize both performance
and power consumption has led to the development of standardized energy
efÏciency benchmarks.

However, measuring power consumption in machine learning systems presents
unique challenges. The energy demands of ML models vary dramatically across
deployment environments, as shown in Table 12.4. This wide spectrum, span-
ning from TinyML devices consuming mere microwatts to data center racks
requiring kilowatts, illustrates the fundamental challenge in creating standard-
ized benchmarking methodologies (Henderson et al. 2020a).

Table 12.4: Power consumption across ML deployment scales

Category Device Type Power Consumption

Tiny Neural Decision Processor (NDP) 150 µW
Tiny M7 Microcontroller 25 mW
Mobile Raspberry Pi 4 3.5 W
Mobile Smartphone 4 W
Edge Smart Camera 10-15 W
Edge Edge Server 65-95 W
Cloud ML Server Node 300-500 W
Cloud ML Server Rack 4-10 kW

This dramatic range in power requirements, which spans over four orders of
magnitude, presents significant challenges for measurement and benchmark-
ing. Creating a unified methodology requires careful consideration of each
scale’s unique characteristics. For example, accurately measuring microwatt-
level consumption in TinyML devices demands different instrumentation and
techniques than monitoring kilowatt-scale server racks. Any comprehensive
benchmarking framework must accommodate these vastly different scales while
ensuring measurements remain consistent, fair, and reproducible across diverse
hardware configurations.

12.8.1 Power Measurement Boundaries
Figure 12.8 illustrates how power consumption is measured at different system
scales, from TinyML devices to full-scale data center inference nodes. Each
scenario highlights distinct measurement boundaries, shown in green, which

12.8. Energy EfÏciency Measurement 662

indicate the components included in energy accounting. Components outside
these boundaries, shown with red dashed outlines, are excluded from power
measurements.

Figure 12.8: MLPerf Power system
measurement diagram. Source: Tsc-
hand et al. (2024).

The diagram is organized into three categories, Tiny, Inference, and Training
examples, each reflecting different measurement scopes based on system archi-
tecture and deployment environment. In TinyML systems, the entire low-power
SoC, including compute, memory, and basic interconnects, typically falls within
the measurement boundary. Inference nodes introduce more complexity, incor-
porating multiple SoCs, local storage, accelerators, and memory, while often
excluding remote storage and off-chip components. Training deployments span
multiple racks, where only selected elements, including compute nodes and
network switches, are measured, while storage systems, cooling infrastructure,
and parts of the interconnect fabric are often excluded.

System-level power measurement offers a more holistic view than measuring
individual components in isolation. While component-level metrics (e.g., ac-
celerator or processor power) are valuable for performance tuning, real-world
ML workloads involve intricate interactions between compute units, memory
systems, and supporting infrastructure. For instance, memory-bound inference
tasks can consume up to 60% of total system power on data movement alone.

Shared infrastructure presents additional challenges. In data centers, re-
sources such as cooling systems and power delivery are shared across work-
loads, complicating attribution of energy use to specific ML tasks. Cooling
alone can account for 20-30% of total facility power consumption, making it a
major factor in energy efÏciency assessments (Barroso, Clidaras, and Hölzle
2013). Even at the edge, components like memory and I/O interfaces may serve
both ML and non-ML functions, further blurring measurement boundaries.

Modern hardware also introduces variability through dynamic power man-
agement. Features like dynamic voltage and frequency scaling (DVFS) can cause
power consumption to vary by 30-50% for the same ML model, depending on
system load and concurrent activity.

Finally, support infrastructure, with a particular emphasis on cooling, has a
significant impact on total energy use in large-scale deployments. Data centers
must maintain operational temperatures, typically between 20-25°C, to ensure
system reliability. Cooling overhead is captured in the Power Usage Effective-
ness (PUE) metric, which ranges from 1.1 in highly efÏcient facilities to over 2.0
in less optimized ones (Barroso, Hölzle, and Ranganathan 2019). Even edge
devices require basic thermal management, with cooling accounting for 5-10%
of overall power consumption.

Chapter 12. Benchmarking AI 663

8 Reducing the environmental
impact of machine learning by im-
proving energy efÏciency, using re-
newable energy sources, and design-
ing models that require fewer com-
putational resources.

12.8.2 Performance vs Energy EfÏciency

A critical consideration in ML system design is the relationship between per-
formance and energy efÏciency. Maximizing raw performance often leads to
diminishing returns in energy efÏciency. For example, increasing processor
frequency by 20% might yield only a 5% performance improvement while in-
creasing power consumption by 50%. This non-linear relationship means that
the most energy-efÏcient operating point is often not the highest performing
one.

In many deployment scenarios, particularly in battery-powered devices, find-
ing the optimal balance between performance and energy efÏciency is crucial.
For instance, reducing model precision from FP32 to INT8 might reduce ac-
curacy by 1-2% but can improve energy efÏciency by 3-4x. Similarly, batch
processing can improve throughput efÏciency at the cost of increased latency.

These tradeoffs span three key dimensions: accuracy, performance, and en-
ergy efÏciency. Model quantization illustrates this relationship clearly, reducing
numerical precision from FP32 to INT8 typically results in a small accuracy
drop (1-2%), but it can improve both inference speed and energy efÏciency
by 3-4x. Similarly, techniques like pruning and model compression require
carefully balancing accuracy losses against efÏciency gains. Finding the optimal
operating point among these three factors depends heavily on deployment re-
quirements; mobile applications might prioritize energy efÏciency, while cloud
services might optimize for accuracy at the cost of higher power consumption.

As benchmarking methodologies continue to evolve, energy efÏciency metrics
will play an increasingly central role in AI optimization. Future advancements
in sustainable AI benchmarking8 will help researchers and engineers design
systems that balance performance, power consumption, and environmental
impact, ensuring that ML systems operate efÏciently without unnecessary
energy waste.

12.8.3 Standardized Power Measurement

While power measurement techniques, such as SPEC Power, have long ex-
isted for general computing systems (Lange 2009), machine learning workloads
present unique challenges that require specialized measurement approaches.
Machine learnign systems exhibit distinct power consumption patterns char-
acterized by phases of intense computation interspersed with data movement
and preprocessing operations. These patterns vary significantly across different
types of models and tasks. A large language model’s power profile looks very
different from that of a computer vision inference task.

Direct power measurement requires careful consideration of sampling rates
and measurement windows. For example, transformer model inference creates
short, intense power spikes during attention computations, requiring high-
frequency sampling (> 1 KHz) to capture accurately. In contrast, CNN inference
tends to show more consistent power draw patterns that can be captured with
lower sampling rates. The measurement duration must also account for ML-
specific behaviors like warm-up periods, where initial inferences may consume
more power due to cache population and pipeline initialization.

https://www.spec.org/power/

12.8. Energy EfÏciency Measurement 664

Memory access patterns in ML workloads significantly impact power con-
sumption measurements. While traditional compute benchmarks might focus
primarily on processor power, ML systems often spend substantial energy mov-
ing data between memory hierarchies. For example, recommendation models
like DLRM can spend more energy on memory access than computation. This
requires measurement approaches that can capture both compute and memory
subsystem power consumption.

Accelerator-specific considerations further complicate power measurement.
Many ML systems employ specialized hardware like GPUs, TPUs, or NPUs.
These accelerators often have their own power management schemes and can
operate independently of the main system processor. Accurate measurement
requires capturing power consumption across all relevant compute units while
maintaining proper time synchronization. This is particularly challenging in
heterogeneous systems that may dynamically switch between different compute
resources based on workload characteristics or power constraints.

The scale and distribution of ML workloads also influences measurement
methodology. In distributed training scenarios, power measurement must
account for both local compute power and the energy cost of gradient syn-
chronization across nodes. Similarly, edge ML deployments must consider
both active inference power and the energy cost of model updates or data
preprocessing.

Batch size and throughput considerations add another layer of complexity.
Unlike traditional computing workloads, ML systems often process inputs in
batches to improve computational efÏciency. However, the relationship between
batch size and power consumption is non-linear. While larger batches generally
improve compute efÏciency, they also increase memory pressure and peak
power requirements. Measurement methodologies must therefore capture
power consumption across different batch sizes to provide a complete efÏciency
profile.

System idle states require special attention in ML workloads, particularly
in edge scenarios where systems operate intermittently, actively processing
when new data arrives, then entering low-power states between inferences. A
wake-word detection Tiny ML system, for instance, might only actively process
audio for a small fraction of its operating time, making idle power consumption
a critical factor in overall efÏciency.

Temperature effects play a crucial role in ML system power measurement.
Sustained ML workloads can cause significant temperature increases, triggering
thermal throttling and changing power consumption patterns. This is espe-
cially relevant in edge devices where thermal constraints may limit sustained
performance. Measurement methodologies must account for these thermal
effects and their impact on power consumption, particularly during extended
benchmarking runs.

12.8.4 MLPerf Power Case Study
MLPerf Power (Tschand et al. 2024) is a standard methodolgy for measuring
energy efÏciency in machine learning systems. This comprehensive benchmark-
ing framework provides accurate assessment of power consumption across

Chapter 12. Benchmarking AI 665

diverse ML deployments. At the datacenter level, it measures power usage
in large-scale AI workloads, where energy consumption optimization directly
impacts operational costs. For edge computing, it evaluates power efÏciency in
consumer devices like smartphones and laptops, where battery life constraints
are paramount. In tiny inference scenarios, it assesses energy consumption
for ultra-low-power AI systems, particularly IoT sensors and microcontrollers
operating with strict power budgets.

The MLPerf Power methodology relies on standardized measurement proto-
cols that adapt to various hardware architectures, ranging from general-purpose
CPUs to specialized AI accelerators. This standardization ensures meaningful
cross-platform comparisons while maintaining measurement integrity across
different computing scales.

The benchmark has accumulated thousands of reproducible measurements
submitted by industry organizations, which demonstrates their latest hard-
ware capabilities and the sector-wide focus on energy-efÏcient AI technology.
Figure 12.9 illustrates the evolution of energy efÏciency across system scales
through successive MLPerf versions.

The MLPerf Power methodology adapts to different hardware architectures,
ranging from general-purpose CPUs to specialized AI accelerators, while main-
taining a uniform measurement standard. This ensures that comparisons across
platforms are meaningful and unbiased.

Across the versions and ML deployment scales of the MLPerf benchmark
suite, industry organizations have submitted reproducible measurements on
their most recent hardware to observe and quantify the industry-wide empha-
sis on optimizing AI technology for energy efÏciency. Figure 12.9 shows the
trends in energy efÏciency from tiny to datacenter scale systems across MLPerf
versions.

Figure 12.9: Comparison of energy
efÏciency trends for MLPerf Power
datacenter, edge, and tiny infer-
ence submissions across versions.
Source: Tschand et al. (2024).

Analysis of these trends reveals two significant patterns: first, a plateauing
of energy efÏciency improvements across all three scales for traditional ML
workloads, and second, a dramatic increase in energy efÏciency specifically for
generative AI applications. This dichotomy suggests both the maturation of
optimization techniques for conventional ML tasks and the rapid innovation
occurring in the generative AI space. These trends underscore the dual chal-
lenges facing the field: developing novel approaches to break through efÏciency
plateaus while ensuring sustainable scaling practices for increasingly powerful
generative AI models.

12.9 Challenges & Limitations
Benchmarking provides a structured framework for evaluating the performance
of AI systems, but it comes with significant challenges. If these challenges are

12.9. Challenges & Limitations 666

9 Thermal Throttling: A mecha-
nism in computer processors that re-
duces performance to prevent over-
heating, often triggered by excessive
computational load or inadequate
cooling.

not properly addressed, they can undermine the credibility and usefulness
of benchmarking results. One of the most fundamental issues is incomplete
problem coverage. Many benchmarks, while useful for controlled comparisons,
fail to capture the full diversity of real-world applications. For instance, common
image classification datasets, such as CIFAR-10, contain a limited variety of
images. As a result, models that perform well on these datasets may struggle
when applied to more complex, real-world scenarios with greater variability in
lighting, perspective, and object composition.

Another challenge is statistical insignificance, which arises when benchmark
evaluations are conducted on too few data samples or trials. For example,
testing an optical character recognition (OCR) system on a small dataset may
not accurately reflect its performance on large-scale, noisy text documents.
Without sufÏcient trials and diverse input distributions, benchmarking results
may be misleading or fail to capture true system reliability.

Reproducibility is also a major concern. Benchmark results can vary signifi-
cantly depending on factors such as hardware configurations, software versions,
and system dependencies. Small differences in compilers, numerical precision,
or library updates can lead to inconsistent performance measurements across
different environments. To mitigate this issue, MLPerf addresses reproducibility
by providing reference implementations, standardized test environments, and
strict submission guidelines. Even with these efforts, achieving true consistency
across diverse hardware platforms remains an ongoing challenge.

A more fundamental limitation of benchmarking is the risk of misalignment
with real-world goals. Many benchmarks emphasize metrics such as speed,
accuracy, and throughput, but practical AI deployments often require balancing
multiple objectives, including power efÏciency, cost, and robustness. A model
that achieves state-of-the-art accuracy on a benchmark may be impractical for
deployment if it consumes excessive energy or requires expensive hardware.
Furthermore, benchmarks can quickly become outdated due to the rapid evo-
lution of AI models and hardware. New techniques may emerge that render
existing benchmarks less relevant, necessitating continuous updates to keep
benchmarking methodologies aligned with state-of-the-art developments.

While these challenges affect all benchmarking efforts, the most pressing
concern is the role of benchmark engineering, which introduces the risk of
over-optimization for specific benchmark tasks rather than meaningful im-
provements in real-world performance.

12.9.1 Environmental Conditions

Environmental conditions in AI benchmarking refer to the physical and oper-
ational circumstances under which experiments are conducted. These condi-
tions, while often overlooked, can significantly influence benchmark results
and impact the reproducibility of experiments. Physical environmental factors
include ambient temperature, humidity, air quality, and altitude. These ele-
ments can affect hardware performance in subtle but measurable ways. For
instance, elevated temperatures may lead to thermal throttling9 in processors,
potentially reducing computational speed and affecting benchmark outcomes.

https://www.cs.toronto.edu/~kriz/cifar.html

Chapter 12. Benchmarking AI 667

Similarly, variations in altitude can impact cooling system efÏciency and hard
drive performance due to changes in air pressure.

Operational environmental factors encompass the broader system context in
which benchmarks are executed. This includes background processes running
on the system, network conditions, and power supply stability. The presence
of other active programs or services can compete for computational resources,
potentially altering the performance characteristics of the model under eval-
uation. To ensure the validity and reproducibility of benchmark results, it is
essential to document and control these environmental conditions to the extent
possible. This may involve conducting experiments in temperature-controlled
environments, monitoring and reporting ambient conditions, standardizing
the operational state of benchmark systems, and documenting any background
processes or system loads.

In scenarios where controlling all environmental variables is impractical,
such as in distributed or cloud-based benchmarking, it becomes essential to
report these conditions in detail. This information allows other researchers to
account for potential variations when interpreting or attempting to reproduce
results. As machine learning models are increasingly deployed in diverse real-
world environments, understanding the impact of environmental conditions
on model performance becomes even more critical. This knowledge not only
ensures more accurate benchmarking but also informs the development of
robust models capable of consistent performance across varying operational
conditions.

12.9.2 Hardware Lottery
A critical issue in benchmarking is what has been described as the hardware
lottery, a concept introduced by (Ahmed et al. 2021). The success of a machine
learning model is often dictated not only by its architecture and training data
but also by how well it aligns with the underlying hardware used for inference.
Some models perform exceptionally well, not because they are inherently better,
but because they are optimized for the parallel processing capabilities of GPUs
or TPUs. Meanwhile, other promising architectures may be overlooked because
they do not map efÏciently to dominant hardware platforms.

This dependence on hardware compatibility introduces biases into bench-
marking. A model that is highly efÏcient on a specific GPU may perform poorly
on a CPU or a custom AI accelerator. For instance, Figure 12.10 compares the per-
formance of models across different hardware platforms. The multi-hardware
models show comparable results to “MobileNetV3 Large min” on both the
CPU uint8 and GPU configurations. However, these multi-hardware mod-
els demonstrate significant performance improvements over the MobileNetV3
Large baseline when run on the EdgeTPU and DSP hardware. This emphasizes
the variable efÏciency of multi-hardware models in specialized computing
environments.

Without careful benchmarking across diverse hardware configurations, the
field risks favoring architectures that “win” the hardware lottery rather than se-
lecting models based on their intrinsic strengths. This bias can shape research di-
rections, influence funding allocation, and impact the design of next-generation

12.9. Challenges & Limitations 668

Figure 12.10: Accuracy-latency
trade-offs of multiple ML models
and how they perform on various
hardware. Source: Chu et al. (2021).

AI systems. In extreme cases, it may even stifle innovation by discouraging
exploration of alternative architectures that do not align with current hardware
trends.

12.9.3 Benchmark Engineering

While the hardware lottery is an unintended consequence of hardware trends,
benchmark engineering is an intentional practice where models or systems are
explicitly optimized to excel on specific benchmark tests. This practice can lead
to misleading performance claims and results that do not generalize beyond
the benchmarking environment.

Benchmark engineering occurs when AI developers fine-tune hyperparame-
ters, preprocessing techniques, or model architectures specifically to maximize
benchmark scores rather than improve real-world performance. For example,
an object detection model might be carefully optimized to achieve record-low
latency on a benchmark but fail when deployed in dynamic, real-world environ-
ments with varying lighting, motion blur, and occlusions. Similarly, a language
model might be tuned to excel on benchmark datasets but struggle when pro-
cessing conversational speech with informal phrasing and code-switching.

The pressure to achieve high benchmark scores is often driven by competi-
tion, marketing, and research recognition. Benchmarks are frequently used to
rank AI models and systems, creating an incentive to optimize specifically for
them. While this can drive technical advancements, it also risks prioritizing
benchmark-specific optimizations at the expense of broader generalization.

12.9.4 Bias & Over-Optimization

To ensure that benchmarks remain useful and fair, several strategies can be
employed. Transparency is one of the most important factors in maintaining
benchmarking integrity. Benchmark submissions should include detailed doc-
umentation on any optimizations applied, ensuring that improvements are

Chapter 12. Benchmarking AI 669

clearly distinguished from benchmark-specific tuning. Researchers and devel-
opers should report both benchmark performance and real-world deployment
results to provide a complete picture of a system’s capabilities.

Another approach is to diversify and evolve benchmarking methodologies.
Instead of relying on a single static benchmark, AI systems should be evaluated
across multiple, continuously updated benchmarks that reflect real-world com-
plexity. This reduces the risk of models being overfitted to a single test set and
encourages general-purpose improvements rather than narrow optimizations.

Standardization and third-party verification can also help mitigate bias. By
establishing industry-wide benchmarking standards and requiring independent
third-party audits of results, the AI community can improve the reliability and
credibility of benchmarking outcomes. Third-party verification ensures that
reported results are reproducible across different settings and helps prevent
unintentional benchmark gaming.

Another important strategy is application-specific testing. While benchmarks
provide controlled evaluations, real-world deployment testing remains essential.
AI models should be assessed not only on benchmark datasets but also in
practical deployment environments. For instance, an autonomous driving
model should be tested in a variety of weather conditions and urban settings
rather than being judged solely on controlled benchmark datasets.

Finally, fairness across hardware platforms must be considered. Benchmarks
should test AI models on multiple hardware configurations to ensure that
performance is not being driven solely by compatibility with a specific platform.
This helps reduce the risk of the hardware lottery and provides a more balanced
evaluation of AI system efÏciency.

12.9.5 Benchmark Evolution
One of the greatest challenges in benchmarking is that benchmarks are never
static. As AI systems evolve, so must the benchmarks that evaluate them.
What defines “good performance” today may be irrelevant tomorrow as mod-
els, hardware, and application requirements change. While benchmarks are
essential for tracking progress, they can also quickly become outdated, lead-
ing to over-optimization for old metrics rather than real-world performance
improvements.

This evolution is evident in the history of AI benchmarks. Early model
benchmarks, for instance, focused heavily on image classification and object
detection, as these were some of the first widely studied deep learning tasks.
However, as AI expanded into natural language processing, recommendation
systems, and generative AI, it became clear that these early benchmarks no
longer reflected the most important challenges in the field. In response, new
benchmarks emerged to measure language understanding (A. Wang et al. 2018,
2019) and generative AI (Liang et al. 2022).

Benchmark evolution extends beyond the addition of new tasks to encompass
new dimensions of performance measurement. While traditional AI bench-
marks emphasized accuracy and throughput, modern applications demand
evaluation across multiple criteria: fairness, robustness, scalability, and energy
efÏciency. Figure 12.11 illustrates this complexity through scientific applica-

12.9. Challenges & Limitations 670

tions, which span orders of magnitude in their performance requirements. For
instance, Large Hadron Collider sensors must process data at rates approach-
ing 1014 bytes per second with nanosecond-scale computation times, while
mobile applications operate at 104 bytes per second with longer computational
windows. This range of requirements necessitates specialized benchmarks—for
example, edge AI applications require benchmarks like MLPerf that specifically
evaluate performance under resource constraints and scientific application do-
mains need their own “Fast ML for Science” benchmarks (Duarte et al. 2022a).

Figure 12.11: Data rate and compu-
tation time requirements of emerg-
ing scientific applications. Source:
(Duarte et al. 2022b).

The need for evolving benchmarks also presents a challenge: stability ver-
sus adaptability. On the one hand, benchmarks must remain stable for long
enough to allow meaningful comparisons over time. If benchmarks change
too frequently, it becomes difÏcult to track long-term progress and compare
new results with historical performance. On the other hand, failing to update
benchmarks leads to stagnation, where models are optimized for outdated tasks
rather than advancing the field. Striking the right balance between benchmark
longevity and adaptation is an ongoing challenge for the AI community.

Despite these difÏculties, evolving benchmarks is essential for ensuring that
AI progress remains meaningful. Without updates, benchmarks risk becoming
detached from real-world needs, leading researchers and engineers to focus
on optimizing models for artificial test cases rather than solving practical chal-
lenges. As AI continues to expand into new domains, benchmarking must keep
pace, ensuring that performance evaluations remain relevant, fair, and aligned
with real-world deployment scenarios.

12.9.6 MLPerf’s Role
MLPerf has played a crucial role in improving benchmarking by reducing
bias, increasing generalizability, and ensuring benchmarks evolve alongside AI

Chapter 12. Benchmarking AI 671

advancements. One of its key contributions is the standardization of benchmark-
ing environments. By providing reference implementations, clearly defined
rules, and reproducible test environments, MLPerf ensures that performance re-
sults are consistent across different hardware and software platforms, reducing
variability in benchmarking outcomes.

Recognizing that AI is deployed in a variety of real-world settings, MLPerf
has also introduced different categories of inference benchmarks. The inclusion
of MLPerf Inference, MLPerf Mobile, MLPerf Client, and MLPerf Tiny reflects
an effort to evaluate models in the contexts where they will actually be deployed.
This approach mitigates issues such as the hardware lottery by ensuring that
AI systems are tested across diverse computational environments, rather than
being over-optimized for a single hardware type.

Beyond providing a structured benchmarking framework, MLPerf is con-
tinuously evolving to keep pace with the rapid progress in AI. New tasks are
incorporated into benchmarks to reflect emerging challenges, such as gener-
ative AI models and energy-efÏcient computing, ensuring that evaluations
remain relevant and forward-looking. By regularly updating its benchmarking
methodologies, MLPerf helps prevent benchmarks from becoming outdated or
encouraging overfitting to legacy performance metrics.

By prioritizing fairness, transparency, and adaptability, MLPerf ensures that
benchmarking remains a meaningful tool for guiding AI research and deploy-
ment. Instead of simply measuring raw speed or accuracy, MLPerf’s evolving
benchmarks aim to capture the complexities of real-world AI performance,
ultimately fostering more reliable, efÏcient, and impactful AI systems.

12.10 Beyond System Benchmarking
While this chapter has primarily focused on system benchmarking, AI perfor-
mance is not determined by system efÏciency alone. Machine learning models
and datasets play an equally crucial role in shaping AI capabilities. Model
benchmarking evaluates algorithmic performance, while data benchmarking
ensures that training datasets are high-quality, unbiased, and representative
of real-world distributions. Understanding these aspects is vital because AI
systems are not just computational pipelines—they are deeply dependent on
the models they execute and the data they are trained on.

12.10.1 Model Benchmarking
Model benchmarks measure how well different machine learning algorithms
perform on specific tasks. Historically, benchmarks focused almost exclusively
on accuracy, but as models have grown more complex, additional factors, includ-
ing fairness, robustness, efÏciency, and generalizability, have become equally
important.

The evolution of machine learning has been largely driven by benchmark
datasets. The MNIST dataset (Lecun et al. 1998) was one of the earliest catalysts,
advancing handwritten digit recognition, while the ImageNet dataset (J. Deng
et al. 2009) sparked the deep learning revolution in image classification. More
recently, datasets like COCO (T.-Y. Lin et al. 2014) for object detection and

12.10. Beyond System Benchmarking 672

GPT-3’s training corpus (T. B. Brown, Mann, Ryder, Subbiah, Kaplan, and al.
2020) have pushed the boundaries of model capabilities even further.

However, model benchmarks face significant limitations, particularly in the
era of Large Language Models (LLMs). Beyond the traditional challenge of
models failing in real-world conditions, commonly referred to as the Sim2Real
gap, a new form of benchmark optimization has emerged, analogous to but
distinct from classical benchmark engineering in computer systems. In tra-
ditional systems evaluation, developers would explicitly optimize their code
implementations to perform well on benchmark suites like SPEC or TPC, which
we discussed earlier under “Benchmark Engineering”. In the case of LLMs, this
phenomenon manifests through data rather than code: benchmark datasets
may become embedded in training data, either inadvertently through web-
scale training or deliberately through dataset curation (R. Xu et al. 2024). This
creates fundamental challenges for model evaluation, as high performance
on benchmark tasks may reflect memorization rather than genuine capability.
The key distinction lies in the mechanism: while systems benchmark engineer-
ing occurred through explicit code optimization, LLM benchmark adaptation
can occur implicitly through data exposure during pre-training, raising new
questions about the validity of current evaluation methodologies.

These challenges extend beyond just LLMs. Traditional machine learning
systems continue to struggle with problems of overfitting and bias. The Gen-
der Shades project (Buolamwini and Gebru 2018), for instance, revealed that
commercial facial recognition models performed significantly worse on darker-
skinned individuals, highlighting the critical importance of fairness in model
evaluation. Such findings underscore the limitations of focusing solely on
aggregate accuracy metrics.

Moving forward, we must fundamentally rethink its approach to benchmark-
ing. This evolution requires developing evaluation frameworks that go beyond
traditional metrics to assess multiple dimensions of model behavior—from
generalization and robustness to fairness and efÏciency. Key challenges in-
clude creating benchmarks that remain relevant as models advance, developing
methodologies that can differentiate between genuine capabilities and artificial
performance gains, and establishing standards for benchmark documentation
and transparency. Success in these areas will help ensure that benchmark results
provide meaningful insights about model capabilities rather than reflecting
artifacts of training procedures or evaluation design.

12.10.2 Data Benchmarking
The evolution of artificial intelligence has traditionally focused on model-centric
approaches, emphasizing architectural improvements and optimization tech-
niques. However, contemporary AI development reveals that data quality,
rather than model design alone, often determines performance boundaries.
This recognition has elevated data benchmarking to a critical field that ensures
AI models learn from datasets that are high-quality, diverse, and free from bias.

This evolution represents a fundamental shift from model-centric to data-
centric AI approaches, as illustrated in Figure 12.12. The traditional model-
centric paradigm focuses on enhancing model architectures, refining algorithms,

Chapter 12. Benchmarking AI 673

and improving computational efÏciency while treating datasets as fixed compo-
nents. In contrast, the emerging data-centric approach systematically improves
dataset quality through better annotations, increased diversity, and bias reduc-
tion, while maintaining consistent model architectures and system configura-
tions. Research increasingly demonstrates that methodical dataset enhancement
can yield superior performance gains compared to model refinements alone,
challenging the conventional emphasis on architectural innovation.

Figure 12.12: Comparison of model-
centric and data-centric AI ap-
proaches. Model-centric AI fo-
cuses on improving architectures,
while data-centric AI emphasizes
enhancing dataset quality. Both ap-
proaches are complementary in op-
timizing AI performance.

CPU

ModelData

Systematically enhance the model

Model-centric AI

CPU

ModelData

Systematically enhance the data

Data-centric AI

Complementary

Data quality’s primacy in AI development reflects a fundamental shift in
understanding: superior datasets, not just sophisticated models, produce more
reliable and robust AI systems. Initiatives like DataPerf and DataComp have
emerged to systematically evaluate how dataset improvements affect model
performance. For instance, DataComp (Nishigaki 2024) demonstrated that
models trained on a carefully curated 30% subset of data achieved better results
than those trained on the complete dataset, challenging the assumption that
more data automatically leads to better performance (Northcutt, Athalye, and
Mueller 2021).

A significant challenge in data benchmarking emerges from dataset satura-
tion. When models achieve near-perfect accuracy on benchmarks like ImageNet,
it becomes crucial to distinguish whether performance gains represent gen-
uine advances in AI capability or merely optimization to existing test sets.
Figure 12.13 illustrates this trend, showing AI systems surpassing human per-
formance across various applications over the past decade.

Figure 12.13: AI vs human perfor-
mance. Source: Kiela et al. (2021)

This saturation phenomenon raises fundamental methodological questions
(Kiela et al. 2021). The MNIST dataset provides an illustrative example: certain

12.11. Conclusion 674

test images, though nearly illegible to humans, were assigned specific labels
during the dataset’s creation in 1994. When models correctly predict these labels,
their apparent superhuman performance may actually reflect memorization of
dataset artifacts rather than true digit recognition capabilities.

These challenges extend beyond individual domains. The provocative ques-
tion “Are we done with ImageNet?” (Beyer et al. 2020) highlights broader
concerns about the limitations of static benchmarks. Models optimized for
fixed datasets often struggle with distribution shifts—real-world changes that
occur after training data collection. This limitation has driven the development
of dynamic benchmarking approaches, such as Dynabench (Kiela et al. 2021),
which continuously evolves test data based on model performance to maintain
benchmark relevance.

Current data benchmarking efforts encompass several critical dimensions.
Label quality assessment remains a central focus, as explored in DataPerf’s
debugging challenge. Initiatives like MSWC (Mazumder et al. 2021) for speech
recognition address bias and representation in datasets. Out-of-distribution
generalization receives particular attention through benchmarks like RxRx and
WILDS (Koh et al. 2021). These diverse efforts reflect a growing recognition
that advancing AI capabilities requires not just better models and systems, but
fundamentally better approaches to data quality assessment and benchmark
design.

12.10.3 Benchmarking Trifecta
AI benchmarking has traditionally evaluated systems, models, and data as
separate entities. However, real-world AI performance emerges from the inter-
play between these three components. A fast system cannot compensate for a
poorly trained model, and even the most powerful model is constrained by the
quality of the data it learns from. This interdependence necessitates a holistic
benchmarking approach that considers all three dimensions together.

As illustrated in Figure 12.14, the future of benchmarking lies in an inte-
grated framework that jointly evaluates system efÏciency, model performance,
and data quality. This approach enables researchers to identify optimization
opportunities that remain invisible when these components are analyzed in
isolation. For example, co-designing efÏcient AI models with hardware-aware
optimizations and carefully curated datasets can lead to superior performance
while reducing computational costs.

As AI continues to evolve, benchmarking methodologies must advance in
tandem. Evaluating AI performance through the lens of systems, models, and
data ensures that benchmarks drive improvements not just in accuracy, but also
in efÏciency, fairness, and robustness. This holistic perspective will be critical
for developing AI that is not only powerful but also practical, scalable, and
ethical.

12.11 Conclusion
“What gets measured gets improved.” Benchmarking plays a foundational role
in the advancement of AI, providing the essential measurements needed to

Chapter 12. Benchmarking AI 675

Figure 12.14: Benchmarking trifecta.

track progress, identify limitations, and drive innovation. This chapter has
explored the multifaceted nature of benchmarking, spanning systems, models,
and data, and has highlighted its critical role in optimizing AI performance
across different dimensions.

ML system benchmarks enable optimizations in speed, efÏciency, and scal-
ability, ensuring that hardware and infrastructure can support increasingly
complex AI workloads. Model benchmarks provide standardized tasks and
evaluation metrics beyond accuracy, driving progress in algorithmic innovation.
Data benchmarks, meanwhile, reveal key issues related to data quality, bias, and
representation, ensuring that AI models are built on fair and diverse datasets.

While these components, systems, models, and data, are often evaluated
in isolation, future benchmarking efforts will likely adopt a more integrated
approach. By measuring the interplay between system, model, and data bench-
marks, AI researchers and engineers can uncover new insights into the co-
design of data, algorithms, and infrastructure. This holistic perspective will be
essential as AI applications grow more sophisticated and are deployed across
increasingly diverse environments.

Benchmarking is not static—it must continuously evolve to capture new AI
capabilities, address emerging challenges, and refine evaluation methodologies.
As AI systems become more complex and influential, the need for rigorous,
transparent, and socially beneficial benchmarking standards becomes even
more pressing. Achieving this requires close collaboration between indus-
try, academia, and standardization bodies to ensure that benchmarks remain
relevant, unbiased, and aligned with real-world needs.

Ultimately, benchmarking serves as the compass that guides AI progress. By
persistently measuring and openly sharing results, we can navigate toward AI
systems that are performant, robust, and trustworthy. However, benchmarking
must also be aligned with human-centered principles, ensuring that AI serves
society in a fair and ethical manner. The future of benchmarking is already
expanding into new frontiers, including the evaluation of AI safety, fairness, and
generative AI models, which will shape the next generation of AI benchmarks.
These topics, while beyond the scope of this chapter, will be explored further
in the discussion on Generative AI.

12.12. Resources 676

For those interested in emerging trends in AI benchmarking, the article
The Olympics of AI: Benchmarking Machine Learning Systems provides a broader
look at benchmarking efforts in robotics, extended reality, and neuromorphic
computing. As benchmarking continues to evolve, it remains an essential tool
for understanding, improving, and shaping the future of AI.

12.12 Resources

�� Slides

• Why is benchmarking important?
• Embedded inference benchmarking.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

https://medium.com/towards-data-science/the-olympics-of-ai-benchmarking-machine-learning-systems-c4b2051fbd2b
https://docs.google.com/presentation/d/17udz3gxeYF3r3X1r4ePwu1I9H8ljb53W3ktFSmuDlGs/edit?usp=drive_link&resourcekey=0-Espn0a0x81kl2txL_jIWjw
https://docs.google.com/presentation/d/18PI_0xmcW1xwwfcjmj25PikqBM_92vQfOXFV4hah-6I/edit?resourcekey=0-KO3HQcDAsR--jgbKd5cp4w#slide=id.g94db9f9f78_0_2

Chapter 13

ML Operations

Figure 13.1: DALL·E 3 Prompt: Cre-
ate a detailed, wide rectangular illus-
tration of an AI workflow. The image
should showcase the process across six
stages, with a flow from left to right: 1.
Data collection, with diverse individ-
uals of different genders and descents
using a variety of devices like laptops,
smartphones, and sensors to gather data.
2. Data processing, displaying a data
center with active servers and databases
with glowing lights. 3. Model train-
ing, represented by a computer screen
with code, neural network diagrams,
and progress indicators. 4. Model eval-
uation, featuring people examining data
analytics on large monitors. 5. Deploy-
ment, where the AI is integrated into
robotics, mobile apps, and industrial
equipment. 6. Monitoring, showing
professionals tracking AI performance
metrics on dashboards to check for accu-
racy and concept drift over time. Each
stage should be distinctly marked and
the style should be clean, sleek, and mod-
ern with a dynamic and informative
color scheme.

Purpose
How do we operationalize machine learning principles in practice, and enable the
continuous evolution of machine learning systems in production?

Developing machine learning systems does not end with training a per-
formant model. As models are integrated into real-world applications, new
demands arise around reliability, continuity, governance, and iteration. Op-
erationalizing machine learning requires principles that help us understand
how systems behave over time, including how data shifts, models degrade, and
organizational processes adapt. In this context, several foundational questions
emerge: How do we manage evolving data distributions? What infrastructure
enables continuous delivery and real-time monitoring? How do we coordinate
efforts across technical and organizational boundaries? What processes ensure
reliability, reproducibility, and compliance under real-world constraints? These
concerns are not peripheral, as they are central to constructing sustainable

677

13.1. Overview 678

machine learning systems. Addressing them calls for a synthesis of software
engineering, systems thinking, and organizational alignment. This shift (from
building isolated models to engineering adaptive systems) marks a necessary
evolution in how machine learning is developed, deployed, and maintained in
practice.

L� Learning Objectives

• Define MLOps and explain its purpose in the machine learning
lifecycle.

• Describe the key components of an MLOps pipeline.
• Discuss the significance of monitoring and observability in MLOps.
• Identify and describe the unique forms of technical debt that arise

in ML systems.
• Describe the roles and responsibilities of key personnel involved

in MLOps.
• Analyze the impact of operational maturity on ML system design

and organizational structure.

13.1 Overview

Machine Learning Operations (MLOps) is a systematic discipline that integrates
machine learning, data science, and software engineering practices to automate
and streamline the end-to-end ML lifecycle. This lifecycle encompasses data
preparation, model training, evaluation, deployment, monitoring, and ongoing
maintenance. The goal of MLOps is to ensure that ML models are developed,
deployed, and operated reliably, efÏciently, and at scale.

To ground the discussion, consider a conventional ML application involving
centralized infrastructure. A ridesharing company may aim to predict real-time
rider demand using a machine learning model. The data science team might
invest significant time designing and training the model. However, when it
comes time to deploy it, the model often needs to be reengineered to align with
the engineering team’s production requirements. This disconnect can introduce
weeks of delay and engineering overhead. MLOps addresses this gap.

By establishing standard protocols, tools, and workflows, MLOps enables
models developed during experimentation to transition seamlessly into pro-
duction. It promotes collaboration across traditionally siloed roles, including
data scientists, ML engineers, and DevOps professionals, by defining interfaces
and responsibilities. MLOps also supports continuous integration and delivery
for ML, allowing teams to retrain, validate, and redeploy models frequently in
response to new data or system conditions.

Returning to the ridesharing example, a mature MLOps practice would allow
the company to continuously retrain its demand forecasting model as new
ridership data becomes available. It would also make it easier to evaluate
alternative model architectures, deploy experimental updates, and monitor

Chapter 13. ML Operations 679

0 Continuous Integration/Con-
tinuous Delivery (CI/CD): Practices
that automate the software delivery
process to ensure a seamless and fre-
quent release cycle.

system performance in production—all without disrupting live operations. This
agility is critical for maintaining model relevance in dynamic environments.

Beyond operational efÏciency, MLOps brings important benefits for gov-
ernance and accountability. It standardizes the tracking of model versions,
data lineage, and configuration parameters, creating a reproducible and au-
ditable trail of ML artifacts. This is essential in highly regulated industries
such as healthcare and finance, where model explainability and provenance
are fundamental requirements.

Organizations across sectors are adopting MLOps to increase team produc-
tivity, reduce time-to-market, and improve the reliability of ML systems. The
adoption of MLOps not only enhances model performance and robustness but
also enables a sustainable approach to managing ML systems at scale.

This chapter introduces the core motivations and foundational components
of MLOps, traces its historical development from DevOps, and outlines the key
challenges and practices that guide its adoption in modern ML system design.

13.2 Historical Context

MLOps has its roots in DevOps, a set of practices that combines software de-
velopment (Dev) and IT operations (Ops) to shorten the development lifecycle
and enable the continuous delivery of high-quality software. Both DevOps
and MLOps emphasize automation, collaboration, and iterative improvement.
However, while DevOps emerged to address challenges in software deploy-
ment and operational management, MLOps evolved in response to the unique
complexities of machine learning workflows—especially those involving data-
driven components (Breck et al. 2020). Understanding this evolution is essential
for appreciating the motivations and structure of modern ML systems.

13.2.1 DevOps

The term DevOps was coined in 2009 by Patrick Debois, a consultant and Agile
practitioner who organized the first DevOpsDays conference in Ghent, Belgium.
DevOps extended the principles of the Agile movement, that emphasized
close collaboration among development teams and rapid, iterative releases, by
bringing IT operations into the fold.

In traditional software pipelines, development and operations teams often
worked in silos, leading to inefÏciencies, delays, and misaligned priorities.
DevOps emerged as a response, advocating for shared ownership, infrastructure
as code, and the use of automation to streamline deployment pipelines. Tools
such as Jenkins, Docker, and Kubernetes became foundational to implementing
continuous integration and continuous delivery (CI/CD)0 practices.

DevOps promotes collaboration through automation and feedback loops,
aiming to reduce time-to-release and improve software reliability. It established
the cultural and technical groundwork for extending similar principles to the
ML domain.

https://www.jedi.be/
https://www.devopsdays.org/
https://agilemanifesto.org/
https://www.jenkins.io/
https://www.docker.com/
https://kubernetes.io/

13.2. Historical Context 680

13.2.2 MLOps
MLOps builds on the DevOps foundation but adapts it to the specific demands
of ML system development and deployment. While DevOps focuses on in-
tegrating and delivering deterministic software, MLOps must manage non-
deterministic, data-dependent workflows. These workflows span data acquisi-
tion, preprocessing, model training, evaluation, deployment, and continuous
monitoring (see Figure 13.2).

�� Definition of MLOps

Machine Learning Operations (MLOps) refers to the engineering disci-
pline that manages the end-to-end lifecycle of machine learning systems,
from data and model development to deployment, monitoring, and _mainte-
nance* in production. MLOps addresses ML-specific challenges, such as
data and model versioning, continuous retraining, and behavior under uncer-
tainty. It emphasizes collaborative workflows, infrastructure automation, and
governance to ensure that systems remain reliable, scalable, and auditable
throughout their operational lifespan.

Several recurring challenges in operationalizing machine learning motivated
the emergence of MLOps as a distinct discipline. One major concern is data
drift, where shifts in input data distributions over time degrade model accuracy.
This necessitates continuous monitoring and automated retraining procedures.
Equally critical is reproducibility—ML workflows often lack standardized mech-
anisms to track code, datasets, configurations, and environments, making it
difÏcult to reproduce past experiments (Schelter et al. 2018). The lack of explain-
ability in complex models has further driven demand for tools that increase
model transparency and interpretability, particularly in regulated domains.

Figure 13.2: How MLOps fits in the
over all model design and develop-
ment life cycle.

DESIGN
MODEL

DEVELOPMENT
OPERATIONS

• Requirements Engineering

• ML Use-Cases Prioritization

• Data Availability Check

• Data Engineering

• ML Model Engineering

• Model Testing & Validation

• ML Model Deployment

• CI/CD Pipeline

• Monitoring & Triggering

Post-deployment, many organizations struggle with monitoring model per-
formance in production, especially in detecting silent failures or changes in
user behavior. Additionally, the manual overhead involved in retraining and
redeploying models creates friction in experimentation and iteration. Finally,
configuring and maintaining ML infrastructure is complex and error-prone,

Chapter 13. ML Operations 681

highlighting the need for platforms that offer optimized, modular, and reusable
infrastructure. Together, these challenges form the foundation for MLOps
practices that focus on automation, collaboration, and lifecycle management.

These challenges introduced the need for a new set of tools and workflows
tailored to the ML lifecycle. While DevOps primarily unifies software develop-
ment and IT operations, MLOps requires coordination across a broader set of
stakeholders—data scientists, ML engineers, data engineers, and operations
teams.

MLOps introduces specialized practices such as data versioning, model ver-
sioning, and model monitoring that go beyond the scope of DevOps. It empha-
sizes scalable experimentation, reproducibility, governance, and responsiveness
to evolving data conditions. Table 13.1 summarizes key similarities and differ-
ences between DevOps and MLOps:

Table 13.1: Comparison of DevOps and MLOps.

Aspect DevOps MLOps

Objective Streamlining software development
and operations processes

Optimizing the lifecycle of machine learning
models

Methodology Continuous Integration and
Continuous Delivery (CI/CD) for
software development

Similar to CI/CD but focuses on machine
learning workflows

Primary Tools Version control (Git), CI/CD tools
(Jenkins, Travis CI), Configuration
management (Ansible, Puppet)

Data versioning tools, Model training and
deployment tools, CI/CD pipelines tailored for
ML

Primary Concerns Code integration, Testing, Release
management, Automation,
Infrastructure as code

Data management, Model versioning,
Experiment tracking, Model deployment,
Scalability of ML workflows

Typical Outcomes Faster and more reliable software
releases, Improved collaboration
between development and operations
teams

EfÏcient management and deployment of
machine learning models, Enhanced
collaboration between data scientists and
engineers

These distinctions become clearer when examined through practical exam-
ples. One such case study, which focuses on speech recognition, demonstrates
the lifecycle of ML deployment and monitoring in action.

13.3 MLOps Key Components

The core components of MLOps form an integrated framework that supports
the full machine learning lifecycle—from initial development through deploy-
ment and long-term maintenance in production. This section synthesizes key
ideas such as automation, reproducibility, and monitoring introduced earlier in
the book, while also introducing critical new practices, including governance,
model evaluation, and cross-team collaboration. Each component plays a dis-
tinct role in creating scalable, reliable, and maintainable ML systems. Together,
they form a layered architecture, as illustrated in Figure Figure 13.3, that sup-
ports everything from low-level infrastructure to high-level application logic.
By understanding how these components interact, practitioners can design sys-
tems that are not only performant but also transparent, auditable, and adaptable
to changing conditions.

https://dvc.org/
https://dvc.org/
https://dvc.org/
https://www.fiddler.ai/

13.3. MLOps Key Components 682

Figure 13.3: The MLOps stack, in-
cluding ML Models, Frameworks,
Model Orchestration, Infrastructure,
and Hardware, illustrates the end-
to-end workflow of MLOps.

ML Models/Applications

(e.g., BERT)

ML Frameworks/Platforms

(e.g., PyTorch)

Model Orchestration

(e.g., Ray)

Infrastructure

(e.g., Kubernetes)

Hardware

(e.g., a GPU klaster)

Data Management

CI/CD

Model Training

Model Eval

Deployment

Model Serving

Job Scheduling

Resource Management

Capacity Management

Monitoring

MLOps

•
•

•

13.3.1 Data Infrastructure and Preparation
Reliable machine learning systems depend on structured, scalable, and repeat-
able handling of data. From the moment data is ingested to the point where it
informs predictions, each stage must preserve quality, consistency, and trace-
ability. In operational settings, data infrastructure supports not only initial
development but also continual retraining, auditing, and serving—requiring
systems that formalize the transformation and versioning of data throughout
the ML lifecycle.

13.3.1.1 Data Management

In earlier chapters, we examined how data is collected, preprocessed, and
transformed into features suitable for model training and inference. Within
the context of MLOps, these tasks are formalized and scaled into systematic,
repeatable processes that ensure data reliability, traceability, and operational
efÏciency. Data management, in this setting, extends beyond initial preparation
to encompass the continuous handling of data artifacts throughout the lifecycle
of a machine learning system.

A foundational aspect of MLOps data management is dataset versioning. Ma-
chine learning systems often evolve in tandem with the data on which they are
trained. Therefore, it is essential to maintain a clear mapping between specific
versions of data and corresponding model iterations. Tools such as DVC enable
teams to version large datasets alongside code repositories managed by Git,
ensuring that data lineage is preserved and that experiments are reproducible.

Supervised learning pipelines also require consistent and well-managed
annotation workflows. Labeling tools such as Label Studio support scalable,
team-based annotation with integrated audit trails and version histories. These
capabilities are particularly important in production settings, where labeling
conventions may evolve over time or require refinement across multiple itera-
tions of a project.

In operational environments, data must also be stored in a manner that
supports secure, scalable, and collaborative access. Cloud-based object storage
systems such as Amazon S3 and Google Cloud Storage offer durability and

https://dvc.org/
https://git-scm.com/
https://labelstud.io/
https://aws.amazon.com/s3/
https://cloud.google.com/storage

Chapter 13. ML Operations 683

1 Feature Store: A centralized
repository for storing, managing,
and retrieving feature data used in
machine learning models.

2 Training-serving skew: A
discrepancy between model perfor-
mance during training and infer-
ence, often due to differences in data
handling.

3 Data leakage: Occurs when in-
formation from outside the training
dataset is used to create the model,
leading to misleadingly high perfor-
mance.

4 Model drift: The change
in model performance over time,
caused by evolving underlying data
patterns.

fine-grained access control, making them well-suited for managing both raw
and processed data artifacts. These systems frequently serve as the foundation
for downstream analytics, model development, and deployment workflows.

To transition from raw data to analysis- or inference-ready formats, MLOps
teams construct automated data pipelines. These pipelines perform structured
tasks such as data ingestion, schema validation, deduplication, transformation,
and loading. Orchestration tools including Apache Airflow, Prefect, and dbt
are commonly used to define and manage these workflows. When managed as
code, pipelines support versioning, modularity, and integration with CI/CD
systems.

An increasingly important element of the MLOps data infrastructure is the
feature store1. Feature stores, such as Feast and Tecton, provide a centralized
repository for storing and retrieving engineered features. These systems serve
both batch and online use cases, ensuring that models access the same feature
definitions during training and inference, thereby improving consistency and
reducing data leakage.

Consider a predictive maintenance application in an industrial setting. A
continuous stream of sensor data is ingested and joined with historical mainte-
nance logs through a scheduled pipeline managed in Airflow. The resulting
features, including rolling averages and statistical aggregates, are stored in a
feature store for both retraining and low-latency inference. This pipeline is
versioned, monitored, and integrated with the model registry, enabling full
traceability from data to deployed model predictions.

Effective data management in MLOps is not limited to ensuring data quality.
It also establishes the operational backbone that enables model reproducibility,
auditability, and sustained deployment at scale. Without robust data manage-
ment, the integrity of downstream training, evaluation, and serving processes
cannot be maintained.

çĖ Important 5: Data Pipelines

Watch on YouTube
Data Pipelines

Scan with your phone
to watch the video

TV Watch on YouTube

13.3.1.2 Feature Stores
Feature stores provide an abstraction layer between data engineering and ma-
chine learning. Their primary purpose is to enable consistent, reliable access to
engineered features across training and inference workflows. In conventional
pipelines, feature engineering logic may be duplicated, manually reimple-
mented, or diverge across environments. This introduces risks of training-
serving skew2, data leakage3, and model drift4.

Feature stores address these challenges by managing both ofÒine (batch) and
online (real-time) feature access in a centralized repository. During training,
features are computed and stored in a batch environment—typically in con-
junction with historical labels. At inference time, the same transformation logic
is applied to fresh data in an online serving system. This architecture ensures
that models consume identical features in both contexts, promoting consistency
and improving reliability.

https://airflow.apache.org/
https://www.prefect.io/
https://www.getdbt.com/
https://feast.dev/
https://www.tecton.ai/
https://www.youtube.com/watch?v=gz-44N3MMOA&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=33
https://www.youtube.com/watch?v=gz-44N3MMOA&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=33

13.3. MLOps Key Components 684

In addition to enforcing standardization, feature stores support versioning,
metadata management, and feature reuse across teams. For example, a fraud
detection model and a credit scoring model may rely on overlapping transaction
features, which can be centrally maintained, validated, and shared. This reduces
engineering overhead and fosters alignment across use cases.

Feature stores can be tightly integrated with data pipelines and model reg-
istries, enabling lineage tracking and traceability. When a feature is updated
or deprecated, dependent models can be identified and retrained accordingly.
This level of integration enhances the operational maturity of ML systems and
supports auditing, debugging, and compliance workflows.

13.3.1.3 Versioning and Lineage
Versioning is fundamental to reproducibility and traceability in machine learn-
ing systems. Unlike traditional software, ML models depend on multiple
changing artifacts—data, feature transformations, model weights, and con-
figuration parameters. To manage this complexity, MLOps practices enforce
rigorous tracking of versions across all pipeline components.

Data versioning allows teams to snapshot datasets at specific points in time
and associate them with particular model runs. This includes both raw data
(e.g., input tables or log streams) and processed artifacts (e.g., cleaned datasets
or feature sets). By maintaining a direct mapping between model checkpoints
and the data used for training, teams can audit decisions, reproduce results,
and investigate regressions.

Model versioning involves registering trained models as immutable artifacts,
often alongside metadata such as training parameters, evaluation metrics, and
environment specifications. These records are typically maintained in a model
registry, which provides a structured interface for promoting, deploying, and
rolling back model versions. Some registries also support lineage visualization,
which traces the full dependency graph from raw data to deployed prediction.

Together, data and model versioning form the lineage layer of an ML system.
This layer enables introspection, experimentation, and governance. When a
deployed model underperforms, lineage tools help teams answer questions
such as:

• Was the input distribution consistent with training data?
• Did the feature definitions change?
• Is the model version aligned with the serving infrastructure?

By making versioning and lineage first-class citizens in the system design,
MLOps enables teams to build and maintain reliable, auditable, and evolvable
ML workflows at scale.

13.3.2 Continuous Pipelines and Automation
Automation enables machine learning systems to evolve continuously in re-
sponse to new data, shifting objectives, and operational constraints. Rather than
treating development and deployment as isolated phases, automated pipelines
allow for synchronized workflows that integrate data preprocessing, training,
evaluation, and release. These pipelines underpin scalable experimentation
and ensure the repeatability and reliability of model updates in production.

Chapter 13. ML Operations 685

5 Artifact Versioning: Manag-
ing versions of software artifacts to
track changes over time, essential
for rollback and understanding de-
pendencies.

13.3.2.1 CI/CD Pipelines

In conventional software systems, continuous integration and continuous de-
livery (CI/CD) pipelines are essential for ensuring that code changes can be
tested, validated, and deployed efÏciently. In the context of machine learn-
ing systems, CI/CD pipelines are adapted to handle additional complexities
introduced by data dependencies, model training workflows, and artifact ver-
sioning5. These pipelines provide a structured mechanism to transition ML
models from development into production in a reproducible, scalable, and
automated manner.

A typical ML CI/CD pipeline consists of several coordinated stages, includ-
ing: checking out updated code, preprocessing input data, training a candidate
model, validating its performance, packaging the model, and deploying it
to a serving environment. In some cases, pipelines also include triggers for
automatic retraining based on data drift or performance degradation. By codi-
fying these steps, CI/CD pipelines reduce manual intervention, enforce quality
checks, and support continuous improvement of deployed systems.

A wide range of tools is available for implementing ML-focused CI/CD
workflows. General-purpose CI/CD orchestrators such as Jenkins, CircleCI,
and GitHub Actions are commonly used to manage version control events and
execution logic. These tools are frequently integrated with domain-specific
platforms such as Kubeflow, Metaflow, and Prefect, which offer higher-level
abstractions for managing ML tasks and workflows.

Figure 13.4 illustrates a representative CI/CD pipeline for machine learning
systems. The process begins with a dataset and feature repository, from which
data is ingested and validated. Validated data is then transformed for model
training. A retraining trigger, such as a scheduled job or performance threshold,
may initiate this process automatically. Once training and hyperparameter tun-
ing are complete, the resulting model undergoes evaluation against predefined
criteria. If the model satisfies the required thresholds, it is registered in a model
repository along with metadata, performance metrics, and lineage information.
Finally, the model is deployed back into the production system, closing the
loop and enabling continuous delivery of updated models.

Figure 13.4: MLOps CI/CD dia-
gram. Source: HarvardX.

Data validation
Data

transformation

Model

validation

Model

registration

Dataset

ingestion

Model training /

tuning
Model

evaluation

Continuous training pipeline

Dataset &

feature

repository

Dataset &

feature

repository

ML metadata

& artifact

repository

Dataset

<\>

Trained

Model

<\>

Trained pipeline

metadata

& artifacts

<\>

Retraining

trigger

Model

training

engine

Model

processing

engine

Model

evaluation

engine

https://www.jenkins.io/
https://circleci.com/
https://github.com/features/actions
https://www.kubeflow.org/
https://metaflow.org/
https://www.prefect.io/

13.3. MLOps Key Components 686

As a practical example, consider an image classification model under active
development. When a data scientist commits changes to a GitHub repository,
a Jenkins pipeline is triggered. The pipeline fetches the latest data, performs
preprocessing, and initiates model training. Experiments are tracked using
MLflow, which logs metrics and stores model artifacts. After passing auto-
mated evaluation tests, the model is containerized and deployed to a staging
environment using Kubernetes. If the model meets validation criteria in staging,
the pipeline orchestrates a canary deployment, gradually routing production
trafÏc to the new model while monitoring key metrics for anomalies. In case
of performance regressions, the system can automatically revert to a previous
model version.

CI/CD pipelines play a central role in enabling scalable, repeatable, and
safe deployment of machine learning models. By unifying the disparate stages
of the ML workflow under continuous automation, these pipelines support
faster iteration, improved reproducibility, and greater resilience in production
systems. In mature MLOps environments, CI/CD is not an optional layer,
but a foundational capability that transforms ad hoc experimentation into a
structured and operationally sound development process.

13.3.2.2 Training Pipelines

Model training is a central phase in the machine learning lifecycle, where
algorithms are optimized to learn patterns from data. In prior chapters, we
introduced the fundamentals of model development and training workflows, in-
cluding architecture selection, hyperparameter tuning, and evaluation. Within
an MLOps context, these activities are reframed as part of a reproducible, scal-
able, and automated pipeline that supports continual experimentation and
reliable production deployment.

Modern machine learning frameworks such as TensorFlow, PyTorch, and
Keras provide modular components for building and training models. These
libraries include high-level abstractions for layers, activation functions, loss
metrics, and optimizers, enabling practitioners to prototype and iterate efÏ-
ciently. When embedded into MLOps pipelines, these frameworks serve as the
foundation for training processes that can be systematically scaled, tracked,
and retrained.

Reproducibility is a key objective of MLOps. Training scripts and configura-
tions are version-controlled using tools like Git and hosted on platforms such as
GitHub. Interactive development environments, including Jupyter notebooks,
are commonly used to encapsulate data ingestion, feature engineering, training
routines, and evaluation logic in a unified format. These notebooks can be
integrated into automated pipelines, allowing the same logic used for local
experimentation to be reused for scheduled retraining in production systems.

Automation further enhances model training by reducing manual effort and
standardizing critical steps. MLOps workflows often incorporate techniques
such as hyperparameter tuning, neural architecture search, and automatic fea-
ture selection to explore the design space efÏciently. These tasks are orchestrated
using CI/CD pipelines, which automate data preprocessing, model training,
evaluation, registration, and deployment. For instance, a Jenkins pipeline may

https://github.com/
https://mlflow.org/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments
https://www.tensorflow.org/
https://pytorch.org/
https://keras.io/
https://git-scm.com/
https://github.com/
https://jupyter.org/
https://cloud.google.com/ai-platform/training/docs/hyperparameter-tuning-overview
https://arxiv.org/abs/1808.05377
https://scikit-learn.org/stable/modules/feature_selection.html
https://scikit-learn.org/stable/modules/feature_selection.html

Chapter 13. ML Operations 687

6 In cloud computing, man-
aged services involve third-party
providers handling infrastructure,
application functionalities, and op-
erations.

trigger a retraining job when new labeled data becomes available. The resulting
model is evaluated against baseline metrics, and if performance thresholds are
met, it is deployed automatically.

The increasing availability of cloud-based infrastructure has further expanded
the reach of model training. Cloud providers offer managed services6 that pro-
vision high-performance computing resources, which include GPU and TPU
accelerators, on demand. Depending on the platform, teams may construct
their own training workflows or rely on fully managed services such as Vertex
AI Fine Tuning, which support automated adaptation of foundation models to
new tasks. Nonetheless, hardware availability, regional access restrictions, and
cost constraints remain important considerations when designing cloud-based
training systems.

As an illustrative example, consider a data scientist developing a convolu-
tional neural network (CNN) for image classification using a PyTorch notebook.
The fastai library is used to simplify model construction and training. The
notebook trains the model on a labeled dataset, computes performance metrics,
and tunes hyperparameters such as learning rate and architecture depth. Once
validated, the training script is version-controlled and incorporated into a re-
training pipeline that is periodically triggered based on data updates or model
performance monitoring.

Through standardized workflows, versioned environments, and automated
orchestration, MLOps enables the model training process to transition from ad
hoc experimentation to a robust, repeatable, and scalable system. This not only
accelerates development but also ensures that trained models meet production
standards for reliability, traceability, and performance.

13.3.2.3 Model Validation

Before a machine learning model is deployed into production, it must undergo
rigorous evaluation to ensure that it meets predefined performance, robustness,
and reliability criteria. While earlier chapters discussed evaluation in the con-
text of model development, MLOps reframes evaluation as a structured and
repeatable process for validating operational readiness. It incorporates prac-
tices that support pre-deployment assessment, post-deployment monitoring,
and automated regression testing.

The evaluation process typically begins with performance testing against
a holdout test set—a dataset not used during training or validation. This
dataset is sampled from the same distribution as production data and is used
to measure generalization. Core metrics such as accuracy, area under the
curve (AUC), precision, recall, and F1 score are computed to quantify model
performance. These metrics are not only used at a single point in time but also
tracked longitudinally to detect degradation, such as that caused by data drift,
where shifts in input distributions can reduce model accuracy over time (see
Figure 13.5).

Beyond static evaluation, MLOps encourages controlled deployment strate-
gies that simulate production conditions while minimizing risk. One widely
adopted method is canary testing, in which the new model is deployed to a
small fraction of users or queries. During this limited rollout, live performance

https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models
https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models
https://www.fast.ai/
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
https://www.ibm.com/cloud/learn/data-drift
https://martinfowler.com/bliki/CanaryRelease.html

13.3. MLOps Key Components 688

Figure 13.5: Example of data drift
over time and how it can impact
model performance.

Incoming date

Time

Feature distribution: sales_channel

Online store

Offline store

Model quality: accuracy over time

metrics are monitored to assess system stability and user impact. For instance,
an e-commerce platform may deploy a new recommendation model to 5% of
web trafÏc and observe metrics such as click-through rate, latency, and pre-
diction accuracy. Only after the model demonstrates consistent and reliable
performance is it promoted to full production.

Cloud-based ML platforms further support model evaluation by enabling
experiment logging, request replay, and synthetic test case generation. These
capabilities allow teams to evaluate different models under identical condi-
tions, facilitating comparisons and root-cause analysis. Tools such as Weights
and Biases automate aspects of this process by capturing training artifacts,
recording hyperparameter configurations, and visualizing performance metrics
across experiments. These tools integrate directly into training and deployment
pipelines, improving transparency and traceability.

While automation is central to MLOps evaluation practices, human oversight
remains essential. Automated tests may fail to capture nuanced performance
issues, such as poor generalization on rare subpopulations or shifts in user
behavior. Therefore, teams often combine quantitative evaluation with qual-
itative review, particularly for models deployed in high-stakes or regulated
environments.

In summary, model evaluation within MLOps is a multi-stage process that
bridges ofÒine testing and live system monitoring. It ensures that models not
only meet technical benchmarks but also behave predictably and responsibly
under real-world conditions. These evaluation practices reduce deployment
risk and help maintain the reliability of machine learning systems over time.

13.3.3 Model Deployment and Serving
Once a model has been trained and validated, it must be integrated into a
production environment where it can deliver predictions at scale. This process
involves packaging the model with its dependencies, managing versions, and
deploying it in a way that aligns with performance, reliability, and governance
requirements. Deployment transforms a sta tic artifact into a live system com-
ponent. Serving ensures that the model is accessible, reliable, and efÏcient in

https://wandb.ai/
https://wandb.ai/

Chapter 13. ML Operations 689

7 REST APIs: Interfaces that al-
low communication between com-
puter systems over the internet us-
ing REST architectural principles.

responding to inference requests. Together, these components form the bridge
between model development and real-world impact.

13.3.3.1 Model Deployment

Teams need to properly package, test, and track ML models to reliably deploy
them to production. MLOps introduces frameworks and procedures for actively
versioning, deploying, monitoring, and updating models in sustainable ways.

One common approach to deployment involves containerizing models us-
ing tools like Docker, which package code, libraries, and dependencies into
standardized units. Containers ensure smooth portability across environ-
ments, making deployment consistent and predictable. Frameworks like Ten-
sorFlow Serving and BentoML help serve predictions from deployed models
via performance-optimized APIs. These frameworks handle versioning, scaling,
and monitoring.

Before full-scale rollout, teams deploy updated models to staging or QA
environments to rigorously test performance. Techniques such as shadow or ca-
nary deployments are used to validate new models incrementally. For instance,
canary deployments route a small percentage of trafÏc to the new model while
closely monitoring performance. If no issues arise, trafÏc to the new model
gradually increases. Robust rollback procedures are essential to handle unex-
pected issues, reverting systems to the previous stable model version to ensure
minimal disruption. Integration with CI/CD pipelines further automates the
deployment and rollback process, enabling efÏcient iteration cycles.

To maintain lineage and auditability, teams track model artifacts, including
scripts, weights, logs, and metrics, using tools like MLflow. Model registries,
such as Vertex AI’s model registry, act as centralized repositories for storing
and managing trained models. These registries not only facilitate version
comparisons but also often include access to base models, which may be open
source, proprietary, or a hybrid (e.g., LLAMA). Deploying a model from the
registry to an inference endpoint is streamlined, handling resource provisioning,
model weight downloads, and hosting.

Inference endpoints typically expose the deployed model via REST APIs7

for real-time predictions. Depending on performance requirements, teams can
configure resources, such as GPU accelerators, to meet latency and throughput
targets. Some providers also offer flexible options like serverless or batch infer-
ence, eliminating the need for persistent endpoints and enabling cost-efÏcient,
scalable deployments. For example, AWS SageMaker Inference supports such
configurations. By leveraging these tools and practices, teams can deploy ML
models resiliently, ensuring smooth transitions between versions, maintaining
production stability, and optimizing performance across diverse use cases.

13.3.3.2 Inference Serving

Once a model has been deployed, the final stage in operationalizing machine
learning is to make it accessible to downstream applications or end-users. Serv-
ing infrastructure provides the interface between trained models and real-world
systems, enabling predictions to be delivered reliably and efÏciently. In large-
scale settings, such as social media platforms or e-commerce services, serving

https://www.docker.com/
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://bentoml.org/
https://mlflow.org/
https://cloud.google.com/vertex-ai/docs/model-registry/introduction
https://ai.meta.com/llama/
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html

13.3. MLOps Key Components 690

systems may process tens of trillions of inference queries per day (C.-J. Wu
et al. 2019). Meeting such demand requires careful design to balance latency,
scalability, and robustness.

To address these challenges, production-grade serving frameworks have
emerged. Tools such as TensorFlow Serving, NVIDIA Triton Inference Server,
and KServe provide standardized mechanisms for deploying, versioning, and
scaling machine learning models across heterogeneous infrastructure. These
frameworks abstract many of the lower-level concerns, allowing teams to focus
on system behavior, integration, and performance targets.

Model serving architectures are typically designed around three broad paradigms:

1. Online Serving, which provides low-latency, real-time predictions for
interactive systems such as recommendation engines or fraud detection.

2. OfÒine Serving, which processes large batches of data asynchronously,
typically in scheduled jobs used for reporting or model retraining.

3. Near-Online (Semi-Synchronous) Serving, which offers a balance between
latency and throughput, appropriate for scenarios like chatbots or semi-
interactive analytics.

Each of these approaches introduces different constraints in terms of availabil-
ity, responsiveness, and throughput. Serving systems are therefore constructed
to meet specific Service Level Agreements (SLAs) and Service Level Objectives
(SLOs), which quantify acceptable performance boundaries along dimensions
such as latency, error rates, and uptime. Achieving these goals requires a range
of optimizations in request handling, scheduling, and resource allocation.

A number of serving system design strategies are commonly employed to
meet these requirements. Request scheduling and batching aggregate inference
requests to improve throughput and hardware utilization. For instance, Clipper
(Crankshaw et al. 2017) applies batching and caching to reduce response times
in online settings. Model instance selection and routing dynamically assign
requests to model variants based on system load or user-defined constraints;
INFaaS (Romero et al. 2021) illustrates this approach by optimizing accuracy-
latency trade-offs across variant models.

1. Request scheduling and batching: EfÏciently manages incoming ML
inference requests, optimizing performance through smart queuing and
grouping strategies. Systems like Clipper (Crankshaw et al. 2017) intro-
duce low-latency online prediction serving with caching and batching
techniques.

2. Model instance selection and routing: Intelligent algorithms direct re-
quests to appropriate model versions or instances. INFaaS (Romero et al.
2021) explores this by generating model-variants and efÏciently navigat-
ing the trade-off space based on performance and accuracy requirements.

3. Load balancing: Distributes workloads evenly across multiple serving
instances. MArk (Model Ark) (C. Zhang et al. 2019) demonstrates effective
load balancing techniques for ML serving systems.

4. Model instance autoscaling: Dynamically adjusts capacity based on
demand. Both INFaaS (Romero et al. 2021) and MArk (C. Zhang et al.

https://www.tensorflow.org/tfx/guide/serving
https://developer.nvidia.com/triton-inference-server
https://kserve.github.io/website/latest/

Chapter 13. ML Operations 691

2019) incorporate autoscaling capabilities to handle workload fluctuations
efÏciently.

5. Model orchestration: Manages model execution, enabling parallel pro-
cessing and strategic resource allocation. AlpaServe (Z. Li et al. 2023)
demonstrates advanced techniques for handling large models and com-
plex serving scenarios.

6. Execution time prediction: Systems like Clockwork (Gujarati et al. 2020)
focus on high-performance serving by predicting execution times of indi-
vidual inferences and efÏciently using hardware accelerators.

In more complex inference scenarios, model orchestration coordinates the
execution of multi-stage models or distributed components. AlpaServe (Z. Li
et al. 2023) exemplifies this by enabling efÏcient serving of large foundation
models through coordinated resource allocation. Finally, execution time predic-
tion enables systems to anticipate latency for individual requests. Clockwork
(Gujarati et al. 2020) uses this capability to reduce tail latency and improve
scheduling efÏciency under high load.

While these systems differ in implementation, they collectively illustrate
the critical techniques that underpin scalable and responsive ML-as-a-Service
infrastructure. Table 13.2 summarizes these strategies and highlights represen-
tative systems that implement them.

Table 13.2: Serving system techniques and example implementations.

Technique Description
Example
System

Request Scheduling &
Batching

Groups inference requests to improve throughput and reduce
overhead

Clipper

Instance Selection &
Routing

Dynamically assigns requests to model variants based on
constraints

INFaaS

Load Balancing Distributes trafÏc across replicas to prevent bottlenecks MArk
Autoscaling Adjusts model instances to match workload demands INFaaS, MArk
Model Orchestration Coordinates execution across model components or pipelines AlpaServe
Execution Time
Prediction

Forecasts latency to optimize request scheduling Clockwork

Together, these strategies form the foundation of robust model serving sys-
tems. When effectively integrated, they enable machine learning applications
to meet performance targets while maintaining system-level efÏciency and
scalability.

13.3.4 Infrastructure and Observability

The operational stability of a machine learning system depends on the ro-
bustness of its underlying infrastructure. Compute, storage, and networking
resources must be provisioned, configured, and scaled to accommodate training
workloads, deployment pipelines, and real-time inference. Beyond infrastruc-
ture provisioning, effective observability practices ensure that system behavior
can be monitored, interpreted, and acted upon as conditions change.

13.3. MLOps Key Components 692

13.3.4.1 Infrastructure Management

Scalable, resilient infrastructure is a foundational requirement for operational-
izing machine learning systems. As models move from experimentation to
production, MLOps teams must ensure that the underlying computational
resources can support continuous integration, large-scale training, automated
deployment, and real-time inference. This requires managing infrastructure
not as static hardware, but as a dynamic, programmable, and versioned system.

To achieve this, teams adopt the practice of Infrastructure as Code (IaC),
which allows infrastructure to be defined, deployed, and maintained using
declarative configuration files. Tools such as Terraform, AWS CloudFormation,
and Ansible support this paradigm by enabling teams to version infrastructure
definitions alongside application code. In MLOps settings, Terraform is widely
used to provision and manage resources across public cloud platforms such as
AWS, Google Cloud Platform, and Microsoft Azure.

Infrastructure management spans the full lifecycle of ML systems. During
model training, teams use IaC scripts to allocate compute instances with GPU or
TPU accelerators, configure distributed storage, and deploy container clusters.
These configurations ensure that data scientists and ML engineers can access
reproducible environments with the required computational capacity. Because
infrastructure definitions are stored as code, they can be audited, reused, and
integrated into CI/CD pipelines to ensure consistency across environments.

Containerization plays a critical role in making ML workloads portable and
consistent. Tools like Docker encapsulate models and their dependencies into
isolated units, while orchestration systems such as Kubernetes manage con-
tainerized workloads across clusters. These systems enable rapid deployment,
resource allocation, and scaling—capabilities that are essential in production
environments where workloads can vary dynamically.

To handle changes in workload intensity, including spikes during hyperpa-
rameter tuning and surges in prediction trafÏc, teams rely on cloud elasticity and
autoscaling. Cloud platforms support on-demand provisioning and horizontal
scaling of infrastructure resources. Autoscaling mechanisms automatically
adjust compute capacity based on usage metrics, enabling teams to optimize
for both performance and cost-efÏciency.

Importantly, infrastructure in MLOps is not limited to the cloud. Many
deployments span on-premises, cloud, and edge environments, depending on
latency, privacy, or regulatory constraints. A robust infrastructure management
strategy must accommodate this diversity by offering flexible deployment
targets and consistent configuration management across environments.

To illustrate, consider a scenario in which a team uses Terraform to deploy a
Kubernetes cluster on Google Cloud Platform. The cluster is configured to host
containerized TensorFlow models that serve predictions via HTTP APIs. As
user demand increases, Kubernetes automatically scales the number of pods
to handle the load. Meanwhile, CI/CD pipelines update the model containers
based on retraining cycles, and monitoring tools track cluster performance,
latency, and resource utilization. All infrastructure components, ranging from
network configurations to compute quotas, are managed as version-controlled
code, ensuring reproducibility and auditability.

https://www.terraform.io/
https://aws.amazon.com/cloudformation/
https://www.ansible.com/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://www.docker.com/
https://kubernetes.io/
https://aws.amazon.com/autoscaling/

Chapter 13. ML Operations 693

By adopting Infrastructure as Code, leveraging cloud-native orchestration,
and supporting automated scaling, MLOps teams gain the ability to provision
and maintain the resources required for machine learning at production scale.
This infrastructure layer underpins the entire MLOps stack, enabling reliable
training, deployment, and serving workflows.

13.3.4.2 Monitoring Systems
Monitoring is a critical function in MLOps, enabling teams to maintain op-
erational visibility over machine learning systems deployed in production.
Once a model is live, it becomes exposed to real-world inputs, evolving data
distributions, and shifting user behavior. Without continuous monitoring, it
becomes difÏcult to detect performance degradation, data quality issues, or
system failures in a timely manner.

Effective monitoring spans both model behavior and infrastructure perfor-
mance. On the model side, teams track metrics such as accuracy, precision,
recall, and the confusion matrix using live or sampled predictions. By evaluat-
ing these metrics over time, they can detect whether the model’s performance
remains stable or begins to drift.

One of the primary risks in production ML systems is model drift—a gradual
decline in model performance as the input data distribution or the relationship
between inputs and outputs changes. Drift manifests in two main forms:

• Concept drift occurs when the underlying relationship between features
and targets evolves. For example, during the COVID-19 pandemic, pur-
chasing behavior shifted dramatically, invalidating many previously ac-
curate recommendation models.

• Data drift refers to shifts in the input data distribution itself. In appli-
cations such as self-driving cars, this may result from seasonal changes
in weather, lighting, or road conditions, all of which affect the model’s
inputs.

In addition to model-level monitoring, infrastructure-level monitoring tracks
indicators such as CPU and GPU utilization, memory and disk consumption,
network latency, and service availability. These signals help ensure that the
system remains performant and responsive under varying load conditions.
Tools such as Prometheus, Grafana, and Elastic are widely used to collect,
aggregate, and visualize operational metrics. These tools often integrate into
dashboards that offer real-time and historical views of system behavior.

Proactive alerting mechanisms are configured to notify teams when anoma-
lies or threshold violations occur. For example, a sustained drop in model
accuracy may trigger an alert to investigate potential drift, prompting retraining
with updated data. Similarly, infrastructure alerts can signal memory saturation
or degraded network performance, allowing engineers to take corrective action
before failures propagate.

Ultimately, robust monitoring enables teams to detect problems before they
escalate, maintain high service availability, and preserve the reliability and
trustworthiness of machine learning systems. In the absence of such practices,
models may silently degrade or systems may fail under load, undermining the
effectiveness of the ML pipeline as a whole.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
https://prometheus.io/
https://grafana.com/
https://www.elastic.co/

13.3. MLOps Key Components 694

çĖ Important 6: Model Monitoring

Watch on YouTube
Model Monitoring

Scan with your phone
to watch the video

TV Watch on YouTube

13.3.5 Governance and Collaboration
13.3.5.1 Model Governance
As machine learning systems become increasingly embedded in decision-
making processes, governance has emerged as a critical pillar of MLOps. Gov-
ernance refers to the policies, practices, and tools used to ensure that models
are transparent, fair, accountable, and compliant with ethical standards and
regulatory requirements. Without proper governance, deployed models may
produce biased or opaque decisions, leading to significant legal, reputational,
and societal risks.

Governance begins during the model development phase, where teams im-
plement techniques to increase transparency and explainability. For example,
methods such as SHAP and LIME offer post hoc explanations of model predic-
tions by identifying which input features were most influential in a particular
decision. These techniques allow auditors, developers, and non-technical stake-
holders to better understand how and why a model behaves the way it does.

In addition to interpretability, fairness is a central concern in governance. Bias
detection tools analyze model outputs across different demographic groups,
including those defined by age, gender, or ethnicity, to identify disparities
in performance. For instance, a model used for loan approval should not
systematically disadvantage certain populations. MLOps teams employ pre-
deployment audits on curated, representative datasets to evaluate fairness,
robustness, and overall model behavior before a system is put into production.

Governance also extends into the post-deployment phase. As introduced in
the previous section on monitoring, teams must track for concept drift, where
the statistical relationships between features and labels evolve over time. Such
drift can undermine the fairness or accuracy of a model, particularly if the
shift disproportionately affects a specific subgroup. By analyzing logs and
user feedback, teams can identify recurring failure modes, unexplained model
outputs, or emerging disparities in treatment across user segments.

Supporting this lifecycle approach to governance are platforms and toolkits
that integrate governance functions into the broader MLOps stack. For example,
Watson OpenScale provides built-in modules for explainability, bias detection,
and monitoring. These tools allow governance policies to be encoded as part of
automated pipelines, ensuring that checks are consistently applied throughout
development, evaluation, and production.

Ultimately, governance focuses on three core objectives: transparency, fair-
ness, and compliance. Transparency ensures that models are interpretable and
auditable. Fairness promotes equitable treatment across user groups. Com-
pliance ensures alignment with legal and organizational policies. Embedding
governance practices throughout the MLOps lifecycle transforms machine learn-
ing from a technical artifact into a trustworthy system capable of serving societal
and organizational goals.

https://www.youtube.com/watch?v=hq_XyP9y0xg&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=7
https://www.youtube.com/watch?v=hq_XyP9y0xg&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=7
https://github.com/slundberg/shap
https://github.com/marcotcr/lime
https://www.ibm.com/cloud/watson-openscale

Chapter 13. ML Operations 695

13.3.5.2 Cross-Functional Collaboration

Machine learning systems are developed and maintained by multidisciplinary
teams, including data scientists, ML engineers, software developers, infras-
tructure specialists, product managers, and compliance ofÏcers. As these roles
span different domains of expertise, effective communication and collaboration
are essential to ensure alignment, efÏciency, and system reliability. MLOps
fosters this cross-functional integration by introducing shared tools, processes,
and artifacts that promote transparency and coordination across the machine
learning lifecycle.

Collaboration begins with consistent tracking of experiments, model versions,
and metadata. Tools such as MLflow provide a structured environment for
logging experiments, capturing parameters, recording evaluation metrics, and
managing trained models through a centralized registry. This registry serves
as a shared reference point for all team members, enabling reproducibility and
easing handoff between roles. Integration with version control systems such as
GitHub and GitLab further streamlines collaboration by linking code changes
with model updates and pipeline triggers.

In addition to tracking infrastructure, teams benefit from platforms that
support exploratory collaboration. Weights & Biases is one such platform
that allows data scientists to visualize experiment metrics, compare training
runs, and share insights with peers. Features such as live dashboards and
experiment timelines facilitate discussion and decision-making around model
improvements, hyperparameter tuning, or dataset refinements. These collabo-
rative environments reduce friction in model development by making results
interpretable and reproducible across the team.

Beyond model tracking, collaboration also depends on shared understanding
of data semantics and usage. Establishing common data contexts, by means of
glossaries, data dictionaries, schema references, and lineage documentation,
ensures that all stakeholders interpret features, labels, and statistics consistently.
This is particularly important in large organizations, where data pipelines may
evolve independently across teams or departments.

For example, a data scientist working on an anomaly detection model may use
Weights & Biases to log experiment results and visualize performance trends.
These insights are shared with the broader team to inform feature engineering
decisions. Once the model reaches an acceptable performance threshold, it is
registered in MLflow along with its metadata and training lineage. This allows
an ML engineer to pick up the model for deployment without ambiguity about
its provenance or configuration.

By integrating collaborative tools, standardized documentation, and trans-
parent experiment tracking, MLOps removes communication barriers that have
traditionally slowed down ML workflows. It enables distributed teams to op-
erate cohesively, accelerating iteration cycles and improving the reliability of
deployed systems.

https://mlflow.org/
https://github.com/
https://about.gitlab.com/
https://wandb.ai/

13.4. Hidden Technical Debt 696

çĖ Important 7: Deployment Challenges

Watch on YouTube
Deployment Challenges

Scan with your phone
to watch the video

TV Watch on YouTube

13.4 Hidden Technical Debt
As machine learning systems mature and scale, they often accumulate technical
debt—the long-term cost of expedient design decisions made during develop-
ment. Originally proposed in software engineering in the 1990s, the technical
debt metaphor compares shortcuts in implementation to financial debt: it may
enable short-term velocity, but requires ongoing interest payments in the form
of maintenance, refactoring, and systemic risk. While some debt is strategic and
manageable, uncontrolled technical debt can inhibit flexibility, slow iteration,
and introduce brittleness into production systems.

In machine learning, technical debt takes on new and less visible forms, aris-
ing not only from software abstractions but also from data dependencies, model
entanglement, feedback loops, and evolving operational environments. The
complexity of ML systems, which encompass data ingestion, feature extraction,
training pipelines, and deployment infrastructure, makes them especially prone
to hidden forms of debt (Sculley et al. 2015).

Figure 13.6 provides a conceptual overview of the relative size and interde-
pendence of components in an ML system. The small black box in the center
represents the model code itself—a surprisingly small portion of the overall
system. Surrounding it are much larger components: configuration, data col-
lection, and feature engineering. These areas, though often overlooked, are
critical to system functionality and are major sources of technical debt when
poorly designed or inconsistently maintained.

Figure 13.6: ML system components.
Source: Sculley et al. (2015)

ML system

Machine
Resource

Management

Configuration
Data

Collection

Data
Verification

Serving
Infrastructure

Monitoring

Feature
Extraction

ML Code

Analysis Tools

Process
Management

Tools

The sections that follow describe key categories of technical debt unique to ML
systems. Each subsection highlights common sources, illustrative examples,

https://www.youtube.com/watch?v=UyEtTyeahus&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=5
https://www.youtube.com/watch?v=UyEtTyeahus&list=PLkDaE6sCZn6GMoA0wbpJLi3t34Gd8l0aK&index=5

Chapter 13. ML Operations 697

and potential mitigations. While some forms of debt may be unavoidable
during early development, understanding their causes and impact is essential
for building robust and maintainable ML systems.

13.4.1 Boundary Erosion
In traditional software systems, modularity and abstraction provide clear
boundaries between components, allowing changes to be isolated and behavior
to remain predictable. Machine learning systems, in contrast, tend to blur
these boundaries. The interactions between data pipelines, feature engineering,
model training, and downstream consumption often lead to tightly coupled
components with poorly defined interfaces.

This erosion of boundaries makes ML systems particularly vulnerable to
cascading effects from even minor changes. A seemingly small update to a
preprocessing step or feature transformation can propagate through the system
in unexpected ways, breaking assumptions made elsewhere in the pipeline. This
lack of encapsulation increases the risk of entanglement, where dependencies
between components become so intertwined that local modifications require
global understanding and coordination.

One manifestation of this problem is known as CACE—“Changing Anything
Changes Everything.” When systems are built without strong boundaries,
adjusting a feature encoding, model hyperparameter, or data selection criterion
can affect downstream behavior in unpredictable ways. This inhibits iteration
and makes testing and validation more complex. For example, changing the
binning strategy of a numerical feature may cause a previously tuned model to
underperform, triggering retraining and downstream evaluation changes.

To mitigate boundary erosion, teams should prioritize architectural practices
that support modularity and encapsulation. Designing components with well-
defined interfaces allows teams to isolate faults, reason about changes, and
reduce the risk of system-wide regressions. For instance, clearly separating data
ingestion from feature engineering, and feature engineering from modeling
logic, introduces layers that can be independently validated, monitored, and
maintained.

Boundary erosion is often invisible in early development but becomes a
significant burden as systems scale or require adaptation. Proactive design
decisions that preserve abstraction and limit interdependencies are essential to
managing complexity and avoiding long-term maintenance costs.

13.4.2 Correction Cascades
As machine learning systems evolve, they often undergo iterative refinement
to address performance issues, accommodate new requirements, or adapt to
environmental changes. In well-engineered systems, such updates are localized
and managed through modular changes. However, in ML systems, even small
adjustments can trigger correction cascades—a sequence of dependent fixes
that propagate backward and forward through the workflow.

Figure 13.7 illustrates how these cascades emerge across different stages of the
ML lifecycle, from problem definition and data collection to model development
and deployment. Each arc represents a corrective action, and the colors indicate

13.4. Hidden Technical Debt 698

different sources of instability, including inadequate domain expertise, brittle
real-world interfaces, misaligned incentives, and insufÏcient documentation.
The red arrows represent cascading revisions, while the dotted arrow at the
bottom highlights a full system restart—a drastic but sometimes necessary
outcome.

Figure 13.7: Correction cascades
flowchart.

P
ro

bl
e
m

S
ta

te
m

e
n
t

D
a
ta

co
lle

ct
io

n

a
n
d

la
b
e
lin

g

D
a
ta

a
n
a
ly

si
s

a
n
d

cl
e
a
n
in

g

M
o
d
e
l

se
le

ct
io

n

M
o
d
e
l

tr
a
in

in
g

M
o
d
e
l

ev
a
lu

a
tio

n

M
o
d
e
l

d
e
p
lo

ym
e
n
t

Interacting with physical
world brittleness

Inadequate
application-domain expertise

Conflicting reward
systems

Poor cross-organizational
documentation

Impacts of cascades

Abandon / re-start process

One common source of correction cascades is sequential model development—
reusing or fine-tuning existing models to accelerate development for new tasks.
While this strategy is often efÏcient, it can introduce hidden dependencies that
are difÏcult to unwind later. Assumptions baked into earlier models become
implicit constraints for future models, limiting flexibility and increasing the
cost of downstream corrections.

Consider a scenario where a team fine-tunes a customer churn prediction
model for a new product. The original model may embed product-specific
behaviors or feature encodings that are not valid in the new setting. As perfor-
mance issues emerge, teams may attempt to patch the model, only to discover
that the true problem lies several layers upstream—perhaps in the original
feature selection or labeling criteria.

To avoid or reduce the impact of correction cascades, teams must make
careful tradeoffs between reuse and redesign. Several factors influence this
decision. For small, static datasets, fine-tuning may be appropriate. For large
or rapidly evolving datasets, retraining from scratch provides greater control
and adaptability. Fine-tuning also requires fewer computational resources,
making it attractive in constrained settings. However, modifying foundational
components later becomes extremely costly due to these cascading effects.

Therefore, careful consideration should be given to introducing fresh model
architectures, even if resource-intensive, to avoid correction cascades down the
line. This approach may help mitigate the amplifying effects of issues down-
stream and reduce technical debt. However, there are still scenarios where
sequential model building makes sense, necessitating a thoughtful balance
between efÏciency, flexibility, and long-term maintainability in the ML devel-
opment process.

13.4.3 Undeclared Consumers
Machine learning systems often provide predictions or outputs that serve as in-
puts to other services, pipelines, or downstream models. In traditional software,
these connections are typically made explicit through APIs, service contracts,

Chapter 13. ML Operations 699

or documented dependencies. In ML systems, however, it is common for model
outputs to be consumed by undeclared consumers—downstream components
that rely on predictions without being formally tracked or validated.

This lack of visibility introduces a subtle but serious form of technical debt.
Because these consumers are not declared or governed by explicit interfaces,
updates to the model, including changes in output format, semantics, or feature
behavior, can silently break downstream functionality. The original model was
not designed with these unknown consumers in mind, so its evolution risks
unintended consequences across the broader system.

The situation becomes more problematic when these downstream consumers
feed back into the original model’s training data. This introduces feedback loops
that are difÏcult to detect and nearly impossible to reason about analytically.
For instance, if a model’s output is used in a recommendation system and user
behavior is influenced by those recommendations, future training data becomes
contaminated by earlier predictions. Such loops can distort model behavior,
create self-reinforcing biases, and mask performance regressions.

One example might involve a credit scoring model whose outputs are con-
sumed by a downstream eligibility engine. If the eligibility system later influ-
ences which applicants are accepted, which, in turn, affects the label distribution
in the next training cycle, the model is now shaping the very data on which it
will be retrained.

To mitigate the risks associated with undeclared consumers, teams should
begin by implementing strict access controls to limit who or what can consume
model outputs. Rather than making predictions broadly available, systems
should expose outputs only through well-defined interfaces, ensuring that their
use can be monitored and audited. In addition, establishing formal interface
contracts, which include documented schemas, value ranges, and semantic
expectations, helps enforce consistent behavior across components and re-
duces the likelihood of misinterpretation. Monitoring and logging mechanisms
can provide visibility into where and how predictions are used, revealing de-
pendencies that may not have been anticipated during development. Finally,
architectural decisions should emphasize system boundaries that encapsulate
model behavior, thereby isolating changes and minimizing the risk of down-
stream entanglement. Together, these practices support a more disciplined and
transparent approach to system integration, reducing the likelihood of costly
surprises as ML systems evolve.

13.4.4 Data Dependency Debt
Machine learning systems rely heavily on data pipelines that ingest, transform,
and deliver training and inference inputs. Over time, these pipelines often
develop implicit and unstable dependencies that become difÏcult to trace, val-
idate, or manage—leading to what is known as data dependency debt. This
form of debt is particularly challenging because it tends to accumulate silently
and may only become visible when a downstream model fails unexpectedly
due to changes in upstream data.

In traditional software systems, compilers, static analysis tools, and depen-
dency checkers help engineers track and manage code-level dependencies.

13.4. Hidden Technical Debt 700

These tools enable early detection of unused imports, broken interfaces, and
type mismatches. However, ML systems typically lack equivalent tooling for
analyzing data dependencies, which include everything from feature genera-
tion scripts and data joins to external data sources and labeling conventions.
Without such tools, changes to even a single feature or schema can ripple across
a system without warning.

Two common forms of data dependency debt are unstable inputs and un-
derutilized inputs. Unstable inputs refer to data sources that change over time,
whether in content, structure, or availability, leading to inconsistent model
behavior. A model trained on one version of a feature may produce unexpected
results when that feature’s distribution or encoding changes. Underutilized
inputs refer to data elements included in training pipelines that have little or no
impact on model performance. These features increase complexity, slow down
processing, and increase the surface area for bugs, yet provide little return on
investment.

One approach to managing unstable dependencies is to implement robust
data versioning. By tracking which data snapshot was used for training a given
model, teams can reproduce results and isolate regressions. However, version-
ing also introduces overhead: multiple versions must be stored, managed, and
tested for staleness. For underutilized inputs, a common strategy is to run
leave-one-feature-out evaluations, where features are systematically removed
to assess their contribution to model performance. This analysis can guide
decisions about whether to simplify the feature set or deprecate unused data
streams.

Addressing data dependency debt requires both architectural discipline and
appropriate tooling. ML systems must be designed with traceability in mind—
recording not just what data was used, but where it came from, how it was
transformed, and how it affected model behavior. For example, consider an
e-commerce platform that includes a “days since last login” feature in its churn
prediction model. If the meaning of this feature changes, for instance, if a
platform redesign results in users being automatically logged in through a
companion app, the input distribution will shift, potentially degrading model
performance. Without explicit tracking and validation of this data dependency,
the issue might go unnoticed until accuracy metrics decline in production.
As systems scale, unexamined data dependencies like these become a major
source of brittleness and drift. Investing in structured data practices early in
the lifecycle, including schema validation, lineage tracking, and dependency
testing, can help prevent these issues from compounding over time.

13.4.5 Feedback Loops
Unlike traditional software systems, machine learning models have the capacity
to influence their own future behavior through the data they help generate.
This dynamic creates feedback loops, where model predictions shape future
inputs, often in subtle and difÏcult-to-detect ways. When unaddressed, these
loops introduce a unique form of technical debt: the inability to analyze and
reason about model behavior over time, leading to what is known as feedback
loop analysis debt.

Chapter 13. ML Operations 701

8 Canary deployment: A strategy
to reduce risk by rolling out changes
to a small subset of users before full-
scale implementation.

9 The effort to manage and mit-
igate increases in complexity and
costs in understanding and modi-
fying systems over time.

Feedback loops in ML systems can be either direct or indirect. A direct
feedback loop occurs when a model’s outputs directly affect future training
data. For example, in an online recommendation system, the items a model
suggests may strongly influence user clicks and, consequently, the labeled data
used for retraining. If the model consistently promotes a narrow subset of
items, it may bias the training set over time, reinforcing its own behavior and
reducing exposure to alternative signals.

Indirect or hidden feedback loops arise when two or more systems interact
with one another, frequently via real-world processes, without clear visibility
into their mutual influence. For instance, consider two separate ML models
deployed by a financial institution: one predicts credit risk, and the other
recommends credit offers. If the output of the second model implicitly affects
the population that is later scored by the first, a feedback loop is created without
any explicit connection between the two systems. These loops are especially
dangerous because they bypass traditional validation frameworks and may
take weeks or months to manifest.

Feedback loops undermine assumptions about data independence and sta-
tionarity. They can mask model degradation, introduce long-term bias, and
lead to unanticipated performance failures. Because most ML validation is
performed ofÒine with static datasets, these dynamic interactions are difÏcult
to detect before deployment.

Several mitigation strategies exist, though none are comprehensive. Care-
ful monitoring of model performance across cohorts and over time can help
reveal the emergence of loop-induced drift. Canary deployments8 allow teams
to test new models on a small subset of trafÏc and observe behavior before
full rollout. More fundamentally, architectural practices that reduce coupling
between system components, including the isolation of decision-making logic
from user-facing outcomes, can help minimize the propagation of influence.

Ultimately, feedback loops reflect a deeper challenge in ML system design:
models do not operate in isolation, but in dynamic environments where their
outputs alter future inputs. Reducing analysis debt9 requires designing systems
with these dynamics in mind and embedding mechanisms to detect and manage
self-influencing behavior over time.

13.4.6 Pipeline Debt
As machine learning workflows grow in scope, teams often assemble pipelines
that stitch together multiple components—data ingestion, feature extraction,
model training, evaluation, and deployment. In the absence of standard in-
terfaces or modular abstractions, these pipelines tend to evolve into ad hoc
constructions of custom scripts, manual processes, and undocumented assump-
tions. Over time, this leads to pipeline debt: a form of technical debt arising
from complexity, fragility, and a lack of reusability in ML workflows.

This problem is often described as the emergence of a “pipeline jungle,”
where modifications become difÏcult, and experimentation is constrained by
brittle interdependencies. When teams are reluctant to refactor fragile pipelines,
they resort to building alternate versions for new use cases or experiments.
As these variations accumulate, so do inconsistencies in data processing, met-

13.4. Hidden Technical Debt 702

ric computation, and configuration management. The result is duplication,
reduced efÏciency, and a growing risk of errors.

Consider a real-world scenario where a team maintains multiple models that
rely on different but overlapping preprocessing pipelines. One model applies
text normalization using simple lowercasing, while another uses a custom
tokenization library. Over time, discrepancies emerge in behavior, leading to
conflicting evaluation metrics and unexpected model drift. As new models
are introduced, developers are unsure which pipeline to reuse or modify, and
duplications multiply.

Pipeline debt also limits collaboration across teams. Without well-defined
interfaces or shared abstractions, it becomes difÏcult to exchange components
or adopt best practices. Team members often need to reverse-engineer pipeline
logic, slowing onboarding and increasing the risk of introducing regressions.

The most effective way to manage pipeline debt is to embrace modularity
and encapsulation. Well-architected pipelines define clear inputs, outputs, and
transformation logic, often expressed through workflow orchestration tools
such as Apache Airflow, Prefect, or Kubeflow Pipelines. These tools help teams
formalize processing steps, track lineage, and monitor execution.

In addition, the adoption of shared libraries for feature engineering, trans-
formation functions, and evaluation metrics promotes consistency and reuse.
Teams can isolate logic into composable units that can be independently tested,
versioned, and integrated across models. This reduces the risk of technical
lock-in and enables more agile development as systems evolve.

Ultimately, pipeline debt reflects a breakdown in software engineering rigor
applied to ML workflows. Investing in interfaces, documentation, and shared
tooling not only improves maintainability but also unlocks faster experimenta-
tion and system scalability.

13.4.7 Configuration Debt

Configuration is a critical yet often undervalued component of machine learn-
ing systems. Tuning parameters such as learning rates, regularization strengths,
model architectures, feature processing options, and evaluation thresholds
all require deliberate management. However, in practice, configurations are
frequently introduced in an ad hoc manner—manually adjusted during exper-
imentation, inconsistently documented, and rarely versioned. This leads to
the accumulation of configuration debt: the technical burden resulting from
fragile, opaque, and outdated settings that undermine system reliability and
reproducibility.

When configuration debt accumulates, several challenges emerge. Fragile
configurations may contain implicit assumptions about data distributions, train-
ing schedules, or pipeline structure that no longer hold as the system evolves.
In the absence of proper documentation, these assumptions become embedded
in silent defaults—settings that function in development but fail in production.
Teams may hesitate to modify these configurations out of fear of introducing
regressions, further entrenching the problem. Additionally, when configura-
tions are not centrally tracked, knowledge about what parameters work well

https://airflow.apache.org/
https://www.prefect.io/
https://www.kubeflow.org/docs/components/pipelines/

Chapter 13. ML Operations 703

becomes siloed within individuals or specific notebooks, leading to redundant
experimentation and slowed iteration.

For example, consider a team deploying a neural network for customer seg-
mentation. During development, one data scientist improves performance by
tweaking several architectural parameters, by adding layers, changing activa-
tion functions, and adjusting batch sizes, but these changes are stored locally
and never committed to the shared configuration repository. Months later, the
model is retrained on new data, but the performance degrades unexpectedly.
Without a consistent record of previous configurations, the team struggles to
identify what changed. The lack of traceability not only delays debugging but
also undermines confidence in the reproducibility of prior results.

Mitigating configuration debt requires integrating configuration manage-
ment into the ML system lifecycle. Teams should adopt structured formats,
including YAML, JSON, and domain-specific configuration frameworks, and
store them in version-controlled repositories alongside model code. Validating
configurations as part of the training and deployment process ensures that
unexpected or invalid parameter settings are caught early. Automated tools for
hyperparameter optimization and neural architecture search further reduce
reliance on manual tuning and help standardize configuration discovery.

Above all, ML systems benefit when configuration is treated not as a side
effect of experimentation, but as a first-class system component. Like code,
configurations must be tested, documented, and maintained. Doing so enables
faster iteration, easier debugging, and more reliable system behavior over time.

13.4.8 Early-Stage Debt

In the early phases of machine learning development, teams often move quickly
to prototype models, experiment with data sources, and explore modeling
approaches. During this stage, speed and flexibility are critical, and some level
of technical debt is expected and even necessary to support rapid iteration.
However, the decisions made in these early stages, particularly when motivated
by urgency instead of design, can introduce early-stage debt that becomes
increasingly difÏcult to manage as the system matures.

This form of debt often stems from shortcuts in code organization, data
preprocessing, feature engineering, or model packaging. Pipelines may be
built without clear abstractions, evaluation scripts may lack reproducibility,
and configuration files may be undocumented or fragmented. While such
practices may be justified in the exploratory phase, they become liabilities once
the system enters production or needs to scale across teams and use cases.

For example, a startup team developing a minimum viable product (MVP)
might embed core business logic directly into the model training code—such as
applying customer-specific rules or filters during preprocessing. This expedites
initial experimentation but creates a brittle system in which modifying the
business logic or model behavior requires untangling deeply intertwined code.
As the company grows and multiple teams begin working on the system, these
decisions limit flexibility, slow iteration, and increase the risk of breaking core
functionality during updates.

13.4. Hidden Technical Debt 704

Despite these risks, not all early-stage debt is harmful. The key distinction
lies in whether the system is designed to support evolution. Techniques such
as using modular code, isolating configuration from logic, and containerizing
experimental environments allow teams to move quickly without sacrificing
future maintainability. Abstractions, including shared data access layers and
feature transformation modules, can be introduced incrementally as patterns
stabilize.

To manage early-stage debt effectively, teams should adopt the principle of
flexible foundations: designing for change without over-engineering. This
means identifying which components are likely to evolve and introducing
appropriate boundaries and interfaces early on. As the system matures, natural
inflection points emerge—opportunities to refactor or re-architect without
disrupting existing workflows.

Accepting some technical debt in the short term is often a rational tradeoff.
The challenge is ensuring that such debt is intentional, tracked, and revisited
before it becomes entrenched. By investing in adaptability from the beginning,
ML teams can balance early innovation with long-term sustainability.

13.4.9 Real-World Examples
Hidden technical debt is not just theoretical—it has played a critical role in
shaping the trajectory of real-world machine learning systems. These examples
illustrate how unseen dependencies and misaligned assumptions can accumu-
late quietly, only to become major liabilities over time:

13.4.9.1 YouTube’s Recommendation System and Feedback Loops

YouTube’s recommendation engine has faced repeated criticism for promoting
sensational or polarizing content. A large part of this stems from feedback loop
debt: recommendations influence user behavior, which in turn becomes training
data. Over time, this led to unintended content amplification. Mitigating this
required substantial architectural overhauls, including cohort-based evaluation,
delayed labeling, and more explicit disentanglement between engagement
metrics and ranking logic.

13.4.9.2 Zillow’s “Zestimate” and Correction Cascades

Zillow’s home valuation model (Zestimate) faced significant correction cas-
cades during its iBuying venture. When initial valuation errors propagated
into purchasing decisions, retroactive corrections triggered systemic instability
that required data revalidation, model redesign, and eventually a full system
rollback. The company shut down the iBuying arm in 2021, citing model un-
predictability and data feedback effects as core challenges.

13.4.9.3 Tesla Autopilot and Undeclared Consumers

In early deployments, Tesla’s Autopilot made driving decisions based on models
whose outputs were repurposed across subsystems without clear boundaries.
Over-the-air updates occasionally introduced silent behavior changes that af-
fected multiple subsystems (e.g., lane centering and braking) in unpredictable

Chapter 13. ML Operations 705

ways. This entanglement illustrates undeclared consumer debt and the risks of
skipping strict interface governance in ML-enabled safety-critical systems.

13.4.9.4 Facebook’s News Feed and Configuration Debt

Facebook’s News Feed algorithm has undergone numerous iterations, often
driven by rapid experimentation. However, the lack of consistent configuration
management led to opaque settings that influenced content ranking without
clear documentation. As a result, changes to the algorithm’s behavior were
difÏcult to trace, and unintended consequences emerged from misaligned con-
figurations. This situation highlights the importance of treating configuration
as a first-class citizen in ML systems.

13.4.10 Managing Hidden Technical Debt
While the examples discussed highlight the consequences of hidden technical
debt in large-scale systems, they also offer valuable lessons for how such debt
can be surfaced, controlled, and ultimately reduced. Managing hidden debt
requires more than reactive fixes—it demands a deliberate and forward-looking
approach to system design, team workflows, and tooling choices.

A foundational principle is to treat data and configuration as integral parts of
the system architecture, not as peripheral artifacts. As shown in Figure 13.6, the
bulk of an ML system lies outside the model code itself—in components like fea-
ture engineering, configuration, monitoring, and serving infrastructure. These
surrounding layers often harbor the most persistent forms of debt, particularly
when changes are made without systematic tracking or validation.

Versioning data transformations, labeling conventions, and training con-
figurations enables teams to reproduce past results, localize regressions, and
understand the impact of design choices over time. Tools that enable this, such
as DVC for data versioning, Hydra for configuration management, and MLflow
for experiment tracking, help ensure that the system remains traceable as it
evolves. Importantly, version control must extend beyond the model check-
point to include the data and configuration context in which it was trained and
evaluated.

Another key strategy is encapsulation through modular interfaces. The
cascading failures seen in tightly coupled systems highlight the importance of
defining clear boundaries between components. Without well-specified APIs or
contracts, changes in one module can ripple unpredictably through others. By
contrast, systems designed around loosely coupled components, in which each
module has well-defined responsibilities and limited external assumptions, are
far more resilient to change.

Encapsulation also supports dependency awareness, reducing the likelihood
of undeclared consumers silently reusing outputs or internal representations.
This is especially important in feedback-prone systems, where hidden depen-
dencies can introduce behavioral drift over time. Exposing outputs through
audited, documented interfaces makes it easier to reason about their use and
to trace downstream effects when models evolve.

Observability and monitoring further strengthen a system’s defenses against
hidden debt. While static validation may catch errors during development,

https://dvc.org/
https://hydra.cc/
https://mlflow.org/

13.4. Hidden Technical Debt 706

many forms of ML debt only manifest during deployment, especially in dynamic
environments. Monitoring distribution shifts, feature usage patterns, and
cohort-specific performance metrics helps detect degradation early, before it
impacts users or propagates into future training data. Canary deployments and
progressive rollouts are essential tools for limiting risk while allowing systems
to evolve.

Teams should also invest in institutional practices that periodically surface
and address technical debt. Debt reviews, pipeline audits, and schema valida-
tion sprints serve as checkpoints where teams step back from rapid iteration
and assess the system’s overall health. These reviews create space for refactor-
ing, pruning unused features, consolidating redundant logic, and reasserting
boundaries that may have eroded over time.

Finally, the management of technical debt must be aligned with a broader
cultural commitment to maintainability. This means prioritizing long-term
system integrity over short-term velocity, especially once systems reach maturity
or are integrated into critical workflows. It also means recognizing when debt is
strategic, which is incurred deliberately to facilitate exploration, and ensuring
it is tracked and revisited before it becomes entrenched.

In all cases, managing hidden technical debt is not about eliminating complex-
ity, but about designing systems that can accommodate it without becoming
brittle. Through architectural discipline, thoughtful tooling, and a willingness
to refactor, ML practitioners can build systems that remain flexible and reliable,
even as they scale and evolve.

13.4.11 Summary
Technical debt in machine learning systems is both pervasive and distinct
from debt encountered in traditional software engineering. While the original
metaphor of financial debt highlights the tradeoff between speed and long-term
cost, the analogy falls short in capturing the full complexity of ML systems.
In machine learning, debt often arises not only from code shortcuts but also
from entangled data dependencies, poorly understood feedback loops, fragile
pipelines, and configuration sprawl. Unlike financial debt, which can be explic-
itly quantified, ML technical debt is largely hidden, emerging only as systems
scale, evolve, or fail.

This chapter has outlined several forms of ML-specific technical debt, each
rooted in different aspects of the system lifecycle. Boundary erosion undermines
modularity and makes systems difÏcult to reason about. Correction cascades
illustrate how local fixes can ripple through a tightly coupled workflow. Unde-
clared consumers and feedback loops introduce invisible dependencies that
challenge traceability and reproducibility. Data and configuration debt reflect
the fragility of inputs and parameters that are poorly managed, while pipeline
and change adaptation debt expose the risks of inflexible architectures. Early-
stage debt reminds us that even in the exploratory phase, decisions should be
made with an eye toward future extensibility.

The common thread across all these debt types is the need for system-level
thinking. ML systems are not just code—they are evolving ecosystems of
data, models, infrastructure, and teams. Managing technical debt requires

Chapter 13. ML Operations 707

architectural discipline, robust tooling, and a culture that values maintainability
alongside innovation. It also requires humility: acknowledging that today’s
solutions may become tomorrow’s constraints if not designed with care.

As machine learning becomes increasingly central to production systems,
understanding and addressing hidden technical debt is essential. Doing so not
only improves reliability and scalability, but also empowers teams to iterate
faster, collaborate more effectively, and sustain the long-term evolution of their
systems.

13.5 Roles and Responsibilities
Operationalizing machine learning systems requires coordinated contributions
from professionals with diverse technical and organizational expertise. Un-
like traditional software engineering workflows, machine learning introduces
additional complexity through its reliance on dynamic data, iterative experi-
mentation, and probabilistic model behavior. As a result, no single role can
independently manage the end-to-end machine learning lifecycle. Figure 13.8
provides a high level overview of how these roles relate to each other.

Figure 13.8: Comparison of model-
centric and data-centric AI ap-
proaches. Model-centric AI fo-
cuses on improving architectures,
while data-centric AI emphasizes
enhancing dataset quality. Both ap-
proaches are complementary in op-
timizing AI performance.

Management

The role of Manager for supporting

the planning and execution of

various Data Science.

Strategy

Designing new strategies by

understanding the consumers’

trends and behaviours.

Other Duties

Duties assigned by the senior Data

Scientist, Chief Data Officer.

Collaboration

Collaborating with many senior

people like Data Scientists,

Stakeholder, etc...

Analytics

Creates model for solving various

data analytics problems.

MLOps provides the structure and practices necessary to align these special-
ized roles around a shared objective: delivering reliable, scalable, and maintain-
able machine learning systems in production environments. From designing
robust data pipelines to deploying and monitoring models in live systems,
effective MLOps depends on collaboration across disciplines including data
engineering, statistical modeling, software development, infrastructure man-
agement, and project coordination.

13.5.1 Roles
Table 13.3 introduces the key roles that participate in MLOps and outlines
their primary responsibilities. Understanding these roles not only clarifies the
scope of skills required to support production ML systems but also helps frame
the collaborative workflows and handoffs that drive the operational success of
machine learning at scale.

13.5. Roles and Responsibilities 708

Table 13.3: MLOps roles and responsibilities across the machine learning lifecy-
cle.

Role Primary Focus Core Responsibilities Summary
MLOps Lifecycle
Alignment

Data Engineer Data preparation and
infrastructure

Build and maintain pipelines; ensure
quality, structure, and lineage of data

Data ingestion,
transformation

Data Scientist Model development and
experimentation

Formulate tasks; build and evaluate
models; iterate using feedback and
error analysis

Modeling and
evaluation

ML Engineer Production integration
and scalability

Operationalize models; implement
serving logic; manage performance
and retraining

Deployment and
inference

DevOps
Engineer

Infrastructure
orchestration and
automation

Manage compute infrastructure;
implement CI/CD; monitor systems
and workflows

Training,
deployment,
monitoring

Project
Manager

Coordination and delivery
oversight

Align goals; manage schedules and
milestones; enable cross-team
execution

Planning and
integration

Responsible AI
Lead

Ethics, fairness, and
governance

Monitor bias and fairness; enforce
transparency and compliance
standards

Evaluation and
governance

Security &
Privacy
Engineer

System protection and
data integrity

Secure data and models; implement
privacy controls; ensure system
resilience

Data handling and
compliance

13.5.1.1 Data Engineers

Data engineers are responsible for constructing and maintaining the data in-
frastructure that underpins machine learning systems. Their primary focus
is to ensure that data is reliably collected, processed, and made accessible in
formats suitable for analysis, feature extraction, model training, and inference.
In the context of MLOps, data engineers play a foundational role by building
scalable and reproducible data pipelines that support the end-to-end machine
learning lifecycle.

A core responsibility of data engineers is data ingestion—extracting data
from diverse operational sources such as transactional databases, web applica-
tions, log streams, and sensors. This data is typically transferred to centralized
storage systems, such as cloud-based object stores (e.g., Amazon S3, Google
Cloud Storage), which provide scalable and durable repositories for both raw
and processed datasets. These ingestion workflows are orchestrated using
scheduling and workflow tools such as Apache Airflow, Prefect, or dbt (Garg
2020).

Once ingested, the data must be transformed into structured, analysis-ready
formats. This transformation process includes handling missing or malformed
values, resolving inconsistencies, performing joins across heterogeneous sources,
and computing derived attributes required for downstream tasks. Data engi-
neers implement these transformations through modular pipelines that are
version-controlled and designed for fault tolerance and reusability. Structured
outputs are often loaded into cloud-based data warehouses such as Snowflake,
Redshift, or BigQuery, or stored in feature stores for use in machine learning
applications.

In addition to managing data pipelines, data engineers are responsible for
provisioning and optimizing the infrastructure that supports data-intensive
workflows. This includes configuring distributed storage systems, manag-

Chapter 13. ML Operations 709

10 Programmable Logic Con-
troller (PLC): An industrial com-
puter used to control manufacturing
processes, such as robotic devices or
assembly lines.

ing compute clusters, and maintaining metadata catalogs that document data
schemas, lineage, and access controls. To ensure reproducibility and gover-
nance, data engineers implement dataset versioning, maintain historical snap-
shots, and enforce data retention and auditing policies.

For example, in a manufacturing application, data engineers may construct
an Airflow pipeline that ingests time-series sensor data from programmable
logic controllers (PLCs)10 on the factory floor. The raw data is cleaned, joined
with product metadata, and aggregated into statistical features such as rolling
averages and thresholds. The processed features are stored in a Snowflake data
warehouse, where they are consumed by downstream modeling and inference
workflows.

Through their design and maintenance of robust data infrastructure, data
engineers enable the consistent and efÏcient delivery of high-quality data.
Their contributions ensure that machine learning systems are built on reliable
inputs, supporting reproducibility, scalability, and operational stability across
the MLOps pipeline.

To illustrate this responsibility in practice, Listing 13.1 shows a simplified
example of a daily Extract-Transform-Load (ETL) pipeline implemented using
Apache Airflow. This workflow automates the ingestion and transformation of
raw sensor data, preparing it for downstream machine learning tasks.

13.5.1.2 Data Scientists
Data scientists are primarily responsible for designing, developing, and evaluat-
ing machine learning models. Their role centers on transforming business or op-
erational problems into formal learning tasks, selecting appropriate algorithms,
and optimizing model performance through statistical and computational tech-
niques. Within the MLOps lifecycle, data scientists operate at the intersection
of exploratory analysis and model development, contributing directly to the
creation of predictive or decision-making capabilities.

The process typically begins by collaborating with stakeholders to define the
problem space and establish success criteria. This includes formulating the task
in machine learning terms, including classification, regression, or forecasting,
and identifying suitable evaluation metrics to quantify model performance.
These metrics, such as accuracy, precision, recall, area under the curve (AUC),
or F1 score, provide objective measures for comparing model alternatives and
guiding iterative improvements (Rainio, Teuho, and Klén 2024).

Data scientists conduct exploratory data analysis (EDA) to assess data quality,
identify patterns, and uncover relationships that inform feature selection and
engineering. This stage may involve statistical summaries, visualizations, and
hypothesis testing to evaluate the data’s suitability for modeling. Based on
these findings, relevant features are constructed or selected in collaboration
with data engineers to ensure consistency across development and deployment
environments.

Model development involves selecting appropriate learning algorithms and
constructing architectures suited to the task and data characteristics. Data
scientists employ machine learning libraries such as TensorFlow, PyTorch, or
scikit-learn to implement and train models. Hyperparameter tuning, regular-
ization strategies, and cross-validation are used to optimize performance on

13.5. Roles and Responsibilities 710

Listing 13.1: Code in Practice for a Data Engineer, implementing a daily Extract-
Transform-Load (ETL) pipeline using Apache Airflow to process manufacturing
sensor data.

Airflow DAG for daily ETL from a manufacturing data source
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime

def extract_data():
import pandas as pd
df = pd.read_csv('/data/raw/plc_logs.csv') # Simulated

PLC data
df.to_parquet('/data/staged/sensor_data.parquet')

def transform_data():
import pandas as pd
df = pd.read_parquet('/data/staged/sensor_data.parquet')
df['rolling_avg'] = (
df['temperature']
.rolling(window=10)
.mean()

)
df.to_parquet('/data/processed/features.parquet')

with DAG(
dag_id='manufacturing_etl_pipeline',
schedule_interval='@daily',
start_date=datetime(2023, 1, 1),
catchup=False

) as dag:
extract = PythonOperator(
task_id='extract',
python_callable=extract_data

)
transform = PythonOperator(
task_id='transform',
python_callable=transform_data
)

extract >> transform

validation datasets while mitigating overfitting. Throughout this process, tools
for experiment tracking, including MLflow and Weights & Biases, are often
used to log configuration settings, evaluation results, and model artifacts.

Chapter 13. ML Operations 711

11 RESTful Services: Web ser-
vices implementing REST (Repre-
sentational State Transfer) princi-
ples for networked applications.

Once a candidate model demonstrates acceptable performance, it undergoes
further validation through rigorous testing on holdout datasets. In addition
to aggregate performance metrics, data scientists perform error analysis to
identify failure modes, outliers, or biases that may impact model reliability or
fairness. These insights often motivate further iterations on data processing,
feature engineering, or model refinement.

Data scientists also participate in post-deployment monitoring and retraining
workflows. They assist in analyzing data drift, interpreting shifts in model
performance, and incorporating new data to maintain predictive accuracy over
time. In collaboration with ML engineers, they define retraining strategies and
evaluate the impact of updated models on operational metrics.

For example, in a retail forecasting scenario, a data scientist may develop a se-
quence model using TensorFlow to predict product demand based on historical
sales, product attributes, and seasonal indicators. The model is evaluated using
root mean squared error (RMSE) on withheld data, refined through hyperpa-
rameter tuning, and handed off to ML engineers for deployment. Following
deployment, the data scientist continues to monitor model accuracy and guides
retraining using new transactional data.

Through rigorous experimentation and model development, data scientists
contribute the core analytical functionality of machine learning systems. Their
work transforms raw data into predictive insights and supports the contin-
uous improvement of deployed models through principled evaluation and
refinement.

To illustrate these responsibilities in a practical context, Listing 13.2 presents
a minimal example of a sequence model built using TensorFlow. This model
is designed to forecast product demand based on historical sales patterns and
other input features.

13.5.1.3 ML Engineers

Machine learning engineers are responsible for translating experimental models
into reliable, scalable systems that can be integrated into real-world applica-
tions. Positioned at the intersection of data science and software engineering,
ML engineers ensure that models developed in research environments can
be deployed, monitored, and maintained within production-grade infrastruc-
ture. Their work bridges the gap between prototyping and operationalization,
enabling machine learning to deliver sustained value in practice.

A core responsibility of ML engineers is to take trained models and encap-
sulate them within modular, maintainable components. This often involves
refactoring code for robustness, implementing model interfaces, and building
application programming interfaces (APIs) that expose model predictions to
downstream systems. Frameworks such as Flask and FastAPI are commonly
used to construct lightweight, RESTful services11 for model inference. To sup-
port portability and environment consistency, models, and their dependencies
are typically containerized using Docker and managed within orchestration
systems like Kubernetes.

ML engineers also oversee the integration of models into continuous inte-
gration and continuous delivery (CI/CD) pipelines. These pipelines automate

13.5. Roles and Responsibilities 712

Listing 13.2: Code in Practice for a Data Scientist, implementing a sequence
model using TensorFlow to forecast product demand based on historical sales
data.

TensorFlow model for demand forecasting
import tensorflow as tf
from tensorflow.keras import layers, models

model = models.Sequential([
layers.Input(shape=(30, 5)), # 30 time steps, 5 features
layers.LSTM(64),
layers.Dense(1)

])

model.compile(optimizer='adam', loss='mse', metrics=['mae'])

Assume X_train, y_train are preloaded
model.fit(X_train, y_train, validation_split=0.2, epochs=10)

Save model for handoff
model.save('models/demand_forecast_v1')

12 Service-Level Objectives
(SLOs): Specific measurable charac-
teristics of the SLAs such as avail-
ability, throughput, frequency, re-
sponse time, or quality.

the retraining, testing, and deployment of models, ensuring that updated mod-
els are validated against performance benchmarks before being promoted to
production. Practices such as canary deployments, A/B testing, and staged
rollouts allow for gradual transitions and reduce the risk of regressions. In the
event of model degradation, rollback procedures are used to restore previously
validated versions.

Operational efÏciency is another key area of focus. ML engineers apply a
range of optimization techniques, including model quantization, pruning, and
batch serving, to meet latency, throughput, and cost constraints. In systems that
support multiple models, they may implement mechanisms for dynamic model
selection or concurrent serving. These optimizations are closely coupled with
infrastructure provisioning, which often includes the configuration of GPUs or
other specialized accelerators.

Post-deployment, ML engineers play a critical role in monitoring model be-
havior. They configure telemetry systems to track latency, failure rates, and
resource usage, and they instrument prediction pipelines with logging and
alerting mechanisms. In collaboration with data scientists and DevOps engi-
neers, they respond to changes in system behavior, trigger retraining workflows,
and ensure that models continue to meet service-level objectives12.

For example, consider a financial services application where a data science
team has developed a fraud detection model using TensorFlow. An ML engi-
neer packages the model for deployment using TensorFlow Serving, configures
a REST API for integration with the transaction pipeline, and sets up a CI/CD
pipeline in Jenkins to automate updates. They implement logging and monitor-

Chapter 13. ML Operations 713

ing using Prometheus and Grafana, and configure rollback logic to revert to the
prior model version if performance deteriorates. This production infrastruc-
ture enables the model to operate continuously and reliably under real-world
workloads.

Through their focus on software robustness, deployment automation, and
operational monitoring, ML engineers play a pivotal role in transitioning ma-
chine learning models from experimental artifacts into trusted components of
production systems. To illustrate these responsibilities in a practical context,
Listing 13.3 presents a minimal example of a REST API built with FastAPI for
serving a trained TensorFlow model. This service exposes model predictions
for use in downstream applications.

Listing 13.3: Code in Practice for an ML Engineer, wrapping a trained model
in a FastAPI endpoint to expose real-time demand predictions in a production
environment.

FastAPI service to serve a trained TensorFlow model
from fastapi import FastAPI, Request
import tensorflow as tf
import numpy as np

app = FastAPI()
model = tf.keras.models.load_model('models/demand_forecast_v1')

@app.post("/predict")
async def predict(request: Request):

data = await request.json()
input_array = np.array(data['input']).reshape(1, 30, 5)
prediction = model.predict(input_array)
return {"prediction": float(prediction[0][0])}

13.5.1.4 DevOps Engineers

DevOps engineers are responsible for provisioning, managing, and automating
the infrastructure that supports the development, deployment, and monitor-
ing of machine learning systems. Originating from the broader discipline of
software engineering, the role of the DevOps engineer in MLOps extends tra-
ditional responsibilities to accommodate the specific demands of data- and
model-driven workflows. Their expertise in cloud computing, automation
pipelines, and infrastructure as code (IaC) enables scalable and reliable ma-
chine learning operations.

A central task for DevOps engineers is the configuration and orchestration
of compute infrastructure used throughout the ML lifecycle. This includes
provisioning virtual machines, storage systems, and accelerators such as GPUs
and TPUs using IaC tools like Terraform, AWS CloudFormation, or Ansible.
Infrastructure is typically containerized using Docker and managed through

13.5. Roles and Responsibilities 714

orchestration platforms such as Kubernetes, which allow teams to deploy, scale,
and monitor workloads across distributed environments.

DevOps engineers design and implement CI/CD pipelines tailored to ma-
chine learning workflows. These pipelines automate the retraining, testing,
and deployment of models in response to code changes or data updates. Tools
such as Jenkins, GitHub Actions, or GitLab CI are used to trigger model work-
flows, while platforms like MLflow and Kubeflow facilitate experiment tracking,
model registration, and artifact versioning. By codifying deployment logic,
these pipelines reduce manual effort, increase reproducibility, and enable faster
iteration cycles.

Monitoring is another critical area of responsibility. DevOps engineers config-
ure telemetry systems to collect metrics related to both model and infrastructure
performance. Tools such as Prometheus, Grafana, and the ELK stack (Elastic-
search, Logstash, Kibana) are widely used to build dashboards, set thresholds,
and generate alerts. These systems allow teams to detect anomalies in latency,
throughput, resource utilization, or prediction behavior and respond proac-
tively to emerging issues.

To ensure compliance and operational discipline, DevOps engineers also
implement governance mechanisms that enforce consistency and traceability.
This includes versioning of infrastructure configurations, automated validation
of deployment artifacts, and auditing of model updates. In collaboration with
ML engineers and data scientists, they enable reproducible and auditable model
deployments aligned with organizational and regulatory requirements.

For instance, in a financial services application, a DevOps engineer may
configure a Kubernetes cluster on AWS to support both model training and
online inference. Using Terraform, the infrastructure is defined as code and
versioned alongside the application repository. Jenkins is used to automate the
deployment of models registered in MLflow, while Prometheus and Grafana
provide real-time monitoring of API latency, resource usage, and container
health.

By abstracting and automating the infrastructure that underlies ML work-
flows, DevOps engineers enable scalable experimentation, robust deployment,
and continuous monitoring. Their role ensures that machine learning systems
can operate reliably under production constraints, with minimal manual inter-
vention and maximal operational efÏciency. To illustrate these responsibilities
in a practical context, Listing 13.4 presents an example of using Terraform to
provision a GPU-enabled virtual machine on Google Cloud Platform for model
training and inference workloads.

13.5.1.5 Project Managers
Project managers play a critical role in coordinating the activities, resources,
and timelines involved in delivering machine learning systems. While they
do not typically develop models or write code, project managers are essential
to aligning interdisciplinary teams, tracking progress against objectives, and
ensuring that MLOps initiatives are completed on schedule and within scope.
Their work enables effective collaboration among data scientists, engineers,
product stakeholders, and infrastructure teams, translating business goals into
actionable technical plans.

Chapter 13. ML Operations 715

Listing 13.4: Code in Practice for a DevOps Engineer, provisioning GPU-
enabled infrastructure on GCP using Terraform to support model training
and serving.

Terraform configuration for a GCP instance with GPU support
resource "google_compute_instance" "ml_node" {

name = "ml-gpu-node"
machine_type = "n1-standard-8"
zone = "us-central1-a"

boot_disk {
initialize_params {
image = "debian-cloud/debian-11"

}
}

guest_accelerator {
type = "nvidia-tesla-t4"
count = 1

}

metadata_startup_script = <<-EOF
sudo apt-get update
sudo apt-get install -y docker.io
sudo docker run --gpus all -p 8501:8501 tensorflow/serving

EOF

tags = ["ml-serving"]
}

At the outset of a project, project managers work with organizational stake-
holders to define goals, success metrics, and constraints. This includes clarifying
the business objectives of the machine learning system, identifying key deliv-
erables, estimating timelines, and setting performance benchmarks. These
definitions serve as the foundation for resource allocation, task planning, and
risk assessment throughout the lifecycle of the project.

Once the project is initiated, project managers are responsible for developing
and maintaining a detailed execution plan. This plan outlines major phases
of work, such as data collection, model development, infrastructure provision-
ing, deployment, and monitoring. Dependencies between tasks are identified
and managed to ensure smooth handoffs between roles, while milestones and
checkpoints are used to assess progress and adjust schedules as necessary.

Throughout execution, project managers facilitate coordination across teams.
This includes organizing meetings, tracking deliverables, resolving blockers,
and escalating issues when necessary. Documentation, progress reports, and
status updates are maintained to provide visibility across the organization and

13.5. Roles and Responsibilities 716

ensure that all stakeholders are informed of project developments. Communica-
tion is a central function of the role, serving to reduce misalignment and clarify
expectations between technical contributors and business decision-makers.

In addition to managing timelines and coordination, project managers over-
see the budgeting and resourcing aspects of MLOps initiatives. This may
involve evaluating cloud infrastructure costs, negotiating access to compute
resources, and ensuring that appropriate personnel are assigned to each phase
of the project. By maintaining visibility into both technical and organizational
considerations, project managers help align technical execution with strategic
priorities.

For example, consider a company seeking to reduce customer churn using
a predictive model. The project manager coordinates with data engineers to
define data requirements, with data scientists to prototype and evaluate models,
with ML engineers to package and deploy the final model, and with DevOps
engineers to provision the necessary infrastructure and monitoring tools. The
project manager tracks progress through phases such as data pipeline readiness,
baseline model evaluation, deployment to staging, and post-deployment moni-
toring, adjusting the project plan as needed to respond to emerging challenges.

By orchestrating collaboration across diverse roles and managing the com-
plexity inherent in machine learning initiatives, project managers enable MLOps
teams to deliver systems that are both technically robust and aligned with or-
ganizational goals. Their contributions ensure that the operationalization of
machine learning is not only feasible, but repeatable, accountable, and efÏcient.
To illustrate these responsibilities in a practical context, Listing 13.5 presents a
simplified example of a project milestone tracking structure using JSON. This
format is commonly used to integrate with tools like JIRA or project dashboards
to monitor progress across machine learning initiatives.

13.5.1.6 Responsible AI Lead

The Responsible AI Lead is tasked with ensuring that machine learning systems
operate in ways that are transparent, fair, accountable, and compliant with ethi-
cal and regulatory standards. As machine learning is increasingly embedded in
socially impactful domains such as healthcare, finance, and education, the need
for systematic governance has grown. This role reflects a growing recognition
that technical performance alone is insufÏcient; ML systems must also align
with broader societal values.

At the model development stage, Responsible AI Leads support practices
that enhance interpretability and transparency. They work with data scientists
and ML engineers to assess which features contribute most to model predic-
tions, evaluate whether certain groups are disproportionately affected, and
document model behavior through structured reporting mechanisms. Post
hoc explanation methods, such as attribution techniques, are often reviewed in
collaboration with this role to support downstream accountability.

Another key responsibility is fairness assessment. This involves defining
fairness criteria in collaboration with stakeholders, auditing model outputs for
performance disparities across demographic groups, and guiding interventions,
including reweighting, re-labeling, or constrained optimization, to mitigate po-

Chapter 13. ML Operations 717

Listing 13.5: Project milestone tracking in JSON

{
"project": "Churn Prediction",
"milestones": [
{
"name": "Data Pipeline Ready",
"due": "2025-05-01",
"status": "Complete"

},
{
"name": "Model Baseline",
"due": "2025-05-10",
"status": "In Progress"

},
{
"name": "Staging Deployment",
"due": "2025-05-15",
"status": "Pending"

},
{
"name": "Production Launch",
"due": "2025-05-25",
"status": "Pending"

}
],
"risks": [
{
"issue": "Delayed cloud quota",
"mitigation": "Request early from infra team"

}
]

}

tential harms. These assessments are often incorporated into model validation
pipelines to ensure that they are systematically enforced before deployment.

In post-deployment settings, Responsible AI Leads help monitor systems for
drift, bias amplification, and unanticipated behavior. They may also oversee
the creation of documentation artifacts such as model cards or datasheets for
datasets, which serve as tools for transparency and reproducibility. In regulated
sectors, this role collaborates with legal and compliance teams to meet audit
requirements and ensure that deployed models remain aligned with external
mandates.

For example, in a hiring recommendation system, a Responsible AI Lead may
oversee an audit that compares model outcomes across gender and ethnicity,
guiding the team to adjust the training pipeline to reduce disparities while

13.5. Roles and Responsibilities 718

preserving predictive accuracy. They also ensure that decision rationales are
documented and reviewable by both technical and non-technical stakeholders.

The integration of ethical review and governance into the ML development
process enables the Responsible AI Lead to support systems that are not only
technically robust, but also socially responsible and institutionally accountable.
To illustrate these responsibilities in a practical context, Listing 13.6 presents
an example of using the Aequitas library to audit a model for group-based
disparities. This example evaluates statistical parity across demographic groups
to assess potential fairness concerns prior to deployment.

Listing 13.6: Code in Practice for a Responsible AI Lead, conducting a fairness
assessment to identify disparities in model outcomes across gender groups
using Aequitas.

Fairness audit using Aequitas
from aequitas.group import Group
from aequitas.bias import Bias

Assume df includes model scores, true labels,
and a 'gender' attribute
g = Group().get_crosstabs(df)
b = Bias().get_disparity_predefined_groups(

g,original_df=df,
ref_groups_dict={'gender': 'male'},
alpha=0.05,
mask_significant=True

)

print(b[
['attribute_name',
'attribute_value',
'disparity',
'statistical_parity']

])

13.5.1.7 Security and Privacy Engineer
The Security and Privacy Engineer is responsible for safeguarding machine
learning systems against adversarial threats and privacy risks. As ML systems
increasingly rely on sensitive data and are deployed in high-stakes environ-
ments, security and privacy become essential dimensions of system reliabil-
ity. This role brings expertise in both traditional security engineering and
ML-specific threat models, ensuring that systems are resilient to attack and
compliant with data protection requirements.

At the data level, Security and Privacy Engineers help enforce access control,
encryption, and secure handling of training and inference data. They collabo-
rate with data engineers to apply privacy-preserving techniques, such as data

Chapter 13. ML Operations 719

13 Differential Privacy: A tech-
nique that adds randomness to
dataset queries to protect individ-
ual data privacy while maintaining
overall data utility.

14 API rate limiting controls the
rate at which end users can make
API requests, used to protect against
abuse.

anonymization, secure aggregation, or differential privacy13, particularly when
sensitive personal or proprietary data is used. These mechanisms are designed
to reduce the risk of data leakage while retaining the utility needed for model
training.

In the modeling phase, this role advises on techniques that improve robust-
ness against adversarial manipulation. This may include detecting poisoning
attacks during training, mitigating model inversion or membership inference
risks, and evaluating the susceptibility of models to adversarial examples. They
also assist in designing model architectures and training strategies that balance
performance with safety constraints.

During deployment, Security and Privacy Engineers implement controls to
protect the model itself, including endpoint hardening, API rate limiting14,
and access logging. In settings where models are exposed externally, includ-
ing public-facing APIs, they may also deploy monitoring systems that detect
anomalous access patterns or query-based attacks intended to extract model
parameters or training data.

For instance, in a medical diagnosis system trained on patient data, a Secu-
rity and Privacy Engineer might implement differential privacy during model
training and enforce strict access controls on the model’s inference interface.
They would also validate that model explanations do not inadvertently ex-
pose sensitive information, and monitor post-deployment activity for potential
misuse.

Through proactive design and continuous oversight, Security and Privacy
Engineers ensure that ML systems uphold confidentiality, integrity, and avail-
ability. Their work is especially critical in domains where trust, compliance,
and risk mitigation are central to system deployment and long-term operation.
To illustrate these responsibilities in a practical context, Listing 13.7 presents an
example of training a model using differential privacy techniques with Tensor-
Flow Privacy. This approach helps protect sensitive information in the training
data while preserving model utility.

13.5.2 Intersections and Handoffs

While each role in MLOps carries distinct responsibilities, the successful de-
ployment and operation of machine learning systems depends on seamless
collaboration across functional boundaries. Machine learning workflows are
inherently interdependent, with critical handoff points connecting data acqui-
sition, model development, system integration, and operational monitoring.
Understanding these intersections is essential for designing processes that are
both efÏcient and resilient.

One of the earliest and most critical intersections occurs between data engi-
neers and data scientists. Data engineers construct and maintain the pipelines
that ingest and transform raw data, while data scientists depend on these
pipelines to access clean, structured, and well-documented datasets for analysis
and modeling. Misalignment at this stage, including undocumented schema
changes or inconsistent feature definitions, can lead to downstream errors that
compromise model quality or reproducibility.

13.5. Roles and Responsibilities 720

Listing 13.7: Code in Practice for a Security and Privacy Engineer, applying dif-
ferential privacy during model training to protect sensitive data while enabling
predictive performance.

Training a differentially private model with
TensorFlow Privacy
import tensorflow as tf
from tensorflow_privacy.privacy.optimizers.dp_optimizer_keras \

import DPKerasAdamOptimizer

Define a simple model
model = tf.keras.Sequential([

tf.keras.layers.Dense(
64,
activation='relu',
input_shape=(100,)

),
tf.keras.layers.Dense(10, activation='softmax')

])

Use a DP-aware optimizer
optimizer = DPKerasAdamOptimizer(

l2_norm_clip=1.0,
noise_multiplier=1.1,
num_microbatches=256,
learning_rate=0.001

)

model.compile(
optimizer=optimizer,
loss='categorical_crossentropy',
metrics=['accuracy']

)

Train model on privatized dataset
model.fit(train_data, train_labels, epochs=10, batch_size=256)

Once a model is developed, the handoff to ML engineers requires a careful
transition from research artifacts to production-ready components. ML en-
gineers must understand the assumptions and requirements of the model to
implement appropriate interfaces, optimize runtime performance, and integrate
it into the broader application ecosystem. This step often requires iteration,
especially when models developed in experimental environments must be
adapted to meet latency, throughput, or resource constraints in production.

As models move toward deployment, DevOps engineers play the role in
provisioning infrastructure, managing CI/CD pipelines, and instrumenting

Chapter 13. ML Operations 721

15 Full-stack ML engineer: A
role that encompasses the skills of
machine learning, software devel-
opment, and system operations to
handle end-to-end machine learn-
ing model lifecycle.

monitoring systems. Their collaboration with ML engineers ensures that model
deployments are automated, repeatable, and observable. They also coordinate
with data scientists to define alerts and thresholds that guide performance
monitoring and retraining decisions.

Project managers provide the organizational glue across these technical do-
mains. They ensure that handoffs are anticipated, roles are clearly defined, and
dependencies are actively managed. In particular, project managers help main-
tain continuity by documenting assumptions, tracking milestone readiness, and
facilitating communication between teams. This coordination reduces friction
and enables iterative development cycles that are both agile and accountable.

For example, in a real-time recommendation system, data engineers maintain
the data ingestion pipeline and feature store, data scientists iterate on model
architectures using historical clickstream data, ML engineers deploy models as
containerized microservices, and DevOps engineers monitor inference latency
and availability. Each role contributes to a different layer of the stack, but the
overall functionality depends on reliable transitions between each phase of the
lifecycle.

These role interactions illustrate that MLOps is not simply a collection of
discrete tasks, but a continuous, collaborative process. Designing for clear
handoffs, shared tools, and well-defined interfaces is essential for ensuring that
machine learning systems can evolve, scale, and perform reliably over time.

13.5.3 Evolving Roles and Specializations

As machine learning systems mature and organizations adopt MLOps practices
at scale, the structure and specialization of roles often evolve. In early-stage
environments, individual contributors may take on multiple responsibilities—
such as a data scientist who also builds data pipelines or manages model
deployment. However, as systems grow in complexity and teams expand,
responsibilities tend to become more differentiated, giving rise to new roles
and more structured organizational patterns.

One emerging trend is the formation of dedicated ML platform teams, which
focus on building shared infrastructure and tooling to support experimenta-
tion, deployment, and monitoring across multiple projects. These teams often
abstract common workflows, including data versioning, model training orches-
tration, and CI/CD integration, into reusable components or internal platforms.
This approach reduces duplication of effort and accelerates development by
enabling application teams to focus on domain-specific problems rather than
underlying systems engineering.

In parallel, hybrid roles have emerged to bridge gaps between traditional
boundaries. For example, full-stack ML engineers15 combine expertise in model-
ing, software engineering, and infrastructure to own the end-to-end deployment
of ML models. Similarly, ML enablement roles, including MLOps engineers and
applied ML specialists, focus on helping teams adopt best practices, integrate
tooling, and scale workflows efÏciently. These roles are especially valuable
in organizations with diverse teams that vary in ML maturity or technical
specialization.

13.6. Operational System Design 722

The structure of MLOps teams also varies based on organizational scale,
industry, and regulatory requirements. In smaller organizations or startups,
teams are often lean and cross-functional, with close collaboration and informal
processes. In contrast, larger enterprises may formalize roles and introduce
governance frameworks to manage compliance, data security, and model risk.
Highly regulated sectors, including finance, healthcare, and defense, often
require additional roles focused on validation, auditing, and documentation to
meet external reporting obligations.

Table 13.4: Evolution of MLOps roles and responsibilities.

Role Key Intersections Evolving Patterns and Specializations

Data Engineer Works with data scientists to define
features and pipelines

Expands into real-time data systems and
feature store platforms

Data Scientist Relies on data engineers for clean inputs;
collaborates with ML engineers

Takes on model validation, interpretability,
and ethical considerations

ML Engineer Receives models from data scientists;
works with DevOps to deploy and
monitor

Transitions into platform engineering or
full-stack ML roles

DevOps Engineer Supports ML engineers with
infrastructure, CI/CD, and observability

Evolves into MLOps platform roles;
integrates governance and security tooling

Project Manager Coordinates across all roles; tracks
progress and communication

Specializes into ML product management as
systems scale

Responsible AI Lead Collaborates with data scientists and PMs
to evaluate fairness and compliance

Role emerges as systems face regulatory
scrutiny or public exposure

Security & Privacy
Engineer

Works with DevOps and ML Engineers to
secure data pipelines and model
interfaces

Role formalizes as privacy regulations (e.g.,
GDPR, HIPAA) apply to ML workflows

Importantly, as Table 13.4 indicates, the boundaries between roles are not
rigid. Effective MLOps practices rely on shared understanding, documenta-
tion, and tools that facilitate communication and coordination across teams.
Encouraging interdisciplinary fluency, including enabling data scientists to
understand deployment workflows and DevOps engineers to interpret model
monitoring metrics, enhances organizational agility and resilience.

As machine learning becomes increasingly central to modern software sys-
tems, roles will continue to adapt in response to emerging tools, methodologies,
and system architectures. Recognizing the dynamic nature of these responsibil-
ities allows teams to allocate resources effectively, design adaptable workflows,
and foster collaboration that is essential for sustained success in production-
scale machine learning.

13.6 Operational System Design
Machine learning systems do not operate in isolation. As they transition from
prototype to production, their effectiveness depends not only on the quality
of the underlying models, but also on the maturity of the organizational and
technical processes that support them. Operational maturity refers to the de-
gree to which ML workflows are automated, reproducible, monitored, and
aligned with broader engineering and governance practices. While early-stage
efforts may rely on ad hoc scripts and manual interventions, production-scale
systems require deliberate design choices that support long-term sustainabil-
ity, reliability, and adaptability. This section examines how different levels

Chapter 13. ML Operations 723

of operational maturity influence system architecture, infrastructure design,
and organizational structure, providing a lens through which to interpret the
broader MLOps landscape (Kreuzberger, Kerschbaum, and Kuhn 2022).

13.6.1 Operational Maturity
Operational maturity in machine learning refers to the extent to which an orga-
nization can reliably develop, deploy, and manage ML systems in a repeatable
and scalable manner. Unlike the maturity of individual models or algorithms,
operational maturity reflects systemic capabilities: how well a team or orga-
nization integrates infrastructure, automation, monitoring, governance, and
collaboration into the ML lifecycle.

Low-maturity environments often rely on manual workflows, loosely coupled
components, and ad hoc experimentation. While sufÏcient for early-stage
research or low-risk applications, such systems tend to be brittle, difÏcult
to reproduce, and highly sensitive to data or code changes. As ML systems
are deployed at scale, these limitations quickly become barriers to sustained
performance, trust, and accountability.

In contrast, high-maturity environments implement modular, versioned, and
automated workflows that allow models to be developed, validated, and de-
ployed in a controlled and observable fashion. Data lineage is preserved across
transformations; model behavior is continuously monitored and evaluated;
and infrastructure is provisioned and managed as code. These practices reduce
operational friction, enable faster iteration, and support robust decision-making
in production (Zaharia et al. 2018).

Importantly, operational maturity is not solely a function of tool adoption.
While technologies such as CI/CD pipelines, model registries, and observability
stacks play a role, maturity is fundamentally about system integration and
coordination, as in how these components work together to support reliability,
reproducibility, and responsiveness under real-world constraints. It is this
integration that distinguishes mature ML systems from collections of loosely
connected artifacts.

13.6.2 Maturity Levels
While operational maturity exists on a continuum, it is useful to distinguish be-
tween broad stages that reflect how ML systems evolve from research prototypes
to production-grade infrastructure. These stages are not strict categories, but
rather indicative of how organizations gradually adopt practices that support
reliability, scalability, and observability.

At the lowest level of maturity, ML workflows are ad hoc: experiments are
run manually, models are trained on local machines, and deployment involves
hand-crafted scripts or manual intervention. Data pipelines may be fragile or
undocumented, and there is limited ability to trace how a deployed model was
produced. These environments may be sufÏcient for prototyping, but they are
ill-suited for ongoing maintenance or collaboration.

As maturity increases, workflows become more structured and repeatable.
Teams begin to adopt version control, automated training pipelines, and cen-
tralized model storage. Monitoring and testing frameworks are introduced,

13.6. Operational System Design 724

and retraining workflows become more systematic. Systems at this level can
support limited scale and iteration but still rely heavily on human coordination.

At the highest levels of maturity, ML systems are fully integrated with
infrastructure-as-code, continuous delivery pipelines, and automated mon-
itoring. Data lineage, feature reuse, and model validation are encoded into
the development process. Governance is embedded throughout the system,
allowing for traceability, auditing, and policy enforcement. These environ-
ments support large-scale deployment, rapid experimentation, and adaptation
to changing data and system conditions.

This progression, summarized in Table 13.5, offers a system-level framework
for analyzing ML operational practices. It emphasizes architectural cohesion
and lifecycle integration over tool selection, guiding the design of scalable and
maintainable learning systems.

Table 13.5: Maturity levels in machine learning operations.

Maturity
Level System Characteristics Typical Outcomes

Ad Hoc Manual data processing, local training, no version control,
unclear ownership

Fragile workflows, difÏcult to
reproduce or debug

Repeatable Automated training pipelines, basic CI/CD, centralized
model storage, some monitoring

Improved reproducibility, limited
scalability

Scalable Fully automated workflows, integrated observability,
infrastructure-as-code, governance

High reliability, rapid iteration,
production-grade ML

These maturity levels provide a systems lens through which to evaluate ML
operations—not in terms of specific tools adopted, but in how reliably and cohe-
sively a system supports the full machine learning lifecycle. Understanding this
progression prepares practitioners to identify design bottlenecks and prioritize
investments that support long-term system sustainability.

13.6.3 System Design Implications
As machine learning operations mature, the underlying system architecture
evolves in response. Operational maturity is not just an organizational concern—
it has direct consequences for how ML systems are structured, deployed, and
maintained. Each level of maturity introduces new expectations around modu-
larity, automation, monitoring, and fault tolerance, shaping the design space in
both technical and procedural terms.

In low-maturity environments, ML systems are often constructed around
monolithic scripts and tightly coupled components. Data processing logic may
be embedded directly within model code, and configurations are managed
informally. These architectures, while expedient for rapid experimentation, lack
the separation of concerns needed for maintainability, version control, or safe
iteration. As a result, teams frequently encounter regressions, silent failures,
and inconsistent performance across environments.

As maturity increases, modular abstractions begin to emerge. Feature en-
gineering is decoupled from model logic, pipelines are defined declaratively,
and system boundaries are enforced through APIs and orchestration frame-
works. These changes support reproducibility and enable teams to scale devel-
opment across multiple contributors or applications. Infrastructure becomes

Chapter 13. ML Operations 725

programmable through configuration files, and model artifacts are promoted
through standardized deployment stages. This architectural discipline allows
systems to evolve predictably, even as requirements shift or data distributions
change.

At high levels of maturity, ML systems exhibit properties commonly found
in production-grade software systems: stateless services, contract-driven inter-
faces, environment isolation, and observable execution. Design patterns such
as feature stores, model registries, and infrastructure-as-code become foun-
dational. Crucially, system behavior is not inferred from static assumptions,
but monitored in real time and adapted as needed. This enables feedback-
driven development and supports closed-loop systems where data, models,
and infrastructure co-evolve.

In each case, operational maturity is not an external constraint but an architec-
tural force: it governs how complexity is managed, how change is absorbed, and
how the system can scale in the face of threats to service uptime (see Figure 13.9).
Design decisions that disregard these constraints may function under ideal
conditions, but fail under real-world pressures such as latency requirements,
drift, outages, or regulatory audits. Understanding this relationship between
maturity and design is essential for building resilient machine learning systems
that sustain performance over time.

Figure 13.9: How ML service up-
time is supported by an “iceberg”
of underlying components to moni-
tor.UPTIME

MODEL ACCURACY

DATA DRIFT

CONCEPT DRIFT

BROKEN PIPELINES

SCHEMA CHANGE

MODEL BIAS
DATA OUTAGE

UNDERPERFORMING

SEGMENTS

Data health Model health

Service health

13.6.4 Patterns and Anti-Patterns
The structure of the teams involved in building and maintaining machine
learning systems plays a significant role in determining operational outcomes.
As ML systems grow in complexity and scale, organizational patterns must
evolve to reflect the interdependence between data, modeling, infrastructure,
and governance. While there is no single ideal structure, certain patterns
consistently support operational maturity, whereas others tend to hinder it.

13.6. Operational System Design 726

In mature environments, organizational design emphasizes clear ownership,
cross-functional collaboration, and interface discipline between roles. For in-
stance, platform teams may take responsibility for shared infrastructure, tooling,
and CI/CD pipelines, while domain teams focus on model development and
business alignment. This separation of concerns enables reuse, standardization,
and parallel development. Interfaces between teams, including feature defini-
tions, data schemas, and deployment targets, are well-defined and versioned,
reducing friction and ambiguity.

One effective pattern is the creation of a centralized MLOps team that pro-
vides shared services to multiple model development groups. This team main-
tains tooling for model training, validation, deployment, and monitoring, and
may operate as an internal platform provider. Such structures promote con-
sistency, reduce duplicated effort, and accelerate onboarding for new projects.
Alternatively, some organizations adopt a federated model, embedding MLOps
engineers within product teams while maintaining a central architectural func-
tion to guide system-wide integration.

In contrast, anti-patterns often emerge when responsibilities are fragmented
or poorly aligned. One common failure mode is the tool-first approach, in
which teams adopt infrastructure or automation tools without first defining
the processes and roles that should govern their use. This can result in fragile
pipelines, unclear handoffs, and duplicated effort. Another anti-pattern is siloed
experimentation, where data scientists operate in isolation from production
engineers, leading to models that are difÏcult to deploy, monitor, or retrain
effectively.

Organizational drift is another subtle challenge. As teams scale, undocu-
mented workflows and informal agreements may become entrenched, increas-
ing the cost of coordination and reducing transparency. Without deliberate
system design and process review, even previously functional structures can
accumulate technical and organizational debt.

Ultimately, organizational maturity must co-evolve with system complexity.
Teams must establish communication patterns, role definitions, and account-
ability structures that reinforce the principles of modularity, automation, and
observability. Operational excellence in machine learning is not just a matter
of technical capability—it is the product of coordinated, intentional systems
thinking across human and computational boundaries.

13.6.5 Contextualizing MLOps
The operational maturity of a machine learning system is not an abstract ideal;
it is realized in concrete systems with physical, organizational, and regulatory
constraints. While the preceding sections have outlined best practices for ma-
ture MLOps, which include CI/CD, monitoring, infrastructure provisioning,
and governance, these practices are rarely deployed in pristine, unconstrained
environments. In reality, every ML system operates within a specific context
that shapes how MLOps workflows are implemented, prioritized, and adapted.

System constraints may arise from the physical environment in which a
model is deployed, such as limitations in compute, memory, or power. These
are common in edge and embedded systems, where models must run under

Chapter 13. ML Operations 727

16 Refers to the logical, consis-
tent, and scalable design and inte-
gration of various system compo-
nents.

strict latency and resource constraints. Connectivity limitations, such as inter-
mittent network access or bandwidth caps, further complicate model updates,
monitoring, and telemetry collection. In high-assurance domains, including
healthcare, finance, and industrial control systems, governance, traceability,
and fail-safety may take precedence over throughput or latency. These factors
do not simply influence system performance; they fundamentally alter how
MLOps pipelines must be designed and maintained.

For instance, a standard CI/CD pipeline for retraining and deployment
may be infeasible in environments where direct access to the model host is not
possible. In such cases, teams must implement alternative delivery mechanisms,
such as over-the-air updates, that account for reliability, rollback capability, and
compatibility across heterogeneous devices. Similarly, monitoring practices that
assume full visibility into runtime behavior may need to be reimagined using
indirect signals, coarse-grained telemetry, or on-device anomaly detection. Even
the simple task of collecting training data may be limited by privacy concerns,
device-level storage constraints, or legal restrictions on data movement.

These adaptations should not be interpreted as deviations from maturity,
but rather as expressions of maturity under constraint. A well-engineered ML
system accounts for the realities of its operating environment and revises its
operational practices accordingly. This is the essence of systems thinking in
MLOps: applying general principles while designing for specificity.

As we turn to the chapters ahead, we will encounter several of these con-
textual factors, including on-device learning, privacy preservation, safety and
robustness, and sustainability. Each presents not just a technical challenge
but a system-level constraint that reshapes how machine learning is practiced
and maintained at scale. Understanding MLOps in context is therefore not
optional—it is foundational to building ML systems that are viable, trustworthy,
and effective in the real world.

13.6.6 Looking Ahead
As this chapter has shown, the deployment and maintenance of machine learn-
ing systems require more than technical correctness at the model level. They
demand architectural coherence,16 organizational alignment, and operational
maturity. The progression from ad hoc experimentation to scalable, auditable
systems reflects a broader shift: machine learning is no longer confined to
research environments—it is a core component of production infrastructure.

Understanding the maturity of an ML system helps clarify what challenges
are likely to emerge and what forms of investment are needed to address them.
Early-stage systems benefit from process discipline and modular abstraction;
mature systems require automation, governance, and resilience. Design choices
made at each stage influence the pace of experimentation, the robustness of
deployed models, and the ability to integrate evolving requirements—technical,
organizational, and regulatory.

This systems-oriented view of MLOps also sets the stage for the next phase
of this book. The remaining chapters examine specific application contexts and
operational concerns, including on-device inference, privacy, robustness, and
sustainability, that depend on the foundational capabilities developed in this

13.7. Case Studies 728

17 Polysomnography (PSG): A
clinical study or test used to diag-
nose sleep disorders; involves EEG
and other physiologic sensors.

chapter. These topics represent not merely extensions of model performance,
but domains in which operational maturity directly enables feasibility, safety,
and long-term value.

Operational maturity is therefore not the end of the machine learning system
lifecycle—it is the foundation upon which production-grade, responsible, and
adaptive systems are built. The following chapters explore what it takes to
build such systems under domain-specific constraints, further expanding the
scope of what it means to engineer machine learning at scale.

13.7 Case Studies
To ground the principles of MLOps in practice, we examine two illustrative
case studies that demonstrate the operationalization of machine learning in
real-world systems. These examples highlight how operational maturity, ro-
bust system design, and cross-functional collaboration enable the successful
deployment and maintenance of ML applications.

The first case study analyzes the Oura Ring, which is a consumer wear-
able device that employs embedded machine learning to monitor sleep and
physiological signals. This example illustrates MLOps practices in resource-
constrained environments, where models must operate efÏciently on edge
devices while maintaining reliability and accuracy. The second case study ex-
plores ClinAIOps, a specialized framework for deploying AI systems in clinical
settings. By examining its application to continuous therapeutic monitoring
(CTM), we see how MLOps principles can be adapted to domains with strict
regulatory requirements and complex human-in-the-loop workflows.

Through these cases, we gain practical insights into how organizations navi-
gate technical, operational, and domain-specific challenges in productionizing
machine learning systems. Each example reinforces core MLOps concepts while
revealing unique considerations that arise in different application contexts.

13.7.1 Oura Ring Case Study
13.7.1.1 Context and Motivation

The Oura Ring is a consumer-grade wearable device designed to monitor sleep,
activity, and physiological recovery through embedded sensing and computa-
tion. By measuring signals such as motion, heart rate, and body temperature,
the device estimates sleep stages and delivers personalized feedback to users.
Unlike traditional cloud-based systems, much of the Oura Ring’s data process-
ing and inference occurs directly on the device, making it a practical example
of embedded machine learning in production.

The central objective for the development team was to improve the device’s
accuracy in classifying sleep stages, aligning its predictions more closely with
those obtained through polysomnography (PSG)17—the clinical gold standard
for sleep monitoring. Initial evaluations revealed a 62% correlation between the
Oura Ring’s predictions and PSG-derived labels, in contrast to the 82–83% cor-
relation observed between expert human scorers. This discrepancy highlighted
both the promise and limitations of the initial model, prompting a systematic
effort to re-evaluate data collection, preprocessing, and model development

Chapter 13. ML Operations 729

18 Edge Impulse: A develop-
ment platform for embedded ma-
chine learning, enabling data col-
lection, model training, and deploy-
ment on edge devices.

workflows. As such, the case illustrates the importance of robust MLOps prac-
tices, particularly when operating under the constraints of embedded systems.

13.7.1.2 Data Acquisition and Preprocessing

To overcome the performance limitations of the initial model, the Oura team
focused on constructing a robust, diverse dataset grounded in clinical standards.
They designed a large-scale sleep study involving 106 participants from three
continents, including Asia, Europe, and North America, capturing broad de-
mographic variability across age, gender, and lifestyle. During the study, each
participant wore the Oura Ring while simultaneously undergoing polysomnog-
raphy (PSG), the clinical gold standard for sleep staging. This pairing enabled
the creation of a high-fidelity labeled dataset aligning wearable sensor data
with validated sleep annotations.

In total, the study yielded 440 nights of data and over 3,400 hours of time-
synchronized recordings. This dataset captured not only physiological diversity
but also variability in environmental and behavioral factors, which is critical
for generalizing model performance across a real-world user base.

To manage the complexity and scale of this dataset, the team implemented
automated data pipelines for ingestion, cleaning, and preprocessing. Physi-
ological signals, comprising heart rate, motion, and body temperature, were
extracted and validated using structured workflows. Leveraging the Edge
Impulse platform18, they consolidated raw inputs from multiple sources, re-
solved temporal misalignments, and structured the data for downstream model
development. These workflows significantly reduced the need for manual in-
tervention, highlighting how MLOps principles such as pipeline automation,
data versioning, and reproducible preprocessing are essential in embedded ML
settings.

13.7.2 Model Development and Evaluation
With a high-quality, clinically labeled dataset in place, the Oura team advanced
to the development and evaluation of machine learning models designed to clas-
sify sleep stages. Recognizing the operational constraints of wearable devices,
model design prioritized efÏciency and interpretability alongside predictive
accuracy. Rather than employing complex architectures typical of server-scale
deployments, the team selected models that could operate within the ring’s
limited memory and compute budget.

Two model configurations were explored. The first used only accelerometer
data, representing a lightweight architecture optimized for minimal energy
consumption and low-latency inference. The second model incorporated addi-
tional physiological inputs, including heart rate variability and body tempera-
ture, enabling the capture of autonomic nervous system activity and circadian
rhythms—factors known to correlate with sleep stage transitions.

To evaluate performance, the team applied five-fold cross-validation and
benchmarked the models against the gold-standard PSG annotations. Through
iterative tuning of hyperparameters and refinement of input features, the en-
hanced models achieved a correlation accuracy of 79%, significantly surpassing

13.7. Case Studies 730

the original system’s 62% correlation and approaching the clinical benchmark
of 82–83%.

These performance gains did not result solely from architectural innovation.
Instead, they reflect the broader impact of a systematic MLOps approach—one
that integrated rigorous data collection, reproducible training pipelines, and
disciplined evaluation practices. This phase underscores the importance of
aligning model development with both application constraints and system-
level reliability, particularly in embedded ML environments where deployment
feasibility is as critical as accuracy.

13.7.3 Deployment and Iteration
Following model validation, the Oura team transitioned to deploying the trained
models onto the ring’s embedded hardware. Deployment in this context re-
quired careful accommodation of strict constraints on memory, compute, and
power. The lightweight model, which relied solely on accelerometer input, was
particularly well-suited for real-time inference on-device, delivering low-latency
predictions with minimal energy usage. In contrast, the more comprehensive
model, which utilized additional physiological signals, including heart rate
variability and temperature, was deployed selectively, where higher predictive
fidelity was required and system resources permitted.

To facilitate reliable and scalable deployment, the team developed a modular
toolchain for converting trained models into optimized formats suitable for
embedded execution. This process included model compression techniques
such as quantization and pruning, which reduced model size while preserv-
ing accuracy. Models were packaged with their preprocessing routines and
deployed using over-the-air (OTA) update mechanisms, ensuring consistency
across devices in the field.

Instrumentation was built into the deployment pipeline to support post-
deployment observability. The system collected operational telemetry, includ-
ing runtime performance metrics, device-specific conditions, and samples of
model predictions. This monitoring infrastructure enabled the identification
of drift, edge cases, and emerging patterns in real-world usage, closing the
feedback loop between deployment and further development.

This stage illustrates key practices of MLOps in embedded systems: resource-
aware model packaging, OTA deployment infrastructure, and continuous per-
formance monitoring. It reinforces the importance of designing systems for
adaptability and iteration, ensuring that ML models remain accurate and reli-
able under real-world operating conditions.

13.7.4 Lessons from MLOps Practice
The Oura Ring case study illustrates several essential principles for managing
machine learning systems in real-world, resource-constrained environments.
First, it highlights the foundational role of data quality and labeling. While
model architecture and training pipelines are important, the success of the
system was driven by a disciplined approach to data acquisition, annotation,
and preprocessing. This afÏrms the importance of data-centric practices in
MLOps workflows.

Chapter 13. ML Operations 731

Second, the deployment strategy demonstrates the need for system-aware
model design. Rather than relying on a single large model, the team developed
tiered models optimized for different deployment contexts. This modularity
enabled tradeoffs between accuracy and efÏciency to be managed at runtime, a
key consideration for on-device and embedded inference.

Third, the case emphasizes the value of operational feedback loops. In-
strumentation for logging and monitoring allowed the team to track system
behavior post-deployment, identify shortcomings, and guide further iterations.
This reinforces the role of observability and feedback as core components of
the MLOps lifecycle.

Finally, the success of the Oura project was not due to a single team or phase
of work but emerged from coordinated collaboration across data engineers,
ML researchers, embedded systems developers, and operations personnel. The
ability to move seamlessly from data acquisition to deployment reflects the
maturity of the MLOps practices involved.

Taken together, this case exemplifies how MLOps is not merely a set of tools
or techniques but a mindset for integrating ML into end-to-end systems that
are reliable, scalable, and adaptive in production settings.

13.7.5 ClinAIOps Case Study
The deployment of machine learning systems in healthcare presents both a
significant opportunity and a unique challenge. While traditional MLOps frame-
works offer structured practices for managing model development, deployment,
and monitoring, they often fall short in domains that require extensive human
oversight, domain-specific evaluation, and ethical governance. Medical health
monitoring, especially through continuous therapeutic monitoring (CTM), is
one such domain where MLOps must evolve to meet the demands of real-world
clinical integration.

CTM leverages wearable sensors and devices to collect rich streams of physio-
logical and behavioral data from patients in real time. These data streams offer
clinicians the potential to tailor treatments more dynamically, shifting from reac-
tive care to proactive, personalized interventions. Recent advances in embedded
ML have made this increasingly feasible. For example, wearable biosensors
can automate insulin dosing for diabetes management (Psoma and Kanthou
2023), ECG-equipped wristbands can inform blood thinner adjustments for
atrial fibrillation (Attia et al. 2018; Guo et al. 2019), and gait-monitoring ac-
celerometers can trigger early interventions to prevent mobility decline in older
adults (Yingcheng Liu et al. 2022). By closing the loop between sensing and
therapeutic response, CTM systems powered by embedded ML are redefining
how care is delivered beyond the clinical setting.

However, the mere deployment of ML models is insufÏcient to realize these
benefits. AI systems must be integrated into clinical workflows, aligned with
regulatory requirements, and designed to augment rather than replace human
decision-making. The traditional MLOps paradigm, which focuses on automat-
ing pipelines for model development and serving, does not adequately account
for the complex sociotechnical landscape of healthcare, where patient safety,
clinician judgment, and ethical constraints must be prioritized.

13.7. Case Studies 732

This case study explores ClinAIOps, a framework proposed for operational-
izing AI in clinical environments (E. Chen et al. 2023). Unlike conventional
MLOps, ClinAIOps introduces mechanisms for multi-stakeholder coordination
through structured feedback loops that connect patients, clinicians, and AI
systems. The framework is designed to facilitate adaptive decision-making,
ensure transparency and oversight, and support continuous improvement of
both models and care protocols.

Before presenting a real-world application example, it is helpful to examine
the limitations of traditional MLOps in clinical settings:

• MLOps focuses primarily on the model lifecycle (e.g., training, deploy-
ment, monitoring), whereas healthcare requires coordination among di-
verse human actors, such as patients, clinicians, and care teams.

• Traditional MLOps emphasizes automation and system reliability, but
clinical decision-making hinges on personalized care, interpretability, and
shared accountability.

• The ethical, regulatory, and safety implications of AI-driven healthcare
demand governance frameworks that go beyond technical monitoring.

• Clinical validation requires not just performance metrics but evidence of
safety, efÏcacy, and alignment with care standards.

• Health data is highly sensitive, and systems must comply with strict
privacy and security regulations—considerations that traditional MLOps
frameworks do not fully address.

In light of these gaps, ClinAIOps presents an alternative: a framework for
embedding ML into healthcare in a way that balances technical rigor with
clinical utility, operational reliability with ethical responsibility. The remainder
of this case study introduces the ClinAIOps framework and its feedback loops,
followed by a detailed walkthrough of a hypertension management example
that illustrates how AI can be effectively integrated into routine clinical practice.

13.7.5.1 Feedback Loops

At the core of the ClinAIOps framework are three interlocking feedback loops
that enable the safe, effective, and adaptive integration of machine learning
into clinical practice. As illustrated in Figure 13.10, these loops are designed to
coordinate inputs from patients, clinicians, and AI systems, facilitating data-
driven decision-making while preserving human accountability and clinical
oversight.

In this model, the patient is central—contributing real-world physiological
data, reporting outcomes, and serving as the primary beneficiary of optimized
care. The clinician interprets this data in context, provides clinical judgment,
and oversees treatment adjustments. Meanwhile, the AI system continuously
analyzes incoming signals, surfaces actionable insights, and learns from feed-
back to improve its recommendations.

Each feedback loop plays a distinct yet interconnected role:
• The Patient-AI loop captures and interprets real-time physiological data,

generating tailored treatment suggestions.

Chapter 13. ML Operations 733

Figure 13.10: ClinAIOps cycle.
Source: E. Chen et al. (2023).

AI

Continuous
monitoring data

and health report

Therapy
regimen

Alerts for therapy
modifications and

monitor summaries

Alerts for
clinician-approved
therapy updates

Health challenges
and goals

Limits and approvals
of therapy regimens

Patient

Doctor AI developer

19 Electrocardiogram (ECG): A
test that records the electrical activ-
ity of the heart over a period of time
using electrodes placed on the skin.

• The Clinician-AI loop ensures that AI-generated recommendations are
reviewed, vetted, and refined under professional supervision.

• The Patient-Clinician loop supports shared decision-making, empower-
ing patients and clinicians to collaboratively set goals and interpret data
trends.

Together, these loops enable adaptive personalization of care. They help
calibrate AI system behavior to the evolving needs of each patient, maintain
clinician control over treatment decisions, and promote continuous model
improvement based on real-world feedback. By embedding AI within these
structured interactions, instead of isolating it as a standalone tool, ClinAIOps
provides a blueprint for responsible and effective AI integration into clinical
workflows.

Patient-AI Loop. The patient–AI loop enables personalized and timely therapy
optimization by leveraging continuous physiological data collected through
wearable devices. Patients are equipped with sensors such as smartwatches,
skin patches, or specialized biosensors that passively capture health-related
signals in real-world conditions. For instance, a patient managing diabetes
may wear a continuous glucose monitor, while individuals with cardiovascular
conditions may use ECG-enabled wearables19 to track cardiac rhythms.

The AI system continuously analyzes these data streams in conjunction with
relevant clinical context drawn from the patient’s electronic medical records,
including diagnoses, lab values, prescribed medications, and demographic
information. Using this holistic view, the AI model generates individualized
recommendations for treatment adjustments—such as modifying dosage levels,
altering administration timing, or flagging anomalous trends for review.

To ensure both responsiveness and safety, treatment suggestions are tiered.
Minor adjustments that fall within clinician-defined safety thresholds may
be acted upon directly by the patient, empowering self-management while

13.7. Case Studies 734

20 Electronic Health Record
(EHR): A digital system that stores
patient health information, used
across treatment settings.

21 The partnership formed be-
tween a clinician and a patient that
enhances treatment effectiveness.

reducing clinical burden. More significant changes require review and approval
by a healthcare provider. This structure maintains human oversight while
enabling high-frequency, data-driven adaptation of therapies.

By enabling real-time, tailored interventions, including automatic insulin
dosing adjustments based on glucose trends, this loop exemplifies how machine
learning can close the feedback gap between sensing and treatment, allowing
for dynamic, context-aware care outside of traditional clinical settings.

Clinician-AI Loop. The clinician–AI loop introduces a critical layer of human
oversight into the process of AI-assisted therapeutic decision-making. In this
loop, the AI system generates treatment recommendations and presents them
to the clinician along with concise, interpretable summaries of the underlying
patient data. These summaries may include longitudinal trends, sensor-derived
metrics, and contextual factors extracted from the electronic health record20.

For example, an AI model might recommend a reduction in antihypertensive
medication dosage for a patient whose blood pressure has remained consistently
below target thresholds. The clinician reviews the recommendation in the
context of the patient’s broader clinical profile and may choose to accept, reject,
or modify the proposed change. This feedback, in turn, contributes to the
continuous refinement of the model, improving its alignment with clinical
practice.

Crucially, clinicians also define the operational boundaries within which the
AI system can autonomously issue recommendations. These constraints ensure
that only low-risk adjustments are automated, while more significant decisions
require human approval. This preserves clinical accountability, supports patient
safety, and enhances trust in AI-supported workflows.

The clinician–AI loop exemplifies a hybrid model of care in which AI aug-
ments rather than replaces human expertise. By enabling efÏcient review and
oversight of algorithmic outputs, it facilitates the integration of machine intelli-
gence into clinical practice while preserving the role of the clinician as the final
decision-maker.

Patient-Clinician Loop. The patient–clinician loop enhances the quality of
clinical interactions by shifting the focus from routine data collection to higher-
level interpretation and shared decision-making. With AI systems handling
data aggregation and basic trend analysis, clinicians are freed to engage more
meaningfully with patients—reviewing patterns, contextualizing insights, and
setting personalized health goals.

For example, in managing diabetes, a clinician may use AI-summarized data
to guide a discussion on dietary habits and physical activity, tailoring recom-
mendations to the patient’s specific glycemic trends. Rather than adhering to
fixed follow-up intervals, visit frequency can be adjusted dynamically based on
patient progress and stability, ensuring that care delivery remains responsive
and efÏcient.

This feedback loop positions the clinician not merely as a prescriber but as a
coach and advisor, interpreting data through the lens of patient preferences,
lifestyle, and clinical judgment. It reinforces the therapeutic alliance21 by foster-
ing collaboration and mutual understanding—key elements in personalized
and patient-centered care.

Chapter 13. ML Operations 735

13.7.5.2 Hypertension Case Example
To concretize the principles of ClinAIOps, consider the management of hypertension—
a condition affecting nearly half of adults in the United States (48.1%, or approx-
imately 119.9 million individuals, according to the Centers for Disease Control
and Prevention). Effective hypertension control often requires individualized,
ongoing adjustments to therapy, making it an ideal candidate for continuous
therapeutic monitoring.

ClinAIOps offers a structured framework for managing hypertension by
integrating wearable sensing technologies, AI-driven recommendations, and
clinician oversight into a cohesive feedback system. In this context, wearable
devices equipped with photoplethysmography (PPG) and electrocardiography
(ECG) sensors passively capture cardiovascular data, which can be analyzed in
near-real-time to inform treatment adjustments. These inputs are augmented by
behavioral data (e.g., physical activity) and medication adherence logs, forming
the basis for an adaptive and responsive treatment regimen.

The following subsections detail how the patient–AI, clinician–AI, and patient–
clinician loops apply in this setting, illustrating the practical implementation of
ClinAIOps for a widespread and clinically significant condition.
Data Collection. In a ClinAIOps-based hypertension management system,
data collection is centered on continuous, multimodal physiological monitoring.
Wrist-worn devices equipped with photoplethysmography (PPG) and electro-
cardiography (ECG) sensors provide noninvasive estimates of blood pressure
(Q. Zhang, Zhou, and Zeng 2017). These wearables also include accelerometers
to capture physical activity patterns, enabling contextual interpretation of blood
pressure fluctuations in relation to movement and exertion.

Complementary data inputs include self-reported logs of antihypertensive
medication intake, specifying dosage and timing, as well as demographic at-
tributes and clinical history extracted from the patient’s electronic health record.
Together, these heterogeneous data streams form a rich, temporally aligned
dataset that captures both physiological states and behavioral factors influenc-
ing blood pressure regulation.

By integrating real-world sensor data with longitudinal clinical information,
this comprehensive data foundation enables the development of personalized,
context-aware models for adaptive hypertension management.
AI Model. The AI component in a ClinAIOps-driven hypertension manage-
ment system is designed to operate directly on the device or in close proximity
to the patient, enabling near real-time analysis and decision support. The model
ingests continuous streams of blood pressure estimates, circadian rhythm indi-
cators, physical activity levels, and medication adherence patterns to generate
individualized therapeutic recommendations.

Using machine learning techniques, the model infers optimal medication dos-
ing and timing strategies to maintain target blood pressure levels. Minor dosage
adjustments that fall within predefined safety thresholds can be communicated
directly to the patient, while recommendations involving more substantial
modifications are routed to the supervising clinician for review and approval.

Importantly, the model supports continual refinement through a feedback
mechanism that incorporates clinician decisions and patient outcomes. By

13.7. Case Studies 736

22 Hypertensive Crisis: A severe
increase in blood pressure that can
lead to stroke, heart attack, or other
critical conditions.

23 A model of operation in
which human decision-makers are
involved directly in the AI decision-
making pathway.

integrating this observational data into subsequent training iterations, the sys-
tem incrementally improves its predictive accuracy and clinical utility. The
overarching objective is to enable fully personalized, adaptive blood pressure
management that evolves in response to each patient’s physiological and be-
havioral profile.

Patient-AI Loop. The patient-AI loop facilitates timely, personalized medica-
tion adjustments by delivering AI-generated recommendations directly to the
patient through a wearable device or associated mobile application. When the
model identifies a minor dosage modification that falls within a pre-approved
safety envelope, the patient may act on the suggestion independently, enabling
a form of autonomous, yet bounded, therapeutic self-management.

For recommendations involving significant changes to the prescribed regi-
men, the system defers to clinician oversight, ensuring medical accountability
and compliance with regulatory standards. This loop empowers patients to
engage actively in their care while maintaining a safeguard for clinical appro-
priateness.

By enabling personalized, data-driven feedback on a daily basis, the patient-
AI loop supports improved adherence and therapeutic outcomes. It opera-
tionalizes a key principle of ClinAIOps, by closing the loop between continuous
monitoring and adaptive intervention, while preserving the patient’s role as an
active agent in the treatment process.

Clinician-AI Loop. The clinician-AI loop ensures medical oversight by plac-
ing healthcare providers at the center of the decision-making process. Clini-
cians receive structured summaries of the patient’s longitudinal blood pressure
patterns, visualizations of adherence behaviors, and relevant contextual data
aggregated from wearable sensors and electronic health records. These in-
sights support efÏcient and informed review of the AI system’s recommended
medication adjustments.

Before reaching the patient, the clinician evaluates each proposed dosage
change, choosing to approve, modify, or reject the recommendation based on
their professional judgment and understanding of the patient’s broader clinical
profile. Furthermore, clinicians define the operational boundaries within which
the AI may act autonomously, specifying thresholds for dosage changes that
can be enacted without direct review.

When the system detects blood pressure trends indicative of clinical risk,
including persistent hypotension or a hypertensive crisis22, it generates alerts
for immediate clinician intervention. These capabilities preserve the clinician’s
authority over treatment while enhancing their ability to manage patient care
proactively and at scale.

This loop exemplifies the principles of accountability, safety, and human-in-
the-loop23 governance, ensuring that AI functions as a supportive tool rather
than an autonomous agent in therapeutic decision-making.

Patient-Clinician Loop. As illustrated in Figure 13.11, the patient-clinician
loop emphasizes collaboration, context, and continuity in care. Rather than
devoting in-person visits to basic data collection or medication reconciliation,
clinicians engage with patients to interpret high-level trends derived from

Chapter 13. ML Operations 737

24 Sociotechnical System: An ap-
proach considering both social and
technical aspects of organizational
structures, prioritizing human well-
being and system performance.

continuous monitoring. These discussions focus on modifiable factors such as
diet, physical activity, sleep quality, and stress management, enabling a more
holistic approach to blood pressure control.

Figure 13.11: ClinAIOps interactive
loop. Source: E. Chen et al. (2023).

AI AI

Patient-AI loop Clinicial-AI loop

Patient-clinicial loop

The patient wears a

passive continuous

blood-pressure

monitor, and reports

antihypertensive

administrations.

AI generates

recommendation for

antihypertensive

dose titrations.

The clinician sets

and updates the

AI’s limits for the

titration of the

antihypertensive

dose.

The AI alerts of

severe hypertension

or hypotension,

prompting follow-up

or emergency

medical services.

The patient discusses the

AI-generated summary of

their blood-pressure trend,

and the effectiveness of

the therapy.

The clinician checks for

adverse events and

identifies patient-specific

modifiers (such as diet

and exercise).

The dynamic nature of continuous data allows for flexible scheduling of
appointments based on clinical need rather than fixed intervals. For example,
patients exhibiting stable blood pressure trends may be seen less frequently,
while those experiencing variability may receive more immediate follow-up.
This adaptive cadence enhances resource efÏciency while preserving care qual-
ity.

By ofÒoading routine monitoring and dose titration to AI-assisted systems,
clinicians are better positioned to offer personalized counseling and targeted
interventions. The result is a more meaningful patient-clinician relationship that
supports shared decision-making and long-term wellness. This loop exemplifies
how ClinAIOps frameworks can shift clinical interactions from transactional
to transformational—supporting proactive care, patient empowerment, and
improved health outcomes.

13.7.5.3 MLOps vs. ClinAIOps Comparison

The hypertension case study illustrates why traditional MLOps frameworks are
often insufÏcient for high-stakes, real-world domains such as clinical health-
care. While conventional MLOps excels at managing the technical lifecycle of
machine learning models, including training, deployment, and monitoring,
it generally lacks the constructs necessary for coordinating human decision-
making, managing clinical workflows, and safeguarding ethical accountability.

In contrast, the ClinAIOps framework extends beyond technical infrastructure
to support complex sociotechnical systems24. Rather than treating the model as
the final decision-maker, ClinAIOps embeds machine learning into a broader
context where clinicians, patients, and systems stakeholders collaboratively
shape treatment decisions.

Several limitations of a traditional MLOps approach become apparent when
applied to a clinical setting like hypertension management:

• Data availability and feedback: Traditional pipelines rely on pre-collected
datasets. ClinAIOps enables ongoing data acquisition and iterative feed-
back from clinicians and patients.

• Trust and interpretability: MLOps may lack transparency mechanisms
for end users. ClinAIOps maintains clinician oversight, ensuring recom-
mendations remain actionable and trustworthy.

13.7. Case Studies 738

• Behavioral and motivational factors: MLOps focuses on model outputs.
ClinAIOps recognizes the need for patient coaching, adherence support,
and personalized engagement.

• Safety and liability: MLOps does not account for medical risk. ClinAIOps
retains human accountability and provides structured boundaries for
autonomous decisions.

• Workflow integration: Traditional systems may exist in silos. ClinAIOps
aligns incentives and communication across stakeholders to ensure clini-
cal adoption.

As shown in Table 13.6, the key distinction lies in how ClinAIOps integrates
technical systems with human oversight, ethical principles, and care delivery
processes. Rather than replacing clinicians, the framework augments their
capabilities while preserving their central role in therapeutic decision-making.

Table 13.6: Comparison of MLOps versus AI operations for clinical use.

Traditional MLOps ClinAIOps

Focus ML model development and deployment Coordinating human and AI
decision-making

Stakeholders Data scientists, IT engineers Patients, clinicians, AI developers
Feedback loops Model retraining, monitoring Patient-AI, clinician-AI, patient-clinician
Objective Operationalize ML deployments Optimize patient health outcomes
Processes Automated pipelines and infrastructure Integrates clinical workflows and oversight
Data considerations Building training datasets Privacy, ethics, protected health

information
Model validation Testing model performance metrics Clinical evaluation of recommendations
Implementation Focuses on technical integration Aligns incentives of human stakeholders

Successfully deploying AI in complex domains such as healthcare requires
more than developing and operationalizing performant machine learning mod-
els. As demonstrated by the hypertension case, effective integration depends
on aligning AI systems with clinical workflows, human expertise, and patient
needs. Technical performance alone is insufÏcient—deployment must account
for ethical oversight, stakeholder coordination, and continuous adaptation to
dynamic clinical contexts.

The ClinAIOps framework addresses these requirements by introducing
structured, multi-stakeholder feedback loops that connect patients, clinicians,
and AI developers. These loops enable human oversight, reinforce account-
ability, and ensure that AI systems adapt to evolving health data and patient
responses. Rather than replacing human decision-makers, AI is positioned as an
augmentation layer—enhancing the precision, personalization, and scalability
of care.

By embedding AI within collaborative clinical ecosystems, frameworks like
ClinAIOps create the foundation for trustworthy, responsive, and effective
machine learning systems in high-stakes environments. This perspective re-
frames AI not as an isolated technical artifact, but as a component of a broader
sociotechnical system designed to advance health outcomes and healthcare
delivery.

Chapter 13. ML Operations 739

13.8 Conclusion
The operationalization of machine learning is a complex, systems-oriented
endeavor that extends far beyond training and deploying models. MLOps pro-
vides the methodological and infrastructural foundation for managing the full
lifecycle of ML systems—from data collection and preprocessing to deployment,
monitoring, and continuous refinement. By drawing on principles from soft-
ware engineering, DevOps, and data science, MLOps offers the practices needed
to achieve scalability, reliability, and resilience in real-world environments.

This chapter has examined the core components of MLOps, highlighting
key challenges such as data quality, reproducibility, infrastructure automa-
tion, and organizational coordination. We have emphasized the importance of
operational maturity, where model-centric development evolves into system-
level engineering supported by robust processes, tooling, and feedback loops.
Through detailed case studies in domains such as wearable computing and
healthcare, we have seen how MLOps must adapt to specific operational con-
texts, technical constraints, and stakeholder ecosystems.

As we transition to subsequent chapters, we shift our focus toward emerging
frontiers in operational practice, including on-device learning, privacy and
security, responsible AI, and sustainable systems. Each of these domains in-
troduces unique constraints that further shape how machine learning must be
engineered and maintained in practice. These topics build on the foundation
laid by MLOps, extending it into specialized operational regimes.

Ultimately, operational excellence in machine learning is not a fixed endpoint
but a continuous journey. It requires cross-disciplinary collaboration, rigorous
engineering, and a commitment to long-term impact. By approaching ML sys-
tems through the lens of MLOps, which are grounded in systems thinking and
guided by ethical and societal considerations, we can build solutions that are
not only technically sound but also trustworthy, maintainable, and meaningful
in their real-world applications.

As the chapters ahead explore these evolving dimensions of machine learning
systems, the central lesson remains clear: building models is only the begin-
ning. The enduring challenge and opportunity lies in building systems that are
adaptive, responsible, and effective in the face of complexity, uncertainty, and
change.

13.9 Resources

�� Slides

• MLOps, DevOps, and AIOps.
• MLOps overview.
• Tiny MLOps.
• MLOps: a use case.
• MLOps: Key Activities and Lifecycle.
• ML Lifecycle.

https://docs.google.com/presentation/d/1vsC8WpmvVRgMTpzTltAhEGzcVohMkatMZBqm3-P8TUY/edit?usp=drive_link
https://docs.google.com/presentation/d/1GVduKipd0ughTpqsHupGqAPW70h0xNOOpaIeSqLOc1M/edit?usp=drive_link
https://docs.google.com/presentation/d/1MNjVOcx5f5Nfe3ElDqTxutezcGXm4yI8PkjWOuQYHhk/edit?usp=drive_link
https://docs.google.com/presentation/d/1449rzplaL0lOPoKh0mrpds3KPPoOHWdR5LIZdd7aXhA/edit#slide=id.g2ddfdf6e85f_0_0
https://docs.google.com/presentation/d/1vGCffLgemxTwTIo7vUea5CibOV7y3vY3pkJdee-y5eA/edit#slide=id.g2de2d5f2ac0_0_0
https://docs.google.com/presentation/d/1FW8Q1Yj5g_jbArFANfncbLQj36uV2vfV8pjoqaD6gjM/edit#slide=id.g94db9f9f78_0_2

13.9. Resources 740

• Scaling TinyML: Challenges and Opportunities.
• Training Operationalization:

– Training Ops: CI/CD trigger.
– Continuous Integration.
– Continuous Deployment.
– Production Deployment.
– Production Deployment: Online Experimentation.
– Training Ops Impact on MLOps.

• Model Deployment:
– Scaling ML Into Production Deployment.
– Containers for Scaling ML Deployment.
– Challenges for Scaling TinyML Deployment: Part 1.
– Challenges for Scaling TinyML Deployment: Part 2.
– Model Deployment Impact on MLOps.

çĖ Videos

• Video 5
• Video 6
• Video 7

¸Î Exercises

• Coming soon.

https://docs.google.com/presentation/d/1VxwhVztoTk3eG04FD9fFNpj2lVrVjYYPJi3jBz0O_mo/edit?resourcekey=0-bV7CCIPr7SxZf2p61oB_CA#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1YyRY6lOzdC7NjutJSvl_VXYu29qwHKqx0y98zAUCJCU/edit?resourcekey=0-PTh1FxqkQyhOO0bKKHBldQ#slide=id.g94db9f9f78_0_2
https://docs.google.com/presentation/d/1poGgYTH44X0dVGwG9FGIyVwot4EET_jJOt-4kgcQawo/edit?usp=drive_link
https://docs.google.com/presentation/d/1nxbIluROAOl5cN6Ug4Dm-mHh1Fwm5aEng_S5iLfiCqo/edit?usp=drive_link&resourcekey=0-xFOl8i7ea2vNtiilXz8CaQ
https://docs.google.com/presentation/d/1m8KkCZRnbJCCTWsmcwMt9EJhYLoaVG_Wm7zUE2bQkZI/edit?usp=drive_link
https://docs.google.com/presentation/d/1elFEK61X5Kc-5UV_4AEtRvCT7l1TqTdABmJV8uAYykY/edit?usp=drive_link
https://docs.google.com/presentation/d/1-6QL2rq0ahGVz8BL1M1BT0lR-HDxsHady9lGTN93wLc/edit?usp=drive_link&resourcekey=0-sRqqoa7pX9IkDDSwe2MLyw
https://docs.google.com/presentation/d/12sf-PvSxDIlCQCXULWy4jLY_2fIq-jpRojRsmeMGq6k/edit?resourcekey=0-knPSQ5h4ffhgeV6CXvwlSg#slide=id.gf209f12c63_0_314
https://docs.google.com/presentation/d/1YXE4cAWMwL79Vqr_8TJi-LsQD9GFdiyBqY--HcoBpKg/edit?usp=drive_link&resourcekey=0-yajtiQTx2SdJ6BCVG0Bfng
https://docs.google.com/presentation/d/1mw5FFERf5r-q8R7iyNf6kx2MMcwNOTBd5WwFOj8Zs20/edit?resourcekey=0-u80KeJio3iIWco00crGD9g#slide=id.gdc4defd718_0_0
https://docs.google.com/presentation/d/1NB63wTHoEPGSn--KqFu1vjHx3Ild9AOhpBbflJP-k7I/edit?usp=drive_link&resourcekey=0-MsEi1Lba2dpl0G-bzakHJQ
https://docs.google.com/presentation/d/1A0pfm55s03dFbYKKFRV-x7pRCm_2-VpoIM0O9kW0TAA/edit?usp=drive_link&resourcekey=0--O2AFFmVzAmz5KO0mJeVHA

Chapter 14

On-Device Learning

Figure 14.1: DALL·E 3 Prompt: Draw-
ing of a smartphone with its internal
components exposed, revealing diverse
miniature engineers of different gen-
ders and skin tones actively working
on the ML model. The engineers, in-
cluding men, women, and non-binary
individuals, are tuning parameters, re-
pairing connections, and enhancing the
network on the fly. Data flows into the
ML model, being processed in real-time,
and generating output inferences.

Purpose

How does enabling learning directly on edge devices reshape machine learning system
design, and what strategies support adaptation under resource constraints?

The shift toward on-device learning marks a significant evolution in the
deployment and maintenance of machine learning systems. Rather than re-
lying exclusively on centralized infrastructure, models are now increasingly
expected to adapt in situ—updating and improving directly on the devices
where they operate. This approach introduces a new design space, where
training must occur within stringent constraints on memory, compute, energy,
and data availability. In these settings, the balance between model adaptability,
system efÏciency, and deployment scalability becomes critical. This chapter
examines the architectural, algorithmic, and infrastructure-level techniques
that enable effective learning on the edge, and outlines the principles required

741

14.1. Overview 742

to support autonomous model improvement in resource-constrained environ-
ments.

L� Learning Objectives

• Understand on-device learning and how it differs from cloud-based
training

• Recognize the benefits and limitations of on-device learning
• Examine strategies to adapt models through complexity reduction,

optimization, and data compression
• Understand related concepts like federated learning and transfer

learning
• Analyze the security implications of on-device learning and miti-

gation strategies

14.1 Overview

Machine learning systems have traditionally treated model training and model
inference as distinct phases, often separated by both time and infrastructure.
Training occurs in the cloud, leveraging large-scale compute clusters and cu-
rated datasets, while inference is performed downstream on deployed models—
typically on user devices or edge servers. However, this separation is beginning
to erode. Increasingly, devices are being equipped not just to run inference, but
to adapt, personalize, and improve models locally.

On-device learning refers to the process of training or adapting machine
learning models directly on the device where they are deployed. This capability
opens the door to systems that can personalize models in response to user
behavior, operate without cloud connectivity, and respect stringent privacy
constraints by keeping data local. It also introduces a new set of challenges:
devices have limited memory, computational power, and energy. Furthermore,
training data is often sparse, noisy, or non-independent across users. These
limitations necessitate a fundamental rethinking of training algorithms, system
architecture, and deployment strategies.

�� Definition of On-Device Learning

On-Device Learning is the local adaptation or training of machine learn-
ing models directly on deployed hardware devices, without reliance on
continuous connectivity to centralized servers. It enables personalization,
privacy preservation, and autonomous operation by leveraging user-specific
data collected in situ. On-device learning systems must operate under
tight constraints on compute, memory, energy, and data availability, requir-
ing specialized methods for model optimization, training efÏciency, and
data representation. As on-device learning matures, it increasingly in-

Chapter 14. On-Device Learning 743

corporates federated collaboration, lifelong adaptation, and secure execution,
expanding the frontier of intelligent edge computing.

This chapter explores the principles and systems design considerations under-
pinning on-device learning. It begins by examining the motivating applications
that necessitate learning on the device, followed by a discussion of the unique
hardware constraints introduced by embedded and mobile environments. The
chapter then develops a taxonomy of strategies for adapting models, algorithms,
and data pipelines to these constraints. Particular emphasis is placed on dis-
tributed and collaborative methods, such as federated learning, which enable
decentralized training without direct data sharing. The chapter concludes with
an analysis of outstanding challenges, including issues related to reliability,
system validation, and the heterogeneity of deployment environments.

14.2 Deployment Drivers
Machine learning systems have traditionally relied on centralized training
pipelines, where models are developed and refined using large, curated datasets
and powerful cloud-based infrastructure (Jeffrey Dean and Ghemawat 2008).
Once trained, these models are deployed to client devices for inference. While
this separation has served most use cases well, it imposes limitations in settings
where local data is dynamic, private, or personalized. On-device learning
challenges this model by enabling systems to train or adapt directly on the
device, without relying on constant connectivity to the cloud.

14.2.1 On-Device Learning Benefits
Traditional machine learning systems rely on a clear division of labor between
model training and inference. Training is performed in centralized environ-
ments with access to high-performance compute resources and large-scale
datasets. Once trained, models are distributed to client devices, where they
operate in a static inference-only mode. While this centralized paradigm has
been effective in many deployments, it introduces limitations in settings where
data is user-specific, behavior is dynamic, or connectivity is intermittent.

On-device learning refers to the capability of a deployed device to perform
model adaptation using locally available data. This shift from centralized to
decentralized learning is motivated by four key considerations: personalization,
latency and availability, privacy, and infrastructure efÏciency (T. Li et al. 2020).

Personalization is a primary motivation. Deployed models often encounter
usage patterns and data distributions that differ substantially from their training
environments. Local adaptation enables models to refine behavior in response
to user-specific data—capturing linguistic preferences, physiological baselines,
sensor characteristics, or environmental conditions. This is particularly impor-
tant in applications with high inter-user variability, where a single global model
may fail to serve all users equally well.

Latency and availability further justify local learning. In edge computing
scenarios, connectivity to centralized infrastructure may be unreliable, delayed,

14.2. Deployment Drivers 744

0 GDPR: General Data Protection
Regulation, a legal framework that
sets guidelines for the collection and
processing of personal information
in the EU.

1 HIPAA: Health Insurance Porta-
bility and Accountability Act, U.S.
legislation that provides data pri-
vacy and security provisions for
safeguarding medical information.

or intentionally limited to preserve bandwidth or reduce energy usage. On-
device learning enables autonomous improvement of models even in fully
ofÒine or delay-sensitive contexts, where round-trip updates to the cloud are
infeasible.

Privacy is another critical factor. Many applications involve sensitive or regu-
lated data, including biometric measurements, typed input, location traces, or
health information. Transmitting such data to the cloud introduces privacy risks
and compliance burdens. Local learning mitigates these concerns by keeping
raw data on the device and operating within privacy-preserving boundaries—
potentially aiding adherence to regulations such as GDPR0, HIPAA1, or region-
specific data sovereignty laws.

Infrastructure efÏciency also plays a role. Centralized training pipelines
require substantial backend infrastructure to collect, store, and process user
data. At scale, this introduces bottlenecks in bandwidth, compute capacity,
and energy consumption. By shifting learning to the edge, systems can reduce
communication costs and distribute training workloads across the deployment
fleet, relieving pressure on centralized resources.

These motivations are grounded in the broader concept of knowledge transfer,
where a pretrained model transfers useful representations to a new task or do-
main. As depicted in Figure 14.2, knowledge transfer can occur between closely
related tasks (e.g., playing different board games or musical instruments), or
across domains that share structure (e.g., from riding a bicycle to driving a
scooter). In the context of on-device learning, this means leveraging a model
pretrained in the cloud and adapting it efÏciently to a new context using only
local data and limited updates. The figure highlights the key idea: pretrained
knowledge enables fast adaptation without relearning from scratch, even when
the new task diverges in input modality or goal.

Figure 14.2: Conceptual illustration
of knowledge transfer across tasks
and domains. The left side shows a
pretrained model adapting to a new
task, while the right side illustrates
transfer across different domains.

This conceptual shift, which is enabled by transfer learning and adaptation,
is essential for real-world on-device applications. Whether adapting a language
model for personal typing preferences, adjusting gesture recognition to an
individual’s movement patterns, or recalibrating a sensor model in a changing
environment, on-device learning allows systems to remain responsive, efÏcient,
and user-aligned over time.

Chapter 14. On-Device Learning 745

14.2.2 Application Domains
The motivations for on-device learning are most clearly illustrated by examining
the application domains where its benefits are both tangible and necessary.
These domains span consumer technologies, healthcare, industrial systems,
and embedded applications, each presenting scenarios where local adaptation
is preferable, or even required, for effective machine learning deployment.

Mobile input prediction is a mature example of on-device learning in action.
In systems such as smartphone keyboards, predictive text and autocorrect
features benefit substantially from continuous local adaptation. User typing
patterns are highly personalized and evolve dynamically, making centralized
static models insufÏcient. On-device learning enables language models to
finetune their predictions directly on the device, without transmitting keystroke
data to external servers. This approach not only supports personalization but
also aligns with privacy-preserving design principles.

For instance, Google’s Gboard employs federated learning to improve shared
models across a large population of users while keeping raw data local to each
device (Hard et al. 2018). As shown in Figure 14.3, different prediction strategies
illustrate how local adaptation can operate in real-time: next-word prediction
(NWP) suggests likely continuations based on prior text, while Smart Compose
leverages on-the-fly rescoring to offer dynamic completions, showcasing the
sophistication of local inference mechanisms.

Figure 14.3: Illustration of two input
prediction modes in Gboard. Left:
Next Word Prediction (NWP). Right:
Smart Compose (SC) with On-The-
Fly Rescoring (OTF).

Wearable and health monitoring devices also present strong use cases. These
systems often rely on real-time data from accelerometers, heart rate sensors,
or electrodermal activity monitors. However, physiological baselines vary
significantly between individuals. On-device learning allows models to adapt to
these baselines over time, improving the accuracy of activity recognition, stress
detection, and sleep staging. Moreover, in regulated healthcare environments,
patient data must remain localized due to privacy laws, further reinforcing the
need for edge-local adaptation.

Wake-word detection and voice interfaces illustrate another critical scenario.
Devices such as smart speakers and earbuds must recognize voice commands

14.2. Deployment Drivers 746

2 Industrial Internet of Things
(IoT): Network of physical objects,
including devices, vehicles, and
buildings, that use sensors and soft-
ware to collect and exchange data.

quickly and accurately, even in noisy or dynamic acoustic environments. Local
training enables models to adapt to the user’s voice profile and ambient context,
reducing false positives and missed detections. This kind of adaptation is par-
ticularly valuable in far-field audio settings, where microphone configurations
and room acoustics vary widely across deployments.

Industrial IoT2 and remote monitoring systems also benefit from local learn-
ing capabilities. In applications such as agricultural sensing, pipeline monitor-
ing, or environmental surveillance, connectivity to centralized infrastructure
may be limited or costly. On-device learning allows these systems to detect
anomalies, adjust thresholds, or adapt to seasonal trends without continu-
ous communication with the cloud. This capability is critical for maintaining
autonomy and reliability in edge-deployed sensor networks.

Embedded computer vision systems, including those in robotics, AR/VR,
and smart cameras, present additional opportunities. These systems often
operate in novel or evolving environments that differ significantly from training
conditions. On-device adaptation allows models to recalibrate to new lighting
conditions, object appearances, or motion patterns, maintaining task accuracy
over time.

Each of these domains highlights a common pattern: the deployment envi-
ronment introduces variation or uncertainty that cannot be fully anticipated
during centralized training. On-device learning offers a mechanism for adapt-
ing models in place, enabling systems to improve continuously in response
to local conditions. These examples also reveal a critical design requirement:
learning must be performed efÏciently, privately, and reliably under significant
resource constraints. The following section formalizes these constraints and
outlines the system-level considerations that shape the design of on-device
learning solutions.

14.2.3 Training Paradigms
Most machine learning systems today follow a centralized learning paradigm.
Models are trained in data centers using large-scale, curated datasets aggregated
from many sources. Once trained, these models are deployed to client devices
in a static form, where they perform inference without further modification.
Updates to model parameters, either to incorporate new data or to improve
generalization, are handled periodically through ofÒine retraining, often using
newly collected or labeled data sent back from the field.

This centralized model of learning offers numerous advantages: high-performance
computing infrastructure, access to diverse data distributions, and robust de-
bugging and validation pipelines. However, it also depends on reliable data
transfer, trust in data custodianship, and infrastructure capable of managing
global updates across a fleet of devices. As machine learning is deployed
into increasingly diverse and distributed environments, the limitations of this
approach become more apparent.

In contrast, on-device learning is inherently decentralized. Each device main-
tains its own copy of a model and adapts it locally using data that is typically
unavailable to centralized infrastructure. Training occurs on-device, often asyn-
chronously and under varying resource conditions. Data never leaves the

Chapter 14. On-Device Learning 747

3 Non-IID Data: Datasets where
samples are not independently and
identically distributed, often seen in
personalized data streams.

device, reducing exposure but also complicating coordination. Devices may
differ substantially in their hardware capabilities, runtime environments, and
patterns of use, making the learning process heterogeneous and difÏcult to
standardize.

This decentralized nature introduces unique systems challenges. Devices
may operate with different versions of the model, leading to inconsistencies
in behavior. Evaluation and validation become more complex, as there is no
central point from which to measure performance (H. B. McMahan et al. 2017).
Model updates must be carefully managed to prevent degradation, and safety
guarantees become harder to enforce in the absence of centralized testing.

At the same time, decentralization introduces opportunities. It allows for per-
sonalization without centralized oversight, supports learning in disconnected
or bandwidth-limited environments, and reduces the cost of infrastructure
for model updates. It also raises important questions of how to coordinate
learning across devices, whether through periodic synchronization, federated
aggregation, or hybrid approaches that combine local and global objectives.

The move from centralized to decentralized learning represents more than a
shift in deployment architecture—it fundamentally reshapes the design space
for machine learning systems. In centralized training, data is aggregated from
many sources and processed in large-scale data centers, where models are
trained, validated, and then deployed in a static form to edge devices. In
contrast, on-device learning introduces a decentralized paradigm: models are
updated directly on client devices using local data, often asynchronously and
under diverse hardware conditions. This change reduces reliance on cloud
infrastructure and enhances personalization and privacy, but it also introduces
new coordination and validation challenges.

On-device learning emerges as a response to the limitations of centralized
machine learning workflows. As illustrated in Figure 14.4, the traditional
paradigm (A) involves training a model on aggregated cloud-based data before
pushing it to client devices for static inference. This architecture works well
when centralized data collection is feasible, network connectivity is reliable,
and model generalization across users is sufÏcient. However, it falls short in
scenarios where data is highly personalized, privacy-sensitive, or collected in
environments with limited connectivity.

In contrast, once the model is deployed, local differences begin to emerge.
Region B depicts the process by which each device collects its own data stream,
which is often non-IID3 and noisy, and adapts the model to better reflect its
specific operating context. This marks the shift from global generalization to
local specialization, highlighting the autonomy and variability introduced by
decentralized learning.

Figure 14.4 illustrates this shift. In region A, centralized learning begins with
cloud-based training on aggregated data, followed by deployment to client
devices. Region B marks the transition to local learning: devices begin collecting
data, which is frequently non-IID, noisy, and unlabeled, and adapting their
models based on individual usage patterns. Finally, region C depicts federated
learning, in which client updates are periodically synchronized via aggregated
model updates rather than raw data transfer, enabling privacy-preserving global
refinement.

14.3. Design Constraints 748

This shift from centralized training to decentralized, adaptive learning re-
shapes how ML systems are designed and deployed. It enables learning in
settings where connectivity is intermittent, data is user-specific, and personal-
ization is essential—while introducing new challenges in update coordination,
evaluation, and system robustness.

Figure 14.4: Comparison of central-
ized training versus decentralized,
on-device learning workflows. Lo-
cal updates are generated and ap-
plied at the edge before optional syn-
chronization with a global model.

C.

B.

A.

14.3 Design Constraints
Enabling learning on the device requires rethinking conventional assumptions
about where and how machine learning systems operate. In centralized envi-
ronments, models are trained with access to extensive compute infrastructure,
large and curated datasets, and generous memory and energy budgets. At the
edge, none of these assumptions hold. Instead, on-device learning must navi-
gate a constrained design space shaped by the structure of the model, the nature
of the available data, and the computational capabilities of the deployment
platform.

These three dimensions, the model, the data, and the computational re-
sources, form the foundation of any on-device learning system. Each imposes
distinct limitations that influence algorithmic design and system architecture.
The model must be compact enough to fit within memory and storage bounds,
yet expressive enough to support adaptation. The data is local, often sparse,
unlabeled, and non-IID, requiring robust and efÏcient learning procedures.
The compute environment is resource-constrained, often lacking support for
floating-point operations or backpropagation primitives. These constraints are
not merely technical—they reflect the realities of deploying machine learning
systems in the wild. Devices may be battery-powered, have limited connectivity,
and operate in unpredictable environments. They may also be heterogeneous,
with different hardware capabilities and software stacks. As a result, on-device
learning must be designed to accommodate these variations while still deliver-
ing reliable performance.

Chapter 14. On-Device Learning 749

4 Reduction in computing per-
formance to prevent overheating in
electronic devices.

Figure 14.5 illustrates a pipeline that combines ofÒine pre-training with online
adaptive learning on resource-constrained IoT devices. The system first un-
dergoes meta-training with generic data. During deployment, device-specific
constraints such as data availability, compute, and memory shape the adap-
tation strategy by ranking and selecting layers and channels to update. This
enables efÏcient on-device learning within limited resource envelopes.

Figure 14.5: On-device adaptation
framework.

Pre-trained

backbone

Data Compute Memory

Device Specific

Si

Meta-training with generic

data (e.g. MiniImageNet)
Rank the channels and layers based

on the multi-objective metric Si

Train the selected

layers and channels

Online Adaptive Learning on loT DevicesOnline Pre-training

14.3.1 Model Constraints
The structure and size of the machine learning model directly influence the
feasibility of on-device training. Unlike cloud-deployed models that can span
billions of parameters and rely on multi-gigabyte memory budgets, models
intended for on-device learning must conform to tight constraints on memory,
storage, and computational complexity. These constraints apply not only at
inference time, but also during training, where additional resources are needed
for gradient computation, parameter updates, and optimizer state.

For example, the MobileNetV2 architecture, commonly used in mobile vision
tasks, requires approximately 14 MB of storage in its standard configuration.
While this is feasible for modern smartphones, it far exceeds the memory
available on embedded microcontrollers such as the Arduino Nano 33 BLE
Sense, which provides only 256 KB of SRAM and 1 MB of flash storage. In such
platforms, even a single layer of a typical convolutional neural network may
exceed available RAM during training due to the need to store intermediate
feature maps.

In addition to storage constraints, the training process itself expands the
effective memory footprint. Standard backpropagation requires caching acti-
vations for each layer during the forward pass, which are then reused during
gradient computation in the backward pass. For a 10-layer convolutional model
processing 64 × 64 images, the required memory may exceed 1–2 MB—well
beyond the SRAM capacity of most embedded systems.

Model complexity also affects runtime energy consumption and thermal
limits. In systems such as smartwatches or battery-powered wearables, sus-
tained model training can deplete energy reserves or trigger thermal throttling4.
Training a full model using floating-point operations on these devices is often

14.3. Design Constraints 750

5 MLPerf Tiny: A benchmark
suite for evaluating the performance
of ultra-low power machine learn-
ing systems in real-world scenarios.

infeasible. This limitation has motivated the development of ultra-lightweight
model variants, such as MLPerf Tiny5 benchmark networks (C. Banbury et
al. 2021), which fit within 100–200 KB and can be adapted using only partial
gradient updates.

The model architecture itself must also be designed with on-device learning
in mind. Many conventional architectures, such as transformers or large con-
volutional networks, are not well-suited for on-device adaptation due to their
size and complexity. Instead, lightweight architectures such as MobileNets,
SqueezeNet, and EfÏcientNet have been developed specifically for resource-
constrained environments. These models use techniques such as depthwise
separable convolutions, bottleneck layers, and quantization to reduce memory
and compute requirements while maintaining performance.

These architectures are often designed to be modular, allowing for easy adap-
tation and fine-tuning. For example, MobileNets (A. G. Howard et al. 2017b)
can be configured with different width multipliers and resolution settings
to balance performance and resource usage. This flexibility is critical for on-
device learning, where the model must adapt to the specific constraints of the
deployment environment.

14.3.2 Data Constraints
The nature of data available to on-device learning systems differs significantly
from the large, curated, and centrally managed datasets typically used in cloud-
based training. At the edge, data is locally collected, temporally sparse, and
often unstructured or unlabeled. These characteristics introduce challenges in
volume, quality, and statistical distribution, all of which affect the reliability
and generalizability of learning on the device.

Data volume is typically limited due to storage constraints and the nature of
user interaction. For example, a smart fitness tracker may collect motion data
only during physical activity, generating relatively few labeled samples per day.
If a user wears the device for just 30 minutes of exercise, only a few hundred
data points might be available for training, compared to the thousands typically
required for supervised learning in controlled environments.

Moreover, on-device data is frequently non-IID (non-independent and iden-
tically distributed) (Y. Zhao et al. 2018). Consider a voice assistant deployed in
different households: one user may issue commands in English with a strong
regional accent, while another might speak a different language entirely. The
local data distribution is highly user-specific and may differ substantially from
the training distribution of the initial model. This heterogeneity complicates
both model convergence and the design of update mechanisms that generalize
well across devices.

Label scarcity presents an additional obstacle. Most edge-collected data is
unlabeled by default. In a smartphone camera, for instance, the device may
capture thousands of images, but only a few are associated with user actions
(e.g., tagging or favoriting), which could serve as implicit labels. In many
applications, including detecting anomalies in sensor data and adapting gesture
recognition models, labels may be entirely unavailable, making traditional
supervised learning infeasible without additional methods.

Chapter 14. On-Device Learning 751

6 Electronic Control Unit (ECU):
A device that controls one or more
of the electrical systems or subsys-
tems in a vehicle.

Noise and variability further degrade data quality. Embedded systems such
as environmental sensors or automotive ECUs6 may experience fluctuations in
sensor calibration, environmental interference, or mechanical wear, leading to
corrupted or drifting input signals over time. Without centralized validation,
these errors may silently degrade learning performance if not detected and
filtered appropriately.

Finally, data privacy and security concerns are paramount in many on-device
learning applications. Sensitive information, such as health data or user in-
teractions, must be protected from unauthorized access. This requirement
often precludes the use of traditional data-sharing methods, such as upload-
ing raw data to a central server for training. Instead, on-device learning must
rely on techniques that allow for local adaptation without exposing sensitive
information.

14.3.3 Compute Constraints
On-device learning must operate within the computational envelope of the
target hardware platform, which ranges from low-power embedded microcon-
trollers to mobile-class processors found in smartphones and wearables. These
systems differ substantially from the large-scale GPU or TPU infrastructure
used in cloud-based training. They impose strict limits on instruction through-
put, parallelism, and architectural support for training-specific operations, all
of which shape the design of feasible learning strategies.

On the embedded end of the spectrum, devices such as the STM32F4 or
ESP32 microcontrollers offer only a few hundred kilobytes of SRAM and lack
hardware support for floating-point operations (P. W. D. S. Lai 2020). These
constraints preclude the use of conventional deep learning libraries and require
models to be carefully designed for integer arithmetic and minimal runtime
memory allocation. In such cases, even small models require tailored tech-
niques, including quantization-aware training and selective parameter updates,
to execute training loops without exceeding memory or power budgets. For
example, the STM32F4 microcontroller can run a simple linear regression model
with a few hundred parameters, but training even a small convolutional neural
network would exceed its memory capacity. In these environments, training is
often limited to simple algorithms such as stochastic gradient descent (SGD) or𝑘-means clustering, which can be implemented using integer arithmetic and
minimal memory overhead.

In contrast, mobile-class hardware, including the Qualcomm Snapdragon,
Apple Neural Engine, and Google Tensor SoC, provides significantly more com-
pute power, often with dedicated AI accelerators and optimized support for
8-bit or mixed-precision matrix operations. These platforms can support more
complex training routines, including full backpropagation over compact mod-
els, though they still fall short of the computational throughput and memory
bandwidth available in centralized data centers. For instance, training a light-
weight transformer on a smartphone is feasible but must be tightly bounded in
both time and energy consumption to avoid degrading the user experience.

Compute constraints are especially salient in real-time or battery-operated
systems. In a smartphone-based speech recognizer, on-device adaptation must

14.4. Model Adaptation 752

not interfere with inference latency or system responsiveness. Similarly, in wear-
able medical monitors, training must occur opportunistically, during periods
of low activity or charging, to preserve battery life and avoid thermal issues.

14.4 Model Adaptation
Adapting a machine learning model on the device requires revisiting a core
assumption of conventional training: that the entire model must be updated.
In resource-constrained environments, this assumption becomes infeasible due
to memory, compute, and energy limitations. Instead, modern approaches to
on-device learning often focus on minimizing the scope of adaptation, updating
only a subset of model parameters while reusing the majority of the pretrained
architecture. These approaches leverage the power of transfer learning, start-
ing with a model pretrained (usually ofÒine on large datasets) and efÏciently
specializing it using the limited local data and compute resources available
at the edge. This strategy is particularly effective when the pretrained model
has already learned useful representations that can be adapted to new tasks
or domains. By freezing most of the model parameters and only updating a
small subset, we can achieve significant reductions in memory and compute
requirements while still allowing for meaningful adaptation.

This strategy reduces both computational overhead and memory usage dur-
ing training, enabling efÏcient local updates on devices ranging from smart-
phones to embedded microcontrollers. The central idea is to retain most of the
model as a frozen backbone, while introducing lightweight, adaptable compo-
nents, including bias-only updates, residual adapters, or task-specific layers,
that can capture local variations in data. These techniques enable personalized
or environment-aware learning without incurring the full cost of end-to-end
finetuning.

In the sections that follow, we examine how minimal adaptation strategies
are designed, the tradeoffs they introduce, and their role in enabling practical
on-device learning.

14.4.1 Weight Freezing
One of the simplest and most effective strategies for reducing the cost of on-
device learning is to freeze the majority of a model’s parameters and adapt only
a minimal subset. A widely used approach is bias-only adaptation, in which
all weights are fixed and only the bias terms, which are typically scalar offsets
applied after linear or convolutional layers, are updated during training. This
significantly reduces the number of trainable parameters, simplifies memory
management during backpropagation, and helps mitigate overfitting when
data is sparse or noisy.

Consider a standard neural network layer:𝑦 = 𝑊𝑥+𝑏
where 𝑊 ∈ ℝ𝑚×𝑛 is the weight matrix, 𝑏 ∈ ℝ𝑚 is the bias vector, and 𝑥 ∈ ℝ𝑛
is the input. In full training, gradients are computed for both 𝑊 and 𝑏. In

Chapter 14. On-Device Learning 753

bias-only adaptation, we constrain:𝜕ℒ𝜕𝑊 = 0, 𝜕ℒ𝜕𝑏 ≠ 0
so that only the bias is updated via gradient descent:𝑏 ← 𝑏 −𝜂𝜕ℒ𝜕𝑏

This drastically reduces the number of stored gradients and optimizer states,
enabling training to proceed even under memory-constrained conditions. On
embedded devices that lack floating-point units, this reduction can be critical
to enabling on-device learning at all.

The code snippet in Listing 14.1 demonstrates how to implement bias-only
adaptation in PyTorch.

Listing 14.1: Bias-only adaptation in PyTorch

Freeze all parameters
for name, param in model.named_parameters():

param.requires_grad = False

Enable gradients for bias parameters only
for name, param in model.named_parameters():

if 'bias' in name:
param.requires_grad = True

This pattern ensures that only bias terms participate in the backward pass and
optimizer update. It is particularly useful when adapting pretrained models to
user-specific or device-local data.

This technique underpins TinyTL, a framework explicitly designed to enable
efÏcient adaptation of deep neural networks on microcontrollers and other
memory-limited platforms. Rather than updating all network parameters dur-
ing training, TinyTL freezes both the convolutional weights and the batch nor-
malization statistics, training only the bias terms and, in some cases, lightweight
residual components. This architectural shift drastically reduces memory us-
age during backpropagation, since the largest tensors, which are intermediate
activations, no longer need to be stored for gradient computation.

Figure 14.6 illustrates the architectural differences between a standard model
and the TinyTL approach. In the conventional baseline architecture, all layers
are trainable, and backpropagation requires storing intermediate activations
for the full network. This significantly increases the memory footprint, which
quickly becomes infeasible on edge devices with only a few hundred kilobytes
of SRAM.

In contrast, the TinyTL architecture freezes all weights and updates only
the bias terms inserted after convolutional layers. These bias modules are
lightweight and require minimal memory, enabling efÏcient training with a

14.4. Model Adaptation 754

Figure 14.6: TinyTL freezes weights
and batch norm statistics, adapting
only the biases and lightweight com-
ponents to enable memory-efÏcient
on-device training.

7 Residual Adaptation Modules:
Layers added to existing networks
to improve adaptability without ex-
tensive retraining.

8 Low-rank Parameterizations:
Techniques that decompose param-
eters into low-rank matrices to save
computation.

9 Static Backbones: Unchange-
able core parts of a neural network
model, typically pre-trained.

drastically reduced memory footprint. The frozen convolutional layers act as
a fixed feature extractor, and only the trainable bias components are involved
in adaptation. By avoiding storage of full activation maps and limiting the
number of updated parameters, TinyTL enables on-device training under severe
resource constraints.

Because the base model remains unchanged, TinyTL assumes that the pre-
trained features are sufÏciently expressive for downstream tasks. The bias
terms allow for minor but meaningful shifts in model behavior, particularly
for personalization tasks. When domain shift is more significant, TinyTL can
optionally incorporate small residual adapters to improve expressivity, all while
preserving the system’s tight memory and energy profile.

These design choices allow TinyTL to reduce training memory usage by
more than 10×. For instance, adapting a MobileNetV2 model using TinyTL can
reduce the number of updated parameters from over 3 million to fewer than
50,000. Combined with quantization, this enables local adaptation on devices
with only a few hundred kilobytes of memory—making on-device learning
truly feasible in constrained environments.

14.4.2 Residual and Low-Rank Updates
Bias-only updates offer a lightweight path for on-device learning, but they are
limited in representational flexibility. When the frozen model does not align
well with the target distribution, it may be necessary to allow more expressive
adaptation—without incurring the full cost of weight updates. One solution is
to introduce residual adaptation modules (Houlsby et al. 2019),7 or low-rank
parameterizations8, which provide a middle ground between static backbones9

and full fine-tuning (E. J. Hu et al. 2021).
These methods extend a frozen model by adding trainable layers, which are

typically small and computationally inexpensive, that allow the network to re-
spond to new data. The main body of the network remains fixed, while only the

Chapter 14. On-Device Learning 755

added components are optimized. This modularity makes the approach well-
suited for on-device adaptation in constrained settings, where small updates
must deliver meaningful changes.

14.4.2.1 Adapter-Based Adaptation

A common implementation involves inserting adapters, which are small resid-
ual bottleneck layers, between existing layers in a pretrained model. Consider a
hidden representation ℎ passed between layers. A residual adapter introduces
a transformation: ℎ′ = ℎ+𝐴(ℎ)

where 𝐴(⋅) is a trainable function, typically composed of two linear layers
with a nonlinearity: 𝐴(ℎ) = 𝑊2 𝜎(𝑊1ℎ)

with 𝑊1 ∈ ℝ𝑟×𝑑 and 𝑊2 ∈ ℝ𝑑×𝑟, where 𝑟 ≪ 𝑑. This bottleneck design ensures
that only a small number of parameters are introduced per layer.

The adapters act as learnable perturbations on top of a frozen backbone.
Because they are small and sparsely applied, they add negligible memory
overhead, yet they allow the model to shift its predictions in response to new
inputs.

14.4.2.2 Low-Rank Techniques

Another efÏcient strategy is to constrain weight updates themselves to a low-
rank structure. Rather than updating a full matrix 𝑊, we approximate the
update as: Δ𝑊 ≈ 𝑈𝑉 ⊤
where 𝑈 ∈ ℝ𝑚×𝑟 and 𝑉 ∈ ℝ𝑛×𝑟, with 𝑟 ≪ min(𝑚,𝑛). This reduces the number
of trainable parameters from 𝑚𝑛 to 𝑟(𝑚 + 𝑛). During adaptation, the new
weight is computed as: 𝑊adapted = 𝑊frozen +𝑈𝑉 ⊤

This formulation is commonly used in LoRA (Low-Rank Adaptation) tech-
niques, originally developed for transformer models (E. J. Hu et al. 2021) but
broadly applicable across architectures. Low-rank updates can be implemented
efÏciently on edge devices, particularly when 𝑈 and 𝑉 are small and fixed-point
representations are supported (Listing 14.2).

This adapter adds a small residual transformation to a frozen layer. When
inserted into a larger model, only the adapter parameters are trained.

14.4. Model Adaptation 756

Listing 14.2: Low-Rank Adapter Module

class Adapter(nn.Module):
def __init__(self, dim, bottleneck_dim):

super().__init__()
self.down = nn.Linear(dim, bottleneck_dim)
self.up = nn.Linear(bottleneck_dim, dim)
self.activation = nn.ReLU()

def forward(self, x):
return x + self.up(self.activation(self.down(x)))

10 Catastrophic Forgetting: A
phenomenon where a neural net-
work forgets previously learned in-
formation upon learning new data.

11 Distribution shifts refer to
changes in the input data’s charac-
teristics, which can affect model per-
formance when different from the
training data.

12 Dynamic Computation
Graphs: Structures that allow
changes during runtime, enabling
models to adapt structures based
on input data.

14.4.2.3 Edge Personalization

Adapters are especially useful when a global model is deployed to many de-
vices and must adapt to device-specific input distributions. For instance, in
smartphone camera pipelines, environmental lighting, user preferences, or
lens distortion may vary between users (RebufÏ, Bilen, and Vedaldi 2017). A
shared model can be frozen and fine-tuned per-device using a few residual
modules, allowing lightweight personalization without risking catastrophic
forgetting10. In voice-based systems, adapter modules have been shown to
reduce word error rates in personalized speech recognition without retraining
the full acoustic model. They also allow easy rollback or switching between
user-specific versions.

14.4.2.4 Tradeoffs

Residual and low-rank updates strike a balance between expressivity and ef-
ficiency. Compared to bias-only learning, they can model more substantial
deviations from the pretrained task. However, they require more memory and
compute—both for training and inference.

When considering residual and low-rank updates for on-device learning, sev-
eral important tradeoffs emerge. First, these methods consistently demonstrate
superior adaptation quality compared to bias-only approaches, particularly
when deployed in scenarios involving significant distribution shifts11 from the
original training data (Quiñonero-Candela et al. 2008). This improved adapt-
ability stems from their increased parameter capacity and ability to learn more
complex transformations.

However, this enhanced adaptability comes at a cost. The introduction of
additional layers or parameters inevitably increases both memory requirements
and computational latency during forward and backward passes. While these
increases are modest compared to full model training, they must be carefully
considered when deploying to resource-constrained devices.

Additionally, implementing these adaptation techniques requires system-
level support for dynamic computation graphs12 and the ability to selectively
inject trainable parameters. Not all deployment environments or inference
engines may support such capabilities out of the box.

Chapter 14. On-Device Learning 757

Despite these considerations, residual adaptation techniques have proven
particularly valuable in mobile and edge computing scenarios where devices
have sufÏcient computational resources. For instance, modern smartphones
and tablets can readily accommodate these adaptations while maintaining ac-
ceptable performance characteristics. This makes residual adaptation a practical
choice for applications requiring personalization without the overhead of full
model retraining.

14.4.3 Sparse Updates
Even when adaptation is restricted to a small number of parameters, including
biases or adapter modules, training remains resource-intensive on constrained
devices. One promising approach is to selectively update only a task-relevant
subset of model parameters, rather than modifying the entire network or intro-
ducing new modules. This approach is known as task-adaptive sparse updating
(X. Zhang, Song, and Tao 2020).

The key insight is that not all layers of a deep model contribute equally
to performance gains on a new task or dataset. If we can identify a minimal
subset of parameters that are most impactful for adaptation, we can train only
those, reducing memory and compute costs while still achieving meaningful
personalization.

14.4.3.1 Sparse Update Design

Let a neural network be defined by parameters 𝜃 = {𝜃1,𝜃2,…,𝜃𝐿} across 𝐿
layers. In standard fine-tuning, we compute gradients and perform updates on
all parameters: 𝜃𝑖 ← 𝜃𝑖 −𝜂 𝜕ℒ𝜕𝜃𝑖 , for 𝑖 = 1,…,𝐿

In task-adaptive sparse updates, we select a small subset 𝒮 ⊂ {1,…,𝐿} such
that only parameters in 𝒮 are updated:𝜃𝑖 ← {𝜃𝑖 −𝜂 𝜕ℒ𝜕𝜃𝑖 , if 𝑖 ∈ 𝒮𝜃𝑖, otherwise

The challenge lies in selecting the optimal subset 𝒮 given memory and com-
pute constraints.

14.4.3.2 Layer Selection

A principled strategy for selecting 𝒮 is to use contribution analysis—an empir-
ical method that estimates how much each layer contributes to downstream
performance improvement. For example, one can measure the marginal gain
from updating each layer independently:

1. Freeze the entire model.
2. Unfreeze one candidate layer.
3. Finetune briefly and evaluate improvement in validation accuracy.

14.4. Model Adaptation 758

4. Rank layers by performance gain per unit cost (e.g., per KB of trainable
memory).

This layer-wise profiling yields a ranking from which 𝒮 can be constructed
subject to a memory budget.

A concrete example is TinyTrain, a method designed to enable rapid adapta-
tion on-device (C. Deng, Zhang, and Wu 2022). TinyTrain pretrains a model
along with meta-gradients that capture which layers are most sensitive to new
tasks. At runtime, the system dynamically selects layers to update based on
task characteristics and available resources.

14.4.3.3 Code Fragment: Selective Layer Updating (PyTorch)

Listing 14.3: Selective layer updating in PyTorch

Assume model has named layers: ['conv1', 'conv2', 'fc']
We selectively update only conv2 and fc

for name, param in model.named_parameters():
if 'conv2' in name or 'fc' in name:

param.requires_grad = True
else:

param.requires_grad = False

This pattern can be extended with profiling logic to select layers based on
contribution scores or hardware profiles, as shown in Listing 14.3.

14.4.3.4 TinyTrain Personalization

Consider a scenario where a user wears an augmented reality headset that
performs real-time object recognition. As lighting and environments shift, the
system must adapt to maintain accuracy—but training must occur during brief
idle periods or while charging.

TinyTrain enables this by using meta-training during ofÒine preparation: the
model learns not only to perform the task, but also which parameters are most
important to adapt. Then, at deployment, the device performs task-adaptive
sparse updates, modifying only a few layers that are most relevant for its current
environment. This keeps adaptation fast, energy-efÏcient, and memory-aware.

14.4.3.5 Tradeoffs

Task-adaptive sparse updates introduce several important system-level consid-
erations that must be carefully balanced. First, the overhead of contribution
analysis, although primarily incurred during pretraining or initial profiling,
represents a non-trivial computational cost. This overhead is typically accept-
able since it occurs ofÒine, but it must be factored into the overall system design
and deployment pipeline.

Chapter 14. On-Device Learning 759

Second, the stability of the adaptation process becomes critical when working
with sparse updates. If too few parameters are selected for updating, the model
may underfit the target distribution, failing to capture important local varia-
tions. This suggests the need for careful validation of the selected parameter
subset before deployment, potentially incorporating minimum thresholds for
adaptation capacity.

Third, the selection of updateable parameters must account for hardware-
specific characteristics of the target platform. Beyond just considering gradient
magnitudes, the system must evaluate the actual execution cost of updating
specific layers on the deployed hardware. Some parameters might show high
contribution scores but prove expensive to update on certain architectures,
requiring a more nuanced selection strategy that balances statistical utility with
runtime efÏciency.

Despite these tradeoffs, task-adaptive sparse updates provide a powerful
mechanism to scale adaptation to diverse deployment contexts, from microcon-
trollers to mobile devices (Levy et al. 2023).

14.4.3.6 Adaptation Strategy Comparison

Each adaptation strategy for on-device learning offers a distinct balance between
expressivity, resource efÏciency, and implementation complexity. Understand-
ing these tradeoffs is essential when designing systems for diverse deployment
targets—from ultra-low-power microcontrollers to feature-rich mobile proces-
sors.

Bias-only adaptation is the most lightweight approach, updating only scalar
offsets in each layer while freezing all other parameters. This significantly re-
duces memory requirements and computational burden, making it suitable for
devices with tight memory and energy budgets. However, its limited expressiv-
ity means it is best suited to applications where the pretrained model already
captures most of the relevant task features and only minor local calibration is
required.

Residual adaptation, often implemented via adapter modules, introduces
a small number of trainable parameters into the frozen backbone of a neural
network. This allows for greater flexibility than bias-only updates, while still
maintaining control over the adaptation cost. Because the backbone remains
fixed, training can be performed efÏciently and safely under constrained condi-
tions. This method supports modular personalization across tasks and users,
making it a favorable choice for mobile settings where moderate adaptation
capacity is needed.

Task-adaptive sparse updates offer the greatest potential for task-specific
finetuning by selectively updating only a subset of layers or parameters based
on their contribution to downstream performance. While this method enables
expressive local adaptation, it requires a mechanism for layer selection, through
profiling, contribution analysis, or meta-training, which introduces additional
complexity. Nonetheless, when deployed carefully, it allows for dynamic trade-
offs between accuracy and efÏciency, particularly in systems that experience
large domain shifts or evolving input conditions.

14.5. Data EfÏciency 760

These three approaches form a spectrum of tradeoffs. Their relative suitability
depends on application domain, available hardware, latency constraints, and
expected distribution shift. Table 14.1 summarizes their characteristics:

Table 14.1: Comparison of model adaptation strategies.

Technique
Trainable
Parameters

Memory
Overhead Expressivity Use Case Suitability

System
Requirements

Bias-Only
Updates

Bias terms
only

Minimal Low Simple
personalization;
low variance

Extreme
memory/compute
limits

Residual
Adapters

Adapter
modules

Moderate Moderate to
High

User-specific
tuning on mobile

Mobile-class SoCs
with runtime
support

Sparse Layer
Updates

Selective
parameter
subsets

Variable High (task-
adaptive)

Real-time
adaptation; domain
shift

Requires profiling
or meta-training

14.5 Data EfÏciency
On-device learning systems operate in environments where data is scarce, noisy,
and highly individualized. Unlike centralized machine learning pipelines that
rely on large, curated datasets, edge devices typically observe only small vol-
umes of task-relevant data—collected incrementally over time and rarely labeled
in a supervised manner (W.-Y. Chen et al. 2019). This constraint fundamentally
reshapes the learning process. Algorithms must extract value from minimal
supervision, generalize from sparse observations, and remain robust to distri-
butional shift. In many cases, the available data may be insufÏcient to train a
model from scratch or even to finetune all parameters of a pretrained network.
Instead, practical on-device learning relies on data-efÏcient techniques: few-
shot adaptation, streaming updates, memory-based replay, and compressed
supervision. These approaches enable models to improve over time without
requiring extensive labeled datasets or centralized aggregation, making them
well-suited to mobile, wearable, and embedded platforms where data acquisi-
tion is constrained by power, storage, and privacy considerations.

14.5.1 Few-Shot and Streaming
In conventional machine learning workflows, effective training typically re-
quires large labeled datasets, carefully curated and preprocessed to ensure
sufÏcient diversity and balance. On-device learning, by contrast, must often
proceed from only a handful of local examples—collected passively through
user interaction or ambient sensing, and rarely labeled in a supervised fashion.
These constraints motivate two complementary adaptation strategies: few-shot
learning, in which models generalize from a small, static set of examples, and
streaming adaptation, where updates occur continuously as data arrives.

Few-shot adaptation is particularly relevant when the device observes a small
number of labeled or weakly labeled instances for a new task or user condition
(Yaqing Wang et al. 2020). In such settings, it is often infeasible to perform
full finetuning of all model parameters without overfitting. Instead, methods
such as bias-only updates, adapter modules, or prototype-based classification

Chapter 14. On-Device Learning 761

are employed to make use of limited data while minimizing capacity for mem-
orization. Let 𝐷 = {(𝑥𝑖,𝑦𝑖)}𝐾𝑖=1 denote a 𝐾-shot dataset of labeled examples
collected on-device. The goal is to update the model parameters 𝜃 to improve
task performance under constraints such as:

• Limited number of gradient steps: 𝑇 ≪ 100
• Constrained memory footprint: ‖𝜃updated‖ ≪ ‖𝜃‖
• Preservation of prior task knowledge (to avoid catastrophic forgetting)

Keyword spotting (KWS) systems offer a concrete example of few-shot adap-
tation in a real-world, on-device deployment (Warden 2018). These models are
used to detect fixed phrases, including phrases like “Hey Siri” or “OK Google”,
with low latency and high reliability. A typical KWS model consists of a pre-
trained acoustic encoder (e.g., a small convolutional or recurrent network that
transforms input audio into an embedding space) followed by a lightweight clas-
sifier. In commercial systems, the encoder is trained centrally using thousands
of hours of labeled speech across multiple languages and speakers. However,
supporting custom wake words (e.g., “Hey Jarvis”) or adapting to underrepre-
sented accents and dialects is often infeasible via centralized training due to
data scarcity and privacy concerns.

Few-shot adaptation solves this problem by finetuning only the output clas-
sifier or a small subset of parameters, including bias terms, using just a few
example utterances collected directly on the device. For example, a user might
provide 5–10 recordings of their custom wake word. These samples are then
used to update the model locally, while the main encoder remains frozen to
preserve generalization and reduce memory overhead. This enables personal-
ization without requiring additional labeled data or transmitting private audio
to the cloud.

Such an approach is not only computationally efÏcient, but also aligned
with privacy-preserving design principles. Because only the output layer is
updated, often involving a simple gradient step or prototype computation, the
total memory footprint and runtime compute are compatible with mobile-class
devices or even microcontrollers. This makes KWS a canonical case study
for few-shot learning at the edge, where the system must operate under tight
constraints while delivering user-specific performance.

Beyond static few-shot learning, many on-device scenarios benefit from
streaming adaptation, where models must learn incrementally as new data
arrives (Hayes et al. 2020). Streaming adaptation generalizes this idea to contin-
uous, asynchronous settings where data arrives incrementally over time. Let{𝑥𝑡}∞𝑡=1 represent a stream of observations. In streaming settings, the model
must update itself after observing each new input, typically without access to
prior data, and under bounded memory and compute. The model update can
be written generically as: 𝜃𝑡+1 = 𝜃𝑡 −𝜂𝑡∇ℒ(𝑥𝑡;𝜃𝑡)
where 𝜂𝑡 is the learning rate at time 𝑡. This form of adaptation is sensitive to
noise and drift in the input distribution, and thus often incorporates mecha-
nisms such as learning rate decay, meta-learned initialization, or update gating
to improve stability.

14.5. Data EfÏciency 762

13 Ring Buffer: A circular buffer
that efÏciently manages data by
overwriting old entries with new
ones as space requires.

Aside from KWS, practical examples of these strategies abound. In wearable
health devices, a model that classifies physical activities may begin with a
generic classifier and adapt to user-specific motion patterns using only a few
labeled activity segments. In smart assistants, user voice profiles are finetuned
over time using ongoing speech input, even when explicit supervision is un-
available. In such cases, local feedback, including correction, repetition, or
downstream task success, can serve as implicit signals to guide learning.

Few-shot and streaming adaptation highlight the shift from traditional train-
ing pipelines to data-efÏcient, real-time learning under uncertainty. They form
a foundation for more advanced memory and replay strategies, which we turn
to next.

14.5.2 Experience Replay
On-device learning systems face a fundamental tension between continuous
adaptation and limited data availability. One common approach to alleviat-
ing this tension is experience replay—a memory-based strategy that enables
models to retrain on past examples. Originally developed in the context of
reinforcement learning and continual learning, replay buffers help prevent
catastrophic forgetting and stabilize training in non-stationary environments.

Unlike server-side replay strategies that rely on large datasets and extensive
compute, on-device replay must operate with extremely limited capacity, of-
ten with tens or hundreds of samples, and must avoid interfering with user
experience (Rolnick et al. 2019). Buffers may store only compressed features or
distilled summaries, and updates must occur opportunistically (e.g., during
idle cycles or charging). These system-level constraints reshape how replay is
implemented and evaluated in the context of embedded ML.

Let ℳ represent a memory buffer that retains a fixed-size subset of training
examples. At time step 𝑡, the model receives a new data point (𝑥𝑡,𝑦𝑡) and
appends it to ℳ. A replay-based update then samples a batch {(𝑥𝑖,𝑦𝑖)}𝑘𝑖=1
from ℳ and applies a gradient step:𝜃𝑡+1 = 𝜃𝑡 −𝜂∇𝜃 [1𝑘 𝑘∑𝑖=1 ℒ(𝑥𝑖,𝑦𝑖;𝜃𝑡)]
where 𝜃𝑡 are the model parameters, 𝜂 is the learning rate, and ℒ is the loss
function. Over time, this replay mechanism allows the model to reinforce prior
knowledge while incorporating new information.

A practical on-device implementation might use a ring buffer13 to store a
small set of compressed feature vectors rather than full input examples. The
pseudocode as shown in Listing 14.4 illustrates a minimal replay buffer designed
for constrained environments.

This implementation maintains a fixed-capacity cyclic buffer, storing com-
pressed representations (e.g., last-layer embeddings) and associated labels.
Such buffers are useful for replaying adaptation updates without violating
memory or energy budgets.

In TinyML applications, experience replay has been applied to problems such
as gesture recognition, where devices must continuously improve predictions

Chapter 14. On-Device Learning 763

Listing 14.4: Minimal replay buffer implementation

Replay Buffer Techniques
class ReplayBuffer:

def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.index = 0

def store(self, feature_vec, label):
if len(self.buffer) < self.capacity:

self.buffer.append((feature_vec, label))
else:

self.buffer[self.index] = (feature_vec, label)
self.index = (self.index + 1) % self.capacity

def sample(self, k):
return random.sample(

self.buffer,
min(k, len(self.buffer))

)

14 Wear leveling is a tech-
nique used in flash memory man-
agement to distribute data writes
evenly across the memory, prolong-
ing lifespan.

while observing a small number of events per day. Instead of training directly
on the streaming data, the device stores representative feature vectors from
recent gestures and uses them to finetune classification boundaries periodically.
Similarly, in on-device keyword spotting, replaying past utterances can improve
wake-word detection accuracy without the need to transmit audio data off-
device.

While experience replay improves stability in data-sparse or non-stationary
environments, it introduces several tradeoffs. Storing raw inputs may breach
privacy constraints or exceed storage budgets, especially in vision and audio ap-
plications. Replaying from feature vectors reduces memory usage but may limit
the richness of gradients for upstream layers. Write cycles to persistent flash
memory, which are frequently necessary for long-term storage on embedded
devices, can also raise wear-leveling concerns14. These constraints require care-
ful co-design of memory usage policies, replay frequency, and feature selection
strategies, particularly in continuous deployment scenarios.

14.5.3 Data Compression
In many on-device learning scenarios, the raw training data may be too large,
noisy, or redundant to store and process effectively. This motivates the use of
compressed data representations, where the original inputs are transformed
into lower-dimensional embeddings or compact encodings that preserve salient
information while minimizing memory and compute costs.

Compressed representations serve two complementary goals. First, they
reduce the footprint of stored data, allowing devices to maintain longer histories

14.5. Data EfÏciency 764

or replay buffers under tight memory budgets (Sanh et al. 2019). Second,
they simplify the learning task by projecting raw inputs into more structured
feature spaces, often learned via pretraining or meta-learning, in which efÏcient
adaptation is possible with minimal supervision.

One common approach is to encode data points using a pretrained feature
extractor and discard the original high-dimensional input. For example, an
image 𝑥𝑖 might be passed through a convolutional neural network (CNN) to
produce an embedding vector 𝑧𝑖 = 𝑓(𝑥𝑖), where 𝑓(⋅) is a fixed feature encoder.
This embedding captures visual structure (e.g., shape, texture, or spatial layout)
in a compact representation, usually ranging from 64 to 512 dimensions, suitable
for lightweight downstream adaptation.

Mathematically, training can proceed over compressed samples (𝑧𝑖,𝑦𝑖) using
a lightweight decoder or projection head. Let 𝜃 represent the trainable parame-
ters of this decoder model, which is typically a small neural network that maps
from compressed representations to output predictions. As each example is
presented, the model parameters are updated using gradient descent:𝜃𝑡+1 = 𝜃𝑡 −𝜂∇𝜃ℒ(𝑔(𝑧𝑖;𝜃),𝑦𝑖)
Here:

• 𝑧𝑖 is the compressed representation of the 𝑖-th input,
• 𝑦𝑖 is the corresponding label or supervision signal,
• 𝑔(𝑧𝑖;𝜃) is the decoder’s prediction,
• ℒ is the loss function measuring prediction error,
• 𝜂 is the learning rate, and
• ∇𝜃 denotes the gradient with respect to the parameters 𝜃.

This formulation highlights how only a compact decoder model, which has
the parameter set 𝜃, needs to be trained, making the learning process feasible
even when memory and compute are limited.

Advanced approaches go beyond fixed encoders by learning discrete or
sparse dictionaries that represent data using low-rank or sparse coefÏcient
matrices. For instance, a dataset of sensor traces can be factorized as 𝑋 ≈ 𝐷𝐶,
where 𝐷 is a dictionary of basis patterns and 𝐶 is a block-sparse coefÏcient
matrix indicating which patterns are active in each example. By updating only
a small number of dictionary atoms or coefÏcients, the model can adapt with
minimal overhead.

Compressed representations are particularly useful in privacy-sensitive set-
tings, as they allow raw data to be discarded or obfuscated after encoding.
Furthermore, compression acts as an implicit regularizer, smoothing the learn-
ing process and mitigating overfitting when only a few training examples are
available.

In practice, these strategies have been applied in domains such as keyword
spotting, where raw audio signals are first transformed into Mel-frequency
cepstral coefÏcients (MFCCs)—a compact, lossy representation of the power
spectrum of speech. These MFCC vectors serve as compressed inputs for down-
stream models, enabling local adaptation using only a few kilobytes of memory.
Instead of storing raw audio waveforms, which are large and computationally

Chapter 14. On-Device Learning 765

expensive to process, devices store and learn from these compressed feature
vectors directly. Similarly, in low-power computer vision systems, embeddings
extracted from lightweight CNNs are retained and reused for few-shot learn-
ing. These examples illustrate how representation learning and compression
serve as foundational tools for scaling on-device learning to memory- and
bandwidth-constrained environments.

14.5.4 Tradeoffs Summary
Each of the techniques introduced in this section, few-shot learning, experience
replay, and compressed data representations, offers a strategy for adapting
models on-device when data is scarce or streaming. However, they operate
under different assumptions and constraints, and their effectiveness depends on
system-level factors such as memory capacity, data availability, task structure,
and privacy requirements.

Few-shot adaptation excels when a small but informative set of labeled exam-
ples is available, especially when personalization or rapid task-specific tuning
is required. It minimizes compute and data needs, but its effectiveness hinges
on the quality of pretrained representations and the alignment between the
initial model and the local task.

Experience replay addresses continual adaptation by mitigating forgetting
and improving stability, especially in non-stationary environments. It enables
reuse of past data, but requires memory to store examples and compute cy-
cles for periodic updates. Replay buffers may also raise privacy or longevity
concerns, especially on devices with limited storage or flash write cycles.

Compressed data representations reduce the footprint of learning by trans-
forming raw data into compact feature spaces. This approach supports longer
retention of experience and efÏcient finetuning, particularly when only light-
weight heads are trainable. However, compression can introduce information
loss, and fixed encoders may fail to capture task-relevant variability if they
are not well-aligned with deployment conditions. Table 14.2 summarizes key
tradeoffs:

Table 14.2: Summary of on-device learning techniques.

Technique Data Requirements
Memory/Compute
Overhead Use Case Fit

Few-Shot Adaptation Small labeled set (K-shots) Low Personalization, quick
on-device finetuning

Experience Replay Streaming data Moderate (buffer &
update)

Non-stationary data,
stability under drift

Compressed
Representations

Unlabeled or encoded
data

Low to Moderate Memory-limited
devices,
privacy-sensitive
contexts

In practice, these methods are not mutually exclusive. Many real-world
systems combine them to achieve robust, efÏcient adaptation. For example, a
keyword spotting system may use compressed audio features (e.g., MFCCs),
finetune a few parameters from a small support set, and maintain a replay
buffer of past embeddings for continual refinement.

14.6. Federated Learning 766

Together, these strategies embody the core challenge of on-device learning:
achieving reliable model improvement under persistent constraints on data,
compute, and memory.

14.6 Federated Learning
On-device learning enables models to adapt locally using data generated on the
device, but doing so in isolation limits a system’s ability to generalize across
users and tasks. In many applications, learning must occur not just within
a single device, but across a fleet of heterogeneous, intermittently connected
systems. This calls for a distributed coordination framework that supports
collective model improvement without violating the constraints of privacy,
limited connectivity, and device autonomy. Federated learning (FL) is one such
framework.

�� Definition of Federated Learning

Federated Learning is a decentralized machine learning approach in which
training occurs across a population of distributed devices, each using
its private, locally collected data. Rather than transmitting raw data to a
central server, devices share only model updates, including gradients and
weight changes, which are then aggregated to improve a shared global
model. This approach preserves data privacy while enabling collective
intelligence across diverse environments. As federated learning matures, it
integrates privacy-enhancing technologies, communication-efÏcient protocols,
and personalization strategies, making it foundational for scalable, privacy-
conscious ML systems.

To better understand the role of federated learning, it is useful to contrast it
with other learning paradigms. Figure 14.7 illustrates the distinction between
ofÒine learning, on-device learning, and federated learning. In traditional
ofÒine learning, all data is collected and processed centrally. The model is
trained in the cloud using curated datasets and is then deployed to edge devices
without further adaptation. In contrast, on-device learning enables local model
adaptation using data generated on the device itself, supporting personalization
but in isolation—without sharing insights across users. Federated learning
bridges these two extremes by enabling localized training while coordinating
updates globally. It retains data privacy by keeping raw data local, yet benefits
from distributed model improvements by aggregating updates from many
devices.

This section explores the principles and practical considerations of federated
learning in the context of mobile and embedded systems. It begins by outlining
the canonical FL protocols and their system implications. It then discusses
device participation constraints, communication-efÏcient update mechanisms,
and strategies for personalized learning. Throughout, the emphasis remains on
how federated methods can extend the reach of on-device learning by enabling
distributed model training across diverse and resource-constrained hardware
platforms.

Chapter 14. On-Device Learning 767

Figure 14.7: A comparison of learn-
ing paradigms: OfÒine learning oc-
curs centrally with all data aggre-
gated in the cloud. On-device learn-
ing adapts models locally based
on user data but does not share
information across users. Feder-
ated learning combines local adap-
tation with global coordination by
aggregating model updates without
sharing raw data, enabling privacy-
preserving collective improvement.

Offline learning

Data

Adapt model

based on

local data

Locally adapt once to a few samples

(e.g., few shot learning) or continuously

(e.g., unsupervised learning)

Coordinator

Worker Worker

Training on

local data
• • •

Model

updates

5G

concectivity

Aggregate model updates across

multiple users to globally improve

model from more diverse data

On-device learning Federated learning

14.6.1 Federated Learning Motivation

Federated learning (FL) is a decentralized paradigm for training machine learn-
ing models across a population of devices without transferring raw data to a
central server (H. B. McMahan et al. 2017). Unlike traditional centralized train-
ing pipelines, which require aggregating all training data in a single location,
federated learning distributes the training process itself. Each participating
device computes updates based on its local data and contributes to a global
model through an aggregation protocol, typically coordinated by a central
server. This shift in training architecture aligns closely with the needs of mobile,
edge, and embedded systems, where privacy, communication cost, and system
heterogeneity impose significant constraints on centralized approaches.

The relevance of federated learning becomes apparent in several practical
domains. In mobile keyboard applications, such as Google’s Gboard, the system
must continuously improve text prediction models based on user-specific input
patterns (Hard et al. 2018). Federated learning allows the system to train on
device-local keystroke data, while maintaining privacy, while still contributing
to a shared model that benefits all users. Similarly, wearable health monitors
often collect biometric signals that vary greatly between individuals. Training
models centrally on such data would require uploading sensitive physiological
traces, raising both ethical and regulatory concerns. FL mitigates these issues
by enabling model updates to be computed directly on the wearable device.

In the context of smart assistants and voice interfaces, devices must adapt
to individual voice profiles while minimizing false activations. Wake-word
models, for instance, can be personalized locally and periodically synchronized
through federated updates, avoiding the need to transmit raw voice record-
ings. Industrial and environmental sensors, deployed in remote locations or
operating under severe bandwidth limitations, benefit from federated learn-
ing by enabling local adaptation and global coordination without constant
connectivity.

These examples illustrate how federated learning bridges the gap between
model improvement and system-level constraints. It enables personalization
without compromising user privacy, supports learning under limited connectiv-
ity, and distributes computation across a diverse and heterogeneous device fleet.
However, these benefits come with new challenges. Federated learning systems
must account for client variability, communication efÏciency, and the non-IID

14.6. Federated Learning 768

nature of local data distributions. Furthermore, they must ensure robustness to
adversarial behavior and provide guarantees on model performance despite
partial participation or dropout.

The remainder of this section explores the key techniques and tradeoffs that
define federated learning in on-device settings. We begin by examining the
core learning protocols that govern coordination across devices, and proceed
to investigate strategies for scheduling, communication efÏciency, and person-
alization.

14.6.2 Learning Protocols
Federated learning protocols define the rules and mechanisms by which devices
collaborate to train a shared model. These protocols govern how local updates
are computed, aggregated, and communicated, as well as how devices partici-
pate in the training process. The choice of protocol has significant implications
for system performance, communication overhead, and model convergence.

In this section, we outline the core components of federated learning pro-
tocols, including local training, aggregation methods, and communication
strategies. We also discuss the tradeoffs associated with different approaches
and their implications for on-device learning systems.

14.6.2.1 Local Training
Local training refers to the process by which individual devices compute model
updates based on their local data. This step is important in federated learning,
as it allows devices to adapt the shared model to their specific contexts without
transferring raw data. The local training process typically involves the following
steps:

1. Model Initialization: Each device initializes its local model parameters,
often by downloading the latest global model from the server.

2. Local Data Sampling: The device samples a subset of its local data for
training. This data may be non-IID, meaning that it may not be uniformly
distributed across devices.

3. Local Training: The device performs a number of training iterations on
its local data, updating the model parameters based on the computed
gradients.

4. Model Update: After local training, the device computes a model update
(e.g., the difference between the updated and initial parameters) and
prepares to send it to the server.

5. Communication: The device transmits the model update to the server,
typically using a secure communication channel to protect user privacy.

6. Model Aggregation: The server aggregates the updates from multiple
devices to produce a new global model, which is then distributed back to
the participating devices.

This process is repeated iteratively, with devices periodically downloading
the latest global model and performing local training. The frequency of these
updates can vary based on system constraints, device availability, and commu-
nication costs.

Chapter 14. On-Device Learning 769

14.6.2.2 Protocols Overview

At the heart of federated learning is a coordination mechanism that enables
many devices, each having access to only a small, local dataset, to collaboratively
train a shared model. This is achieved through a protocol in which client devices
perform local training and periodically transmit model updates to a central
server. The server aggregates these updates to refine a global model, which is
then redistributed to clients for the next training round. This cyclical procedure
decouples the learning process from centralized data collection, making it
especially well-suited to mobile and edge environments where user data is
private, bandwidth is constrained, and device participation is sporadic.

The most widely used baseline for this process is Federated Averaging (Fe-
dAvg), which has become a canonical algorithm for federated learning (H.
B. McMahan et al. 2017). In FedAvg, each device trains its local copy of the
model using stochastic gradient descent (SGD) on its private data. After a fixed
number of local steps, each device sends its updated model parameters to the
server. The server computes a weighted average of these parameters, which
are weighted according to the number of data samples on each device, and
updates the global model accordingly. This updated model is then sent back to
the devices, completing one round of training.

Formally, let 𝒟𝑘 denote the local dataset on client 𝑘, and let 𝜃𝑡𝑘 be the param-
eters of the model on client 𝑘 at round 𝑡. Each client performs 𝐸 steps of SGD
on its local data, yielding an update 𝜃𝑡+1𝑘 . The central server then aggregates
these updates as: 𝜃𝑡+1 = 𝐾∑𝑘=1 𝑛𝑘𝑛 𝜃𝑡+1𝑘
where 𝑛𝑘 = |𝒟𝑘| is the number of samples on device 𝑘, 𝑛 = ∑𝑘 𝑛𝑘 is the total
number of samples across participating clients, and 𝐾 is the number of active
devices in the current round.

This basic structure introduces a number of design choices and tradeoffs. The
number of local steps 𝐸 impacts the balance between computation and com-
munication: larger 𝐸 reduces communication frequency but risks divergence if
local data distributions vary too much. Similarly, the selection of participating
clients affects convergence stability and fairness. In real-world deployments,
not all devices are available at all times, and hardware capabilities may differ
substantially, requiring robust participation scheduling and failure tolerance.

14.6.2.3 Client Scheduling

Federated learning operates under the assumption that clients, devices, which
hold local data, periodically become available for participation in training
rounds. However, in real-world systems, client availability is intermittent and
highly variable. Devices may be turned off, disconnected from power, lacking
network access, or otherwise unable to participate at any given time. As a
result, client scheduling plays a central role in the effectiveness and efÏciency
of distributed learning.

At a baseline level, federated learning systems define eligibility criteria for par-
ticipation. Devices must meet minimum requirements such as being plugged

14.6. Federated Learning 770

in, connected to Wi-Fi, and idle, to avoid interfering with user experience or
depleting battery resources. These criteria determine which subset of the total
population is considered “available” for any given training round.

Beyond these operational filters, devices also differ in their hardware capabil-
ities, data availability, and network conditions. For example, some smartphones
may contain many recent examples relevant to the current task, while others
may have outdated or irrelevant data. Network bandwidth and upload speed
may vary widely depending on geography and carrier infrastructure. As a
result, selecting clients at random can lead to poor coverage of the underlying
data distribution and unstable model convergence.

Moreover, availability-driven selection introduces participation bias: clients
with favorable conditions, including frequent charging, high-end hardware,
and consistent connectivity, are more likely to participate repeatedly, while
others are systematically underrepresented. This can skew the resulting model
toward behaviors and preferences of a privileged subset of the population,
raising both fairness and generalization concerns.

To address these challenges, systems must carefully balance scheduling efÏ-
ciency with client diversity. A key approach involves using stratified or quota-
based sampling to ensure representative client participation across different
groups. For instance, asynchronous buffer-based techniques allow participating
clients to contribute model updates independently, without requiring synchro-
nized coordination in every round (Nguyen et al. 2021). This model has been
extended to incorporate staleness awareness (Rodio and Neglia 2024) and fair-
ness mechanisms (J. Ma et al. 2024), preventing bias from over-active clients
who might otherwise dominate the training process.

To address these challenges, federated learning systems implement adap-
tive client selection strategies. These include prioritizing clients with under-
represented data types, targeting geographies or demographics that are less
frequently sampled, and using historical participation data to enforce fairness
constraints. Systems may also incorporate predictive modeling to anticipate
future client availability or success rates, improving training throughput.

Selected clients perform one or more local training steps on their private
data and transmit their model updates to a central server. These updates are
aggregated to form a new global model. Typically, this aggregation is weighted,
where the contributions of each client are scaled, for example, by the number of
local examples used during training, before averaging. This ensures that clients
with more representative or larger datasets exert proportional influence on the
global model.

These scheduling decisions directly impact system performance. They affect
convergence rate, model generalization, energy consumption, and overall user
experience. Poor scheduling can result in excessive stragglers, overfitting to
narrow client segments, or wasted computation. As a result, client scheduling
is not merely a logistical concern—it is a core component of system design in
federated learning, demanding both algorithmic insight and infrastructure-level
coordination.

Chapter 14. On-Device Learning 771

14.6.2.4 EfÏcient Communication
One of the principal bottlenecks in federated learning systems is the cost of
communication between edge clients and the central server. Transmitting full
model weights or gradients after every training round can quickly overwhelm
bandwidth and energy budgets—particularly for mobile or embedded devices
operating over constrained wireless links. To address this, a range of techniques
have been developed to reduce communication overhead while preserving
learning efÏcacy.

These techniques fall into three primary categories: model compression,
selective update sharing, and architectural partitioning.

Model compression methods aim to reduce the size of transmitted updates
through quantization, sparsification, or subsampling. For instance, instead of
sending full-precision gradients, a client may transmit 8-bit quantized updates
or communicate only the top-𝑘 gradient elements with highest magnitude.
These techniques significantly reduce transmission size with limited impact on
convergence when applied carefully.

Selective update sharing further reduces communication by transmitting only
subsets of model parameters or updates. In layer-wise selective sharing, clients
may update only certain layers, typically, the final classifier or adapter modules,
while keeping the majority of the backbone frozen. This reduces both upload
cost and the risk of overfitting shared representations to non-representative
client data.

Split models and architectural partitioning divide the model into a shared
global component and a private local component. Clients train and maintain
their private modules independently while synchronizing only the shared parts
with the server. This allows for user-specific personalization with minimal
communication and privacy leakage.

All of these approaches operate within the context of a federated aggregation
protocol. A standard baseline for aggregation is Federated Averaging (FedAvg),
in which the server updates the global model by computing a weighted average
of the client updates received in a given round. Let 𝒦𝑡 denote the set of
participating clients in round 𝑡, and let 𝜃𝑡𝑘 represent the locally updated model
parameters from client 𝑘. The server computes the new global model 𝜃𝑡+1 as:𝜃𝑡+1 = ∑𝑘∈𝒦𝑡

𝑛𝑘𝑛𝒦𝑡 𝜃𝑡𝑘
Here, 𝑛𝑘 is the number of local training examples at client 𝑘, and 𝑛𝒦𝑡 =∑𝑘∈𝒦𝑡 𝑛𝑘 is the total number of training examples across all participating

clients. This data-weighted aggregation ensures that clients with more training
data exert a proportionally larger influence on the global model, while also
accounting for partial participation and heterogeneous data volumes.

However, communication-efÏcient updates can introduce tradeoffs. Compres-
sion may degrade gradient fidelity, selective updates can limit model capacity,
and split architectures may complicate coordination. As a result, effective fed-
erated learning requires careful balancing of bandwidth constraints, privacy
concerns, and convergence dynamics—a balance that depends heavily on the
capabilities and variability of the client population.

14.6. Federated Learning 772

14.6.2.5 Federated Personalization

While compression and communication strategies improve scalability, they do
not address a critical limitation of the global federated learning paradigm—its
inability to capture user-specific variation. In real-world deployments, devices
often observe distinct and heterogeneous data distributions. A one-size-fits-all
global model may underperform when applied uniformly across diverse users.
This motivates the need for personalized federated learning, where local models
are adapted to user-specific data without compromising the benefits of global
coordination.

Let 𝜃𝑘 denote the model parameters on client 𝑘, and 𝜃global the aggregated
global model. Traditional FL seeks to minimize a global objective:

min𝜃 𝐾∑𝑘=1 𝑤𝑘ℒ𝑘(𝜃)
where ℒ𝑘(𝜃) is the local loss on client 𝑘, and 𝑤𝑘 is a weighting factor (e.g.,
proportional to local dataset size). However, this formulation assumes that a
single model 𝜃 can serve all users well. In practice, local loss landscapes ℒ𝑘
often differ significantly across clients, reflecting non-IID data distributions
and varying task requirements.

Personalization modifies this objective to allow each client to maintain its
own adapted parameters 𝜃𝑘, optimized with respect to both the global model
and local data:

min𝜃1,…,𝜃𝐾
𝐾∑𝑘=1 (ℒ𝑘(𝜃𝑘)+𝜆 ⋅ℛ(𝜃𝑘,𝜃global))

Here, ℛ is a regularization term that penalizes deviation from the global
model, and 𝜆 controls the strength of this penalty. This formulation enables local
models to deviate as needed, while still benefiting from global coordination.

Real-world use cases illustrate the importance of this approach. Consider a
wearable health monitor that tracks physiological signals to classify physical
activities. While a global model may perform reasonably well across the popula-
tion, individual users exhibit unique motion patterns, gait signatures, or sensor
placements. Personalized finetuning of the final classification layer or low-
rank adapters enables improved accuracy, particularly for rare or user-specific
classes.

Several personalization strategies have emerged to address the tradeoffs be-
tween compute overhead, privacy, and adaptation speed. One widely used
approach is local finetuning, in which each client downloads the latest global
model and performs a small number of gradient steps using its private data.
While this method is simple and preserves privacy, it may yield suboptimal re-
sults when the global model is poorly aligned with the client’s data distribution
or when the local dataset is extremely limited.

Another effective technique involves personalization layers, where the model
is partitioned into a shared backbone and a lightweight, client-specific head—
typically the final classification layer (Arivazhagan et al. 2019). Only the head
is updated on-device, significantly reducing memory usage and training time.

Chapter 14. On-Device Learning 773

This approach is particularly well-suited for scenarios in which the primary
variation across clients lies in output categories or decision boundaries.

Clustered federated learning offers an alternative by grouping clients accord-
ing to similarities in their data or performance characteristics, and training
separate models for each cluster. This strategy can enhance accuracy within
homogeneous subpopulations but introduces additional system complexity
and may require exchanging metadata to determine group membership.

Finally, meta-learning approaches, such as Model-Agnostic Meta-Learning
(MAML), aim to produce a global model initialization that can be quickly
adapted to new tasks with just a few local updates (Finn, Abbeel, and Levine
2017). This technique is especially useful when clients have limited data or
operate in environments with frequent distributional shifts. Each of these
strategies reflects a different point in the tradeoff space. These strategies vary
in their system implications, including compute overhead, privacy guarantees,
and adaptation latency. Table 14.3 summarizes the tradeoffs.

Table 14.3: Comparison of personalization strategies in federated learning, eval-
uating their system-level tradeoffs across multiple design dimen-
sions.

Strategy
Personalization
Mechanism

Compute
Overhead

Privacy
Preservation Adaptation Speed

Local Finetuning Gradient descent on
local loss
post-aggregation

Low to
Moderate

High (no data
sharing)

Fast (few steps)

Personalization
Layers

Split model: shared
base + user-specific
head

Moderate High Fast (train small
head)

Clustered FL Group clients by
data similarity, train
per group

Moderate to
High

Medium (group
metadata)

Medium

Meta-Learning Train for fast
adaptation across
tasks/devices

High (meta-
objective)

High Very Fast (few-shot)

Selecting the appropriate personalization method depends on deployment
constraints, data characteristics, and the desired balance between accuracy,
privacy, and computational efÏciency. In practice, hybrid approaches that
combine elements of multiple strategies, including local finetuning atop a
personalized head, are often employed to achieve robust performance across
heterogeneous devices.

14.6.2.6 Federated Privacy

While federated learning is often motivated by privacy concerns, as it involves
keeping raw data localized instead of transmitting it to a central server, the
paradigm introduces its own set of security and privacy risks. Although devices
do not share their raw data, the transmitted model updates (such as gradients
or weight changes) can inadvertently leak information about the underlying
private data. Techniques such as model inversion attacks and membership
inference attacks demonstrate that adversaries may partially reconstruct or
infer properties of local datasets by analyzing these updates.

14.7. Practical System Design 774

To mitigate such risks, modern federated learning systems commonly em-
ploy protective measures. Secure Aggregation protocols ensure that individual
model updates are encrypted and aggregated in a way that the server only
observes the combined result, not any individual client’s contribution. Dif-
ferential Privacy techniques inject carefully calibrated noise into updates to
mathematically bound the information that can be inferred about any single
client’s data.

While these techniques enhance privacy, they introduce additional system
complexity and tradeoffs between model utility, communication cost, and ro-
bustness. A deeper exploration of these attacks, defenses, and their implications
for federated and on-device learning is provided in a later security and privacy
chapter.

14.7 Practical System Design

On-device learning presents opportunities for personalization, privacy preser-
vation, and autonomous adaptation, but realizing these benefits in practice
requires disciplined system design. Constraints on memory, compute, energy,
and observability necessitate careful selection of adaptation mechanisms, train-
ing strategies, and deployment safeguards.

A key principle in building practical systems is to minimize the adaptation
footprint. Full-model fine-tuning is typically infeasible on edge platforms, in-
stead, localized update strategies, including bias-only optimization, residual
adapters, and lightweight task-specific heads, should be prioritized. These
approaches enable model specialization under resource constraints while miti-
gating the risks of overfitting or instability.

The feasibility of lightweight adaptation depends critically on the strength
of ofÒine pretraining (Bommasani et al. 2021). Pretrained models should
encapsulate generalizable feature representations that allow efÏcient adaptation
from limited local data. Shifting the burden of feature extraction to centralized
training reduces the complexity and energy cost of on-device updates, while
improving convergence stability in data-sparse environments.

Even when adaptation is lightweight, opportunistic scheduling remains es-
sential to preserve system responsiveness and user experience. Local updates
should be deferred to periods when the device is idle, connected to external
power, and operating on a reliable network. Such policies minimize the im-
pact of background training on latency, battery consumption, and thermal
performance.

The sensitivity of local training artifacts necessitates careful data security
measures. Replay buffers, support sets, adaptation logs, and model update
metadata must be protected against unauthorized access or tampering. Light-
weight encryption or hardware-backed secure storage can mitigate these risks
without imposing prohibitive resource costs on edge platforms.

However, security measures alone do not guarantee model robustness. As
models adapt locally, monitoring adaptation dynamics becomes critical. Light-
weight validation techniques, including confidence scoring, drift detection
heuristics, and shadow model evaluation, can help identify divergence early,

Chapter 14. On-Device Learning 775

enabling systems to trigger rollback mechanisms before severe degradation
occurs (Gama et al. 2014).

Robust rollback procedures depend on retaining trusted model checkpoints.
Every deployment should preserve a known-good baseline version of the model
that can be restored if adaptation leads to unacceptable behavior. This principle
is especially important in safety-critical and regulated domains, where failure
recovery must be provable and rapid.

In decentralized or federated learning contexts, communication efÏciency
becomes a first-order design constraint. Compression techniques such as quan-
tized gradient updates, sparsified parameter sets, and selective model trans-
mission must be employed to enable scalable coordination across large, hetero-
geneous fleets of devices without overwhelming bandwidth or energy budgets
(Konecný et al. 2016).

Moreover, when personalization is required, systems should aim for localized
adaptation wherever possible. Restricting updates to lightweight components,
including final classification heads or modular adapters, constrains the risk of
catastrophic forgetting, reduces memory overhead, and accelerates adaptation
without destabilizing core model representations.

Finally, throughout the system lifecycle, privacy and compliance require-
ments must be architected into adaptation pipelines. Mechanisms to support
user consent, data minimization, retention limits, and the right to erasure must
be considered fundamental aspects of model design, not post-hoc adjustments.
Meeting regulatory obligations at scale demands that on-device learning work-
flows align inherently with principles of auditable autonomy.

The flowchart in Figure 14.8 summarizes key decision points in designing
practical, scalable, and resilient on-device learning systems.

14.8 Challenges
While on-device learning holds significant promise for enabling adaptive, pri-
vate, and efÏcient machine learning at the edge, its practical deployment in-
troduces a range of challenges that extend beyond algorithm design. Unlike
conventional centralized systems, where training occurs in controlled environ-
ments with uniform hardware and curated datasets, edge systems must contend
with heterogeneity in devices, fragmentation in data, and the absence of cen-
tralized validation infrastructure. These factors give rise to new systems-level
tradeoffs and open questions concerning reliability, safety, and maintainability.
Moreover, regulatory and operational constraints complicate the deployment
of self-updating models in real-world applications. This section explores these
limitations, emphasizing the systemic barriers that must be addressed to make
on-device learning robust, scalable, and trustworthy.

14.8.0.1 Heterogeneity
Federated and on-device learning systems must operate across a vast and di-
verse ecosystem of devices, ranging from smartphones and wearables to IoT
sensors and microcontrollers. This heterogeneity spans multiple dimensions:
hardware capabilities, software stacks, network connectivity, and power avail-
ability. Unlike cloud-based systems, where environments can be standardized

14.8. Challenges 776

Figure 14.8: Decision flowchart for
designing practical on-device learn-
ing systems.

Start: Deploying

On-Device Learning

Need Heavy

Adaptation?

Use Bias-Only or

Lightweight Updates
Add Residual Adapters

or Small Heads

Sufficient Compute and

Energy?

Allow Partial or Full

Fine-Tuning

Is Data Valuable Across

Devices?

Use Federated Learning

+ Privacy Measures
Stay Localized and

Monitor Drift

No Yes

Yes

No

Yes No

and controlled, edge deployments encounter a wide distribution of system con-
figurations and constraints. These variations introduce significant complexity
in algorithm design, resource scheduling, and model deployment.

At the hardware level, devices differ in terms of memory capacity, processor
architecture (e.g., ARM Cortex-M vs. A-series), instruction set support (e.g.,
availability of SIMD or floating-point units), and the presence or absence of
AI accelerators. Some clients may possess powerful NPUs capable of running
small training loops, while others may rely solely on low-frequency CPUs with
minimal RAM. These differences affect the feasible size of models, the choice
of training algorithm, and the frequency of updates.

Software heterogeneity compounds the challenge. Devices may run different
versions of operating systems, kernel-level drivers, and runtime libraries. Some
environments support optimized ML runtimes like TensorFlow Lite Micro
or ONNX Runtime Mobile, while others rely on custom inference stacks or
restricted APIs. These discrepancies can lead to subtle inconsistencies in behav-
ior, especially when models are compiled differently or when floating-point
precision varies across platforms.

In addition to computational heterogeneity, devices exhibit variation in con-
nectivity and uptime. Some are intermittently connected, plugged in only
occasionally, or operate under strict bandwidth constraints. Others may have

Chapter 14. On-Device Learning 777

continuous power and reliable networking, but still prioritize user-facing re-
sponsiveness over background learning. These differences complicate the or-
chestration of coordinated learning and the scheduling of updates.

Finally, system fragmentation affects reproducibility and testing. With such a
wide range of execution environments, it is difÏcult to ensure consistent model
behavior or to debug failures reliably. This makes monitoring, validation,
and rollback mechanisms more critical—but also more difÏcult to implement
uniformly across the fleet.

Consider a federated learning deployment for mobile keyboards. A high-end
smartphone might feature 8 GB of RAM, a dedicated AI accelerator, and contin-
uous Wi-Fi access. In contrast, a budget device may have just 2 GB of RAM, no
hardware acceleration, and rely on intermittent mobile data. These disparities
influence how long training runs can proceed, how frequently models can be
updated, and even whether training is feasible at all. To support such a range,
the system must dynamically adjust training schedules, model formats, and
compression strategies—ensuring equitable model improvement across users
while respecting each device’s limitations.

14.8.0.2 Data Fragmentation
In centralized machine learning, data can be aggregated, shufÒed, and curated
to approximate independent and identically distributed (IID) samples—a key
assumption underlying many learning algorithms. In contrast, on-device and
federated learning systems must contend with highly fragmented and non-IID
data. Each device collects data specific to its user, context, and usage patterns.
These data distributions are often skewed, sparse, and dynamically shifting
over time.

From a statistical standpoint, the non-IID nature of on-device data leads
to challenges in both optimization and generalization. Gradients computed
on one device may conflict with those from another, slowing convergence
or destabilizing training. Local updates can cause models to overfit to the
idiosyncrasies of individual clients, reducing performance when aggregated
globally. Moreover, the diversity of data across clients complicates evaluation
and model validation: there is no single test set that reflects the true deployment
distribution.

The fragmentation also limits the representativeness of any single client’s
data. Many clients may observe only a narrow slice of the input space or task
distribution, making it difÏcult to learn robust or generalizable representations.
Devices might also encounter new classes or tasks not seen during central-
ized pretraining, requiring mechanisms for out-of-distribution detection and
continual adaptation.

These challenges demand algorithms that are robust to heterogeneity and
resilient to imbalanced participation. Techniques such as personalization layers,
importance weighting, and adaptive aggregation schemes attempt to mitigate
these issues, but there is no universally optimal solution. The degree and nature
of non-IID data varies widely across applications, making this one of the most
persistent and fundamental challenges in decentralized learning.

A common example of data fragmentation arises in speech recognition sys-
tems deployed on personal assistants. Each user exhibits a unique voice profile,

14.8. Challenges 778

accent, and speaking style, which results in significant differences across lo-
cal datasets. Some users may issue frequent, clearly enunciated commands,
while others speak infrequently or in noisy environments. These variations
cause device-specific gradients to diverge, especially when training wake-word
detectors or adapting language models locally.

In federated learning deployments for virtual keyboards, the problem is fur-
ther amplified. One user might primarily type in English, another in Hindi, and
a third may switch fluidly between multiple languages. The resulting training
data is highly non-IID—not only in language but also in vocabulary, phrasing,
and typing cadence. A global model trained on aggregated updates may de-
grade if it fails to capture these localized differences, highlighting the need
for adaptive, data-aware strategies that accommodate heterogeneity without
sacrificing collective performance.

14.8.0.3 Monitoring and Validation

Unlike centralized machine learning systems, where model updates can be
continuously evaluated against a held-out validation set, on-device learning
introduces a fundamental shift in visibility and observability. Once deployed,
models operate in highly diverse and often disconnected environments, where
internal updates may proceed without external monitoring. This creates sig-
nificant challenges for ensuring that model adaptation is both beneficial and
safe.

A core difÏculty lies in the absence of centralized validation data. In tradi-
tional workflows, models are trained and evaluated using curated datasets that
serve as proxies for deployment conditions. On-device learners, by contrast,
adapt in response to local inputs, which are rarely labeled and may not be sys-
tematically collected. As a result, the quality and direction of updates, whether
they enhance generalization or cause drift, are difÏcult to assess without inter-
fering with the user experience or violating privacy constraints.

The risk of model drift is especially pronounced in streaming settings, where
continual adaptation may cause a slow degradation in performance. For in-
stance, a voice recognition model that adapts too aggressively to background
noise may eventually overfit to transient acoustic conditions, reducing accuracy
on the target task. Without visibility into the evolution of model parameters or
outputs, such degradations can remain undetected until they become severe.

Mitigating this problem requires mechanisms for on-device validation and
update gating. One approach is to interleave adaptation steps with lightweight
performance checks—using proxy objectives or self-supervised signals to ap-
proximate model confidence (Y. Deng, Mokhtari, and Ozdaglar 2021). For
example, a keyword spotting system might track detection confidence across
recent utterances and suspend updates if confidence consistently drops below
a threshold. Alternatively, shadow evaluation can be employed, where multi-
ple model variants are maintained on the device and evaluated in parallel on
incoming data streams, allowing the system to compare the adapted model’s
behavior against a stable baseline.

Another strategy involves periodic checkpointing and rollback, where snap-
shots of the model state are saved before adaptation. If subsequent performance

Chapter 14. On-Device Learning 779

degrades, as determined by downstream metrics or user feedback, the system
can revert to a known good state. This approach has been used in health moni-
toring devices, where incorrect predictions could lead to user distrust or safety
concerns. However, it introduces storage and compute overhead, especially in
memory-constrained environments.

In some cases, federated validation offers a partial solution. Devices can
share anonymized model updates or summary statistics with a central server,
which aggregates them across users to identify global patterns of drift or failure.
While this preserves some degree of privacy, it introduces communication
overhead and may not capture rare or user-specific failures.

Ultimately, update monitoring and validation in on-device learning require
a rethinking of traditional evaluation practices. Instead of centralized test
sets, systems must rely on implicit signals, runtime feedback, and conservative
adaptation policies to ensure robustness. The absence of global observability
is not merely a technical limitation—it reflects a deeper systems challenge in
aligning local adaptation with global reliability.

14.8.0.4 Resource Management
On-device learning introduces new modes of resource contention that are not
present in conventional inference-only deployments. While many edge devices
are provisioned to run pretrained models efÏciently, they are rarely designed
with training workloads in mind. Local adaptation therefore competes for
scarce resources, including compute cycles, memory bandwidth, energy, and
thermal headroom, with other system processes and user-facing applications.

The most direct constraint is compute availability. Training involves addi-
tional forward and backward passes through the model, which can significantly
exceed the cost of inference. Even when only a small subset of parameters is
updated, for instance, in bias-only or head-only adaptation, backpropagation
must still traverse the relevant layers, triggering increased instruction counts
and memory trafÏc. On devices with shared compute units (e.g., mobile SoCs
or embedded CPUs), this demand can delay interactive tasks, reduce frame
rates, or impair sensor processing.

Energy consumption compounds this problem. Adaptation typically in-
volves sustained computation over multiple input samples, which taxes battery-
powered systems and may lead to rapid energy depletion. For instance, per-
forming a single epoch of adaptation on a microcontroller-class device can
consume several millijoules—an appreciable fraction of the energy budget for
a duty-cycled system operating on harvested power. This necessitates careful
scheduling, such that learning occurs only during idle periods, when energy
reserves are high and user latency constraints are relaxed.

From a memory perspective, training incurs higher peak usage than inference,
due to the need to cache intermediate activations, gradients, and optimizer state
(Ji Lin et al. 2020). These requirements may exceed the static memory footprint
anticipated during model deployment, particularly when adaptation involves
multiple layers or gradient accumulation. In highly constrained systems, for
example, systems with less than 512 KB of RAM, this may preclude certain
types of adaptation altogether, unless additional optimization techniques (e.g.,
checkpointing or low-rank updates) are employed.

14.8. Challenges 780

15 Cloudlets: Smaller-scale cloud
datacenters located at the edge of
the internet to decrease latency for
mobile and wearable devices.

These resource demands must also be balanced against quality of service
(QoS) goals. Users expect edge devices to respond reliably and consistently,
regardless of whether learning is occurring in the background. Any observable
degradation, including dropped audio in a wake-word detector or lag in a wear-
able display, can erode user trust. As such, many systems adopt opportunistic
learning policies, where adaptation is suspended during foreground activity
and resumed only when system load is low.

In some deployments, adaptation is further gated by cost constraints imposed
by networked infrastructure. For instance, devices may ofÒoad portions of the
learning workload to nearby gateways or cloudlets15, introducing bandwidth
and communication trade-offs. These hybrid models raise additional ques-
tions of task placement and scheduling: should the update occur locally, or be
deferred until a high-throughput link is available?

In summary, the cost of on-device learning is not solely measured in FLOPs
or memory usage. It manifests as a complex interplay of system load, user
experience, energy availability, and infrastructure capacity. Addressing these
challenges requires co-design across algorithmic, runtime, and hardware layers,
ensuring that adaptation remains unobtrusive, efÏcient, and sustainable under
real-world constraints.

14.8.0.5 Deployment Risks

The deployment of adaptive models on edge devices introduces challenges
that extend beyond technical feasibility. In domains where compliance, au-
ditability, and regulatory approval are necessary, including healthcare, finance,
and safety-critical systems, on-device learning poses a fundamental tension
between system autonomy and control.

In traditional machine learning pipelines, all model updates are centrally
managed, versioned, and validated. The training data, model checkpoints,
and evaluation metrics are typically recorded in reproducible workflows that
support traceability. When learning occurs on the device itself, however, this
visibility is lost. Each device may independently evolve its model parameters,
influenced by unique local data streams that are never observed by the developer
or system maintainer.

This autonomy creates a validation gap. Without access to the input data
or the exact update trajectory, it becomes difÏcult to verify that the learned
model still adheres to its original specification or performance guarantees. This
is especially problematic in regulated industries, where certification depends
on demonstrating that a system behaves consistently across defined opera-
tional boundaries. A device that updates itself in response to real-world usage
may drift outside those bounds, triggering compliance violations without any
external signal.

Moreover, the lack of centralized oversight complicates rollback and failure
recovery. If a model update degrades performance, it may not be immediately
detectable—particularly in ofÒine scenarios or systems without telemetry. By
the time failure is observed, the system’s internal state may have diverged
significantly from any known checkpoint, making diagnosis and recovery more
complex than in static deployments. This necessitates robust safety mecha-

Chapter 14. On-Device Learning 781

16 System designs that employ
two separate models, typically to en-
hance reliability and safety by pro-
viding a fallback.

nisms, such as conservative update thresholds, rollback caches, or dual-model
architectures16 that retain a verified baseline.

In addition to compliance challenges, on-device learning introduces new
security vulnerabilities. Because model adaptation occurs locally and relies on
device-specific, potentially untrusted data streams, adversaries may attempt
to manipulate the learning process, by tampering with stored data, such as
replay buffers, or by injecting poisoned examples during adaptation, to degrade
model performance or introduce vulnerabilities. Furthermore, any locally
stored adaptation data, such as feature embeddings or few-shot examples, must
be secured against unauthorized access to prevent unintended information
leakage.

Maintaining model integrity over time is particularly difÏcult in decentralized
settings, where central monitoring and validation are limited. Autonomous
updates could, without external visibility, cause models to drift into unsafe or
biased states. These risks are compounded by compliance obligations such as
the GDPR’s right to erasure: if user data subtly influences a model through
adaptation, tracking and reversing that influence becomes complex.

The security and integrity of self-adapting models, particularly at the edge,
pose critical open challenges. A comprehensive treatment of these threats and
corresponding mitigation strategies, including attack models and edge-specific
defenses, is presented in Chapter 15: Security and Privacy.

Privacy regulations also interact with on-device learning in nontrivial ways.
While local adaptation can reduce the need to transmit sensitive data, it may still
require storage and processing of personal information, including sensor traces
or behavioral logs, on the device itself. Depending on jurisdiction, this may
invoke additional requirements for data retention, user consent, and auditability.
Systems must be designed to satisfy these requirements without compromising
adaptation effectiveness, which often involves encrypting stored data, enforcing
retention limits, or implementing user-controlled reset mechanisms.

Lastly, the emergence of edge learning raises open questions about account-
ability and liability (Brakerski et al. 2022). When a model adapts autonomously,
who is responsible for its behavior? If an adapted model makes a faulty deci-
sion, for instance, misdiagnosing a health condition or misinterpreting a voice
command, the root cause may lie in local data drift, poor initialization, or in-
sufÏcient safeguards. Without standardized mechanisms for capturing and
analyzing these failure modes, responsibility may be difÏcult to assign, and
regulatory approval harder to obtain.

Addressing these deployment and compliance risks requires new tooling,
protocols, and design practices that support auditable autonomy—the ability
of a system to adapt in place while still satisfying external requirements for
traceability, reproducibility, and user protection. As on-device learning becomes
more prevalent, these challenges will become central to both system architecture
and governance frameworks.

14.8.0.6 Challenges Summary

Designing on-device learning systems involves navigating a complex land-
scape of technical and practical constraints. While localized adaptation enables

14.9. Conclusion 782

personalization, privacy, and responsiveness, it also introduces a range of chal-
lenges that span hardware heterogeneity, data fragmentation, observability,
and regulatory compliance.

System heterogeneity complicates deployment and optimization by intro-
ducing variation in compute, memory, and runtime environments. Non-IID
data distributions challenge learning stability and generalization, especially
when models are trained on-device without access to global context. The ab-
sence of centralized monitoring makes it difÏcult to validate updates or detect
performance regressions, and training activity must often compete with core
device functionality for energy and compute. Finally, post-deployment learning
introduces complications in model governance, from auditability and rollback
to privacy assurance.

These challenges are not isolated—they interact in ways that influence the
viability of different adaptation strategies. Table 14.4 summarizes the primary
challenges and their implications for ML systems deployed at the edge.

Table 14.4: Challenges in on-device learning and their implications for system
design and deployment.

Challenge Root Cause System-Level Implications

System Heterogeneity Diverse hardware, software, and
toolchains

Limits portability; requires
platform-specific tuning

Non-IID and Fragmented
Data

Localized, user-specific data distributions Hinders generalization; increases risk
of drift

Limited Observability and
Feedback

No centralized testing or logging Makes update validation and
debugging difÏcult

Resource Contention and
Scheduling

Competing demands for memory,
compute, and battery

Requires dynamic scheduling and
budget-aware learning

Deployment and
Compliance Risk

Learning continues post-deployment Complicates model versioning,
auditing, and rollback

14.9 Conclusion
On-device learning is a major shift in the design and operation of machine
learning systems. Rather than relying exclusively on centralized training and
static model deployment, this paradigm enables systems to adapt dynamically
to local data and usage conditions. This shift is motivated by a confluence of
factors—ranging from the need for personalization and privacy preservation
to latency constraints and infrastructure efÏciency. However, it also introduces
a new set of challenges tied to the constrained nature of edge computing plat-
forms.

Throughout this chapter, we explored the architectural and algorithmic strate-
gies that make on-device learning feasible under tight compute, memory, en-
ergy, and data constraints. We began by establishing the motivation for moving
learning to the edge, followed by a discussion of the system-level limitations
that shape practical design choices. A core insight is that no single solution suf-
fices across all use cases. Instead, effective on-device learning systems combine
multiple techniques: minimizing the number of trainable parameters, reducing
runtime costs, leveraging memory-based adaptation, and compressing data
representations for efÏcient supervision.

Chapter 14. On-Device Learning 783

We also examined federated learning as a key enabler of decentralized model
refinement, particularly when coordination across many heterogeneous devices
is required. While federated approaches provide strong privacy guarantees and
infrastructure scalability, they introduce new concerns around client scheduling,
communication efÏciency, and personalization—all of which must be addressed
to ensure robust real-world deployments.

Finally, we turned a critical eye toward the limitations of on-device learning,
including system heterogeneity, non-IID data distributions, and the absence of
reliable evaluation mechanisms in the field. These challenges underscore the
importance of co-designing learning algorithms with hardware, runtime, and
privacy constraints in mind.

As machine learning continues to expand into mobile, embedded, and wear-
able environments, the ability to adapt locally, while ensuring responsibility,
efÏciency, and reliability, will be essential to the next generation of intelligent
systems.

14.10 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 15

Security & Privacy

Figure 15.1: DALL·E 3 Prompt: An
illustration on privacy and security in
machine learning systems. The image
shows a digital landscape with a net-
work of interconnected nodes and data
streams, symbolizing machine learning
algorithms. In the foreground, there’s
a large lock superimposed over the net-
work, representing privacy and secu-
rity. The lock is semi-transparent, al-
lowing the underlying network to be
partially visible. The background fea-
tures binary code and digital encryption
symbols, emphasizing the theme of cy-
bersecurity. The color scheme is a mix
of blues, greens, and grays, suggesting
a high-tech, digital environment.

Purpose

What principles guide the protection of machine learning systems, and how do security
and privacy requirements shape system architecture?

Protection mechanisms are a fundamental dimension of modern AI system
design. Security considerations expose critical patterns for safeguarding data,
models, and infrastructure while sustaining operational effectiveness. Imple-
menting defensive strategies reveals inherent trade-offs between protection,
performance, and usability—trade-offs that influence architectural decisions
throughout the AI lifecycle. Understanding these dynamics is essential for
creating trustworthy systems, grounding the principles needed to preserve
privacy and defend against adversarial threats while maintaining functionality
in production environments.

785

15.1. Overview 786

L� Learning Objectives

• Identify key security and privacy risks in machine learning systems.
• Understand how to design models with security and privacy in

mind.
• Describe methods for securing model deployment and access.
• Explain strategies for monitoring and defending systems at run-

time.
• Recognize the role of hardware in building trusted ML infrastruc-

ture.
• Apply a layered approach to defending machine learning systems.

15.1 Overview
Machine learning systems, like all computational systems, must be designed
not only for performance and accuracy but also for security and privacy. These
concerns shape the architecture and operation of ML systems across their
lifecycle—from data collection and model training to deployment and user
interaction. While traditional system security focuses on software vulnerabil-
ities, network protocols, and hardware defenses, machine learning systems
introduce additional and unique attack surfaces. These include threats to the
data that fuels learning, the models that encode behavior, and the infrastructure
that serves predictions.

Security and privacy mechanisms in ML systems serve roles analogous to
trust and access control layers in classical computing. Just as operating systems
enforce user permissions and protect resource boundaries, ML systems must
implement controls that safeguard sensitive data, defend proprietary models,
and mitigate adversarial manipulation. These mechanisms span software,
hardware, and organizational layers, forming a critical foundation for system
reliability and trustworthiness.

Although closely related, security and privacy address distinct aspects of
protection. Security focuses on ensuring system integrity and availability in
the presence of adversaries. Privacy, by contrast, emphasizes the control and
protection of sensitive information, even in the absence of active attacks. These
concepts often interact, but they are not interchangeable. To effectively design
and evaluate defenses for ML systems, it is essential to understand how these
goals differ, how they reinforce one another, and what distinct mechanisms
they entail.

Security and privacy often function as complementary forces. Security pre-
vents unauthorized access and protects system behavior, while privacy mea-
sures limit the exposure of sensitive information. Their synergy is essential:
strong security supports privacy by preventing data breaches, while privacy-
preserving techniques reduce the attack surface available to adversaries. How-
ever, achieving robust protection on both fronts often introduces trade-offs.
Defensive mechanisms may incur computational overhead, increase system

Chapter 15. Security & Privacy 787

complexity, or impact usability. Designers must carefully balance these costs
against protection goals, guided by an understanding of threats, system con-
straints, and risk tolerance.

The landscape of security and privacy challenges in ML systems continues
to evolve. High-profile incidents such as model extraction attacks, data leakage
from generative models, and hardware-level vulnerabilities have underscored
the need for comprehensive and adaptive defenses. These solutions must
address not only technical threats, but also regulatory, ethical, and operational
requirements across cloud, edge, and embedded deployments.

As this chapter progresses, we will examine the threats facing machine learn-
ing systems, the defensive strategies available, and the trade-offs involved in
deploying them in practice. A clear understanding of these principles is essen-
tial for building trustworthy systems that operate reliably in adversarial and
privacy-sensitive environments.

15.2 Definitions and Distinctions
Security and privacy are core concerns in machine learning system design, but
they are often misunderstood or conflated. While both aim to protect systems
and data, they do so in different ways, address different threat models, and
require distinct technical responses. For ML systems, clearly distinguishing
between the two helps guide the design of robust and responsible infrastructure.

15.2.1 Security Defined
Security in machine learning focuses on defending systems from adversar-
ial behavior. This includes protecting model parameters, training pipelines,
deployment infrastructure, and data access pathways from manipulation or
misuse.

�� Security Definition

Security in machine learning systems is the protection of data, models,
and infrastructure from unauthorized access, manipulation, or disrup-
tion. It spans the design and implementation of defensive mechanisms that
protect against data poisoning, model theft, adversarial manipulation,
and system-level vulnerabilities. Security mechanisms ensure the in-
tegrity, confidentiality, and availability of machine learning services across
development, deployment, and operational environments.

Example: A facial recognition system deployed in public transit infrastructure
may be targeted with adversarial inputs that cause it to misidentify individuals
or fail entirely. This is a runtime security vulnerability that threatens both
accuracy and system availability.

15.2.2 Privacy Defined
Privacy focuses on limiting the exposure and misuse of sensitive information
within ML systems. This includes protecting training data, inference inputs,

15.2. Definitions and Distinctions 788

and model outputs from leaking personal or proprietary information—even
when systems operate correctly and no explicit attack is taking place.

�� Privacy Definition

Privacy in machine learning systems is the protection of sensitive informa-
tion from unauthorized disclosure, inference, or misuse. It spans the
design and implementation of methods that reduce the risk of exposing
personal, proprietary, or regulated data while enabling machine learning
systems to operate effectively. Privacy mechanisms help preserve confi-
dentiality and control over data usage across development, deployment,
and operational environments.

Example: A language model trained on medical transcripts may inadvertently
memorize snippets of patient conversations. If a user later triggers this content
through a public-facing chatbot, it represents a privacy failure—even in the
absence of an attacker.

15.2.3 Security versus Privacy
Although they intersect in some areas (e.g., encrypted storage supports both),
security and privacy differ in their objectives, threat models, and typical miti-
gation strategies. Table 15.1 below summarizes these distinctions in the context
of machine learning systems.

Table 15.1: How security and privacy concerns manifest differently in machine
learning systems. Security focuses on protecting against active
threats that seek to manipulate or disrupt system behavior, while pri-
vacy emphasizes safeguarding sensitive information from exposure,
even in benign operational contexts.

Aspect Security Privacy

Primary Goal Prevent unauthorized access or
disruption

Limit exposure of sensitive information

Threat Model Adversarial actors (external or internal) Honest-but-curious observers or passive
leaks

Typical Concerns Model theft, poisoning, evasion attacks Data leakage, re-identification,
memorization

Example Attack Adversarial inputs cause
misclassification

Model inversion reveals training data

Representative Defenses Access control, adversarial training Differential privacy, federated learning
Relevance to Regulation Emphasized in cybersecurity standards Central to data protection laws (e.g.,

GDPR)

15.2.4 Interactions and Trade-offs
Security and privacy are deeply interrelated but not interchangeable. A secure
system helps maintain privacy by restricting unauthorized access to models
and data. At the same time, privacy-preserving designs can improve security
by reducing the attack surface—e.g., minimizing the retention of sensitive data
reduces the risk of exposure if a system is compromised.

Chapter 15. Security & Privacy 789

However, they can also be in tension. Techniques like differential privacy
reduce memorization risks but may lower model utility. Encryption enhances
security but may obscure transparency and auditability, complicating privacy
compliance.

In machine learning systems, designers must reason about these trade-offs
holistically. Systems that serve sensitive domains, including healthcare, finance,
and public safety, must simultaneously protect against both misuse (security)
and overexposure (privacy). Understanding the boundaries between these con-
cerns is key to building systems that are not only performant, but trustworthy
and legally compliant.

15.3 Historical Incidents
While the security of machine learning systems introduces new technical chal-
lenges, valuable lessons can be drawn from well-known security breaches across
a range of computing systems. These incidents demonstrate how weaknesses
in system design, in industrial control systems, connected vehicles, or con-
sumer devices, can lead to widespread, and sometimes physical, consequences.
Although the examples discussed in this section do not all involve machine
learning directly, they provide critical insights into the importance of designing
secure systems. These lessons apply broadly to machine learning applications
deployed across cloud, edge, and embedded environments.

15.3.1 Stuxnet
In 2010, security researchers discovered a highly sophisticated computer worm
later named Stuxnet, which targeted industrial control systems used in Iran’s
Natanz nuclear facility (Farwell and Rohozinski 2011). Stuxnet exploited four
previously unknown “zero-day” vulnerabilities in Microsoft Windows, allow-
ing it to spread undetected through both networked and isolated systems.

Unlike typical malware designed to steal information or perform espionage,
Stuxnet was engineered to cause physical damage. Its objective was to disrupt
uranium enrichment by sabotaging the centrifuges used in the process. Despite
the facility being air-gapped from external networks, the malware is believed
to have entered the system via an infected USB device, demonstrating how
physical access can compromise even isolated environments.

Stuxnet represents a landmark in cybersecurity, revealing how malicious
software can bridge the digital and physical worlds to manipulate industrial
infrastructure. It specifically targeted programmable logic controllers (PLCs)
responsible for automating electromechanical processes, such as controlling the
speed of centrifuges. By exploiting vulnerabilities in the Windows operating
system and the Siemens Step7 software used to program the PLCs, Stuxnet
achieved highly targeted, real-world disruption.

While Stuxnet did not target machine learning systems directly, its relevance
extends to any system where software interacts with physical processes. Ma-
chine learning is increasingly integrated into industrial control, robotics, and
cyber-physical systems, making these lessons applicable to the security of mod-
ern ML deployments. Figure 15.2 illustrates the operation of Stuxnet in greater
detail.

https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/200661/Cyber-Reports-2017-04.pdf
https://en.wikipedia.org/wiki/Zero-day_%28computing%29

15.3. Historical Incidents 790

Figure 15.2: Stuxnet explained.
Source: IEEE Spectrum

15.3.2 Jeep Cherokee Hack

In 2015, security researchers publicly demonstrated a remote cyberattack on a
Jeep Cherokee that exposed critical vulnerabilities in automotive system design
(Miller and Valasek 2015; Miller 2019). Conducted as a controlled experiment,
the researchers exploited a vulnerability in the vehicle’s Uconnect entertainment
system, which was connected to the internet via a cellular network. By gaining
remote access to this system, they were able to send commands that affected the
vehicle’s engine, transmission, and braking systems—without physical access
to the car.

This demonstration served as a wake-up call for the automotive industry. It
highlighted the risks posed by the growing connectivity of modern vehicles.
Traditionally isolated automotive control systems, such as those managing steer-
ing and braking, were shown to be vulnerable when exposed through externally
accessible software interfaces. The ability to remotely manipulate safety-critical
functions raised serious concerns about passenger safety, regulatory oversight,
and industry best practices.

çĖ Important 8: Jeep Cherokee Hack

Watch on YouTube
Jeep Cherokee Hack

Scan with your phone
to watch the video

TV Watch on YouTube

The incident also led to a recall of over 1.4 million vehicles to patch the
vulnerability, highlighting the need for manufacturers to prioritize cyberse-
curity in their designs. The National Highway TrafÏc Safety Administration
(NHTSA) issued guidelines for automakers to improve vehicle cybersecurity,
including recommendations for secure software development practices and
incident response protocols.

https://www.youtube.com/watch?v=MK0SrxBC1xs&ab_channel=WIRED
https://www.youtube.com/watch?v=MK0SrxBC1xs&ab_channel=WIRED

Chapter 15. Security & Privacy 791

The automotive industry has since made significant strides in addressing
these vulnerabilities, but the incident serves as a cautionary tale for all sectors
that rely on connected systems. As machine learning becomes more prevalent in
safety-critical applications, the lessons learned from the Jeep Cherokee hack will
be essential for ensuring the security and reliability of future ML deployments.

Although this incident did not involve machine learning, the architectural
patterns it exposed are highly relevant to ML system security. Modern vehicles
increasingly rely on machine learning for driver-assistance, navigation, and
in-cabin intelligence, which include features that operate in conjunction with
connected software services. This integration expands the potential attack
surface if systems are not properly isolated or secured. The Jeep Cherokee
hack highlights the need for defense-in-depth strategies, secure software up-
dates, authenticated communications, and rigorous security testing—principles
that apply broadly to machine learning systems deployed across automotive,
industrial, and consumer environments.

As machine learning continues to be integrated into connected and safety-
critical applications, the lessons from the Jeep Cherokee hack remain highly
relevant. They emphasize that securing externally connected software is not
just a best practice but a necessity for protecting the integrity and safety of
machine learning-enabled systems.

15.3.3 Mirai Botnet
In 2016, the Mirai botnet emerged as one of the most disruptive distributed
denial-of-service (DDoS) attacks in internet history (Antonakakis et al. 2017).
The botnet infected thousands of networked devices, including digital cameras,
DVRs, and other consumer electronics. These devices, often deployed with
factory-default usernames and passwords, were easily compromised by the
Mirai malware and enlisted into a large-scale attack network.

The Mirai botnet was used to overwhelm major internet infrastructure providers,
disrupting access to popular online services across the United States and be-
yond. The scale of the attack demonstrated how vulnerable consumer and
industrial devices can become a platform for widespread disruption when
security is not prioritized in their design and deployment.

çĖ Important 9: Mirai Botnet
Watch on YouTube

Mirai Botnet

Scan with your phone
to watch the video

TV Watch on YouTube

While the devices exploited by Mirai did not include machine learning com-
ponents, the architectural patterns exposed by this incident are increasingly rel-
evant as machine learning expands into edge computing and Internet of Things
(IoT) devices. Many ML-enabled products, such as smart cameras, voice assis-
tants, and edge analytics platforms, share similar deployment characteristics—
operating on networked devices with limited hardware resources, often man-
aged at scale.

The Mirai botnet highlights the critical importance of basic security hygiene,
including secure credential management, authenticated software updates, and

https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://www.youtube.com/watch?v=1pywzRTJDaY
https://www.youtube.com/watch?v=1pywzRTJDaY

15.4. Secure Design Priorities 792

network access control. Without these protections, even powerful machine
learning models can become part of larger attack infrastructures if deployed on
insecure hardware.

As machine learning continues to move beyond centralized data centers into
distributed and networked environments, the lessons from the Mirai botnet
remain highly relevant. They emphasize the need for secure device provision-
ing, ongoing vulnerability management, and industry-wide coordination to
prevent large-scale exploitation of ML-enabled systems.

15.4 Secure Design Priorities
The historical breaches described earlier reveal how weaknesses in system
design, whether in hardware, software, or network infrastructure, can lead
to widespread and often physical consequences. While these incidents did
not directly target machine learning systems, they offer valuable insights into
architectural and operational patterns that increasingly characterize modern
ML deployments. These lessons point to three overarching areas of concern:
device-level security, system-level isolation and control, and protection against
large-scale network exploitation.

15.4.1 Device-Level Security
The Mirai botnet exemplifies how large-scale exploitation of poorly secured
devices can lead to significant disruption. This attack succeeded by exploiting
common weaknesses such as default usernames and passwords, unsecured
firmware update mechanisms, and unencrypted communications. While often
associated with consumer-grade IoT products, these vulnerabilities are increas-
ingly relevant to machine learning systems, particularly those deployed at the
edge (Antonakakis et al. 2017).

Edge ML devices, including smart cameras, industrial controllers, and wear-
able health monitors, typically rely on lightweight embedded hardware like
ARM-based processors running minimal operating systems. These systems are
designed for low-power, distributed operation but often lack the comprehensive
security features found in larger computing platforms. As these devices take
on more responsibility for local data processing and real-time decision-making,
they become attractive targets for remote compromise.

A compromised population of such devices can be aggregated into a botnet,
similar to Mirai, and leveraged for large-scale attacks. Beyond denial-of-service
threats, attackers could use these ML-enabled devices to exfiltrate sensitive data,
interfere with model execution, or manipulate system outputs. Without strong
device-level protections, which include secure boot processes, authenticated
firmware updates, and encrypted communications, edge ML deployments
remain vulnerable to being turned into platforms for broader system disruption.

15.4.2 System-Level Isolation
The Jeep Cherokee hack highlighted the risks that arise when externally con-
nected software services are insufÏciently isolated from safety-critical system
functions. By exploiting a vulnerability in the vehicle’s Uconnect entertainment

Chapter 15. Security & Privacy 793

system, researchers were able to remotely manipulate core control functions
such as steering and braking. This incident demonstrated that network connec-
tivity, if not carefully managed, can expose critical system pathways to external
threats.

Machine learning systems increasingly operate in similar contexts, partic-
ularly in domains such as automotive safety, healthcare, and industrial au-
tomation. Modern vehicles, for example, integrate machine learning models for
driver-assistance, autonomous navigation, and sensor fusion. These models run
alongside connected software services that provide infotainment, navigation
updates, and remote diagnostics. Without strong system-level isolation, attack-
ers can exploit these externally facing services to gain access to safety-critical
ML components, expanding the overall attack surface.

The automotive industry’s response to the Jeep Cherokee incident, which
includes large-scale recalls, over-the-air software patches, and the develop-
ment of industry-wide cybersecurity standards through organizations such as
Auto-ISAC and the National Highway TrafÏc Safety Administration (NHTSA),
provides a valuable example of how industries can address emerging ML secu-
rity risks.

Similar isolation principles apply to other machine learning deployments,
including medical devices that analyze patient data in real time, industrial
controllers that optimize manufacturing processes, and infrastructure systems
that manage power grids or water supplies. Securing these systems requires
architectural compartmentalization of subsystems, authenticated communica-
tion channels, and validated update mechanisms. These measures help prevent
external actors from escalating access or manipulating ML-driven decision-
making in safety-critical environments.

15.4.3 Large-Scale Network Exploitation
The Stuxnet attack demonstrated the ability of targeted cyber operations to
cross from digital systems into the physical world, resulting in real-world
disruption and damage. By exploiting software vulnerabilities in industrial
control systems, the attack caused mechanical failures in uranium enrichment
equipment (Farwell and Rohozinski 2011). While Stuxnet did not target machine
learning systems directly, it revealed critical risks that apply broadly to cyber-
physical systems—particularly those involving supply chain vulnerabilities,
undisclosed (zero-day) exploits, and techniques for bypassing network isolation,
such as air gaps.

As machine learning increasingly powers decision-making in manufacturing,
energy management, robotics, and other operational technologies, similar risks
emerge. ML-based controllers that influence physical processes, including
adjusting production lines, managing industrial robots, and optimizing power
distribution, represent new attack surfaces. Compromising these models or the
systems that deploy them can result in physical harm, operational disruption,
or strategic manipulation of critical infrastructure.

Stuxnet’s sophistication highlights the potential for state-sponsored or well-
resourced adversaries to target ML-driven systems as part of larger geopolitical
or economic campaigns. As machine learning takes on more influential roles in

15.5. Threats to ML Models 794

controlling real-world systems, securing these deployments against both cyber
and physical threats becomes essential for ensuring operational resilience and
public safety.

15.4.4 Toward Secure Design
Collectively, these incidents illustrate that security must be designed into ma-
chine learning systems from the outset. Protecting such systems requires at-
tention to multiple layers of the stack, including model-level protections to
defend against attacks such as model theft, adversarial manipulation, and
data leakage; data pipeline security to ensure the confidentiality, integrity, and
governance of training and inference data across cloud, edge, and embedded
environments; system-level isolation and access control to prevent external
interfaces from compromising model execution or manipulating safety-critical
outputs; secure deployment and update mechanisms to safeguard runtime
environments from tampering or exploitation; and continuous monitoring and
incident response capabilities to detect and recover from breaches in dynamic,
distributed deployments.

These priorities reflect the lessons drawn from past incidents—emphasizing
the need to protect device-level resources, isolate critical system functions,
and defend against large-scale exploitation. The remainder of this chapter
builds on these principles, beginning with a closer examination of threats spe-
cific to machine learning models and data. It then expands the discussion to
hardware-level vulnerabilities and the unique considerations of embedded ML
systems. Finally, it explores defensive strategies, including privacy-preserving
techniques, secure hardware mechanisms, and system-level design practices,
forming a foundation for building trustworthy machine learning systems capa-
ble of withstanding both known and emerging threats.

15.5 Threats to ML Models
Building on the lessons from historical security incidents, we now turn to
threats that are specific to machine learning models. These threats span the
entire ML lifecycle, ranging from training-time manipulations to inference-time
evasion, and fall into three broad categories: threats to model confidentiality
(e.g., model theft), threats to training integrity (e.g., data poisoning), and threats
to inference robustness (e.g., adversarial examples). Each category targets
different vulnerabilities and requires distinct defensive strategies.

Three primary threats stand out in this context: model theft, where adver-
saries steal proprietary models and the sensitive knowledge they encode; data
poisoning, where attackers manipulate training data to corrupt model behavior;
and adversarial attacks, where carefully crafted inputs deceive models into
making incorrect predictions. Each of these threats exploits different stages
of the machine learning lifecycle—from data ingestion and model training to
deployment and inference.

We begin with model theft, examining how attackers extract or replicate
models to undermine economic value and privacy. As shown in Figure 15.3,
model theft typically targets the deployment stage of the machine learning

Chapter 15. Security & Privacy 795

lifecycle, where trained models are exposed through APIs, on-device engines,
or serialized files. This threat sits alongside others, including data poisoning
during training and adversarial attacks during inference, that together span the
full pipeline from data collection to real-time prediction. Understanding the
lifecycle positioning of each threat helps clarify their distinct attack surfaces
and appropriate defenses.

Figure 15.3: Key security and pri-
vacy threats mapped to stages of the
machine learning lifecycle.

Data Collection

Training

Deployment

Inference

Backdoors
Label

Manipulation

Model Theft Model Inversion

Adversarial

Examples
Membership

Inference

Privacy Leakage Data Poisoning

Lifecycle

Machine learning models are not solely passive targets of attack; in some
cases, they can themselves be employed as components of an attack strategy.
Pretrained models, particularly large generative or discriminative networks,
may be adapted to automate tasks such as adversarial example generation,
phishing content synthesis, or protocol subversion. Furthermore, open-source
or publicly accessible models can be fine-tuned for malicious purposes, in-
cluding impersonation, surveillance, or reverse-engineering of secure systems.
This dual-use potential necessitates a broader security perspective—one that
considers models not only as assets to defend but also as possible instruments
of attack.

15.5.1 Model Theft
Threats to model confidentiality arise when adversaries gain access to a trained
model’s parameters, architecture, or output behavior. These attacks can under-
mine the economic value of machine learning systems, enable competitors to
replicate proprietary functionality, or expose private information encoded in
model weights.

Such threats arise across a range of deployment settings, including public
APIs, cloud-hosted services, on-device inference engines, and shared model
repositories. Machine learning models may be vulnerable due to exposed
interfaces, insecure serialization formats, or insufÏcient access controls—factors
that create opportunities for unauthorized extraction or replication (Ateniese
et al. 2015).

15.5. Threats to ML Models 796

High-profile legal cases have highlighted the strategic and economic value
of machine learning models. For example, former Google engineer Anthony
Levandowski was accused of stealing proprietary designs from Waymo, includ-
ing critical components of its autonomous vehicle technology, before founding
a competing startup. Such cases illustrate the potential for insider threats to
bypass technical protections and gain access to sensitive intellectual property.

The consequences of model theft extend beyond economic loss. Stolen mod-
els can be used to extract sensitive information, replicate proprietary algorithms,
or enable further attacks. For instance, a competitor who obtains a stolen rec-
ommendation model from an e-commerce platform might gain insights into
customer behavior, business analytics, and embedded trade secrets. This knowl-
edge can also be used to conduct model inversion attacks, where an attacker
attempts to infer private details about the model’s training data (Fredrikson,
Jha, and Ristenpart 2015).

In a model inversion attack, the adversary queries the model through a legit-
imate interface, such as a public API, and observes its outputs. By analyzing
confidence scores or output probabilities, the attacker can optimize inputs to
reconstruct data resembling the model’s training set. For example, a facial recog-
nition model used for secure access could be manipulated to reveal statistical
properties of the employee photos on which it was trained. Similar vulnera-
bilities have been demonstrated in studies on the Netflix Prize dataset, where
researchers were able to infer individual movie preferences from anonymized
data (A. Narayanan and Shmatikov 2006).

Model theft can target two distinct objectives: extracting exact model prop-
erties, such as architecture and parameters, or replicating approximate model
behavior to produce similar outputs without direct access to internal repre-
sentations. Both forms of theft undermine the security and value of machine
learning systems, as explored in the following subsections.

These two attack paths are illustrated in Figure 15.4. In exact model theft,
the attacker gains access to the model’s internal components, including seri-
alized files, weights, and architecture definitions, and reproduces the model
directly. In contrast, approximate model theft relies on observing the model’s
input-output behavior, typically through a public API. By repeatedly querying
the model and collecting responses, the attacker trains a surrogate that mim-
ics the original model’s functionality. While the first approach compromises
the model’s internal design and training investment, the second threatens its
predictive value and can facilitate further attacks such as adversarial example
transfer or model inversion.

15.5.1.1 Exact Model Theft

Exact model property theft refers to attacks aimed at extracting the internal
structure and learned parameters of a machine learning model. These attacks
often target deployed models that are exposed through APIs, embedded in
on-device inference engines, or shared as downloadable model files on collabo-
ration platforms. Exploiting weak access control, insecure model packaging, or
unprotected deployment interfaces, attackers can recover proprietary model
assets without requiring full control of the underlying infrastructure.

https://www.nytimes.com/2017/02/23/technology/google-self-driving-waymo-uber-otto-lawsuit.html

Chapter 15. Security & Privacy 797

Figure 15.4: Two primary model
theft strategies: extracting internal
components versus replicating ex-
ternal behavior.

Access to public API

Send crafted queries

Record responses

Train surrogate model

Replicate predictions,

launch further attacks

Approximate Model Theft

Access to model file or

deployment artifact

Use or resell

proprietary IP

Extract parameters,

architectire, hyperparameters

Reconstruct original

model

Exact Model Theft

These attacks typically seek three types of information. The first is the model’s
learned parameters, such as weights and biases. By extracting these parameters,
attackers can replicate the model’s functionality without incurring the cost of
training. This replication allows them to benefit from the model’s performance
while bypassing the original development effort.

The second target is the model’s fine-tuned hyperparameters, including
training configurations such as learning rate, batch size, and regularization
settings. These hyperparameters significantly influence model performance,
and stealing them enables attackers to reproduce high-quality results with
minimal additional experimentation.

Finally, attackers may seek to reconstruct the model’s architecture. This
includes the sequence and types of layers, activation functions, and connec-
tivity patterns that define the model’s behavior. Architecture theft may be
accomplished through side-channel attacks, reverse engineering, or analysis of
observable model behavior. Revealing the architecture not only compromises
intellectual property but also gives competitors strategic insights into the design
choices that provide competitive advantage.

System designers must account for these risks by securing model serializa-
tion formats, restricting access to runtime APIs, and hardening deployment
pipelines. Protecting models requires a combination of software engineering
practices, including access control, encryption, and obfuscation techniques, to
reduce the risk of unauthorized extraction (Tramèr et al. 2016).

15.5.1.2 Approximate Model Theft

While some attackers seek to extract a model’s exact internal properties, others
focus on replicating its external behavior. Approximate model behavior theft
refers to attacks that attempt to recreate a model’s decision-making capabilities
without directly accessing its parameters or architecture. Instead, attackers ob-

15.5. Threats to ML Models 798

serve the model’s inputs and outputs to build a substitute model that performs
similarly on the same tasks.

This type of theft often targets models deployed as services, where the model
is exposed through an API or embedded in a user-facing application. By re-
peatedly querying the model and recording its responses, an attacker can train
their own model to mimic the behavior of the original. This process, often
called model distillation or knockoff modeling, enables attackers to achieve
comparable functionality without access to the original model’s proprietary
internals (Orekondy, Schiele, and Fritz 2019).

Attackers may evaluate the success of behavior replication in two ways. The
first is by measuring the level of effectiveness of the substitute model. This
involves assessing whether the cloned model achieves similar accuracy, preci-
sion, recall, or other performance metrics on benchmark tasks. By aligning the
substitute’s performance with that of the original, attackers can build a model
that is practically indistinguishable in effectiveness, even if its internal structure
differs.

The second is by testing prediction consistency. This involves checking
whether the substitute model produces the same outputs as the original model
when presented with the same inputs. Matching not only correct predictions
but also the original model’s mistakes can provide attackers with a high-fidelity
reproduction of the target model’s behavior. This is particularly concerning
in applications such as natural language processing, where attackers might
replicate sentiment analysis models to gain competitive insights or bypass
proprietary systems.

Approximate behavior theft is particularly challenging to defend against
in open-access deployment settings, such as public APIs or consumer-facing
applications. Limiting the rate of queries, detecting automated extraction
patterns, and watermarking model outputs are among the techniques that can
help mitigate this risk. However, these defenses must be balanced with usability
and performance considerations, especially in production environments.

One notable demonstration of approximate model theft focuses on extracting
internal components of black-box language models via public APIs. In their
paper, Carlini et al. (2024), researchers show how to reconstruct the final em-
bedding projection matrix of several OpenAI models, including ada, babbage,
and gpt-3.5-turbo, using only public API access. By exploiting the low-rank
structure of the output projection layer and making carefully crafted queries,
they recover the model’s hidden dimensionality and replicate the weight matrix
up to afÏne transformations.

While the attack does not reconstruct the full model, it reveals critical internal
architecture parameters and sets a precedent for future, deeper extractions. This
work demonstrated that even partial model theft poses risks to confidentiality
and competitive advantage, especially when model behavior can be probed
through rich API responses such as logit bias and log-probabilities.

Chapter 15. Security & Privacy 799

Table 15.2: Model theft results from Carlini et al. (2024). The table summarizes
the model sizes, number of queries required for dimension extrac-
tion, root mean square errors (RMS) for weight matrix extraction,
and estimated costs based on OpenAI’s API pricing.

Model

Size
(Dimension
Extraction)

Number of
Queries

RMS (Weight
Matrix Extraction) Cost (USD)

OpenAI ada 1024 ✓ < (2 �10^6) (5 �10^{-4}) $1 / $4
OpenAI babbage 2048 ✓ < (4 �10^6) (7 �10^{-4}) $2 / $12
OpenAI babbage-002 1536 ✓ < (4 �10^6) Not implemented $2 / $12
OpenAI
gpt-3.5-turbo-instruct

Not disclosed < (4 �10^7) Not implemented $200 / ~$2,000
(estimated)

OpenAI
gpt-3.5-turbo-1106

Not disclosed < (4 �10^7) Not implemented $800 / ~$8,000
(estimated)

As shown in their empirical evaluation, reproduced in Table 15.2, model
parameters could be extracted with root mean square errors as low as 10−4,
confirming that high-fidelity approximation is achievable at scale. These find-
ings raise important implications for system design, suggesting that innocuous
API features, like returning top-k logits, can serve as significant leakage vectors
if not tightly controlled.

15.5.1.3 Case Study: Tesla IP Theft

In 2018, Tesla filed a lawsuit against the self-driving car startup Zoox, alleging
that former Tesla employees had stolen proprietary data and trade secrets
related to Tesla’s autonomous driving technology. According to the lawsuit,
several employees transferred over 10 gigabytes of confidential files, including
machine learning models and source code, before leaving Tesla to join Zoox.

Among the stolen materials was a key image recognition model used for
object detection in Tesla’s self-driving system. By obtaining this model, Zoox
could have bypassed years of research and development, giving the company a
competitive advantage. Beyond the economic implications, there were concerns
that the stolen model could expose Tesla to further security risks, such as model
inversion attacks aimed at extracting sensitive data from the model’s training
set.

The Zoox employees denied any wrongdoing, and the case was ultimately
settled out of court. Nevertheless, the incident highlights the real-world risks of
model theft, particularly in industries where machine learning models represent
significant intellectual property. The theft of models not only undermines
competitive advantage but also raises broader concerns about privacy, safety,
and the potential for downstream exploitation.

This case demonstrates that model theft is not limited to theoretical attacks
conducted over APIs or public interfaces. Insider threats, supply chain vulner-
abilities, and unauthorized access to development infrastructure pose equally
serious risks to machine learning systems deployed in commercial environ-
ments.

https://storage.courtlistener.com/recap/gov.uscourts.nvd.131251/gov.uscourts.nvd.131251.1.0_1.pdf
https://zoox.com/

15.5. Threats to ML Models 800

15.5.2 Data Poisoning
Training integrity threats stem from the manipulation of data used to train
machine learning models. These attacks aim to corrupt the learning process
by introducing examples that appear benign but induce harmful or biased
behavior in the final model.

Data poisoning attacks are a prominent example, in which adversaries inject
carefully crafted data points into the training set to influence model behavior in
targeted or systemic ways (Biggio, Nelson, and Laskov 2012). Poisoned data may
cause a model to make incorrect predictions, degrade its generalization ability,
or embed failure modes that remain dormant until triggered post-deployment.

Data poisoning is a security threat because it involves intentional manipula-
tion of the training data by an adversary, with the goal of embedding vulnera-
bilities or subverting model behavior. These attacks are especially concerning in
applications where models retrain on data collected from external sources, in-
cluding user interactions, crowdsourced annotations, and online scraping, since
attackers can inject poisoned data without direct access to the training pipeline.
Even in more controlled settings, poisoning may occur through compromised
data storage, insider manipulation, or insecure data transfer processes.

From a security perspective, poisoning attacks vary depending on the at-
tacker’s level of access and knowledge. In white-box scenarios, the adversary
may have detailed insight into the model architecture or training process, en-
abling more precise manipulation. In contrast, black-box or limited-access
attacks exploit open data submission channels or indirect injection vectors.
Poisoning can target different stages of the ML pipeline, ranging from data
collection and preprocessing to labeling and storage, making the attack surface
both broad and system-dependent.

Poisoning attacks typically follow a three-stage process. First, the attacker
injects malicious data into the training set. These examples are often designed to
appear legitimate but introduce subtle distortions that alter the model’s learning
process. Second, the model trains on this compromised data, embedding the
attacker’s intended behavior. Finally, once the model is deployed, the attacker
may exploit the altered behavior to cause mispredictions, bypass safety checks,
or degrade overall reliability.

Formally, data poisoning can be viewed as a bilevel optimization problem,
where the attacker seeks to select poisoning data 𝐷𝑝 that maximizes the model’s
loss on a validation or target dataset 𝐷test. Let 𝐷 represent the original training
data. The attacker’s obj

max𝐷𝑝 ℒ(𝑓𝐷∪𝐷𝑝 ,𝐷test)
where 𝑓𝐷∪𝐷𝑝 is the model trained on the combined dataset. For targeted attacks,
this objective may focus on specific inputs 𝑥𝑡 and target labels 𝑦𝑡:

max𝐷𝑝 ℒ(𝑓𝐷∪𝐷𝑝 ,𝑥𝑡,𝑦𝑡)
This formulation captures the adversary’s goal of introducing carefully crafted

data points to manipulate the model’s decision boundaries.
For example, consider a trafÏc sign classification model trained to distinguish

between stop signs and speed limit signs. An attacker might inject a small

Chapter 15. Security & Privacy 801

number of stop sign images labeled as speed limit signs into the training data.
The attacker’s goal is to subtly shift the model’s decision boundary so that future
stop signs are misclassified as speed limit signs. In this case, the poisoning
data 𝐷𝑝 consists of mislabeled stop sign images, and the attacker’s objective
is to maximize the misclassification of legitimate stop signs 𝑥𝑡 as speed limit
signs 𝑦𝑡, following the targeted attack formulation above. Even if the model
performs well on other types of signs, the poisoned training process creates a
predictable and exploitable vulnerability.

Data poisoning attacks can be classified based on their objectives and scope of
impact. Availability attacks degrade overall model performance by introducing
noise or label flips that reduce accuracy across tasks. Targeted attacks manip-
ulate a specific input or class, leaving general performance intact but causing
consistent misclassification in select cases. Backdoor attacks embed hidden trig-
gers, which are often imperceptible patterns, that elicit malicious behavior only
when the trigger is present. Subpopulation attacks degrade performance on a
specific group defined by shared features, making them particularly dangerous
in fairness-sensitive applications.

A notable real-world example of a targeted poisoning attack was demon-
strated against Perspective, an online toxicity detection model (Hosseini et
al. 2017). By injecting synthetically generated toxic comments with subtle
misspellings and grammatical errors into the model’s training set, researchers
degraded its ability to detect harmful content. After retraining, the poisoned
model exhibited a significantly higher false negative rate, allowing offensive
language to bypass filters. This case illustrates how poisoned data can exploit
feedback loops in systems that rely on user-generated input, leading to re-
duced effectiveness over time and creating long-term vulnerabilities in content
moderation pipelines.

Mitigating data poisoning threats requires end-to-end security of the data
pipeline, encompassing collection, storage, labeling, and training. Preventa-
tive measures include input validation checks, integrity verification of training
datasets, and anomaly detection to flag suspicious patterns. In parallel, robust
training algorithms can limit the influence of mislabeled or manipulated data
by down-weighting or filtering out anomalous instances. While no single tech-
nique guarantees immunity, combining proactive data governance, automated
monitoring, and robust learning practices is essential for maintaining model
integrity in real-world deployments.

15.5.3 Adversarial Attacks

Inference robustness threats occur when attackers manipulate inputs at test time
to induce incorrect predictions. Unlike data poisoning, which compromises the
training process, these attacks exploit vulnerabilities in the model’s decision
surface during inference.

A central class of such threats is adversarial attacks, where carefully con-
structed inputs are designed to cause incorrect predictions while remaining
nearly indistinguishable from legitimate data (Szegedy et al. 2013a; Parrish
et al. 2023). These attacks highlight a critical weakness in many ML models:

15.5. Threats to ML Models 802

their sensitivity to small, targeted perturbations that can drastically alter output
confidence or classification results.

The central vulnerability arises from the model’s sensitivity to small, targeted
perturbations. A single image, for instance, can be subtly altered, by altering
only a few pixel values, such that a classifier misidentifies a stop sign as a speed
limit sign. In natural language processing, specially crafted input sequences
may trigger toxic or misleading outputs in a generative model, even when the
prompt appears benign to a human reader (Ramesh et al. 2021; Rombach et al.
2022).

Adversarial attacks pose critical safety and security risks in domains such as
autonomous driving, biometric authentication, and content moderation. Unlike
data poisoning, which corrupts the model during training, adversarial attacks
manipulate the model’s behavior at test time, often without requiring any access
to the training data or model internals. The attack surface thus shifts from
upstream data pipelines to real-time interaction, demanding robust defense
mechanisms capable of detecting or mitigating malicious inputs at the point of
inference.

Adversarial example generation can be formally described as a constrained
optimization problem, where the attacker seeks to find a minimally perturbed
version of a legitimate input that maximizes the model’s prediction error. Given
an input 𝑥 with true label 𝑦, the attacker’s objective is to find a perturbed input𝑥′ = 𝑥+𝛿 that maximizes the model’s loss:

max𝛿 ℒ(𝑓(𝑥+𝛿),𝑦)
subject to the constraint: ‖𝛿‖ ≤ 𝜖
where 𝑓(⋅) is the model, ℒ is the loss function, and 𝜖 defines the allowed
perturbation magnitude. This ensures that the perturbation remains small,
often imperceptible to humans, while still leading the model to produce an
incorrect output.

This optimization view underlies common adversarial strategies used in
both white-box and black-box settings. A full taxonomy of attack algorithms,
including gradient-based, optimization-based, and transfer-based techniques,
is provided in a later chapter.

Adversarial attacks vary based on the attacker’s level of access to the model. In
white-box attacks, the adversary has full knowledge of the model’s architecture,
parameters, and training data, allowing them to craft highly effective adversarial
examples. In black-box attacks, the adversary has no internal knowledge and
must rely on querying the model and observing its outputs. Grey-box attacks
fall between these extremes, with the adversary possessing partial information,
such as access to the model architecture but not its parameters.

These attacker models can be summarized along a spectrum of knowledge
levels. Table 15.3 highlights the differences in model access, data access, typical
attack strategies, and common deployment scenarios. Such distinctions help
characterize the practical challenges of securing ML systems across different
deployment environments.

Chapter 15. Security & Privacy 803

Table 15.3: Adversary knowledge spectrum.

Adversary
Knowledge
Level Model Access

Training
Data Access Attack Example Common Scenario

White-box Full access to
architecture and
parameters

Full access Crafting adversarial
examples using
gradients

Insider threats,
open-source model
reuse

Grey-box Partial access (e.g.,
architecture only)

Limited or
no access

Attacks based on
surrogate model
approximation

Known model family,
unknown fine-tuning

Black-box No internal access;
only query-response
view

No access Query-based surrogate
model training and
transfer attacks

Public APIs,
model-as-a-service
deployments

A common attack strategy involves constructing a surrogate model that
approximates the target model’s behavior. This surrogate model is trained
by querying the target model with a set of inputs {𝑥𝑖} and recording the
corresponding outputs {𝑓(𝑥𝑖)}. The attacker’s goal is to train a surrogate
model ̂𝑓 that minimizes the discrepancy between its predictions and those of
the target model. This objective can be formulated as:

min̂𝑓 𝑛∑𝑖=1 ℓ(̂𝑓(𝑥𝑖),𝑓(𝑥𝑖))
where ℓ is a loss function measuring the difference between the surrogate’s
output and the target model’s output. By minimizing this loss, the attacker
builds a model that behaves similarly to the target. Once trained, the surrogate
model can be used to generate adversarial examples using white-box techniques.
These examples often transfer to the original target model, even without internal
access, making such attacks effective in black-box settings. This phenomenon,
known as adversarial transferability, presents a significant challenge for defense.

Several methods have been proposed to generate adversarial examples. One
notable approach leverages generative adversarial networks (GANs) (I. Good-
fellow et al. 2020). In this setting, a generator network learns to produce inputs
that deceive the target model, while a discriminator evaluates their effectiveness.
This iterative process allows the attacker to generate sophisticated and diverse
adversarial examples.

Another vector for adversarial attacks involves transfer learning pipelines.
Many production systems reuse pre-trained feature extractors, fine-tuning only
the final layers for specific tasks. Adversaries can exploit this structure by
targeting the shared feature extractor, crafting perturbations that affect multiple
downstream tasks. Headless attacks, for example, manipulate the feature
extractor without requiring access to the classification head or training data
(Abdelkader et al. 2020). This exposes a critical vulnerability in systems that
rely on pre-trained models.

One illustrative example involves the manipulation of trafÏc sign recognition
systems (Eykholt et al. 2017). Researchers demonstrated that placing small
stickers on stop signs could cause machine learning models to misclassify them
as speed limit signs. While the altered signs remained easily recognizable
to humans, the model consistently misinterpreted them. Such attacks pose

15.5. Threats to ML Models 804

serious risks in applications like autonomous driving, where reliable perception
is critical for safety.

Adversarial attacks highlight the need for robust defenses that go beyond
improving model accuracy. Securing ML systems against adversarial threats
requires runtime defenses such as input validation, anomaly detection, and
monitoring for abnormal patterns during inference. Training-time robustness
methods (e.g., adversarial training) complement these strategies and are dis-
cussed in more detail in a later chapter. These defenses aim to enhance model
resilience against adversarial examples, ensuring that machine learning systems
can operate reliably even in the presence of malicious inputs.

15.5.4 Case Study: TrafÏc Sign Detection Model Trickery
In 2017, researchers conducted experiments by placing small black and white
stickers on stop signs (Eykholt et al. 2017). As shown in Figure 15.5, these
stickers were designed to be nearly imperceptible to the human eye, yet they
significantly altered the appearance of the stop sign when viewed by machine
learning models. When viewed by a normal human eye, the stickers did not
obscure the sign or prevent interpretability. However, when images of the
stickers stop signs were fed into standard trafÏc sign classification ML models,
they were misclassified as speed limit signs over 85% of the time.

Figure 15.5: Adversarial stickers on
stop signs. Source: Eykholt et al.
(2017)

This demonstration showed how simple adversarial stickers could trick ML
systems into misreading critical road signs. If deployed realistically, these
attacks could endanger public safety, causing autonomous vehicles to misin-
terpret stop signs as speed limits. Researchers warned this could potentially
cause dangerous rolling stops or acceleration into intersections.

This case study provides a concrete illustration of how adversarial examples
exploit the pattern recognition mechanisms of ML models. By subtly altering
the input data, attackers can induce incorrect predictions and pose significant
risks to safety-critical applications like self-driving cars. The attack’s simplicity
demonstrates how even minor, imperceptible changes can lead models astray.
Consequently, developers must implement robust defenses against such threats.

Chapter 15. Security & Privacy 805

These threat types span different stages of the ML lifecycle and demand dis-
tinct defensive strategies. Table 15.4 below summarizes their key characteristics.

Table 15.4: Summary of threat types to ML models by lifecycle stage and attack
vector.

Threat Type Lifecycle Stage Attack Vector Example Impact

Model Theft Deployment API access, insider leaks Stolen IP, model inversion, behavioral
clone

Data Poisoning Training Label flipping,
backdoors

Targeted misclassification, degraded
accuracy

Adversarial Attacks Inference Input perturbation Real-time misclassification, safety
failure

The appropriate defense for a given threat depends on its type, attack vector,
and where it occurs in the ML lifecycle. Figure 15.6 provides a simplified
decision flow that connects common threat categories, such as model theft, data
poisoning, and adversarial examples, to corresponding defensive strategies.
While real-world deployments may require more nuanced or layered defenses,
this flowchart serves as a conceptual guide for aligning threat models with
practical mitigation techniques.

Figure 15.6: Example flow for select-
ing appropriate defenses based on
threat type in machine learning sys-
tems.Model Theft

Secure Model Access

Encrypt Artifacts &

Obfuscate APIs

Monitor for Behavioral

Clones

Data Poisoning

Validate Training Data

Use Robust Training

Methods

Apply Data

Provenance Checks

Adversarial Examples

Add Input Validation

Use Adversarial

Training

Deploy Runtime

Monitors

Start: Identify Threat Type

While ML models themselves present critical attack surfaces, they ultimately
run on hardware that can introduce vulnerabilities beyond the model’s control.
In the next section, we examine how adversaries can target the physical infras-
tructure that executes machine learning workloads—through hardware bugs,
physical tampering, side channels, and supply chain risks.

15.6 Threats to ML Hardware
As machine learning systems move from research prototypes to large-scale,
real-world deployments, their security increasingly depends on the hardware

15.6. Threats to ML Hardware 806

platforms they run on. Whether deployed in data centers, on edge devices, or
in embedded systems, machine learning applications rely on a layered stack of
processors, accelerators, memory, and communication interfaces. These hard-
ware components, while essential for enabling efÏcient computation, introduce
unique security risks that go beyond traditional software-based vulnerabilities.

Unlike general-purpose software systems, machine learning workflows often
process high-value models and sensitive data in performance-constrained envi-
ronments. This makes them attractive targets not only for software attacks but
also for hardware-level exploitation. Vulnerabilities in hardware can expose
models to theft, leak user data, disrupt system reliability, or allow adversaries
to manipulate inference results. Because hardware operates below the software
stack, such attacks can bypass conventional security mechanisms and remain
difÏcult to detect.

These hardware threats arise from multiple sources, including design flaws in
hardware architectures, physical tampering, side-channel leakage, and supply
chain compromises. Together, they form a critical attack surface that must be
addressed to build trustworthy machine learning systems.

Table 15.5 summarizes the major categories of hardware security threats,
describing their origins, methods, and implications for machine learning system
design and deployment.

Table 15.5: Threat types on hardware security.

Threat Type Description
Relevance to ML Hardware
Security

Hardware Bugs Intrinsic flaws in hardware designs that can compromise
system integrity.

Foundation of hardware
vulnerability.

Physical
Attacks

Direct exploitation of hardware through physical access or
manipulation.

Basic and overt threat model.

Fault-injection
Attacks

Induction of faults to cause errors in hardware operation,
leading to potential system crashes.

Systematic manipulation
leading to failure.

Side-Channel
Attacks

Exploitation of leaked information from hardware operation
to extract sensitive data.

Indirect attack via
environmental observation.

Leaky
Interfaces

Vulnerabilities arising from interfaces that expose data
unintentionally.

Data exposure through
communication channels.

Counterfeit
Hardware

Use of unauthorized hardware components that may have
security flaws.

Compounded vulnerability
issues.

Supply Chain
Risks

Risks introduced through the hardware lifecycle, from
production to deployment.

Cumulative & multifaceted
security challenges.

15.6.1 Hardware Bugs
Hardware is not immune to the pervasive issue of design flaws or bugs. Attack-
ers can exploit these vulnerabilities to access, manipulate, or extract sensitive
data, breaching the confidentiality and integrity that users and services depend
on. One of the most notable examples came with the discovery of Meltdown
and Spectre—two vulnerabilities in modern processors that allow malicious
programs to bypass memory isolation and read the data of other applications
and the operating system (Kocher et al. 2019a, 2019b).

These attacks exploit speculative execution, a performance optimization in
CPUs that executes instructions out of order before safety checks are com-
plete. While improving computational speed, this optimization inadvertently
exposes sensitive data through microarchitectural side channels, such as CPU

https://meltdownattack.com/
https://meltdownattack.com/

Chapter 15. Security & Privacy 807

0 Foreshadow: A speculative
execution vulnerability that targets
Intel’s SGX enclaves, allowing data
leaks from supposedly secure mem-
ory regions.

1 ZombieLoad: A side-channel
attack that exploits Intel’s CPU mi-
croarchitectural buffers to leak sen-
sitive data processed by other appli-
cations.

2 RIDL (Rogue In-Flight Data
Load): A speculative execution at-
tack that leaks in-flight data from
CPU internal buffers, bypassing
memory isolation boundaries.

caches. The technical sophistication of these attacks highlights the difÏculty of
eliminating vulnerabilities even with extensive hardware validation.

Further research has revealed that these were not isolated incidents. Vari-
ants such as Foreshadow0, ZombieLoad1, and RIDL2 target different microar-
chitectural elements, ranging from secure enclaves to CPU internal buffers,
demonstrating that speculative execution flaws are a systemic hardware risk.

While these attacks were first demonstrated on general-purpose CPUs, their
implications extend to machine learning accelerators and specialized hardware.
ML systems often rely on heterogeneous compute platforms that combine CPUs
with GPUs, TPUs, FPGAs, or custom accelerators. These components process
sensitive data such as personal information, medical records, or proprietary
models. Vulnerabilities in any part of this stack could expose such data to
attackers.

For example, an edge device like a smart camera running a face recognition
model on an accelerator could be vulnerable if the hardware lacks proper cache
isolation. An attacker might exploit this weakness to extract intermediate
computations, model parameters, or user data. Similar risks exist in cloud
inference services, where hardware multi-tenancy increases the chances of
cross-tenant data leakage.

Such vulnerabilities are particularly concerning in privacy-sensitive domains
like healthcare, where ML systems routinely handle patient data. A breach
could violate privacy regulations such as the Health Insurance Portability and
Accountability Act (HIPAA), leading to significant legal and ethical conse-
quences.

These examples illustrate that hardware security is not solely about prevent-
ing physical tampering. It also requires architectural safeguards to prevent data
leakage through the hardware itself. As new vulnerabilities continue to emerge
across processors, accelerators, and memory systems, addressing these risks
requires continuous mitigation efforts—often involving performance trade-offs,
especially in compute- and memory-intensive ML workloads. Proactive so-
lutions, such as confidential computing and trusted execution environments
(TEEs), offer promising architectural defenses. However, achieving robust hard-
ware security requires attention at every stage of the system lifecycle, from
design to deployment.

15.6.2 Physical Attacks
Physical tampering refers to the direct, unauthorized manipulation of comput-
ing hardware to undermine the integrity of machine learning systems. This
type of attack is particularly concerning because it bypasses traditional software
security defenses, directly targeting the physical components on which machine
learning depends. ML systems are especially vulnerable to such attacks be-
cause they rely on hardware sensors, accelerators, and storage to process large
volumes of data and produce reliable outcomes in real-world environments.

While software security measures, including encryption, authentication, and
access control, protect ML systems against remote attacks, they offer little
defense against adversaries with physical access to devices. Physical tampering
can range from simple actions, like inserting a malicious USB device into an edge

https://www.cdc.gov/phlp/php/resources/health-insurance-portability-and-accountability-act-of-1996-hipaa.html
https://www.cdc.gov/phlp/php/resources/health-insurance-portability-and-accountability-act-of-1996-hipaa.html

15.6. Threats to ML Hardware 808

server, to highly sophisticated manipulations such as embedding hardware
trojans during chip manufacturing. These threats are particularly relevant
for machine learning systems deployed at the edge or in physically exposed
environments, where attackers may have opportunities to interfere with the
hardware directly.

To understand how such attacks affect ML systems in practice, consider
the example of an ML-powered drone used for environmental mapping or
infrastructure inspection. The drone’s navigation depends on machine learning
models that process data from GPS, cameras, and inertial measurement units. If
an attacker gains physical access to the drone, they could replace or modify its
navigation module, embedding a hidden backdoor that alters flight behavior or
reroutes data collection. Such manipulation not only compromises the system’s
reliability but also opens the door to misuse, such as surveillance or smuggling
operations.

Physical attacks are not limited to mobility systems. Biometric access control
systems, which rely on ML models to process face or fingerprint data, are also
vulnerable. These systems typically use embedded hardware to capture and
process biometric inputs. An attacker could physically replace a biometric
sensor with a modified component designed to capture and transmit personal
identification data to an unauthorized receiver. This compromises both security
and user privacy, and it can enable future impersonation attacks.

In addition to tampering with external sensors, attackers may target internal
hardware subsystems. For example, the sensors used in autonomous vehicles,
including cameras, LiDAR, and radar, are essential for ML models that interpret
the surrounding environment. A malicious actor could physically misalign
or obstruct these sensors, degrading the model’s perception capabilities and
creating safety hazards.

Hardware trojans pose another serious risk. Malicious modifications intro-
duced during chip fabrication or assembly can embed dormant circuits in ML
accelerators or inference chips. These trojans may remain inactive under normal
conditions but trigger malicious behavior when specific inputs are processed
or system states are reached. Such hidden vulnerabilities can disrupt compu-
tations, leak model outputs, or degrade system performance in ways that are
extremely difÏcult to diagnose post-deployment.

Memory subsystems are also attractive targets. Attackers with physical
access to edge devices or embedded ML accelerators could manipulate memory
chips to extract encrypted model parameters or training data. Fault injection
techniques, including voltage manipulation and electromagnetic interference,
can further degrade system reliability by corrupting model weights or forcing
incorrect computations during inference.

Physical access threats extend to data center and cloud environments as
well. Attackers with sufÏcient access could install hardware implants, such as
keyloggers or data interceptors, to capture administrative credentials or monitor
data streams. Such implants can provide persistent backdoor access, enabling
long-term surveillance or data exfiltration from ML training and inference
pipelines.

In summary, physical attacks on machine learning systems threaten both
security and reliability across a wide range of deployment environments. Ad-

Chapter 15. Security & Privacy 809

dressing these risks requires a combination of hardware-level protections, tam-
per detection mechanisms, and supply chain integrity checks. Without these
safeguards, even the most secure software defenses may be undermined by
vulnerabilities introduced through direct physical manipulation.

15.6.3 Fault Injection Attacks
Fault injection is a powerful class of physical attacks that deliberately disrupts
hardware operations to induce errors in computation. These induced faults
can compromise the integrity of machine learning models by causing them to
produce incorrect outputs, degrade reliability, or leak sensitive information.
For ML systems, such faults not only disrupt inference but also expose models
to deeper exploitation, including reverse engineering and bypass of security
protocols (Joye and Tunstall 2012).

Attackers achieve fault injection by applying precisely timed physical or
electrical disturbances to the hardware while it is executing computations.
Techniques such as low-voltage manipulation (Barenghi et al. 2010), power
spikes (M. Hutter, Schmidt, and Plos 2009), clock glitches (Amiel, Clavier,
and Tunstall 2006), electromagnetic pulses (Agrawal et al. 2007), temperature
variations (S. Skorobogatov 2009), and even laser strikes (S. P. Skorobogatov
and Anderson 2003) have been demonstrated to corrupt specific parts of a
program’s execution. These disturbances can cause effects such as bit flips,
skipped instructions, or corrupted memory states, which adversaries can exploit
to alter ML model behavior or extract sensitive information.

For machine learning systems, these attacks pose several concrete risks. Fault
injection can degrade model accuracy, force incorrect classifications, trigger
denial of service, or even leak internal model parameters. For example, attackers
could inject faults into an embedded ML model running on a microcontroller,
forcing it to misclassify inputs in safety-critical applications such as autonomous
navigation or medical diagnostics. More sophisticated attackers may target
memory or control logic to steal intellectual property, such as proprietary model
weights or architecture details.

Experimental demonstrations have shown the feasibility of such attacks. One
notable example is the work by Breier et al. (2018), where researchers success-
fully used a laser fault injection attack on a deep neural network deployed
on a microcontroller. By heating specific transistors, as shown in Figure 15.7.
they forced the hardware to skip execution steps, including a ReLU activation
function.

This manipulation is illustrated in Figure 15.8, which shows a segment of
assembly code implementing the ReLU activation function. Normally, the code
compares the most significant bit (MSB) of the accumulator to zero and uses a
brge (branch if greater or equal) instruction to skip the assignment if the value
is non-positive. However, the fault injection suppresses the branch, causing the
processor to always execute the “else” block. As a result, the neuron’s output is
forcibly zeroed out, regardless of the input value.

Fault injection attacks can also be combined with side-channel analysis, where
attackers first observe power or timing characteristics to infer model structure or
data flow. This reconnaissance allows them to target specific layers or operations,

15.6. Threats to ML Hardware 810

Figure 15.7: Laser fault injection at-
tack on a microcontroller. Source:
Breier et al. (2018).

such as activation functions or final decision layers, maximizing the impact of
the injected faults.

Embedded and edge ML systems are particularly vulnerable because they
often lack physical hardening and operate under resource constraints that limit
runtime defenses. Without tamper-resistant packaging or secure hardware
enclaves, attackers may gain direct access to system buses and memory, en-
abling precise fault manipulation. Furthermore, many embedded ML models
are designed to be lightweight, leaving them with little redundancy or error
correction to recover from induced faults.

Mitigating fault injection requires a multi-layered defense strategy. Physical
protections, such as tamper-proof enclosures and design obfuscation, help limit
physical access. Anomaly detection techniques can monitor sensor inputs or
model outputs for signs of fault-induced inconsistencies (Hsiao et al. 2023).
Error-correcting memories and secure firmware can reduce the likelihood of
silent corruption. Techniques such as model watermarking may provide trace-
ability if stolen models are later deployed by an adversary.

However, these protections are difÏcult to implement in cost- and power-
constrained environments, where adding cryptographic hardware or redun-
dancy may not be feasible. As a result, achieving resilience to fault injection

Figure 15.8: Fault-injection demon-
strated with assembly code. Source:
Breier et al. (2018).

Chapter 15. Security & Privacy 811

requires cross-layer design considerations that span electrical, firmware, soft-
ware, and system architecture levels. Without such holistic design practices,
ML systems deployed in the field may remain exposed to these low-cost yet
highly effective physical attacks.

15.6.4 Side-Channel Attacks
Side-channel attacks constitute a class of security breaches that exploit informa-
tion inadvertently revealed through the physical implementation of computing
systems. In contrast to direct attacks that target software or network vulnera-
bilities, these attacks leverage the system’s hardware characteristics, including
power consumption, electromagnetic emissions, or timing behavior, to extract
sensitive information.

The fundamental premise of a side-channel attack is that a device’s operation
can leak information through observable physical signals. Such leaks may
originate from the electrical power the device consumes (Kocher, Jaffe, and
Jun 1999), the electromagnetic fields it emits (Gandolfi, Mourtel, and Olivier
2001), the time it takes to complete computations, or even the acoustic noise it
produces. By carefully measuring and analyzing these signals, attackers can
infer internal system states or recover secret data.

Although these techniques are commonly discussed in cryptography, they
are equally relevant to machine learning systems. ML models deployed on
hardware accelerators, embedded devices, or edge systems often process sen-
sitive data. Even when these models are protected by secure algorithms or
encryption, their physical execution may leak side-channel signals that can be
exploited by adversaries.

One of the most widely studied examples involves Advanced Encryption
Standard (AES) implementations. While AES is mathematically secure, the
physical process of computing its encryption functions leaks measurable signals.
Techniques such as Differential Power Analysis (DPA) (Kocher et al. 2011),
Differential Electromagnetic Analysis (DEMA), and Correlation Power Analysis
(CPA) exploit these physical signals to recover secret keys.

A useful example of this attack technique can be seen in a power analysis
of a password authentication process. Consider a device that verifies a 5-byte
password—in this case, 0x61, 0x52, 0x77, 0x6A, 0x73. During authentica-
tion, the device receives each byte sequentially over a serial interface, and its
power consumption pattern reveals how the system responds as it processes
these inputs.

Figure 15.9 shows the device’s behavior when the correct password is entered.
The red waveform captures the serial data stream, marking each byte as it is
received. The blue curve records the device’s power consumption over time.
When the full, correct password is supplied, the power profile remains stable
and consistent across all five bytes, providing a clear baseline for comparison
with failed attempts.

When an incorrect password is entered, the power analysis chart changes as
shown in Figure 15.10. In this case, the first three bytes (0x61, 0x52, 0x77)
are correct, so the power patterns closely match the correct password up to
that point. However, when the fourth byte (0x42) is processed and found to

15.6. Threats to ML Hardware 812

Figure 15.9: Power consumption
profile of the device during nor-
mal operations with a valid 5-byte
password (0x61, 0x52, 0x77, 0x6A,
0x73). The red line represents the se-
rial data being received by the boot-
loader, which in this figure is receiv-
ing the correct bytes. Notice how
the blue line, representing power
usage during authentication, cor-
responds to receiving and verify-
ing the bytes. In the next figures,
this blue power consumption profile
will change. Source: Colin O’Flynn.

be incorrect, the device halts authentication. This change is reflected in the
sudden jump in the blue power line, indicating that the device has stopped
processing and entered an error state.

Figure 15.10: Power consumption
profile of the device when an in-
correct 5-byte password (0x61, 0x52,
0x77, 0x42, 0x42) is entered. The
red line represents the serial data
received by the bootloader, show-
ing the input bytes being processed.
The first three bytes (0x61, 0x52,
0x77) are correct and match the ex-
pected password, as indicated by
the consistent blue power consump-
tion line. However, upon processing
the fourth byte (0x42), a mismatch
is detected. The bootloader stops
further processing, resulting in a no-
ticeable jump in the blue power con-
sumption line, as the device halts
authentication and enters an error
state. Source: Colin O’Flynn.

Figure 15.11 shows the case where the password is entirely incorrect (0x30,
0x30, 0x30, 0x30, 0x30). Here, the device detects the mismatch immediately
after the first byte and halts processing much earlier. This is again visible in
the power profile, where the blue line exhibits a sharp jump following the first
byte, reflecting the device’s early termination of authentication.

These examples demonstrate how attackers can exploit observable power con-
sumption differences to reduce the search space and eventually recover secret
data through brute-force analysis. For a more detailed walkthrough, Video 10
provides a step-by-step demonstration of how these attacks are performed.

çĖ Important 10: Power Attack
Watch on YouTube

Power Attack

Scan with your phone
to watch the video

TV Watch on YouTube

https://www.youtube.com/watch?v=2iDLfuEBcs8
https://www.youtube.com/watch?v=2iDLfuEBcs8

Chapter 15. Security & Privacy 813

Figure 15.11: Power consumption
profile of the device when an
entirely incorrect password (0x30,
0x30, 0x30, 0x30, 0x30) is entered.
The blue line shows a sharp jump af-
ter processing the first byte, indicat-
ing that the device has halted the au-
thentication process. Source: Colin
O’Flynn.

Such attacks are not limited to cryptographic systems. Machine learning
applications face similar risks. For example, an ML-based speech recognition
system processing voice commands on a local device could leak timing or
power signals that reveal which commands are being processed. Even subtle
acoustic or electromagnetic emissions may expose operational patterns that an
adversary could exploit to infer user behavior.

Historically, side-channel attacks have been used to bypass even the most
secure cryptographic systems. In the 1960s, British intelligence agency MI5
famously exploited acoustic emissions from a cipher machine in the Egyptian
Embassy (Burnet and Thomas 1989). By capturing the mechanical clicks of the
machine’s rotors, MI5 analysts were able to dramatically reduce the complexity
of breaking encrypted messages. This early example illustrates that side-channel
vulnerabilities are not confined to the digital age but are rooted in the physical
nature of computation.

Today, these techniques have advanced to include attacks such as keyboard
eavesdropping (Asonov and Agrawal, n.d.), power analysis on cryptographic
hardware (Gnad, Oboril, and Tahoori 2017), and voltage-based attacks on ML
accelerators (M. Zhao and Suh 2018). Timing attacks, electromagnetic leakage,
and thermal emissions continue to provide adversaries with indirect channels
for observing system behavior.

Machine learning systems deployed on specialized accelerators or embedded
platforms are especially at risk. Attackers may exploit side-channel signals to
infer model structure, steal parameters, or reconstruct private training data.
As ML becomes increasingly deployed in cloud, edge, and embedded environ-
ments, these side-channel vulnerabilities pose significant challenges to system
security.

Understanding the persistence and evolution of side-channel attacks is es-
sential for building resilient machine learning systems. By recognizing that
where there is a signal, there is potential for exploitation, system designers
can begin to address these risks through a combination of hardware shielding,
algorithmic defenses, and operational safeguards.

15.6. Threats to ML Hardware 814

3 See this report on baby monitor
vulnerabilities that allowed remote
attackers to eavesdrop on live feeds
in private homes.

4 Vulnerabilities in connected
pacemakers raised concerns about
remote manipulation of cardiac
functions, as described in this medi-
cal advisory.

5 Debug ports on consumer
smart lightbulbs leaked unen-
crypted network credentials, as
documented by Greengard (2021).

6 The Jeep Cherokee hack demon-
strated how attackers could con-
trol vehicle functions through the
OBD-II port. See Miller and Valasek
(2015).

15.6.5 Leaky Interfaces

Interfaces in computing systems are essential for enabling communication, di-
agnostics, and updates. However, these same interfaces can become significant
security vulnerabilities when they unintentionally expose sensitive information
or accept unverified inputs. Such leaky interfaces often go unnoticed during
system design, yet they provide attackers with powerful entry points to extract
data, manipulate functionality, or introduce malicious code.

A leaky interface is any access point that reveals more information than
intended, often because of weak authentication, lack of encryption, or inade-
quate isolation. These issues have been widely demonstrated across consumer,
medical, and industrial systems.

For example, many WiFi-enabled baby monitors have been found to expose
unsecured remote access ports, allowing attackers to intercept live audio and
video feeds from inside private homes3. Similarly, researchers have identified
wireless vulnerabilities in pacemakers that could allow attackers to manipulate
cardiac functions if exploited, raising life-threatening safety concerns4.

A notable case involving smart lightbulbs demonstrated that accessible debug
ports left on production devices leaked unencrypted WiFi credentials. This se-
curity oversight provided attackers with a pathway to infiltrate home networks
without needing to bypass standard security mechanisms.5 In the automotive
domain, unsecured OBD-II diagnostic ports have allowed attackers to manipu-
late braking and steering functions in connected vehicles, as demonstrated in
the well-known Jeep Cherokee hack.6

While these examples do not target machine learning systems directly, they
illustrate architectural patterns that are highly relevant to ML-enabled devices.
Consider a smart home security system that uses machine learning to detect
user routines and automate responses. Such a system may include a mainte-
nance or debug interface for software updates. If this interface lacks proper
authentication or transmits data unencrypted, attackers on the same network
could gain unauthorized access. This intrusion could expose user behavior
patterns, compromise model integrity, or disable security features altogether.

Leaky interfaces in ML systems can also expose training data, model pa-
rameters, or intermediate outputs. Such exposure can enable attackers to craft
adversarial examples, steal proprietary models, or reverse-engineer system
behavior. Worse still, these interfaces may allow attackers to tamper with
firmware, introducing malicious code that disables devices or recruits them
into botnets.

Mitigating these risks requires multi-layered defenses. Technical safeguards
such as strong authentication, encrypted communications, and runtime anomaly
detection are essential. Organizational practices such as interface inventories,
access control policies, and ongoing audits are equally important. Adopting a
zero-trust architecture, where no interface is trusted by default, further reduces
exposure by limiting access to only what is strictly necessary.

For designers of ML-powered systems, securing interfaces must be a first-
class concern alongside algorithmic and data-centric design. Whether the
system operates in the cloud, on the edge, or in embedded environments,

Chapter 15. Security & Privacy 815

failure to secure these access points risks undermining the entire system’s
trustworthiness.

15.6.6 Counterfeit Hardware

Machine learning systems depend on the reliability and security of the hard-
ware on which they run. Yet, in today’s globalized hardware ecosystem, the
risk of counterfeit or cloned hardware has emerged as a serious threat to system
integrity. Counterfeit components refer to unauthorized reproductions of gen-
uine parts, designed to closely imitate their appearance and functionality. These
components can enter machine learning systems through complex procurement
and manufacturing processes that span multiple vendors and regions.

A single lapse in component sourcing can introduce counterfeit hardware
into critical systems. For example, a facial recognition system deployed for
secure facility access might unknowingly rely on counterfeit processors. These
unauthorized components could fail to process biometric data correctly or
introduce hidden vulnerabilities that allow attackers to bypass authentication
controls.

The risks posed by counterfeit hardware are multifaceted. From a reliability
perspective, such components often degrade faster, perform unpredictably, or
fail under load due to substandard manufacturing. From a security perspective,
counterfeit hardware may include hidden backdoors or malicious circuitry, pro-
viding attackers with undetectable pathways to compromise machine learning
systems. A cloned network router installed in a data center, for instance, could
silently intercept model predictions or user data, undermining both system
security and user privacy.

Legal and regulatory risks further compound the problem. Organizations
that unknowingly integrate counterfeit components into their ML systems
may face serious legal consequences, including penalties for violating safety,
privacy, or cybersecurity regulations. This is particularly concerning in sectors
such as healthcare and finance, where compliance with industry standards is
non-negotiable.

Economic pressures often incentivize sourcing from lower-cost suppliers
without rigorous verification, increasing the likelihood of counterfeit parts
entering production systems. Detection is especially challenging, as counterfeit
components are designed to mimic legitimate ones. Identifying them may
require specialized equipment or forensic analysis, making prevention far more
practical than remediation.

The stakes are particularly high in machine learning applications that re-
quire high reliability and low latency, such as real-time decision-making in
autonomous vehicles, industrial automation, or critical healthcare diagnostics.
Hardware failure in these contexts can lead not only to system downtime but
also to significant safety risks.

As machine learning continues to expand into safety-critical and high-value
applications, counterfeit hardware presents a growing risk that must be rec-
ognized and addressed. Organizations must treat hardware trustworthiness
as a fundamental design requirement, on par with algorithmic accuracy and

15.6. Threats to ML Hardware 816

data security, to ensure that ML systems can operate reliably and securely in
the real world.

15.6.7 Supply Chain Risks

While counterfeit hardware presents a serious challenge, it is only one part of
the larger problem of securing the global hardware supply chain. Machine
learning systems are built from components that pass through complex supply
networks involving design, fabrication, assembly, distribution, and integra-
tion. Each of these stages presents opportunities for tampering, substitution,
or counterfeiting—often without the knowledge of those deploying the final
system.

Malicious actors can exploit these vulnerabilities in various ways. A con-
tracted manufacturer might unknowingly receive recycled electronic waste that
has been relabeled as new components. A distributor might deliberately mix
cloned parts into otherwise legitimate shipments. Insiders at manufacturing fa-
cilities might embed hardware Trojans that are nearly impossible to detect once
the system is deployed. Advanced counterfeits can be particularly deceptive,
with refurbished or repackaged components designed to pass visual inspection
while concealing inferior or malicious internals.

Identifying such compromises typically requires sophisticated analysis, in-
cluding micrography, X-ray screening, and functional testing. However, these
methods are costly and impractical for large-scale procurement. As a result,
many organizations deploy systems without fully verifying the authenticity
and security of every component.

The risks extend beyond individual devices. Machine learning systems
often rely on heterogeneous hardware platforms, integrating CPUs, GPUs,
memory, and specialized accelerators sourced from a global supply base. Any
compromise in one part of this chain can undermine the security of the entire
system. These risks are further amplified when systems operate in shared
or multi-tenant environments, such as cloud data centers or federated edge
networks, where hardware-level isolation is critical to preventing cross-tenant
attacks.

The 2018 Bloomberg Businessweek report alleging that Chinese state actors
inserted spy chips into Supermicro server motherboards brought these risks to
mainstream attention. While the claims remain disputed, the story underscored
the industry’s limited visibility into its own hardware supply chains. Compa-
nies often rely on complex, opaque manufacturing and distribution networks,
leaving them vulnerable to hidden compromises. Over-reliance on single manu-
facturers or regions, including the semiconductor industry’s reliance on TSMC,
further concentrates this risk. This recognition has driven policy responses like
the U.S. CHIPS and Science Act, which aims to bring semiconductor production
onshore and strengthen supply chain resilience.

Securing machine learning systems requires moving beyond trust-by-default
models toward zero-trust supply chain practices. This includes screening sup-
pliers, validating component provenance, implementing tamper-evident protec-
tions, and continuously monitoring system behavior for signs of compromise.

https://bidenwhitehouse.archives.gov/briefing-room/statements-releases/2024/08/09/fact-sheet-two-years-after-the-chips-and-science-act-biden-%E2%81%A0harris-administration-celebrates-historic-achievements-in-bringing-semiconductor-supply-chains-home-creating-jobs-supporting-inn/

Chapter 15. Security & Privacy 817

Building fault-tolerant architectures that detect and contain failures provides
an additional layer of defense.

Ultimately, supply chain risks must be treated as a first-class concern in ML
system design. Trust in the computational models and data pipelines that
power machine learning depends fundamentally on the trustworthiness of the
hardware on which they run. Without securing the hardware foundation, even
the most sophisticated models remain vulnerable to compromise.

15.6.8 Case Study: The Supermicro Hardware Security Controversy
In 2018, Bloomberg Businessweek published a widely discussed report alleging
that Chinese state-sponsored actors had secretly implanted tiny surveillance
chips on server motherboards manufactured by Supermicro (Robertson and
Riley 2018). These compromised servers were reportedly deployed by more
than 30 major companies, including Apple and Amazon. The chips, described
as no larger than a grain of rice, were said to provide attackers with backdoor
access to sensitive data and systems.

The allegations sparked immediate concern across the technology industry,
raising questions about the security of global supply chains and the potential
for state-level hardware manipulation. However, the companies named in the
report publicly denied the claims. Apple, Amazon, and Supermicro stated
that they had found no evidence of the alleged implants after conducting thor-
ough internal investigations. Industry experts and government agencies also
expressed skepticism, noting the lack of verifiable technical evidence presented
in the report.

Despite these denials, the story had a lasting impact on how organizations
and policymakers view hardware supply chain security. Whether or not the
specific claims were accurate, the report highlighted the real and growing
concern that hardware supply chains are difÏcult to fully audit and secure. It
underscored how geopolitical tensions, manufacturing outsourcing, and the
complexity of modern hardware ecosystems make it increasingly challenging
to guarantee the integrity of hardware components.

The Supermicro case illustrates a broader truth: once a product enters a com-
plex global supply chain, it becomes difÏcult to ensure that every component
is free from tampering or unauthorized modification. This risk is particularly
acute for machine learning systems, which depend on a wide range of hardware
accelerators, memory modules, and processing units sourced from multiple
vendors across the globe.

In response to these risks, both industry and government stakeholders have
begun to invest in supply chain security initiatives. The U.S. government’s
CHIPS and Science Act is one such effort, aiming to bring semiconductor man-
ufacturing back onshore to improve transparency and reduce dependency on
foreign suppliers. While these efforts are valuable, they do not fully eliminate
supply chain risks. They must be complemented by technical safeguards, such
as component validation, runtime monitoring, and fault-tolerant system design.

The Supermicro controversy serves as a cautionary tale for the machine
learning community. It demonstrates that hardware security cannot be taken for
granted, even when working with reputable suppliers. Ensuring the integrity of

15.7. Defensive Strategies 818

ML systems requires rigorous attention to the entire hardware lifecycle—from
design and fabrication to deployment and maintenance. This case reinforces the
need for organizations to adopt comprehensive supply chain security practices
as a foundational element of trustworthy ML system design.

15.7 Defensive Strategies
Designing secure and privacy-preserving machine learning systems requires
more than identifying individual threats. It demands a layered defense strategy,
which begins with protecting the data that powers models and extends through
model design, deployment safeguards, runtime monitoring, and ultimately,
the hardware that anchors trust. Each layer contributes to the system’s overall
resilience and must be tailored to the specific threat surfaces introduced by
machine learning workflows. Unlike traditional software systems, ML systems
are particularly vulnerable to input manipulation, data leakage, model extrac-
tion, and runtime abuse—all amplified by tight coupling between data, model
behavior, and infrastructure.

This section presents a structured framework for defensive strategies, pro-
gressing from data-centric protections to infrastructure-level enforcement. These
strategies span differential privacy and federated learning, robust model archi-
tectures, secure deployment pipelines, runtime validation and monitoring, and
hardware-based trust anchors such as secure boot and TEEs. By integrating safe-
guards across layers, organizations can build ML systems that not only perform
reliably but also withstand adversarial pressure in production environments.

Figure 15.12 shows a layered defense stack for machine learning systems.
The stack progresses from foundational hardware-based security mechanisms
to runtime system protections, model-level controls, and privacy-preserving
techniques at the data level. Each layer builds on the trust guarantees of the layer
below it, forming an end-to-end strategy for deploying ML systems securely.
We will progressively explore each of these layers, highlighting their roles in
securing machine learning systems against a range of threats.

15.7.1 Data Privacy Techniques
Protecting the privacy of individuals whose data fuels machine learning systems
is a foundational requirement for trustworthy AI. Unlike traditional systems
where data is often masked or anonymized before processing, ML workflows
typically rely on access to raw, high-fidelity data to train effective models. This
tension between utility and privacy has motivated a diverse set of techniques
aimed at minimizing data exposure while preserving learning performance.

15.7.1.1 Differential Privacy

One of the most widely adopted frameworks for formalizing privacy guarantees
is differential privacy (DP). DP provides a rigorous mathematical definition of
privacy loss, ensuring that the inclusion or exclusion of a single individual’s data
has a provably limited effect on the model’s output. A randomized algorithm𝒜 is said to be 𝜖-differentially private if, for all adjacent datasets 𝐷 and 𝐷′

Chapter 15. Security & Privacy 819

Figure 15.12: A layered defense
stack for machine learning systems.

Trusted Execution

Environments
Secure Boot

Hardware Security

Modules

Physical Unclonable

Functions

Hardware-Level Security

System Integrity

Checks

Runtime Input

Validation

Runtime Output

Monitoring

Incident Response

& Recovery

System-Level Security

Model Encryption &

Serialization

Secure Model

Design
Secure Deployment

& Access

Model-Level Security

Differential Privacy Federated Learning

Homomorphic

Encryption
Synthetic Data

Generation

Data Privacy & Governance

differing in one record, and for all outputs 𝑆 ⊆ Range(𝒜), the following holds:

Pr[𝒜(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr[𝒜(𝐷′) ∈ 𝑆]
This bound ensures that the algorithm’s behavior remains statistically indis-

tinguishable regardless of whether any individual’s data is present, thereby
limiting the information that can be inferred about that individual. In practice,
DP is implemented by adding calibrated noise to model updates or query re-
sponses, using mechanisms such as the Laplace or Gaussian mechanism. Train-
ing techniques like differentially private stochastic gradient descent (DP-SGD)
integrate noise into the optimization process to ensure per-iteration privacy
guarantees.

While differential privacy offers strong theoretical assurances, it introduces
a trade-off between privacy and utility. Increasing the noise to reduce 𝜖 may
degrade model accuracy, especially in low-data regimes or fine-grained classifi-
cation tasks. Consequently, DP is often applied selectively—either during train-
ing on sensitive datasets or at inference when returning aggregate statistics—to
balance privacy with performance goals (Dwork and Roth 2013).

15.7.1.2 Federated Learning

Complementary to DP, federated learning (FL) reduces privacy risks by restruc-
turing the learning process itself. Rather than aggregating raw data at a central
location, FL distributes the training across a set of client devices, each holding
local data (B. McMahan et al. 2017b). Clients compute model updates locally
and share only parameter deltas with a central server for aggregation:𝜃𝑡+1 ← 𝐾∑𝑘=1 𝑛𝑘𝑛 ⋅ 𝜃(𝑘)𝑡

15.7. Defensive Strategies 820

Here, 𝜃(𝑘)𝑡 represents the model update from client 𝑘, 𝑛𝑘 the number of
samples held by that client, and 𝑛 the total number of samples across all clients.
This weighted aggregation allows the global model to learn from distributed
data without direct access to it. While FL reduces the exposure of raw data,
it still leaks information through gradients, motivating the use of DP, secure
aggregation, and hardware-based protections in federated settings.

To address scenarios requiring computation on encrypted data, homomor-
phic encryption (HE) and secure multiparty computation (SMPC) allow models
to perform inference or training over encrypted inputs. In the case of HE, opera-
tions on ciphertexts correspond to operations on plaintexts, enabling encrypted
inference:

Enc(𝑓(𝑥)) = 𝑓(Enc(𝑥))
This property supports privacy-preserving computation in untrusted envi-

ronments, such as cloud inference over sensitive health or financial records.
However, the computational cost of HE remains high, making it more suitable
for fixed-function models and low-latency batch tasks. SMPC, by contrast,
distributes the computation across multiple parties such that no single party
learns the complete input or output. This is particularly useful in joint training
across institutions with strict data-use policies, such as hospitals or banks.

15.7.1.3 Synthetic Data Generation

A more pragmatic and increasingly popular alternative involves the use of
synthetic data generation. By training generative models on real datasets and
sampling new instances from the learned distribution, organizations can create
datasets that approximate the statistical properties of the original data with-
out retaining identifiable details (Goncalves et al. 2020). While this approach
reduces the risk of direct reidentification, it does not offer formal privacy guar-
antees unless combined with DP constraints during generation.

Together, these techniques reflect a shift from isolating data as the sole path
to privacy toward embedding privacy-preserving mechanisms into the learning
process itself. Each method offers distinct guarantees and trade-offs depending
on the application context, threat model, and regulatory constraints. Effective
system design often combines multiple approaches, such as applying differ-
ential privacy within a federated learning setup, or employing homomorphic
encryption for critical inference stages, to build ML systems that are both useful
and respectful of user privacy.

15.7.1.4 Comparative Properties

These privacy-preserving techniques differ not only in the guarantees they
offer but also in their system-level implications. For practitioners, the choice of
mechanism depends on factors such as computational constraints, deployment
architecture, and regulatory requirements.

Table 15.6 summarizes the comparative properties of these methods, focusing
on privacy strength, runtime overhead, maturity, and common use cases. Un-
derstanding these trade-offs is essential for designing privacy-aware machine
learning systems that operate under real-world constraints.

Chapter 15. Security & Privacy 821

Table 15.6: Comparison of data privacy techniques across system-level dimen-
sions.

Technique
Privacy
Guarantee

Computa-
tional
Overhead

Deploy-
ment
Maturity

Typical Use
Case Trade-offs

Differential
Privacy

Formal
(ε-DP)

Moderate to
High

Production Training with
sensitive or
regulated data

Reduced accuracy; careful
tuning of ε/noise required to
balance utility and protection

Federated
Learning

Structural Moderate Production Cross-device
or cross-org
collaborative
learning

Gradient leakage risk;
requires secure aggregation
and orchestration
infrastructure

Homomor-
phic
Encryption

Strong (En-
crypted)

High Experi-
mental

Inference in
untrusted
cloud
environments

High latency and memory
usage; suitable for
limited-scope inference on
fixed-function models

Secure MPC Strong
(Dis-
tributed)

Very High Experi-
mental

Joint training
across
mutually
untrusted
parties

Expensive communication;
challenging to scale to many
participants or deep models

Synthetic
Data

Weak (if
standalone)

Low to
Moderate

Emerging Data sharing,
benchmarking
without direct
access to raw
data

May leak sensitive patterns if
training process is not
differentially private or
audited for fidelity

15.7.2 Secure Model Design
Security begins at the design phase of a machine learning system. While down-
stream mechanisms such as access control and encryption protect models once
deployed, many vulnerabilities can be mitigated earlier—through architectural
choices, defensive training strategies, and mechanisms that embed resilience
directly into the model’s structure or behavior. By considering security as a de-
sign constraint, system developers can reduce the model’s exposure to attacks,
limit its ability to leak sensitive information, and provide verifiable ownership
protection.

One important design strategy is to build robust-by-construction models
that reduce the risk of exploitation at inference time. For instance, models
with confidence calibration or abstention mechanisms can be trained to avoid
making predictions when input uncertainty is high. These techniques can help
prevent overconfident misclassifications in response to adversarial or out-of-
distribution inputs. Models may also employ output smoothing, regularizing
the output distribution to reduce sharp decision boundaries that are especially
susceptible to adversarial perturbations.

Certain application contexts may also benefit from choosing simpler or com-
pressed architectures. While not universally appropriate, limiting model ca-
pacity can reduce opportunities for memorization of sensitive training data
and complicate efforts to reverse-engineer the model from output behavior. For
embedded or on-device settings, smaller models are also easier to secure, as
they typically require less memory and compute, lowering the likelihood of
side-channel leakage or runtime manipulation.

Another design-stage consideration is the use of model watermarking, a
technique for embedding verifiable ownership signatures directly into the
model’s parameters or output behavior (Adi et al. 2018). A watermark might be

15.7. Defensive Strategies 822

implemented, for example, as a hidden response pattern triggered by specific
inputs, or as a parameter-space perturbation that does not affect accuracy but
is statistically identifiable. These watermarks can be used to detect and prove
misuse of stolen models in downstream deployments. Watermarking strategies
must be carefully designed to remain robust to model compression, fine-tuning,
and format conversion.

For example, in a keyword spotting system deployed on embedded hardware
for voice activation (e.g., “Hey Alexa” or “OK Google”), a secure design might
use a lightweight convolutional neural network with confidence calibration to
avoid false activations on uncertain audio. The model might also include an
abstention threshold, below which it produces no activation at all. To protect
intellectual property, a designer could embed a watermark by training the
model to respond with a unique label only when presented with a specific,
unused audio trigger known only to the developer. These design choices not
only improve robustness and accountability, but also support future verification
in case of IP disputes or performance failures in the field.

In high-risk applications, such as medical diagnosis, autonomous vehicles, or
financial decision systems, designers may also prioritize interpretable model ar-
chitectures, such as decision trees, rule-based classifiers, or sparsified networks,
to enhance system auditability. These models are often easier to understand
and explain, making it simpler to identify potential vulnerabilities or biases.
Using interpretable models allows developers to provide clearer insights into
how the system arrived at a particular decision, which is crucial for building
trust with users and regulators.

Model design choices often reflect trade-offs between accuracy, robustness,
transparency, and system complexity. However, when viewed from a systems
perspective, early-stage design decisions frequently yield the highest leverage
for long-term security. They shape what the model can learn, how it behaves
under uncertainty, and what guarantees can be made about its provenance,
interpretability, and resilience.

15.7.3 Secure Model Deployment
Protecting machine learning models from theft, abuse, and unauthorized ma-
nipulation requires security considerations throughout both the design and
deployment phases. A model’s vulnerability is not solely determined by its
training procedure or architecture, but also by how it is serialized, packaged, de-
ployed, and accessed during inference. As models are increasingly embedded
into edge devices, served through public APIs, or integrated into multi-tenant
platforms, robust security practices are essential to ensure the integrity, confi-
dentiality, and availability of model behavior.

This section addresses security mechanisms across three key stages: model
design, secure packaging and serialization, and deployment and access control.

From a design perspective, architectural choices can reduce a model’s expo-
sure to adversarial manipulation and unauthorized use. For example, models
can incorporate confidence calibration or abstention mechanisms that allow
them to reject uncertain or anomalous inputs rather than producing potentially
misleading outputs. Designing models with simpler or compressed architec-

Chapter 15. Security & Privacy 823

tures can also reduce the risk of reverse engineering or information leakage
through side-channel analysis. In some cases, model designers may embed
imperceptible watermarks, which are unique signatures embedded in the pa-
rameters or behavior of the model, that can later be used to demonstrate own-
ership in cases of misappropriation (Uchida et al. 2017). These design-time
protections are particularly important for commercially valuable models, where
intellectual property rights are at stake.

Once training is complete, the model must be securely packaged for deploy-
ment. Storing models in plaintext formats, including unencrypted ONNX or
PyTorch checkpoint files, can expose internal structures and parameters to
attackers with access to the file system or memory. To mitigate this risk, models
should be encrypted, obfuscated, or wrapped in secure containers. Decryption
keys should be made available only at runtime and only within trusted envi-
ronments. Additional mechanisms, such as quantization-aware encryption or
integrity-checking wrappers, can prevent tampering and ofÒine model theft.

Deployment environments must also enforce strong access control policies
to ensure that only authorized users and services can interact with inference
endpoints. Authentication protocols, including OAuth tokens, mutual TLS,
or API keys, should be combined with role-based access control (RBAC) to
restrict access according to user roles and operational context. For instance,
OpenAI’s hosted model APIs require users to include an OPENAI_API_KEY
when submitting inference requests. This key authenticates the client and
enables the backend to enforce usage policies, monitor for abuse, and log access
patterns. A simplified example of secure usage is shown in Listing 15.1, where
the API key is securely loaded from an environment variable before being used
to authenticate requests.

In this example, the API key is retrieved from an environment variable—
avoiding the security risk of hardcoding it into source code or exposing it
to the client side. Such key-based access control mechanisms are simple to
implement but require careful key management and monitoring to prevent
misuse, unauthorized access, or model extraction.

Beyond endpoint access, the integrity of the deployment pipeline itself must
also be protected. Continuous integration and deployment (CI/CD) workflows
that automate model updates should enforce cryptographic signing of artifacts,
dependency validation, and infrastructure hardening. Without these controls,
adversaries could inject malicious models or alter existing ones during the build
and deployment process. Verifying model signatures and maintaining audit
trails helps ensure that only authorized models are deployed into production.

When applied together, these practices protect against a range of threats—
from model theft and unauthorized inference access to tampering during de-
ployment and output manipulation at runtime. No single mechanism sufÏces
in isolation, but a layered strategy, beginning at the design phase and extend-
ing through deployment, provides a strong foundation for securing machine
learning systems under real-world conditions.

15.7. Defensive Strategies 824

Listing 15.1: Example of securely loading an API key for OpenAI’s GPT-4 model.
The API key is retrieved from an environment variable to avoid hardcoding
sensitive information in the source code.

import openai
import os

Securely load the API key from an environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")

Submit a prompt to the model
response = openai.ChatCompletion.create(

model="gpt-4",
messages=[

{
"role": "user",
"content": (

"Summarize the principles of "
"differential privacy."

)
}

]
)

print(response.choices[0].message["content"])

15.7.4 System-level Monitoring
Even with robust design and deployment safeguards, machine learning systems
remain vulnerable to runtime threats. Attackers may craft inputs that bypass
validation, exploit model behavior, or target system-level infrastructure. As
ML systems enter production, particularly in cloud, edge, or embedded de-
ployments, defensive strategies must extend beyond static protection to include
real-time monitoring, threat detection, and incident response. This section
outlines operational defenses that maintain system trust under adversarial
conditions.

Runtime monitoring encompasses a range of techniques for observing system
behavior, detecting anomalies, and triggering mitigation. These techniques
can be grouped into three categories: input validation, output monitoring, and
system integrity checks.

15.7.4.1 Input Validation

Input validation is the first line of defense at runtime. It ensures that incoming
data conforms to expected formats, statistical properties, or semantic constraints
before it is passed to a machine learning model. Without these safeguards, mod-
els are vulnerable to adversarial inputs, which are crafted examples designed

Chapter 15. Security & Privacy 825

to trigger incorrect predictions, or to malformed inputs that cause unexpected
behavior in preprocessing or inference.

Machine learning models, unlike traditional rule-based systems, often do not
fail safely. Small, carefully chosen changes to input data can cause models to
make high-confidence but incorrect predictions. Input validation helps detect
and reject such inputs early in the pipeline (I. J. Goodfellow, Shlens, and Szegedy
2014).

Validation techniques range from low-level checks (e.g., input size, type, and
value ranges) to semantic filters (e.g., verifying whether an image contains a
recognizable object or whether a voice recording includes speech). For example,
a facial recognition system might validate that the uploaded image is within
a certain resolution range (e.g., 224×224 to 1024×1024 pixels), contains RGB
channels, and passes a lightweight face detection filter. This prevents inputs like
blank images, text screenshots, or synthetic adversarial patterns from reaching
the model. Similarly, a voice assistant might require that incoming audio files
be between 1 and 5 seconds long, have a valid sampling rate (e.g., 16kHz), and
contain detectable human speech using a speech activity detector (SAD). This
ensures that empty recordings, music clips, or noise bursts are filtered before
model inference.

In generative systems such as DALL·E, Stable Diffusion, or Sora, input vali-
dation often involves prompt filtering. This includes scanning the user’s text
prompt for banned terms, brand names, profanity, or misleading medical claims.
For example, a user prompt like “Generate an image of a medication bottle
labeled with Pfizer’s logo” might be rejected or rewritten due to trademark
concerns. Filters may operate using keyword lists, regular expressions, or light-
weight classifiers that assess prompt intent. These filters prevent the generative
model from being used to produce harmful, illegal, or misleading content—
even before sampling begins.

In some applications, distributional checks are also used. These assess
whether the incoming data statistically resembles what the model saw during
training. For instance, a computer vision pipeline might compare the color
histogram of the input image to a baseline distribution, flagging outliers for
manual review or rejection.

These validations can be lightweight (heuristics or threshold rules) or learned
(small models trained to detect distribution shift or adversarial artifacts). In
either case, input validation serves as a critical pre-inference firewall—reducing
exposure to adversarial behavior, improving system stability, and increasing
trust in downstream model decisions.

15.7.4.2 Output Monitoring
Even when inputs pass validation, adversarial or unexpected behavior may still
emerge at the model’s output. Output monitoring helps detect such anomalies
by analyzing model predictions in real time. These mechanisms observe how
the model behaves across inputs, by tracking its confidence, prediction en-
tropy, class distribution, or response patterns, to flag deviations from expected
behavior.

A key target for monitoring is prediction confidence. For example, if a classi-
fication model begins assigning high confidence to low-frequency or previously

15.7. Defensive Strategies 826

rare classes, this may indicate the presence of adversarial inputs or a shift in
the underlying data distribution. Monitoring the entropy of the output dis-
tribution can similarly reveal when the model is overly certain in ambiguous
contexts—an early signal of possible manipulation.

In content moderation systems, a model that normally outputs neutral or
“safe” labels may suddenly begin producing high-confidence “safe” labels for
inputs containing offensive or restricted content. Output monitoring can detect
this mismatch by comparing predictions against auxiliary signals or known-
safe reference sets. When deviations are detected, the system may trigger a
fallback policy—such as escalating the content for human review or switching
to a conservative baseline model.

Time-series models also benefit from output monitoring. For instance, an
anomaly detection model used in fraud detection might track predicted fraud
scores for sequences of financial transactions. A sudden drop in fraud scores,
especially during periods of high transaction volume, may indicate model tam-
pering, label leakage, or evasion attempts. Monitoring the temporal evolution of
predictions provides a broader perspective than static, pointwise classification.

Generative models, such as text-to-image systems, introduce unique output
monitoring challenges. These models can produce high-fidelity imagery that
may inadvertently violate content safety policies, platform guidelines, or user
expectations. To mitigate these risks, post-generation classifiers are commonly
employed to assess generated content for objectionable characteristics such as
violence, nudity, or brand misuse. These classifiers operate downstream of the
generative model and can suppress, blur, or reject outputs based on predefined
thresholds. Some systems also inspect internal representations (e.g., attention
maps or latent embeddings) to anticipate potential misuse before content is
rendered.

However, prompt filtering alone is insufÏcient for safety. Research has shown
that text-to-image systems can be manipulated through implicitly adversarial
prompts, which are queries that appear benign but lead to policy-violating
outputs. The Adversarial Nibbler project introduces an open red teaming
methodology that identifies such prompts and demonstrates how models like
Stable Diffusion can produce unintended content despite the absence of explicit
trigger phrases (Quaye et al. 2024). These failure cases often bypass prompt
filters because their risk arises from model behavior during generation, not
from syntactic or lexical cues.

Figure 15.13: Example of an im-
plicitly adversarial prompt (“splat-
ter of red paint”) generating unin-
tended content in a text-to-image
system. These types of failures by-
pass prompt filters and highlight
the need for post-generation safety
monitoring. Source: Adapted from
Quaye et al. (2024). As shown in Figure 15.13, even prompts that appear innocuous can trigger

unsafe generations. Such examples highlight the limitations of pre-generation
safety checks and reinforce the necessity of output-based monitoring as a second

Chapter 15. Security & Privacy 827

7 ShieldGemma is a framework
for filtering outputs from large lan-
guage models, developed by Google
as part of the Gemma model release.
It applies configurable scoring func-
tions to detect and filter undesired
outputs during inference.

line of defense. This two-stage pipeline—consisting of prompt filtering followed
by post-hoc content analysisis essential for ensuring the safe deployment of
generative models in open-ended or user-facing environments.

In the domain of language generation, output monitoring plays a different
but equally important role. Here, the goal is often to detect toxicity, halluci-
nated claims, or off-distribution responses. For example, a customer support
chatbot may be monitored for keyword presence, tonal alignment, or semantic
coherence. If a response contains profanity, unsupported assertions, or syntac-
tically malformed text, the system may trigger a rephrasing, initiate a fallback
to scripted templates, or halt the response altogether.

Effective output monitoring combines rule-based heuristics with learned
detectors trained on historical outputs. These detectors are deployed to flag de-
viations in real time and feed alerts into incident response pipelines. In contrast
to model-centric defenses like adversarial training, which aim to improve model
robustness, output monitoring emphasizes containment and remediation. Its
role is not to prevent exploitation but to detect its symptoms and initiate appro-
priate countermeasures (Savas et al. 2022). In safety-critical or policy-sensitive
applications, such mechanisms form a critical layer of operational resilience.

These principles have been implemented in recent output filtering frame-
works. For example, LLM Guard combines transformer-based classifiers with
safety dimensions such as toxicity, misinformation, and illegal content to assess
and reject prompts or completions in instruction-tuned LLMs (Inan et al. 2023).
Similarly, ShieldGemma, developed as part of Google’s open Gemma model
release, applies configurable scoring functions to detect and filter undesired
outputs during inference7. Both systems exemplify how safety classifiers and
output monitors are being integrated into the runtime stack to support scalable,
policy-aligned deployment of generative language models.

15.7.4.3 Integrity Checks
While input and output monitoring focus on model behavior, system integrity
checks ensure that the underlying model files, execution environment, and
serving infrastructure remain untampered throughout deployment. These
checks detect unauthorized modifications, verify that the model running in
production is authentic, and alert operators to suspicious system-level activity.

One of the most common integrity mechanisms is cryptographic model
verification. Before a model is loaded into memory, the system can compute
a cryptographic hash (e.g., SHA-256) of the model file and compare it against
a known-good signature. This process ensures that the model has not been
altered during transit or storage. For example, a PyTorch .pt or TensorFlow .pb
model artifact stored in object storage (e.g., S3) might be verified using a signed
hash from a deployment registry before loading into a production container. If
the verification fails, the system can block inference, alert an operator, or revert
to a trusted model version.

Access control and audit logging complement cryptographic checks. ML
systems should restrict access to model files using role-based permissions and
monitor file access patterns. For instance, repeated attempts to read model
checkpoints from a non-standard path, or inference requests from unauthorized
IP ranges, may indicate tampering, privilege escalation, or insider threats.

https://ai.google.dev/gemma/docs/shieldgemma

15.7. Defensive Strategies 828

In cloud environments, container- or VM-based isolation helps enforce pro-
cess and memory boundaries, but these protections can erode over time due
to misconfiguration or supply chain vulnerabilities. To reinforce runtime as-
surance, systems may deploy periodic attestation checks—verifying not just
the model artifact, but also the software environment, installed dependencies,
and hardware identity. These techniques are often backed by hardware trust
anchors (e.g., TPMs or TEEs) discussed later on in this chapter.

For example, in a regulated healthcare ML deployment, integrity checks
might include: verifying the model hash against a signed manifest, validating
that the runtime environment uses only approved Python packages, and check-
ing that inference occurs inside a signed and attested virtual machine. These
checks ensure compliance, limit the risk of silent failures, and create a forensic
trail in case of audit or breach.

Some systems also implement runtime memory verification, such as scanning
for unexpected model parameter changes or checking that memory-mapped
model weights remain unaltered during execution. While more common in
high-assurance systems, such checks are becoming more feasible with the
adoption of secure enclaves and trusted runtimes.

Taken together, system integrity checks play a critical role in protecting
machine learning systems from low-level attacks that bypass the model interface.
When coupled with input/output monitoring, they provide layered assurance
that both the model and its execution environment remain trustworthy under
adversarial conditions.

15.7.4.4 Response and Rollback
When a security breach, anomaly, or performance degradation is detected in
a deployed machine learning system, rapid and structured incident response
is critical to minimizing impact. The goal is not only to contain the issue but
to restore system integrity and ensure that future deployments benefit from
the insights gained. Unlike traditional software systems, ML responses may
require handling model state, data drift, or inference behavior, making recovery
more complex.

The first step is to define incident detection thresholds that trigger escalation.
These thresholds may come from input validation (e.g., invalid input rates),
output monitoring (e.g., drop in prediction confidence), or system integrity
checks (e.g., failed model signature verification). When a threshold is crossed,
the system should initiate an automated or semi-automated response protocol.

One common strategy is model rollback, where the system reverts to a pre-
viously verified version of the model. For instance, if a newly deployed fraud
detection model begins misclassifying transactions, the system may fall back to
the last known-good checkpoint, restoring service while the affected version is
quarantined. Rollback mechanisms require version-controlled model storage,
typically supported by MLOps platforms such as MLflow, TFX, or SageMaker.

In high-availability environments, model isolation may be used to contain
failures. The affected model instance can be removed from load balancers
or shadowed in a canary deployment setup. This allows continued service
with unaffected replicas while maintaining forensic access to the compromised
model for analysis.

Chapter 15. Security & Privacy 829

TrafÏc throttling is another immediate response tool. If an adversarial actor
is probing a public inference API at high volume, the system can rate-limit or
temporarily block offending IP ranges while continuing to serve trusted clients.
This containment technique helps prevent abuse without requiring full system
shutdown.

Once immediate containment is in place, investigation and recovery can be-
gin. This may include forensic analysis of input logs, parameter deltas between
model versions, or memory snapshots from inference containers. In regulated
environments, organizations may also need to notify users or auditors, particu-
larly if personal or safety-critical data was affected.

Recovery typically involves retraining or patching the model. This must occur
through a secure update process, using signed artifacts, trusted build pipelines,
and validated data. To prevent recurrence, the incident should feed back into
model evaluation pipelines—updating tests, refining monitoring thresholds, or
hardening input defenses. For example, if a prompt injection attack bypassed
a content filter in a generative model, retraining might include adversarially
crafted prompts, and the prompt validation logic would be updated to reflect
newly discovered patterns.

Finally, organizations should establish post-incident review practices. This
includes documenting root causes, identifying gaps in detection or response,
and updating policies and playbooks. Incident reviews help translate opera-
tional failures into actionable improvements across the design-deploy-monitor
lifecycle.

15.7.5 Hardware-based Security
Machine learning systems are increasingly deployed in environments where
hardware-based security features can provide additional layers of protection.
These features can help ensure the integrity of model execution, protect sensi-
tive data, and prevent unauthorized access to system resources. This section
discusses several key hardware-based security mechanisms that can enhance
the security posture of machine learning systems.

15.7.5.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a hardware-isolated region within a
processor designed to protect sensitive computations and data from potentially
compromised software. TEEs enforce confidentiality, integrity, and runtime
isolation, ensuring that even if the host operating system or application layer is
attacked, sensitive operations within the TEE remain secure.

In the context of machine learning, TEEs are increasingly important for
preserving the confidentiality of models, securing sensitive user data during
inference, and ensuring that model outputs remain trustworthy. For example, a
TEE can protect model parameters from being extracted by malicious software
running on the same device, or ensure that computations involving biometric
inputs, including facial data or fingerprint data, are performed securely. This
capability is particularly critical in applications where model integrity, user
privacy, or regulatory compliance are non-negotiable.

15.7. Defensive Strategies 830

One widely deployed example is Apple’s Secure Enclave, which provides
isolated execution and secure key storage for iOS devices. By separating cryp-
tographic operations and biometric data from the main processor, the Secure
Enclave ensures that user credentials and Face ID features remain protected,
even in the event of a broader system compromise.

Trusted Execution Environments are essential across a range of industries
with high security requirements. In telecommunications, TEEs are used to
safeguard encryption keys and secure critical 5G control-plane operations. In
finance, they enable secure mobile payments and protect PIN-based authenti-
cation workflows. In healthcare, TEEs help enforce patient data confidentiality
during edge-based ML inference on wearable or diagnostic devices. In the
automotive industry, they are deployed in advanced driver-assistance systems
(ADAS) to ensure that safety-critical perception and decision-making modules
operate on verified software.

In machine learning systems, TEEs can provide several important protections.
They secure the execution of model inference or training, shielding intermedi-
ate computations and final predictions from system-level observation. They
protect the confidentiality of sensitive inputs, including biometric or clinical
signals, used in personal identification or risk scoring tasks. TEEs also serve to
prevent reverse engineering of deployed models by restricting access to weights
and architecture internals. When models are updated, TEEs ensure the authen-
ticity of new parameters and block unauthorized tampering. Furthermore, in
distributed ML settings, TEEs can protect data exchanged between components
by enabling encrypted and attested communication channels.

The core security properties of a TEE are achieved through four mechanisms:
isolated execution, secure storage, integrity protection, and in-TEE data encryp-
tion. Code that runs inside the TEE is executed in a separate processor mode,
inaccessible to the normal-world operating system. Sensitive assets such as
cryptographic keys or authentication tokens are stored in memory that only the
TEE can access. Code and data can be verified for integrity before execution us-
ing hardware-anchored hashes or signatures. Finally, data processed inside the
TEE can be encrypted, ensuring that even intermediate results are inaccessible
without appropriate keys, which are also managed internally by the TEE.

Several commercial platforms provide TEE functionality tailored for differ-
ent deployment contexts. ARM TrustZone offers secure and normal world
execution on ARM-based systems and is widely used in mobile and IoT appli-
cations. Intel SGX implements enclave-based security for cloud and desktop
systems, enabling secure computation even on untrusted infrastructure. Qual-
comm’s Secure Execution Environment supports secure mobile transactions
and user authentication. Apple’s Secure Enclave remains a canonical example
of a hardware-isolated security coprocessor for consumer devices.

Figure 15.14 illustrates a secure enclave integrated into a system-on-chip (SoC)
architecture. The enclave includes a dedicated processor, an AES engine, a true
random number generator (TRNG), a public key accelerator (PKA), and a secure
I²C interface to nonvolatile storage. These components operate in isolation
from the main application processor and memory subsystem. A memory
protection engine enforces access control, while cryptographic operations such
as NAND flash encryption are handled internally using enclave-managed keys.

https://support.apple.com/guide/security/secure-enclave-sec59b0b31ff/web
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.qualcomm.com/products/features/mobile-security-solutions
https://www.qualcomm.com/products/features/mobile-security-solutions

Chapter 15. Security & Privacy 831

By physically separating secure execution and key management from the main
system, this architecture limits the impact of system-level compromises and
forms the foundation of hardware-enforced trust.

Figure 15.14: System-on-chip secure
enclave. Source: Apple.

TRNG

Secure Enclave

AES Engine

PKA

I2C bus

Secure Nonvolatile Storage

Secure Enclave

Processor

Memory Protection

Engine

Application

Processor

NAND flash

controller

AES engine

Memory controller

DRAM
NAND flash

storage

System on chip

Secure Enclave

This architecture underpins the secure deployment of machine learning
applications on consumer devices. For example, Apple’s Face ID system uses a
secure enclave to perform facial recognition entirely within a hardware-isolated
environment. The face embedding model is executed inside the enclave, and
biometric templates are stored in secure nonvolatile memory accessible only
via the enclave’s I²C interface. During authentication, input data from the
infrared camera is processed locally, and no facial features or predictions ever
leave the secure region. Even if the application processor or operating system is
compromised, the enclave prevents access to sensitive model inputs, parameters,
and outputs—ensuring that biometric identity remains protected end to end.

Despite their strengths, Trusted Execution Environments come with notable
trade-offs. Implementing a TEE increases both direct hardware costs and indi-
rect costs associated with developing and maintaining secure software. Integrat-
ing TEEs into existing systems may require architectural redesigns, especially

15.7. Defensive Strategies 832

for legacy infrastructure. Developers must adhere to strict protocols for isolation,
attestation, and secure update management, which can extend development
cycles and complicate testing workflows. TEEs can also introduce performance
overhead, particularly when cryptographic operations are involved, or when
context switching between trusted and untrusted modes is frequent.

Energy efÏciency is another consideration, particularly in battery-constrained
devices. TEEs typically consume additional power due to secure memory ac-
cesses, cryptographic computation, and hardware protection logic. In resource-
limited embedded systems, these costs may limit their use. In terms of scala-
bility and flexibility, the secure boundaries enforced by TEEs may complicate
distributed training or federated inference workloads, where secure coordina-
tion between enclaves is required.

Market demand also varies. In some consumer applications, perceived threat
levels may be too low to justify the integration of TEEs. Moreover, systems
with TEEs may be subject to formal security certifications, such as Common
Criteria or evaluation under ENISA, which can introduce additional time and
expense. For this reason, TEEs are typically adopted only when the expected
threat model, including adversarial users, cloud tenants, and malicious insiders,
justifies the investment.

Nonetheless, TEEs remain a powerful hardware primitive in the machine
learning security landscape. When paired with software- and system-level
defenses, they provide a trusted foundation for executing ML models securely,
privately, and verifiably, especially in scenarios where adversarial compromise
of the host environment is a serious concern.

Here is the revised 7.5.2 Secure Boot section, rewritten in formal textbook
tone with all original technical content, hyperlinks, and figures preserved. The
structure emphasizes narrative clarity, avoids bullet lists, and integrates the
Apple Face ID case study naturally.

15.7.5.2 Secure Boot

Secure Boot is a mechanism that ensures a device only boots software com-
ponents that are cryptographically verified and explicitly authorized by the
manufacturer. At startup, each stage of the boot process, comprising the boot-
loader, kernel, and base operating system, is checked against a known-good
digital signature. If any signature fails verification, the boot sequence is halted,
preventing unauthorized or malicious code from executing. This chain-of-trust
model establishes system integrity from the very first instruction executed.

In ML systems, especially those deployed on embedded or edge hardware,
Secure Boot plays an important role. A compromised boot process may result in
malicious software loading before the ML runtime begins, enabling attackers to
intercept model weights, tamper with training data, or reroute inference results.
Such breaches can lead to incorrect or manipulated predictions, unauthorized
data access, or device repurposing for botnets or crypto-mining.

For machine learning systems, Secure Boot offers several guarantees. First,
it protects model-related data, such as training data, inference inputs, and
outputs, during the boot sequence, preventing pre-runtime tampering. Second,
it ensures that only authenticated model binaries and supporting software are

https://www.commoncriteriaportal.org/ccra/index.cfm
https://www.commoncriteriaportal.org/ccra/index.cfm
https://www.enisa.europa.eu/

Chapter 15. Security & Privacy 833

loaded, which helps guard against deployment-time model substitution. Third,
Secure Boot enables secure model updates by verifying that firmware or model
changes are signed and have not been altered in transit.

Secure Boot frequently works in tandem with hardware-based Trusted Exe-
cution Environments (TEEs) to create a fully trusted execution stack. As shown
in Figure 15.15, this layered boot process verifies firmware, operating system
components, and TEE integrity before permitting execution of cryptographic
operations or ML workloads. In embedded systems, this architecture pro-
vides resilience even under severe adversarial conditions or physical device
compromise.

Figure 15.15: Secure Boot flow.
Source: R. V. and A. (2018).

Power up

Hardware init

Get the information of MTM device,

complete the boot and self-diagnosis

process of MTM, store the diagnostic

information of hardware platform and

MTM device, set verification register

Copy kernel image and root FS image

from FLASH to RAM

Checking the CRC checksum of kernel

image

Perform integrity measurement,

verification, and storage of Linux kernel

image

Success

Boot abort

Checking the CRC checksum of root fs

image

Perform integrity measurement,

verification, and storage of root fs image

Success

Set boot parameters for kernel

Booting the kernelNo

Yes

No

Yes

A well-known real-world implementation of Secure Boot appears in Apple’s
Face ID system, which leverages advanced machine learning for facial recogni-
tion. For Face ID to operate securely, the entire device stack, from the initial
power-on to the execution of the model, must be verifiably trusted.

Upon device startup, Secure Boot initiates within Apple’s Secure Enclave,
a dedicated security coprocessor that handles biometric data. The firmware
loaded onto the Secure Enclave is digitally signed by Apple, and any unautho-
rized modification causes the boot process to fail. Once verified, the Secure

https://support.apple.com/en-us/102381

15.7. Defensive Strategies 834

Enclave performs continuous checks in coordination with the central processor
to maintain a trusted boot chain. Each system component, ranging from the iOS
kernel to the application-level code, is verified using cryptographic signatures.

After completing the secure boot sequence, the Secure Enclave activates the
ML-based Face ID system. The facial recognition model projects over 30,000
infrared points to map a user’s face, generating a depth image and computing a
mathematical representation that is compared against a securely stored profile.
These facial data artifacts are never written to disk, transmitted off-device, or
shared externally. All processing occurs within the enclave to protect against
eavesdropping or exfiltration, even in the presence of a compromised kernel.

To support continued integrity, Secure Boot also governs software updates.
Only firmware or model updates signed by Apple are accepted, ensuring that
even over-the-air patches do not introduce risk. This process maintains a robust
chain of trust over time, enabling the secure evolution of the ML system while
preserving user privacy and device security.

While Secure Boot provides strong protection, its adoption presents technical
and operational challenges. Managing the cryptographic keys used to sign
and verify system components is complex, especially at scale. Enterprises must
securely provision, rotate, and revoke keys, ensuring that no trusted root is
compromised. Any such breach would undermine the entire security chain.

Performance is also a consideration. Verifying signatures during the boot
process introduces latency, typically on the order of tens to hundreds of millisec-
onds per component. Although acceptable in many applications, these delays
may be problematic for real-time or power-constrained systems. Developers
must also ensure that all components, including bootloaders, firmware, kernels,
drivers, and even ML models, are correctly signed. Integrating third-party
software into a Secure Boot pipeline introduces additional complexity.

Some systems limit user control in favor of vendor-locked security models,
restricting upgradability or customization. In response, open-source boot-
loaders like u-boot and coreboot have emerged, offering Secure Boot features
while supporting extensibility and transparency. To further scale trusted de-
vice deployments, emerging industry standards such as the Device Identifier
Composition Engine (DICE) and IEEE 802.1AR IDevID provide mechanisms
for secure device identity, key provisioning, and cross-vendor trust assurance.

Secure Boot, when implemented carefully and complemented by trusted
hardware and secure software update processes, forms the backbone of system
integrity for embedded and distributed ML. It provides the assurance that the
machine learning model running in production is not only the correct version,
but is also executing in a known-good environment, anchored to hardware-level
trust.

15.7.5.3 Hardware Security Modules
A Hardware Security Module (HSM) is a tamper-resistant physical device
designed to perform cryptographic operations and securely manage digital
keys. HSMs are widely used across security-critical industries such as finance,
defense, and cloud infrastructure, and they are increasingly relevant for se-
curing the machine learning pipeline—particularly in deployments where key
confidentiality, model integrity, and regulatory compliance are essential.

https://source.denx.de/u-boot/u-boot
https://www.coreboot.org/
https://www.microsoft.com/en-us/research/project/dice-device-identifier-composition-engine/
https://www.microsoft.com/en-us/research/project/dice-device-identifier-composition-engine/
https://1.ieee802.org/security/802-1ar/

Chapter 15. Security & Privacy 835

HSMs provide an isolated, hardened environment for performing sensitive
operations such as key generation, digital signing, encryption, and decryption.
Unlike general-purpose processors, they are engineered to withstand physi-
cal tampering and side-channel attacks, and they typically include protected
storage, cryptographic accelerators, and internal audit logging. HSMs may be
implemented as standalone appliances, plug-in modules, or integrated chips
embedded within broader systems.

In machine learning systems, HSMs enhance security across several dimen-
sions. They are commonly used to protect encryption keys associated with
sensitive data that may be processed during training or inference. These keys
might encrypt data at rest in model checkpoints or enable secure transmission
of inference requests across networked environments. By ensuring that the
keys are generated, stored, and used exclusively within the HSM, the system
minimizes the risk of key leakage, unauthorized reuse, or tampering.

HSMs also play a role in maintaining the integrity of machine learning models.
In many production pipelines, models must be signed before deployment to
ensure that only verified versions are accepted into runtime environments. The
signing keys used to authenticate models can be stored and managed within the
HSM, providing cryptographic assurance that the deployed artifact is authentic
and untampered. Similarly, secure firmware updates and configuration changes,
regardless of whether they pertain to models, hyperparameters, or supporting
infrastructure, can be validated using signatures produced by the HSM.

In addition to protecting inference workloads, HSMs can be used to secure
model training. During training, data may originate from distributed and poten-
tially untrusted sources. HSM-backed protocols can help ensure that training
pipelines perform encryption, integrity checks, and access control enforcement
securely and in compliance with organizational or legal requirements. In reg-
ulated industries such as healthcare and finance, such protections are often
mandatory.

Despite these benefits, incorporating HSMs into embedded or resource-
constrained ML systems introduces several trade-offs. First, HSMs are spe-
cialized hardware components and often come at a premium. Their cost may
be justified in data center settings or safety-critical applications but can be
prohibitive for low-margin embedded products or wearables. Physical space
is also a concern. Embedded systems often operate under strict size, weight,
and form factor constraints, and integrating an HSM may require redesigning
circuit layouts or sacrificing other functionality.

From a performance standpoint, HSMs introduce latency, particularly for
operations like key exchange, signature verification, or on-the-fly decryption. In
real-time inference systems, including autonomous vehicles, industrial robotics,
and live translation devices, these delays can affect responsiveness. While HSMs
are typically optimized for cryptographic throughput, they are not general-
purpose processors, and ofÒoading secure operations must be carefully coordi-
nated.

Power consumption is another concern. The continuous secure handling of
keys, signing of transactions, and cryptographic validations can consume more
power than basic embedded components, impacting battery life in mobile or
remote deployments.

15.7. Defensive Strategies 836

Integration complexity also grows when HSMs are introduced into existing
ML pipelines. Interfacing between the HSM and the host processor requires
dedicated APIs and often specialized software development. Firmware and
model updates must be routed through secure, signed channels, and update
orchestration must account for device-specific key provisioning. These require-
ments increase the operational burden, especially in large deployments.

Scalability presents its own set of challenges. Managing a distributed fleet of
HSM-equipped devices requires secure provisioning of individual keys, secure
identity binding, and coordinated trust management. In large ML deployments,
including fleets of smart sensors or edge inference nodes, ensuring uniform
security posture across all devices is nontrivial.

Finally, the use of HSMs often requires organizations to engage in certifi-
cation and compliance processes, particularly when handling regulated data.
Meeting standards such as FIPS 140-2 or Common Criteria adds time and cost
to development. Access to the HSM is typically restricted to a small set of
authorized personnel, which can complicate development workflows and slow
iteration cycles.

Despite these operational complexities, HSMs remain a valuable option
for machine learning systems that require high assurance of cryptographic
integrity and access control. When paired with TEEs, secure boot, and software-
based defenses, HSMs contribute to a multilayered security model that spans
hardware, system software, and ML runtime.

15.7.5.4 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) provide a hardware-intrinsic mecha-
nism for cryptographic key generation and device authentication by leveraging
physical randomness in semiconductor fabrication (Gassend et al. 2002). Un-
like traditional keys stored in memory, a PUF generates secret values based
on microscopic variations in a chip’s physical properties—variations that are
inherent to manufacturing processes and difÏcult to clone or predict, even by
the manufacturer.

These variations arise from uncontrollable physical factors such as doping
concentration, line edge roughness, and dielectric thickness. As a result, even
chips fabricated with the same design masks exhibit small but measurable
differences in timing, power consumption, or voltage behavior. PUF circuits
amplify these variations to produce a device-unique digital output. When
a specific input challenge is applied to a PUF, it generates a corresponding
response based on the chip’s physical fingerprint. Because these characteristics
are effectively impossible to replicate, the same challenge will yield different
responses across devices.

This challenge-response mechanism allows PUFs to serve several crypto-
graphic purposes. They can be used to derive device-specific keys that never
need to be stored externally, reducing the attack surface for key exfiltration. The
same mechanism also supports secure authentication and attestation, where de-
vices must prove their identity to trusted servers or hardware gateways. These
properties make PUFs a natural fit for machine learning systems deployed in
embedded and distributed environments.

Chapter 15. Security & Privacy 837

In ML applications, PUFs offer unique advantages for securing resource-
constrained systems. For example, consider a smart camera drone that uses
onboard computer vision to track objects. A PUF embedded in the drone’s pro-
cessor can generate a private key to encrypt the model during boot. Even if the
model were extracted, it would be unusable on another device lacking the same
PUF response. That same PUF-derived key could also be used to watermark
the model parameters, creating a cryptographically verifiable link between a
deployed model and its origin hardware. If the model were leaked or pirated,
the embedded watermark could help prove the source of the compromise.

PUFs also support authentication in distributed ML pipelines. If the drone
ofÒoads computation to a cloud server, the PUF can help verify that the drone
has not been cloned or tampered with. The cloud backend can issue a challenge,
verify the correct response from the device, and permit access only if the PUF
proves device authenticity. These protections enhance trust not only in the
model and data, but in the execution environment itself.

The internal operation of a PUF is illustrated in Figure 15.16. At a high level,
a PUF accepts a challenge input and produces a unique response determined
by the physical microstructure of the chip (Gao, Al-Sarawi, and Abbott 2020).
Variants include optical PUFs, in which the challenge consists of a light pattern
and the response is a speckle image, and electronic PUFs such as Arbiter PUFs
(APUFs), where timing differences between circuit paths produce a binary
output. Another common implementation is the SRAM PUF, which exploits the
power-up state of uninitialized SRAM cells: due to threshold voltage mismatch,
each cell tends to settle into a preferred value when power is first applied. These
response patterns form a stable, reproducible hardware fingerprint.

Figure 15.16: PUF basics. Source:
Gao, Al-Sarawi, and Abbott (2020).

15.7. Defensive Strategies 838

Despite their promise, PUFs present several challenges in system design.
Their outputs can be sensitive to environmental variation, such as changes
in temperature or voltage, which can introduce instability or bit errors in the
response. To ensure reliability, PUF systems must often incorporate error
correction codes or helper data schemes. Managing large sets of challenge-
response pairs also raises questions about storage, consistency, and revocation.
Additionally, the unique statistical structure of PUF outputs may make them
vulnerable to machine learning-based modeling attacks if not carefully shielded
from external observation.

From a manufacturing perspective, incorporating PUF technology can in-
crease device cost or require additional layout complexity. While PUFs eliminate
the need for external key storage, thereby reducing long-term security risk and
provisioning cost, they may require calibration and testing during fabrication
to ensure consistent performance across environmental conditions and device
aging.

Nevertheless, Physical Unclonable Functions remain a compelling building
block for securing embedded machine learning systems. By embedding hard-
ware identity directly into the chip, PUFs support lightweight cryptographic
operations, reduce key management burden, and help establish root-of-trust
anchors in distributed or resource-constrained environments. When integrated
thoughtfully, they complement other hardware-assisted security mechanisms
such as Secure Boot, TEEs, and HSMs to provide defense-in-depth across the
ML system lifecycle.

15.7.5.5 Mechanisms Comparison

Hardware-assisted security mechanisms play a foundational role in establishing
trust within modern machine learning systems. While software-based defenses
offer flexibility, they ultimately rely on the security of the hardware platform. As
machine learning workloads increasingly operate on edge devices, embedded
platforms, and untrusted infrastructure, hardware-backed protections become
essential for maintaining system integrity, confidentiality, and trust.

Trusted Execution Environments (TEEs) provide runtime isolation for model
inference and sensitive data handling. Secure Boot enforces integrity from
power-on, ensuring that only verified software is executed. Hardware Security
Modules (HSMs) offer tamper-resistant storage and cryptographic processing
for secure key management, model signing, and firmware validation. Physical
Unclonable Functions (PUFs) bind secrets and authentication to the physical
characteristics of a specific device, enabling lightweight and unclonable identi-
ties.

These mechanisms address different layers of the system stack, ranging from
initialization and attestation to runtime protection and identity binding, and
complement one another when deployed together. Table 15.7 below compares
their roles, use cases, and trade-offs in machine learning system design.

Chapter 15. Security & Privacy 839

Table 15.7: Hardware security mechanisms comparison.

Mechanism Primary Function Common Use in ML Trade-offs

Trusted Execution
Environment (TEE)

Isolated runtime
environment for
secure computation

Secure inference and
on-device privacy for
sensitive inputs and outputs

Added complexity, memory
limits, perf. cost Requires
trusted code development

Secure Boot Verified boot
sequence and
firmware validation

Ensures only signed ML
models and firmware execute
on embedded devices

Key management complexity,
vendor lock-in Performance
impact during startup

Hardware Security
Module (HSM)

Secure key
generation and
storage,
crypto-processing

Signing ML models, securing
training pipelines, verifying
firmware

High cost, integration overhead,
limited I/O Requires
infrastructure-level provisioning

Physical
Unclonable
Function (PUF)

Hardware-bound
identity and key
derivation

Model binding, device
authentication, protecting IP
in embedded deployments

Environmental sensitivity,
modeling attacks Needs error
correction and calibration

Together, these hardware primitives form the foundation of a defense-in-
depth strategy for securing ML systems in adversarial environments. Their
integration is especially important in domains that demand provable trust, such
as autonomous vehicles, healthcare devices, federated learning systems, and
critical infrastructure.

15.7.6 Toward Trustworthy Systems

Defending machine learning systems against adversarial threats, misuse, and
system compromise requires more than isolated countermeasures. As this sec-
tion has shown, effective defense emerges from the careful integration of mech-
anisms at multiple layers of the ML stack—from privacy-preserving data han-
dling and robust model design to runtime monitoring and hardware-enforced
isolation. No single component can provide complete protection; instead, a
trustworthy system is the result of coordinated design decisions that address
risk across the data, model, system, and infrastructure layers.

Defensive strategies must align with the deployment context and threat
model. What is appropriate for a public cloud API may differ from the re-
quirements of an embedded medical device or a fleet of edge-deployed sensors.
Design choices must balance security, performance, and usability, recogniz-
ing that protections often introduce operational trade-offs. Monitoring and
incident response mechanisms ensure resilience during live operation, while
hardware-based roots of trust ensure system integrity even when higher layers
are compromised.

As machine learning continues to expand into safety-critical, privacy-sensitive,
and decentralized environments, the need for robust, end-to-end defense be-
comes increasingly urgent. Building ML systems that are not only accurate,
but secure, private, and auditable, is fundamental to long-term deployment
success and public trust. The principles introduced in this section lay the
groundwork for such systems—while connecting forward to broader concerns
explored in subsequent chapters, including robustness, responsible AI, and
MLOps operations.

The process of engineering trustworthy ML systems requires a structured ap-
proach that connects threat modeling to layered defenses and runtime resilience.

15.8. Offensive Capabilities 840

Figure 15.17 provides a conceptual framework to guide this process across tech-
nical and deployment dimensions. The design flow begins with a thorough
assessment of the threat model and deployment context, which informs the
selection of appropriate defenses across the system stack. This includes data-
layer protections such as differential privacy (DP), federated learning (FL), and
encryption; model-layer defenses like robustness techniques, watermarking,
and secure deployment practices; runtime-layer measures such as input vali-
dation and output monitoring; and hardware-layer solutions including TEEs,
secure boot, and PUFs.

Figure 15.17: A design flow for
building secure and trustworthy ML
systems.

Data Layer: DP, FL,

Encryption

Model Layer: Robustness,

Watermarking, Secure

Deployment

Runtime Layer: Input

Validation, Output

Monitoring

Hardware Layer: TEEs,

Secure Boot, PUFs

Select Defenses Across

the Stack

Assess Threat Model &

Deployment Context

Plan for Runtime

Adaptation and Recovery

Rollback, Isolation,

Incident Response

Monitoring, Logging,

Alerting
Design Feedback Loop

This design flow emphasizes the importance of a comprehensive approach
to security, where each layer of the system is fortified against potential threats
while remaining adaptable to evolving risks. By integrating these principles
into the design and deployment of machine learning systems, organizations
can build solutions that are not only effective but also resilient, trustworthy,
and aligned with ethical standards.

15.8 Offensive Capabilities

While machine learning systems are often treated as assets to protect, they may
also serve as tools for launching attacks. In adversarial settings, the same models
used to enhance productivity, automate perception, or assist decision-making
can be repurposed to execute or amplify offensive operations. This dual-use
characteristic of machine learning, its capacity to secure systems as well as to
subvert them, marks a fundamental shift in how ML must be considered within
system-level threat models.

An offensive use of machine learning refers to any scenario in which a ma-
chine learning model is employed to facilitate the compromise of another system.
In such cases, the model itself is not the object under attack, but the mechanism
through which an adversary advances their objectives. These applications may
involve reconnaissance, inference, subversion, impersonation, or the automa-
tion of exploit strategies that would otherwise require manual execution.

Chapter 15. Security & Privacy 841

Importantly, such offensive applications are not speculative. Attackers are
already integrating machine learning into their toolchains across a wide range
of activities, from spam filtering evasion to model, driven malware generation.
What distinguishes these scenarios is the deliberate use of learning-based sys-
tems to extract, manipulate, or generate information in ways that undermine
the confidentiality, integrity, or availability of targeted components.

To clarify the diversity and structure of these applications, Table 15.8 sum-
marizes several representative use cases. For each, the table identifies the type
of machine learning model typically employed, the underlying system vulnera-
bility it exploits, and the primary advantage conferred by the use of machine
learning.

Table 15.8: Offensive machine learning use cases.

Offensive Use Case ML Model Type
Targeted System
Vulnerability Advantage of ML

Phishing and Social
Engineering

Large Language Models
(LLMs)

Human perception and
communication systems

Personalized, context-aware
message crafting

Reconnaissance
and Fingerprinting

Supervised classifiers,
clustering models

System configuration,
network behavior

Scalable, automated profiling
of system behavior

Exploit Generation Code generation models,
fine-tuned transformers

Software bugs, insecure
code patterns

Automated discovery of
candidate exploits

Data Extraction
(Inference Attacks)

Classification models,
inversion models

Privacy leakage through
model outputs

Inference with limited or
black-box access

Evasion of
Detection Systems

Adversarial input
generators

Detection boundaries in
deployed ML systems

Crafting minimally perturbed
inputs to evade filters

Hardware-Level
Attacks

CNNs and RNNs for
time-series analysis

Physical side-channels
(e.g., power, timing, EM)

Learning leakage patterns
directly from raw signals

Each of these scenarios illustrates how machine learning models can serve as
amplifiers of adversarial capability. For example, language models enable more
convincing and adaptable phishing attacks, while clustering and classification
algorithms facilitate reconnaissance by learning system-level behavioral pat-
terns. Similarly, adversarial example generators and inference models system-
atically uncover weaknesses in decision boundaries or data privacy protections,
often requiring only limited external access to deployed systems. In hardware
contexts, as discussed in the next section, deep neural networks trained on side-
channel data can automate the extraction of cryptographic secrets from physical
measurements—transforming an expert-driven process into a learnable pattern
recognition task.

Although these applications differ in technical implementation, they share
a common foundation: the adversary replaces a static exploit with a learned
model capable of approximating or adapting to the target’s vulnerable behav-
ior. This shift increases flexibility, reduces manual overhead, and improves
robustness in the face of evolving or partially obscured defenses.

What makes this class of threats particularly significant is their favorable
scaling behavior. Just as accuracy in computer vision or language modeling
improves with additional data, larger architectures, and greater compute re-
sources, so too does the performance of attack-oriented machine learning mod-
els. A model trained on larger corpora of phishing attempts or power traces, for
instance, may generalize more effectively, evade more detectors, or require fewer
inputs to succeed. The same ecosystem that drives innovation in beneficial AI,

15.8. Offensive Capabilities 842

8 The S-box (Substitution box)
is a core component of the AES en-
cryption algorithm that performs
a non-linear substitution on each
byte of data. During encryption,
each input byte is replaced with a
corresponding output value from a
fixed lookup table. This operation
is designed to provide confusion by
creating a complex relationship be-
tween the key and ciphertext. The
S-box operation’s power consump-
tion varies depending on the input
value, making it a common target
for side-channel analysis.

including public datasets, open-source tooling, and scalable infrastructure, also
lowers the barrier to developing effective offensive models.

This dynamic creates an asymmetry between attacker and defender. While
defensive measures are bounded by deployment constraints, latency budgets,
and regulatory requirements, attackers can scale training pipelines with mini-
mal marginal cost. The widespread availability of pretrained models and public
ML platforms further reduces the expertise required to develop high-impact
attacks.

As a result, any comprehensive treatment of machine learning system secu-
rity must consider not only the vulnerabilities of ML systems themselves but
also the ways in which machine learning can be harnessed to compromise other
components—whether software, data, or hardware. Understanding the offen-
sive potential of machine-learned systems is essential for designing resilient,
trustworthy, and forward-looking defenses.

15.8.1 Case Study: Deep Learning for SCA
One of the most well-known and reproducible demonstrations of deep-learning-
assisted SCA is the SCAAML framework (Side-Channel Attacks Assisted with
Machine Learning) (Bursztein et al. 2019). Developed by researchers at Google,
SCAAML provides a practical implementation of the attack pipeline described
above.

Figure 15.18: Power traces from
an AES S-box operation. Source:
Bursztein et al. (2019).

As shown in Figure 15.18, cryptographic computations exhibit data-dependent
variations in their power consumption. These variations, while subtle, are mea-
surable and reflect the internal state of the algorithm at specific points in time.

In traditional side-channel attacks, experts rely on statistical techniques to
extract these differences. However, a neural network can learn to associate the
shape of these signals with the specific data values being processed, effectively
learning to decode the signal in a manner that mimics expert-crafted models,
yet with enhanced flexibility and generalization. The model is trained on la-
beled examples of power traces and their corresponding intermediate values
(e.g., output of an S-box operation8). Over time, it learns to associate patterns
in the trace, similar to those depicted in Figure 15.18, with secret-dependent
computational behavior. This transforms the key recovery task into a classifi-
cation problem, where the goal is to infer the correct key byte based on trace
shape alone.

In their study, Bursztein et al. (2019) trained a convolutional neural network to
extract AES keys from power traces collected on an STM32F415 microcontroller

Chapter 15. Security & Privacy 843

running the open-source TinyAES implementation. The model was trained to
predict intermediate values of the AES algorithm, such as the output of the
S-box in the first round, directly from raw power traces. Remarkably, the trained
model was able to recover the full 128-bit key using only a small number of
traces per byte.

The traces were collected using a ChipWhisperer setup with a custom STM32F
target board, shown in Figure 15.19. This board executes AES operations
while allowing external equipment to monitor power consumption with high
temporal precision. The experimental setup captures how even inexpensive,
low-power embedded devices can leak information through side channels—
information that modern machine learning models can learn to exploit.

Figure 15.19: STM32F415 target
board used in SCAAML experi-
ments. Source: Bursztein et al.
(2019).

Subsequent work expanded on this approach by introducing long-range
models capable of leveraging broader temporal dependencies in the traces,
improving performance even under noise and desynchronization (Bursztein
et al. 2024). These developments highlight the potential for machine learning
models to serve as offensive cryptanalysis tools—especially in the analysis of
secure hardware.

The implications extend beyond academic interest. As deep learning models
continue to scale, their application to side-channel contexts is likely to lower the
cost, skill threshold, and trace requirements of hardware-level attacks—posing
a growing challenge for the secure deployment of embedded machine learning
systems, cryptographic modules, and trusted execution environments.

15.9. Conclusion 844

15.9 Conclusion
Security and privacy are foundational to the deployment of machine learning
systems in real-world environments. As ML moves beyond the lab and into pro-
duction, as it is deployed across cloud services, edge devices, mobile platforms,
and critical infrastructure, the threats it faces become more complex and more
consequential. From model theft and data leakage to adversarial manipulation
and hardware compromise, securing ML systems requires a comprehensive
understanding of the entire software and hardware stack.

This chapter explored these challenges from multiple angles. We began by
examining real-world security incidents and threat models that impact ML
systems, including attacks on training data, inference pipelines, and deployed
models. We then discussed defense strategies that operate at different layers of
the system: from data privacy techniques like differential privacy and federated
learning, to robust model design, secure deployment practices, runtime moni-
toring, and hardware-enforced trust. Each of these layers addresses a distinct
surface of vulnerability, and together they form the basis of a defense-in-depth
approach.

Importantly, security is not a static checklist. It is an evolving process shaped
by the deployment context, the capabilities of adversaries, and the risk tolerance
of stakeholders. What protects a publicly exposed API may not sufÏce for an
embedded medical device or a distributed fleet of autonomous systems. The
effectiveness of any given defense depends on how well it fits into the larger
system and how it interacts with other components, users, and constraints.

The goal of this chapter was not to catalog every threat or prescribe a fixed set
of solutions. Rather, it was to help build the mindset needed to design secure,
private, and trustworthy ML systems—systems that perform reliably under
pressure, protect the data they rely on, and respond gracefully when things go
wrong.

As we look ahead, security and privacy will remain intertwined with other
system concerns: robustness, fairness, sustainability, and operational scale.
In the chapters that follow, we will explore these additional dimensions and
extend the foundation laid here toward the broader challenge of building ML
systems that are not only performant, but responsible, reliable, and resilient by
design.

15.10 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

Chapter 15. Security & Privacy 845

¸Î Exercises

• Coming soon.

Chapter 16

Responsible AI

Figure 16.1: DALL·E 3 Prompt: Illus-
tration of responsible AI in a futuristic
setting with the universe in the back-
drop: A human hand or hands nurtur-
ing a seedling that grows into an AI tree,
symbolizing a neural network. The tree
has digital branches and leaves, resem-
bling a neural network, to represent the
interconnected nature of AI. The back-
ground depicts a future universe where
humans and animals with general intel-
ligence collaborate harmoniously. The
scene captures the initial nurturing of
the AI as a seedling, emphasizing the
ethical development of AI technology in
harmony with humanity and the uni-
verse.

Purpose

How do human values translate into machine learning systems architecture, and what
principles enable responsible system behavior at scale?

Machine learning systems do not exist in isolation—they operate within
social, economic, and technical environments where their outputs affect people
and institutions. As these systems grow in capability and reach, questions
of responsibility become central to their design. The integration of fairness,
transparency, and accountability is not an afterthought but a systems-level
constraint that shapes data pipelines, model architectures, and deployment
strategies. Recognizing the moral dimension of engineering choices is essential
for building machine learning systems that serve human needs, avoid harm,
and support long-term trust in automation.

847

16.1. Overview 848

L� Learning Objectives

• Grasp the foundational principles of responsible AI.
• Understand how responsible AI principles shape the design and

operation of machine learning systems.
• Recognize the societal, organizational, and deployment contexts

that influence responsible AI implementation.
• Identify tradeoffs and system-level challenges that arise when inte-

grating ethical considerations into ML system design.
• Appreciate the role of governance, human oversight, and value

alignment in sustaining trustworthy AI over time.

16.1 Overview

Machine learning systems are increasingly deployed in high-stakes domains
such as healthcare, criminal justice, and employment. As their influence ex-
pands, so do the risks of embedding bias, compromising privacy, and enabling
unintended harms. For example, a loan approval model trained exclusively on
data from high-income neighborhoods may unfairly penalize applicants from
underrepresented communities, reinforcing structural inequities.

�� Definition of Responsible AI

Responsible AI is the development and deployment of machine learn-
ing systems that explicitly uphold ethical principles, minimize harm, and
promote socially beneficial outcomes. These systems treat fairness, trans-
parency, accountability, privacy, and safety as design constraints, rather than
afterthoughts, integrating them across the machine learning lifecycle.

Responsible machine learning aims to mitigate such outcomes by integrating
ethical principles, such as fairness, transparency, accountability, and safety,
into system design and operation. Fairness seeks to prevent discriminatory
outcomes; explainability allows practitioners and users to interpret model
behavior; robustness helps defend against adversarial manipulation and edge-
case failures; and thorough validation supports trustworthy deployment.

Implementing these principles presents deep technical and organizational
challenges. Engineers must grapple with mathematically defining fairness,
reconciling competing objectives such as accuracy versus interpretability, and
ensuring representative and reliable data pipelines. At the same time, institu-
tions must align policies, incentives, and governance frameworks to uphold
ethical development and deployment practices.

This chapter provides the foundations for understanding and implementing
responsible machine learning. By examining the technical methods, design
trade-offs, and broader system implications, it equips you to critically evaluate

Chapter 16. Responsible AI 849

AI systems and contribute to their development in a way that advances both
capability and human values.

16.2 Core Principles
Responsible AI refers to the development and deployment of machine learning
systems that intentionally uphold ethical principles and promote socially bene-
ficial outcomes. These principles serve not only as policy ideals but as concrete
constraints on system design, implementation, and governance.

Fairness refers to the expectation that machine learning systems do not dis-
criminate against individuals or groups on the basis of protected attributes
such as race, gender, or socioeconomic status. This principle encompasses both
statistical metrics and broader normative concerns about equity, justice, and
structural bias. The two key statistical measures of fairness are demographic
parity and equalized odds. Demographic parity ensures equal outcomes across
different demographic groups. For example, if a loan approval system main-
tains the same approval rate for all racial groups, it would satisfy demographic
parity. The equalized odds criterion requires that equal outcomes be main-
tained for all groups at all decision thresholds. In practice, this means the
true positive and false positive rates should be equal across protected groups.
However, fairness extends beyond these statistical definitions to address deeper
questions of equity, historical discrimination, and systemic bias in how machine
learning systems impact different communities.

Explainability concerns the ability of stakeholders to interpret how a model
produces its outputs. This involves understanding both how individual deci-
sions are made and the model’s overall behavior patterns. Explanations may be
generated after a decision is made (called post-hoc explanations) to detail the
reasoning process, or they may be built into the model’s design for transparent
operation. Explainability is essential for error analysis, regulatory compliance,
and building user trust.

Transparency refers to openness about how AI systems are built, trained,
validated, and deployed. It includes disclosure of data sources, design assump-
tions, system limitations, and performance characteristics. While explainability
focuses on understanding outputs, transparency addresses the broader lifecycle
of the system.

Accountability denotes the mechanisms by which individuals or organiza-
tions are held responsible for the outcomes of AI systems. It involves traceabil-
ity, documentation, auditing, and the ability to remedy harms. Accountability
ensures that AI failures are not treated as abstract malfunctions but as conse-
quences with real-world impact.

Value Alignment is the principle that AI systems should pursue goals that
are consistent with human intent and ethical norms. In practice, this involves
both technical challenges, including reward design and constraint specification,
and broader questions about whose values are represented and enforced.

Human Oversight emphasizes the role of human judgment in supervising,
correcting, or halting automated decisions. This includes humans-in-the-loop
during operation, as well as organizational structures that ensure AI use remains
accountable to societal values and real-world complexity.

16.2. Core Principles 850

Other essential principles such as privacy and robustness are discussed in
dedicated chapters on Security and Privacy and Robust AI, where their technical
implementations and risks are explored in greater depth.

16.3 Princples in Practice
Responsible machine learning begins with a set of foundational principles,
including fairness, transparency, accountability, privacy, and safety, that define
what it means for an AI system to behave ethically and predictably. These
principles are not abstract ideals or afterthoughts; they must be translated into
concrete constraints that guide how models are trained, evaluated, deployed,
and maintained.

Each principle sets expectations for system behavior. Fairness addresses
how models treat different subgroups and respond to historical biases. Ex-
plainability ensures that model decisions can be understood by developers,
auditors, and end users. Privacy governs what data is collected and how it is
used. Accountability defines how responsibilities are assigned, tracked, and
enforced throughout the system lifecycle. Safety requires that models behave
reliably even in uncertain or shifting environments.

Taken together, these principles define what it means for a machine learning
system to behave responsibly, not as isolated features but as system-level con-
straints that are embedded across the lifecycle. Table 16.1 provides a structured
view of how key principles, including fairness, explainability, transparency,
privacy, accountability, and robustness, map to the major phases of ML system
development: data collection, model training, evaluation, deployment, and
monitoring. While some principles (like fairness and privacy) begin with data,
others (like robustness and accountability) become most critical during deploy-
ment and oversight. Explainability, though often emphasized during evaluation
and user interaction, also supports model debugging and design-time valida-
tion. This table reinforces that responsible AI is not a post hoc consideration
but a multi-phase architectural commitment.

Table 16.1: Responsible AI principles mapped to stages of the ML system lifecy-
cle.

Principle Data Collection Model Training Evaluation Deployment Monitoring

Fairness Subgroup
balance,
representative
data

Fairness-aware
loss,
reweighting

Group metrics,
parity tests

Threshold
tuning, access
policy

Drift tracking by
subgroup

Explain-
ability

N/A N/A Global
explanations,
model inspection

Local
explanations,
user interfaces

Debug logs,
recourse
interfaces

Trans-
parency

Data
provenance,
labeling
standards

Training logs,
documented
assumptions

Report cards, test
summaries

Model cards,
known
limitations

Version tracking,
audit trails

Privacy Consent
protocols, data
minimization

Differential
privacy (e.g.,
DP-SGD)

N/A Local inference,
secure access

PII-free logging,
auditability

Account-
ability

Data
governance
policies

Version control,
loss attribution

Evaluation
traceability

Decision
override, usage
documentation

Incident
response,
accountability
triggers

../robust_ai/robust_ai.qmd

Chapter 16. Responsible AI 851

0 Black Box: Term in machine
learning referring to systems where
the decision process is not visible or
well-understood by users.

1 GDPR: European regulation
mandating transparency about per-
sonal data use and the logic of auto-
mated decisions.

Principle Data Collection Model Training Evaluation Deployment Monitoring

Robust-
ness

Diverse inputs,
outlier flagging

Adversarial
training,
regularization

Stress tests,
calibration

Fallback logic,
abstention
thresholds

Distribution
shift alerts,
failure modes

16.3.1 Transparency and Explainability
Machine learning systems are frequently criticized for their lack of interpretabil-
ity. In many cases, models operate as opaque “black boxes,”0 producing out-
puts that are difÏcult for users, developers, and regulators to understand or
scrutinize. This opacity presents a significant barrier to trust, particularly in
high-stakes domains such as criminal justice, healthcare, and finance, where
accountability and the right to recourse are essential. For example, the COM-
PAS algorithm, used in the United States to assess recidivism risk, was found
to exhibit racial bias. However, the proprietary nature of the system, combined
with limited access to interpretability tools, hindered efforts to investigate or
address the issue.

Explainability is the capacity to understand how a model produces its pre-
dictions. It includes both local explanations, which clarify individual predictions,
and global explanations, which describe the models general behavior. Trans-
parency, by contrast, encompasses openness about the broader system design
and operation. This includes disclosure of data sources, feature engineering,
model architectures, training procedures, evaluation protocols, and known
limitations. Transparency also involves documentation of intended use cases,
system boundaries, and governance structures.

These principles are not merely best practices; in many jurisdictions, they are
legal obligations. For instance, the European Unions General Data Protection
Regulation (GDPR)1 requires that individuals receive meaningful information
about the logic of automated decisions that significantly affect them. Similar
regulatory pressures are emerging in other domains, reinforcing the need to
treat explainability and transparency as core architectural requirements.

In practice, implementing these principles entails anticipating the needs of
different stakeholders. Developers require diagnostic access to model inter-
nals; domain experts seek interpretable summaries of outputs; regulators and
auditors demand clear documentation and traceability; and end users expect
understandable justifications for system behavior. Designing for explainability
and transparency therefore necessitates decisions about how and where to
surface relevant information across the system lifecycle.

These principles also support system reliability over time. As models are
retrained or updated, mechanisms for interpretability and traceability enable
the detection of unexpected behavior, enable root cause analysis, and support
governance. Transparency and explainability, when embedded into the struc-
ture and operation of a system, provide the foundation for trust, oversight, and
alignment with institutional and societal expectations.

16.3.2 Fairness in Machine Learning
Fairness in machine learning refers to the principle that automated systems
should not disproportionately disadvantage individuals or groups on the ba-
sis of protected attributes such as race, gender, age, or socioeconomic status.

https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
https://gdpr.eu/tag/gdpr/
https://gdpr.eu/tag/gdpr/

16.2. Core Principles 852

2 Systemic Bias: Deep-rooted
bias in societal structures, often un-
consciously perpetuated.

3 Proxy Variable: A variable
used to indirectly represent another
where direct measures are unavail-
able.

Because these systems are trained on historical data, they are susceptible to
reproducing and amplifying patterns of systemic bias2 embedded in that data.
Without careful design, machine learning systems may unintentionally rein-
force social inequities rather than mitigate them.

A widely studied example comes from the healthcare domain. An algorithm
used to allocate care management resources in U.S. hospitals was found to
systematically underestimate the health needs of Black patients (Obermeyer et
al. 2019). The model used healthcare expenditures as a proxy for health status,
but due to longstanding disparities in access and spending, Black patients were
less likely to incur high costs. As a result, the model inferred that they were less
sick, despite often having equal or greater medical need. This case illustrates
how seemingly neutral design choices such as proxy variable3 selection can yield
discriminatory outcomes when historical inequities are not properly accounted
for.

To evaluate fairness, a range of formal criteria have been developed that
quantify how models perform across groups defined by sensitive attributes.
Suppose a model ℎ(𝑥) predicts a binary outcome, such as loan repayment, and
let 𝑆 represent a sensitive attribute with subgroups 𝑎 and 𝑏. Several widely
used fairness definitions are:

16.3.2.1 Demographic Parity

This criterion requires that the probability of receiving a positive prediction is
independent of group membership. Formally, the model satisfies demographic
parity if: 𝑃 (ℎ(𝑥) = 1 ∣ 𝑆 = 𝑎) = 𝑃 (ℎ(𝑥) = 1 ∣ 𝑆 = 𝑏)

This means the model assigns favorable outcomes, such as loan approval
or treatment referral, at equal rates across subgroups defined by a sensitive
attribute 𝑆.

In the healthcare example, demographic parity would ask whether Black
and white patients were referred for care at the same rate, regardless of their
underlying health needs. While this might seem fair in terms of equal access, it
ignores real differences in medical status and risk, potentially overcorrecting in
situations where needs are not evenly distributed.

16.3.2.2 Equalized Odds

This definition requires that the model’s predictions are conditionally indepen-
dent of group membership given the true label. Specifically, the true positive
and false positive rates must be equal across groups:𝑃 (ℎ(𝑥) = 1 ∣ 𝑆 = 𝑎,𝑌 = 𝑦) = 𝑃 (ℎ(𝑥) = 1 ∣ 𝑆 = 𝑏,𝑌 = 𝑦), for 𝑦 ∈ {0,1}.

That is, for each true outcome 𝑌 = 𝑦, the model should produce the same pre-
diction distribution across groups 𝑆 = 𝑎 and 𝑆 = 𝑏. This means the model
should behave similarly across groups for individuals with the same true

Chapter 16. Responsible AI 853

outcome—whether they qualify for a positive result or not. It ensures that
errors (both missed and incorrect positives) are distributed equally.

Applied to the medical case, equalized odds would ensure that patients with
the same actual health needs (the true label 𝑌) are equally likely to be correctly
or incorrectly referred, regardless of race. The original algorithm violated this
by under-referring Black patients who were equally or more sick than their
white counterparts—highlighting unequal true positive rates.

16.3.2.3 Equality of Opportunity

A relaxation of equalized odds, this criterion focuses only on the true positive
rate. It requires that, among individuals who should receive a positive outcome,
the probability of receiving one is equal across groups:𝑃 (ℎ(𝑥) = 1 ∣ 𝑆 = 𝑎,𝑌 = 1) = 𝑃 (ℎ(𝑥) = 1 ∣ 𝑆 = 𝑏,𝑌 = 1).

This ensures that qualified individuals, who have 𝑌 = 1, are treated equally
by the model regardless of group membership.

In our running example, this measure would ensure that among patients
who do require care, both Black and white individuals have an equal chance
of being identified by the model. In the case of the U.S. hospital system, the
algorithm’s use of healthcare expenditure as a proxy variable led to a failure in
meeting this criterion—Black patients with significant health needs were less
likely to receive care due to their lower historical spending.

These definitions capture different aspects of fairness and are generally in-
compatible. Satisfying one may preclude satisfying another, reflecting the
reality that fairness involves tradeoffs between competing normative goals.
Determining which metric to prioritize requires careful consideration of the
application context, potential harms, and stakeholder values (Barocas, Hardt,
and Narayanan 2023).

In operational systems, fairness must be treated as a constraint that informs
decisions throughout the machine learning lifecycle. It is shaped by how data
are collected and represented, how objectives and proxies are selected, how
model predictions are thresholded, and how feedback mechanisms are struc-
tured. For example, a choice between ranking versus classification models can
yield different patterns of access across groups, even when using the same
underlying data.

While fairness metrics help formalize equity goals, they are often limited
to predefined demographic categories. In practice, these categories may be
too coarse to capture the full range of disparities present in real-world data. A
principled approach to fairness must account for overlapping and intersectional
identities, ensuring that model behavior remains consistent across subgroups
that may not be explicitly labeled in advance. Recent work in this area em-
phasizes the need for predictive reliability across a wide range of population
slices (Hébert-Johnson et al. 2018), reinforcing the idea that fairness must be
considered a system-level requirement, not a localized adjustment. This ex-
panded view of fairness highlights the importance of designing architectures,
evaluation protocols, and monitoring strategies that support more nuanced,
context-sensitive assessments of model behavior.

16.2. Core Principles 854

Ultimately, fairness is a system-wide property that arises from the interac-
tion of data engineering practices, modeling choices, evaluation procedures,
and decision policies. It cannot be isolated to a single model component or
resolved through post hoc adjustments alone. Responsible machine learning
design requires treating fairness as a foundational constraint—one that informs
architectural choices, workflows, and governance mechanisms throughout the
entire lifecycle of the system.

16.3.3 Privacy and Data Governance
Machine learning systems often rely on extensive collections of personal data
to support model training and enable personalized functionality. This reliance
introduces significant responsibilities related to user privacy, data protection,
and ethical data stewardship. Responsible AI design treats privacy not as an
ancillary feature, but as a fundamental constraint that must inform decisions
across the entire system lifecycle.

One of the core challenges in supporting privacy is the inherent tension
between data utility and individual protection. Rich, high-resolution datasets
can enhance model accuracy and adaptability but also heighten the risk of
exposing sensitive information—particularly when datasets are aggregated or
linked with external sources. For example, models trained on conversational
data or medical records have been shown to memorize specific details that can
later be retrieved through model queries or adversarial interaction (Ippolito et
al. 2023).

Even seemingly innocuous data can produce privacy risks when combined.
Wearable devices that track physiological and behavioral signals, including
heart rate, movement, or location, may individually seem benign but can jointly
reveal detailed user profiles. These risks are further exacerbated when users
have limited visibility or control over how their data is processed, retained, or
transmitted.

Privacy as a system principle also entails robust data governance. This in-
cludes defining what data is collected, under what conditions, and with what
degree of consent and transparency. Responsible governance requires attention
to labeling practices, access controls, logging infrastructure, and compliance
with jurisdictional requirements. These mechanisms serve to constrain how
data flows through a system and to document accountability for its use.

To support structured decision-making in this space, Figure 16.2 shows a
simplified flowchart outlining key privacy checkpoints in the early stages of a
data pipeline. It highlights where core safeguards, such as consent acquisition,
encryption, and differential privacy, should be applied. While actual implemen-
tations often involve more nuanced tradeoffs and context-sensitive decisions,
this diagram provides a scaffold for identifying where privacy risks arise and
how they can be mitigated through responsible design choices.

The consequences of weak data governance are well documented. Systems
trained on poorly understood or biased datasets may perpetuate structural
inequities or expose sensitive attributes unintentionally. In the COMPAS exam-
ple introduced earlier, the lack of transparency surrounding data provenance
and usage precluded effective evaluation or redress. In clinical applications,

Chapter 16. Responsible AI 855

Figure 16.2: A simplified flowchart
illustrating decision points in a
privacy-aware data pipeline.

Data Collected

Does it include

PII?

Proceed with

preprocessing

Was user consent

acquired?
Reject data or request

consent

Is log access

encrypted?

Encrypt or secure

logging infrastructure

Is DP or LDP

implemented?

Data eligible for model

training

Add privacy protections

(e.g., DP-SGD, LDP)

Yes

Yes

Yes

Yes

No

No

No

No

No

datasets frequently reflect artifacts such as missing values or demographic skew
that compromise both performance and privacy. Without clear standards for
data quality and documentation, such vulnerabilities become systemic.

Privacy is not solely the concern of isolated algorithms or data processors—it
must be addressed as a structural property of the system. Decisions about
consent collection, data retention, model design, and auditability all contribute
to the privacy posture of a machine learning pipeline. This includes the need
to anticipate risks not only during training, but also during inference and
ongoing operation. Threats such as membership inference attacks underscore
the importance of embedding privacy safeguards into both model architecture
and interface behavior.

Legal frameworks increasingly reflect this understanding. Regulations such
as the GDPR, CCPA, and APPI impose specific obligations regarding data
minimization, purpose limitation, user consent, and the right to deletion. These
requirements translate ethical expectations into enforceable design constraints,
reinforcing the need to treat privacy as a core principle in system development.

Ultimately, privacy in machine learning is a system-wide commitment. It
requires coordination across technical and organizational domains to ensure
that data usage aligns with user expectations, legal mandates, and societal
norms. Rather than viewing privacy as a constraint to be balanced against
functionality, responsible system design integrates privacy from the outset—

https://gdpr.eu
https://oag.ca.gov/privacy/ccpa
https://www.dataguidance.com/notes/japan-data-protection-overview

16.2. Core Principles 856

informing architecture, shaping interfaces, and constraining how models are
built, updated, and deployed.

16.3.4 Designing for Safety and Robustness
Safety in machine learning refers to the assurance that models behave pre-
dictably under normal conditions and fail in controlled, non-catastrophic ways
under stress or uncertainty. Closely related, robustness concerns a models abil-
ity to maintain stable and consistent performance in the presence of variation—
whether in inputs, environments, or system configurations. Together, these
properties are foundational for responsible deployment in safety-critical do-
mains, where machine learning outputs directly affect physical or high-stakes
decisions.

Ensuring safety and robustness in practice requires anticipating the full range
of conditions a system may encounter and designing for behavior that remains
reliable beyond the training distribution. This includes not only managing the
variability of inputs but also addressing how models respond to unexpected
correlations, rare events, and deliberate attempts to induce failure. For exam-
ple, widely publicized failures in autonomous vehicle systems have revealed
how limitations in object detection or overreliance on automation can result
in harmful outcomes—even when models perform well under nominal test
conditions.

One illustrative failure mode arises from adversarial inputs: carefully con-
structed perturbations that appear benign to humans but cause a model to
output incorrect or harmful predictions (Szegedy et al. 2013b). Such vulnera-
bilities are not limited to image classification—they have been observed across
modalities including audio, text, and structured data, and they reveal the brit-
tleness of learned representations in high-dimensional spaces. These behaviors
highlight that robustness must be considered not only during training but as a
global property of how systems interact with real-world complexity.

A related challenge is distribution shift: the inevitable mismatch between
training data and conditions encountered in deployment. Whether due to sea-
sonality, demographic changes, sensor degradation, or environmental variabil-
ity, such shifts can degrade model reliability even in the absence of adversarial
manipulation. Failures under distribution shift may propagate through down-
stream decisions, introducing safety risks that extend beyond model accuracy
alone. In domains such as healthcare, finance, or transportation, these risks are
not hypothetical—they carry real consequences for individuals and institutions.

Responsible machine learning design treats robustness as a systemic re-
quirement. Addressing it requires more than improving individual model
performance. It involves designing systems that anticipate uncertainty, surface
their limitations, and support fallback behavior when predictive confidence is
low. This includes practices such as setting confidence thresholds, supporting
abstention from decision-making, and integrating human oversight into op-
erational workflows. These mechanisms are critical for building systems that
degrade gracefully rather than failing silently or unpredictably.

Safety and robustness also impose requirements at the architectural and
organizational level. Decisions about how models are monitored, how failures

Chapter 16. Responsible AI 857

4 Google Flu Trends was a
service launched in 2008 that at-
tempted to predict flu outbreaks by
analyzing Google search queries. It
was discontinued in 2015 after con-
sistently overestimating flu preva-
lence, which highlights the risks of
relying on indirect behavioral data
without robust validation.

are detected, and how updates are governed all influence whether a system can
respond effectively to changing conditions. Responsible design demands that
robustness be treated not as a property of isolated models but as a constraint
that shapes the overall behavior of machine learning systems.

16.3.5 Accountability and Governance
Accountability in machine learning refers to the capacity to identify, attribute,
and address the consequences of automated decisions. It extends beyond
diagnosing failures to ensuring that responsibility for system behavior is clearly
assigned, that harms can be remedied, and that ethical standards are maintained
through oversight and institutional processes. Without such mechanisms,
even well-intentioned systems can generate significant harm without recourse,
undermining public trust and eroding legitimacy.

Unlike traditional software systems, where responsibility often lies with a
clearly defined developer or operator, accountability in machine learning is
distributed. Model outputs are shaped by upstream data collection, training
objectives, pipeline design, interface behavior, and post-deployment feedback.
These interconnected components often involve multiple actors across tech-
nical, legal, and organizational domains. For example, if a hiring platform
produces biased outcomes, accountability may rest not only with the model
developer but also with data providers, interface designers, and deploying
institutions. Responsible system design requires that these relationships be
explicitly mapped and governed.

Inadequate governance can prevent institutions from recognizing or correct-
ing harmful model behavior. The failure of Google Flu Trends4 to anticipate
distribution shift and feedback loops illustrates how opacity in model assump-
tions and update policies can inhibit corrective action. Without visibility into
the system’s design and data curation, external stakeholders lacked the means
to evaluate its validity, contributing to the model’s eventual discontinuation.

Legal frameworks increasingly reflect the necessity of accountable design.
Regulations such as the Illinois Artificial Intelligence Video Interview Act and
the EU AI Act impose requirements for transparency, consent, documentation,
and oversight in high-risk applications. These policies embed accountability not
only in the outcomes a system produces, but in the operational procedures and
documentation that support its use. Internal organizational changes, including
the introduction of fairness audits and the imposition of usage restrictions
in targeted advertising systems, demonstrate how regulatory pressure can
catalyze structural reforms in governance.

Designing for accountability entails supporting traceability at every stage of
the system lifecycle. This includes documenting data provenance, recording
model versioning, enabling human overrides, and retaining sufÏcient logs for
retrospective analysis. Tools such as model cards and datasheets for datasets
exemplify practices that make system behavior interpretable and reviewable.
However, accountability is not reducible to documentation alone—it also re-
quires mechanisms for feedback, contestation, and redress.

Within organizations, governance structures help formalize this responsibil-
ity. Ethics review processes, cross-functional audits, and model risk committees

https://www.ilga.gov/legislation/ilcs/ilcs3.asp?ActID=4015&ChapterID=68
https://artificialintelligenceact.eu/the-act/
https://arxiv.org/abs/1810.03993
https://arxiv.org/abs/1803.09010

16.4. Deployment Contexts 858

5 Ethical Drift: The gradual dete-
rioration of ethical standards in au-
tomated systems, often due to new
or shifting contexts and overlooked
biases.

provide forums for anticipating downstream impact and responding to emerg-
ing concerns. These structures must be supported by infrastructure that allows
users to contest decisions and developers to respond with corrections. For
instance, systems that enable explanations or user-initiated reviews help bridge
the gap between model logic and user experience, especially in domains where
the impact of error is significant.

Architectural decisions also play a role. Interfaces can be designed to surface
uncertainty, enable escalation, or suspend automated actions when appropriate.
Logging and monitoring pipelines must be configured to detect signs of ethical
drift5, such as performance degradation across subpopulations or unantici-
pated feedback loops. In distributed systems, where uniform observability is
difÏcult to maintain, accountability must be embedded through architectural
safeguards—such as secure protocols, update constraints, or trusted compo-
nents.

Governance does not imply centralized control. Instead, it involves distribut-
ing responsibility in ways that are transparent, actionable, and sustainable.
Technical teams, legal experts, end users, and institutional leaders must all
have access to the tools and information necessary to evaluate system behavior
and intervene when necessary. As machine learning systems become more
complex and embedded in critical infrastructure, accountability must scale
accordingly—becoming a foundational consideration in both architecture and
process, not a reactive layer added after deployment.

16.4 Deployment Contexts

Responsible AI principles, such as fairness, privacy, transparency, and robust-
ness, cannot be implemented uniformly across all system architectures. Their
realization is shaped by the constraints and affordances of the deployment
environment. A model operating in a centralized cloud setting benefits from
high computational capacity, centralized monitoring, and scalable retraining
pipelines, but may introduce substantial privacy and governance risks. In
contrast, systems deployed on mobile devices, edge platforms, or embedded
microcontrollers face stringent constraints on latency, memory, energy, and
connectivity—factors that directly affect how responsible AI can be supported
in practice.

These architectural differences introduce tradeoffs that affect not only what is
technically feasible, but also how responsibilities are distributed across system
components. Resource availability, latency constraints, user interface design,
and the presence or absence of connectivity all play a role in determining
whether responsible AI principles can be enforced consistently across deploy-
ment contexts.

Understanding how deployment shapes the operational landscape for fair-
ness, explainability, safety, privacy, and accountability is essential for designing
machine learning systems that are robust, aligned, and sustainable across real-
world settings.

Chapter 16. Responsible AI 859

6 SHAP (SHapley Additive ex-
Planations): A game theoretic ap-
proach to explain the output of any
machine learning model by calculat-
ing the contribution of each feature
to the prediction.

7 LIME (Local Interpretable
Model-agnostic Explanations): A
method to explain predictions by
learning an interpretable model lo-
cally around the prediction by per-
turbing the input and observing
changes in model output.

8 Attribution Maps: Visuals or
data that map out the contribution
of each part of the input data to the
final decision of a model.

16.4.1 System Explainability

The feasibility of explainability in machine learning systems is deeply shaped
by deployment context. While model architecture and explanation technique
are important factors, system-level constraints, including computational capac-
ity, latency requirements, interface design, and data accessibility, determine
whether interpretability can be supported in a given environment. These con-
straints vary significantly across cloud platforms, mobile devices, edge systems,
and deeply embedded deployments, affecting both the form and timing of
explanations.

In high-resource environments, such as centralized cloud systems, techniques
like SHAP6 and LIME7 can be used to generate detailed post hoc explanations,
even if they require multiple forward passes or sampling procedures. These
methods are often impractical in latency-sensitive or resource-constrained set-
tings, where explanation must be lightweight and fast. On mobile devices or em-
bedded systems, methods based on saliency maps or input gradients are more
feasible, as they typically involve a single backward pass. In TinyML deploy-
ments, runtime explanation may be infeasible altogether, making development-
time inspection the primary opportunity for ensuring interpretability.

Latency and interactivity also influence the delivery of explanations. In
real-time systems, such as drones or automated industrial control loops, there
may be no opportunity to present or compute explanations during operation.
Logging internal signals or confidence scores for later analysis becomes the
primary strategy. In contrast, systems with asynchronous interactions, such
as financial risk scoring or medical diagnosis, allow for deeper and delayed
explanations to be rendered after the decision has been made.

Audience requirements further shape design choices. End users typically
require explanations that are concise, intuitive, and contextually meaningful.
For instance, a mobile health app might summarize a prediction as “elevated
heart rate during sleep,” rather than referencing abstract model internals. By
contrast, developers, auditors, and regulators often need access to attribution
maps8, concept activations, or decision traces to perform debugging, validation,
or compliance review. These internal explanations must be exposed through
developer-facing interfaces or embedded within the model development work-
flow.

Explainability also varies across the system lifecycle. During model devel-
opment, interpretability supports diagnostics, feature auditing, and concept
verification. After deployment, explainability shifts toward runtime behavior
monitoring, user communication, and post hoc analysis of failure cases. In sys-
tems where runtime explanation is infeasible, such as in TinyML—design-time
validation becomes especially critical, requiring models to be constructed in a
way that anticipates and mitigates downstream interpretability failures.

Treating explainability as a system design constraint means planning for in-
terpretability from the outset. It must be balanced alongside other deployment
requirements, including latency budgets, energy constraints, and interface limi-
tations. Responsible system design allocates sufÏcient resources—not only for
predictive performance, but for ensuring that stakeholders can meaningfully

16.4. Deployment Contexts 860

understand and evaluate model behavior within the operational limits of the
deployment environment.

16.4.2 Fairness Constraints
While fairness can be formally defined, its operationalization is shaped by
deployment-specific constraints. Differences in data access, model personaliza-
tion, computational capacity, and infrastructure for monitoring or retraining
affect how fairness can be evaluated, enforced, and sustained across diverse
system architectures.

A key determinant is data visibility. In centralized environments, such as
cloud-hosted platforms, developers often have access to large datasets with
demographic annotations. This enables the use of group-level fairness metrics,
fairness-aware training procedures, and post hoc auditing. In contrast, decen-
tralized deployments, such as federated learning clients or mobile applications,
typically lack access to global statistics due to privacy constraints or fragmented
data. In such settings, fairness interventions must often be embedded during
training or dataset curation, as post-deployment evaluation may be infeasible.

Personalization and adaptation mechanisms also influence fairness tradeoffs.
Systems that deliver a global model to all users may target parity across demo-
graphic groups. In contrast, locally adapted models such as those embedded
in health monitoring apps or on-device recommendation engines may aim for
individual fairness, ensuring consistent treatment of similar users. However,
enforcing this is challenging in the absence of clear similarity metrics or rep-
resentative user data. Furthermore, personalized systems that retrain based
on local behavior may drift toward reinforcing existing disparities, particularly
when data from marginalized users is sparse or noisy.

Real-time and resource-constrained environments impose additional limi-
tations. Embedded systems, wearables, or real-time control platforms often
cannot support runtime fairness monitoring or dynamic threshold adjustment.
In these scenarios, fairness must be addressed proactively through conservative
design choices, including balanced training objectives and static evaluation
of subgroup performance prior to deployment. For example, a speech recog-
nition system deployed on a low-power wearable may need to ensure robust
performance across different accents at design time, since post-deployment
recalibration is not possible.

Decision thresholds and system policies also affect realized fairness. Even
when a model performs similarly across groups, applying a uniform threshold
across all users may lead to disparate impacts if score distributions differ. A
mobile loan approval system, for instance, may systematically under-approve
one group unless group-specific thresholds are considered. Such decisions
must be explicitly reasoned about, justified, and embedded into the systems
policy logic in advance of deployment.

Long-term fairness is further shaped by feedback dynamics. Systems that
retrain on user behavior, including ranking models, recommender systems, and
automated decision pipelines, may reinforce historical biases unless feedback
loops are carefully managed. For example, a hiring platform that dispropor-
tionately favors candidates from specific institutions may amplify existing

Chapter 16. Responsible AI 861

inequalities when retrained on biased historical outcomes. Mitigating such
effects requires governance mechanisms that span not only training but also
deployment monitoring, data logging, and impact evaluation.

Fairness, like other responsible AI principles, is not confined to model pa-
rameters or training scripts. It emerges from a series of decisions across the full
system lifecycle: data acquisition, model design, policy thresholds, retraining
infrastructure, and user feedback handling. Treating fairness as a system-level
constraint, particularly in constrained or decentralized deployments, requires
anticipating where tradeoffs may arise and ensuring that fairness objectives are
embedded into architecture, decision rules, and lifecycle management from the
outset.

16.4.3 Privacy Architectures
Privacy in machine learning systems is not confined to protecting individual
records; it is shaped by how data is collected, stored, transmitted, and integrated
into system behavior. These decisions are tightly coupled to deployment archi-
tecture. System-level privacy constraints vary widely depending on whether a
model is hosted in the cloud, embedded on-device, or distributed across user-
controlled environments—each presenting different challenges for minimizing
risk while maintaining functionality.

A key architectural distinction is between centralized and decentralized data
handling. Centralized cloud systems typically aggregate data at scale, enabling
high-capacity modeling and monitoring. However, this aggregation increases
exposure to breaches and surveillance, making strong encryption, access con-
trol, and auditability essential. In decentralized deployments, including mobile
applications, federated learning clients, and TinyML systems, data remains lo-
cal, reducing central risk but limiting global observability. These environments
often prevent developers from accessing the demographic or behavioral statis-
tics needed to monitor system performance or enforce compliance, requiring
privacy safeguards to be embedded during development.

Privacy challenges are especially pronounced in systems that personalize
behavior over time. Applications such as smart keyboards, fitness trackers,
or voice assistants continuously adapt to users by processing sensitive signals
like location, typing patterns, or health metrics. Even when raw data is dis-
carded, trained models may retain user-specific patterns that can be recovered
via inference-time queries. In architectures where memory is persistent and
interaction is frequent, managing long-term privacy requires tight integration
of protective mechanisms into the model lifecycle.

Connectivity assumptions further shape privacy design. Cloud-connected
systems enable centralized enforcement of encryption protocols and remote
deletion policies, but may introduce latency, energy overhead, or increased
exposure during data transmission. In contrast, edge systems typically oper-
ate ofÒine or intermittently, making privacy enforcement dependent on archi-
tectural constraints—such as feature minimization, local data retention, and
compile-time obfuscation. On TinyML devices, which often lack persistent
storage or update channels, privacy must be engineered into the static firmware
and model binaries, leaving no opportunity for post-deployment adjustment.

16.4. Deployment Contexts 862

Privacy risks also extend to the serving and monitoring layers. A model with
logging enabled, or one that updates through active learning, may inadvertently
expose sensitive information if logging infrastructure is not privacy-aware. For
example, membership inference attacks can reveal whether a users data was
included in training by analyzing model outputs. Defending against such
attacks requires that privacy-preserving measures extend beyond training and
into interface design, rate limiting, and access control.

Crucially, privacy is not determined solely by technical mechanisms but by
how users experience the system. A model may meet formal privacy definitions
and still violate user expectations if data collection is opaque or explanations are
lacking. Interface design plays a central role: systems must clearly communicate
what data is collected, how it is used, and how users can opt out or revoke
consent. In privacy-sensitive applications, failure to align with user norms can
erode trust even in technically compliant systems.

Architectural decisions thus influence privacy at every stage of the data
lifecycle—from acquisition and preprocessing to inference and monitoring.
Designing for privacy involves not only choosing secure algorithms, but also
making principled tradeoffs based on deployment constraints, user needs,
and legal obligations. In high-resource settings, this may involve centralized
enforcement and policy tooling. In constrained environments, privacy must be
embedded statically in model design and system behavior, often without the
possibility of dynamic oversight.

Privacy is not a feature to be appended after deployment. It is a system-level
property that must be planned, implemented, and validated in concert with
the architectural realities of the deployment environment.

16.4.4 Safety and Robustness
The implementation of safety and robustness in machine learning systems is
fundamentally shaped by deployment architecture. Systems deployed in dy-
namic, unpredictable environments, including autonomous vehicles, healthcare
robotics, and smart infrastructure, must manage real-time uncertainty and mit-
igate the risk of high-impact failures. Others, such as embedded controllers or
on-device ML systems, require stable and predictable operation under resource
constraints, limited observability, and restricted opportunities for recovery. In
all cases, safety and robustness are system-level properties that depend not only
on model quality, but on how failures are detected, contained, and managed in
deployment.

One recurring challenge is distribution shift: when conditions at deployment
diverge from those encountered during training. Even modest shifts in input
characteristics, including lighting, sensor noise, or environmental variability,
can significantly degrade performance if uncertainty is not modeled or mon-
itored. In architectures lacking runtime monitoring or fallback mechanisms,
such degradation may go undetected until failure occurs. Systems intended for
real-world variability must be architected to recognize when inputs fall outside
expected distributions and to either recalibrate or defer decisions accordingly.

Adversarial robustness introduces an additional set of architectural consid-
erations. In systems that make security-sensitive decisions, including fraud

Chapter 16. Responsible AI 863

detection, content moderation, and biometric verification, adversarial inputs
can compromise reliability. Mitigating these threats may involve both model-
level defenses (e.g., adversarial training, input filtering) and deployment-level
strategies, such as API access control, rate limiting, or redundancy in input
validation. These protections often impose latency and complexity tradeoffs
that must be carefully balanced against real-time performance requirements.

Latency-sensitive deployments further constrain robustness strategies. In au-
tonomous navigation, real-time monitoring, or control systems, decisions must
be made within strict temporal budgets. Heavyweight robustness mechanisms
may be infeasible, and fallback actions must be defined in advance. Many such
systems rely on confidence thresholds, abstention logic, or rule-based overrides
to reduce risk. For example, a delivery robot may proceed only when pedestrian
detection confidence is high enough; otherwise, it pauses or defers to human
oversight. These control strategies often reside outside the learned model, but
must be tightly integrated into the systems safety logic.

TinyML deployments introduce additional constraints. Deployed on micro-
controllers with minimal memory, no operating system, and no connectivity,
these systems cannot rely on runtime monitoring or remote updates. Safety
and robustness must be engineered statically through conservative design,
extensive pre-deployment testing, and the use of models that are inherently
simple and predictable. Once deployed, the system must operate reliably under
conditions such as sensor degradation, power fluctuations, or environmental
variation—without external intervention or dynamic correction.

Across all deployment contexts, monitoring and escalation mechanisms are
essential for sustaining robust behavior over time. In cloud or high-resource
settings, systems may include uncertainty estimators, distributional change
detectors, or human-in-the-loop feedback loops to detect failure conditions
and trigger recovery. In more constrained settings, these mechanisms must
be simplified or precomputed, but the principle remains: robustness is not
achieved once, but maintained through the ongoing ability to recognize and
respond to emerging risks.

Safety and robustness must be treated as emergent system properties. They
depend on how inputs are sensed and verified, how outputs are acted upon,
how failure conditions are recognized, and how corrective measures are ini-
tiated. A robust system is not one that avoids all errors, but one that fails
visibly, controllably, and safely. In safety-critical applications, designing for this
behavior is not optional—it is a foundational requirement.

16.4.5 Governance Structures
Accountability in machine learning systems must be realized through concrete
architectural choices, interface designs, and operational procedures. Gover-
nance structures make responsibility actionable by defining who is accountable
for system outcomes, under what conditions, and through what mechanisms.
These structures are deeply influenced by deployment architecture. The de-
gree to which accountability can be traced, audited, and enforced varies across
centralized, mobile, edge, and embedded environments—each posing distinct
challenges for maintaining system oversight and integrity.

16.4. Deployment Contexts 864

In centralized systems, such as cloud-hosted platforms, governance is typ-
ically supported by robust infrastructure for logging, version control, and
real-time monitoring. Model registries, telemetry dashboards, and structured
event pipelines allow teams to trace predictions to specific models, data inputs,
or configuration states. This visibility enables accountability to be distributed
across development and operations teams, and to be institutionalized through
impact assessments, fairness audits, or regulatory compliance workflows. How-
ever, the scale and complexity of such systems, which often comprise hundreds
of models that serve diverse users, can obscure failure pathways and complicate
attribution.

In contrast, edge deployments distribute intelligence to devices that may
operate independently from centralized infrastructure. Embedded models in
vehicles, factories, or homes must support localized mechanisms for detecting
abnormal behavior, triggering alerts, and escalating issues. For example, an
industrial sensor might flag anomalies when its prediction confidence drops,
initiating a predefined escalation process. Designing for such autonomy re-
quires forethought: engineers must determine what signals to capture, how
to store them locally, and how to reassign responsibility when connectivity is
intermittent or delayed.

Mobile deployments, such as personal finance apps or digital health tools,
exist at the intersection of user interfaces and backend systems. When some-
thing goes wrong, it is often unclear whether the issue lies with a local model,
a remote service, or the broader design of the user interaction. Governance in
these settings must account for this ambiguity. Effective accountability requires
clear documentation, accessible recourse pathways, and mechanisms for sur-
facing, explaining, and contesting automated decisions at the user level. The
ability to understand and appeal outcomes must be embedded into both the
interface and the surrounding service architecture.

In TinyML deployments, governance is especially constrained. Devices may
lack connectivity, persistent storage, or runtime configurability, limiting oppor-
tunities for dynamic oversight or intervention. Here, accountability must be
embedded statically—through mechanisms such as cryptographic firmware sig-
natures, fixed audit trails, and pre-deployment documentation of training data
and model parameters. In some cases, governance must be enforced during
manufacturing or provisioning, since no post-deployment correction is possible.
These constraints make the design of governance structures inseparable from
early-stage architectural decisions.

Interfaces also play a critical role in enabling accountability. Systems that
surface explanations, expose uncertainty estimates, or allow users to query
decision histories make it possible for developers, auditors, or users to under-
stand both what occurred and why. By contrast, opaque APIs, undocumented
thresholds, or closed-loop decision systems inhibit oversight. Effective gov-
ernance requires that information flows be aligned with stakeholder needs,
including technical, regulatory, and user-facing aspects, so that failure modes
are observable and remediable.

Governance approaches must also adapt to domain-specific risks and institu-
tional norms. High-stakes applications, such as healthcare or criminal justice,
often involve legally mandated impact assessments and audit trails. Lower-risk

Chapter 16. Responsible AI 865

domains may rely more heavily on internal practices, shaped by customer ex-
pectations, reputational concerns, or technical conventions. Regardless of the
setting, governance must be treated as a system-level design property—not an
external policy overlay. It is implemented through the structure of codebases,
deployment pipelines, data flows, and decision interfaces.

Sustaining accountability across diverse deployment environments requires
planning not only for success, but for failure. This includes defining how anoma-
lies are detected, how roles are assigned, how records are maintained, and how
remediation occurs. These processes must be embedded in infrastructure—
traceable in logs, enforceable through interfaces, and resilient to the architec-
tural constraints of the systems deployment context.

16.4.6 Design Tradeoffs

Machine learning systems do not operate in idealized silos. Their deployment
contexts, whether cloud based, mobile, edge deployed, or deeply embedded,
impose competing constraints that shape how responsible AI principles can be
realized. Tradeoffs arise not because ethical values are ignored, but because
no deployment environment can simultaneously optimize for all objectives
under finite resources, strict latency requirements, evolving user behavior, and
regulatory complexity.

Cloud based systems often support extensive monitoring, fairness audits,
interpretability services, and privacy preserving tools due to ample compu-
tational and storage resources. However, these benefits typically come with
centralized data handling, which introduces risks related to surveillance, data
breaches, and complex governance. In contrast, on device systems such as
mobile applications, edge platforms, or TinyML deployments provide stronger
data locality and user control, but limit post deployment visibility, fairness
instrumentation, and model adaptation.

Tensions between goals often become apparent at the architectural level.
For example, systems with real time response requirements, such as wearable
gesture recognition or autonomous braking, cannot afford to compute detailed
interpretability explanations during inference. Designers must choose whether
to precompute simplified outputs, defer explanation to asynchronous analysis,
or omit interpretability altogether in runtime settings.

Conflicts also emerge between personalization and fairness. Systems that
adapt to individuals based on local usage data often lack the global context
necessary to assess disparities across population subgroups. Ensuring that
personalized predictions do not result in systematic exclusion requires careful
architectural design, balancing user level adaptation with mechanisms for
group level equity and auditability.

Privacy and robustness objectives can also conflict. Robust systems often
benefit from logging rare events or user outliers to improve reliability. However,
recording such data may conflict with privacy goals or violate legal constraints
on data minimization. In settings where sensitive behavior must remain local
or encrypted, robustness must be designed into the model architecture and
training procedure in advance, since post hoc refinement may not be feasible.

16.5. Technical Foundations 866

These examples illustrate a broader systems level challenge. Responsible AI
principles cannot be considered in isolation. They interact, and optimizing for
one may constrain another. The appropriate balance depends on deployment
architecture, stakeholder priorities, domain specific risks, and the consequences
of error.

What distinguishes responsible machine learning design is not the elim-
ination of tradeoffs, but the clarity and deliberateness with which they are
navigated. Design decisions must be made transparently, with a full under-
standing of the limitations imposed by the deployment environment and the
impacts of those decisions on system behavior.

These architectural tensions are summarized in Table 16.2, which compares
how responsible AI principles manifest across cloud, mobile, edge, and TinyML
systems. Each setting imposes different constraints on explainability, fairness,
privacy, safety, and accountability, based on factors such as compute capacity,
connectivity, data access, and governance feasibility.

Table 16.2: Comparison of key principles across Cloud, Edge, Mobile, and
TinyML deployments.

Principle Cloud ML Edge ML Mobile ML TinyML

Explainability Supports complex
models and methods
like SHAP and
sampling approaches

Needs lightweight,
low-latency methods
like saliency maps

Requires
interpretable
outputs for users,
often defers deeper
analysis to the cloud

Severely limited
due to constrained
hardware; mostly
static or
compile-time only

Fairness Large datasets enable
bias detection and
mitigation

Localized biases
harder to detect but
allows on-device
adjustments

High personalization
complicates
group-level fairness
tracking

Minimal data
limits bias analysis
and mitigation

Privacy Centralized data at
risk of breaches but
can utilize strong
encryption and
differential privacy
methods

Sensitive personal
data on-device
requires on-device
protections

Tight coupling to
user identity
requires
consent-aware
design and local
processing

Distributed data
reduces
centralized risks
but poses
challenges for
anonymization

Safety Vulnerable to hacking
and large-scale
attacks

Real-world
interactions make
reliability critical

Operates under user
supervision, but still
requires graceful
failure

Needs distributed
safety mechanisms
due to autonomy

Accountabil-
ity

Corporate policies
and audits enable
traceability and
oversight

Fragmented supply
chains complicate
accountability

Requires clear
user-facing
disclosures and
feedback paths

Traceability
required across
long, complex
hardware chains

Governance External oversight
and regulations like
GDPR or CCPA are
feasible

Requires
self-governance by
developers and
integrators

Balances platform
policy with app
developer choices

Relies on built-in
protocols and
cryptographic
assurances

The table highlights the importance of tailoring responsible AI strategies
to the characteristics of the deployment environment. Across system types,
core values must be implemented in ways that align with operational realities,
regulatory obligations, and user expectations.

16.5 Technical Foundations
Responsible machine learning depends on technical methods that translate
ethical principles into actionable mechanisms within system design. These

Chapter 16. Responsible AI 867

methods show how to detect and mitigate bias, preserve user privacy, improve
robustness, and support interpretability—not as abstract ideals, but as system
behaviors that can be engineered, tested, and maintained. Their effectiveness
depends not only on their theoretical properties, but on how well they align with
practical constraints such as data quality, resource availability, user interaction
models, and deployment architecture.

These methods are not interchangeable or universally applicable. Each in-
troduces tradeoffs involving accuracy, latency, scalability, and implementation
complexity. Choosing the right approach requires understanding the methods
purpose, its assumptions, and the demands it places on the surrounding system.
Moreover, technical interventions must be evaluated not just at the model level,
but across the machine learning lifecycle, including data acquisition, training,
deployment, monitoring, and updating.

This section presents representative techniques for operationalizing respon-
sible AI principles in practice. Each method is introduced with attention to its
role within the system, its typical use cases, and the architectural requirements
it imposes. While no single method ensures responsible behavior in isolation,
together these tools form the foundation for building machine learning systems
that perform reliably and uphold societal and ethical expectations.

16.5.1 Bias Detection and Mitigation
Operationalizing fairness in deployed systems requires more than principled
objectives or theoretical metrics—it demands system-aware methods that de-
tect, measure, and mitigate bias across the machine learning lifecycle. Building
on the system-level constraints discussed earlier, fairness must be treated as an
architectural consideration that intersects with data engineering, model train-
ing, inference design, monitoring infrastructure, and policy governance. While
fairness metrics such as demographic parity, equalized odds, and equality of
opportunity formalize different normative goals, their realization depends on
the architecture’s ability to measure subgroup performance, support adap-
tive decision boundaries, and store or surface group-specific metadata during
runtime.

Practical implementation is often shaped by limitations in data access and
system instrumentation. In many real-world environments, especially in mobile,
federated, or embedded systems, sensitive attributes such as gender, age, or
race may not be available at inference time, making it difÏcult to track or audit
model performance across demographic groups. In such contexts, fairness
interventions must occur upstream during data curation or training, as post-
deployment recalibration may not be feasible. Even when data is available,
continuous retraining pipelines that incorporate user feedback can reinforce
existing disparities unless explicitly monitored for fairness degradation. For
example, an on-device recommendation model that adapts to user behavior
may amplify prior biases if it lacks the infrastructure to detect demographic
imbalances in user interactions or outputs.

Figure 16.3 illustrates how fairness constraints can introduce tension with
deployment choices. In a binary loan approval system, two subgroups, Sub-
group A, represented in blue, and Subgroup B, represented in red, require

16.5. Technical Foundations 868

different decision thresholds to achieve equal true positive rates. Using a single
threshold across groups leads to disparate outcomes, potentially disadvantag-
ing Subgroup B. Addressing this imbalance by adjusting thresholds per group
may improve fairness, but doing so requires support for conditional logic in
the model serving stack, access to sensitive attributes at inference time, and
a governance framework for explaining and justifying differential treatment
across groups.

Figure 16.3: Illustrates the trade-off
in setting classification thresholds
for two subgroups (A and B) in a
loan repayment model. Plusses (+)
represent true positives (repayers),
and circles (O) represent true nega-
tives (defaulters). Different thresh-
olds (75% for B and 81.25% for A)
maximize subgroup accuracy but re-
veal fairness challenges.

Subgroup A

Subgroup B

75% 81.25%

Fairness interventions may be applied at different points in the pipeline, but
each comes with system-level implications. Preprocessing methods, which
rebalance training data through sampling, reweighting, or augmentation, re-
quire access to raw features and group labels, often through a feature store
or data lake that preserves lineage. These methods are well-suited to systems
with centralized training pipelines and high-quality labeled data. In contrast,
in-processing approaches embed fairness constraints directly into the optimiza-
tion objective. These require training infrastructure that can support custom
loss functions or constrained solvers and may demand longer training cycles or
additional regularization validation.

Post-processing methods, including the application of group-specific thresh-
olds or the adjustment of scores to equalize outcomes, require inference systems
that can condition on sensitive attributes or reference external policy rules. This
demands coordination between model serving infrastructure, access control
policies, and logging pipelines to ensure that differential treatment is both
auditable and legally defensible. Moreover, any post-processing strategy must
be carefully validated to ensure that it does not compromise user experience,
model stability, or compliance with jurisdictional regulations on attribute use.

Scalable fairness enforcement often requires more advanced strategies, such
as multicalibration, which ensures that model predictions remain calibrated
across a wide range of intersecting subgroups (Hébert-Johnson et al. 2018).
Implementing multicalibration at scale requires infrastructure for dynamically
generating subgroup partitions, computing per-group calibration error, and
integrating fairness audits into automated monitoring systems. These capabili-
ties are typically only available in large-scale, cloud-based deployments with
mature observability and metrics pipelines. In constrained environments such
as embedded or TinyML systems, where telemetry is limited and model logic
is fixed, such techniques are not feasible and fairness must be validated entirely
at design time.

Chapter 16. Responsible AI 869

Across deployment environments, maintaining fairness requires lifecycle-
aware mechanisms. Model updates, feedback loops, and interface designs all
affect how fairness evolves over time. A fairness-aware model may degrade if
retraining pipelines do not include fairness checks, if logging systems cannot
track subgroup outcomes, or if user feedback introduces subtle biases not
captured by training distributions. Monitoring systems must be equipped
to surface fairness regressions, and retraining protocols must have access to
subgroup-labeled validation data, which may require data governance policies
and ethical review.

Fairness is not a one-time optimization, nor is it a property of the model
in isolation. It emerges from coordinated decisions across data acquisition,
feature engineering, model design, thresholding, feedback handling, and sys-
tem monitoring. Embedding fairness into machine learning systems requires
architectural foresight, operational discipline, and tooling that spans the full
deployment stack—from training workflows to serving infrastructure to user-
facing interfaces.

16.5.2 Privacy Preservation
Recall that privacy is a foundational principle of responsible machine learn-
ing, with implications that extend across data collection, model behavior, and
user interaction. Privacy constraints are shaped not only by ethical and legal
obligations, but also by the architectural properties of the system and the con-
text in which it is deployed. Technical methods for privacy preservation aim
to prevent data leakage, limit memorization, and uphold user rights such as
consent, opt-out, and data deletion—particularly in systems that learn from
personalized or sensitive information.

Modern machine learning models, especially large-scale neural networks, are
known to memorize individual training examples, including names, locations,
or excerpts of private communication (Ippolito et al. 2023). This memoriza-
tion presents significant risks in privacy-sensitive applications such as smart
assistants, wearables, or healthcare platforms, where training data may encode
protected or regulated content. For example, a voice assistant that adapts to
user speech may inadvertently retain specific phrases, which could later be
extracted through carefully designed prompts or queries.

This risk is not limited to language models. As shown in Figure 16.4, dif-
fusion models trained on image datasets have been observed to regenerate
visual instances from the training set. Such behavior highlights a more general
vulnerability: many contemporary model architectures can internalize and
reproduce training data, often without explicit signals or intent, and without
easy detection or control.

Beyond memorization, models are susceptible to membership inference at-
tacks, in which adversaries attempt to determine whether a specific datapoint
was part of the training set (Shokri et al. 2017). These attacks exploit subtle
differences in model behavior between seen and unseen inputs. In high-stakes
applications such as healthcare or legal prediction, the mere knowledge that
an individuals record was used in training may violate privacy expectations or
regulatory requirements.

16.5. Technical Foundations 870

Figure 16.4: Diffusion models mem-
orizing samples from training data.
Source: Ippolito et al. (2023).

9 Differentially Private Stochastic
Gradient Descent (DP-SGD): An al-
gorithm that uses gradient clipping
and noise injection to preserve pri-
vacy during training.

To mitigate such vulnerabilities, a range of privacy-preserving techniques
have been developed. Among the most widely adopted is differential privacy,
which provides formal guarantees that the inclusion or exclusion of a single
datapoint has a statistically bounded effect on the models output. Algorithms
such as differentially private stochastic gradient descent (DP-SGD)9 enforce
these guarantees by clipping gradients and injecting noise during training (Mar-
tin Abadi et al. 2016). When implemented correctly, these methods prevent the
model from memorizing individual datapoints and reduce the risk of inference
attacks.

However, differential privacy introduces significant system-level tradeoffs.
The noise added during training can degrade model accuracy, increase the
number of training iterations, and require access to larger datasets to maintain
performance. These constraints are especially pronounced in resource-limited
deployments such as mobile, edge, or embedded systems, where memory,
compute, and power budgets are tightly constrained. In such settings, it may be
necessary to combine lightweight privacy techniques (e.g., feature obfuscation,
local differential privacy) with architectural strategies that limit data collection,
shorten retention, or enforce strict access control at the edge.

Privacy enforcement also depends on infrastructure beyond the model itself.
Data collection interfaces must support informed consent and transparency.
Logging systems must avoid retaining sensitive inputs unless strictly necessary,
and must support access controls, expiration policies, and auditability. Model
serving infrastructure must be designed to prevent overexposure of outputs
that could leak internal model behavior or allow reconstruction of private
data. These system-level mechanisms require close coordination between ML
engineering, platform security, and organizational governance.

Chapter 16. Responsible AI 871

Moreover, privacy must be enforced not only during training but throughout
the machine learning lifecycle. Retraining pipelines must account for deleted or
revoked data, especially in jurisdictions with data deletion mandates. Monitor-
ing infrastructure must avoid recording personally identifiable information in
logs or dashboards. Privacy-aware telemetry collection, secure enclave deploy-
ment, and per-user audit trails are increasingly used to support these goals,
particularly in applications with strict legal oversight.

Architectural decisions also vary by deployment context. Cloud-based sys-
tems may rely on centralized enforcement of differential privacy, encryption,
and access control, supported by telemetry and retraining infrastructure. In
contrast, edge and TinyML systems must build privacy constraints into the
deployed model itself, often with no runtime configurability or feedback chan-
nel. In such cases, static analysis, conservative design, and embedded privacy
guarantees must be implemented at compile time, with validation performed
prior to deployment.

Ultimately, privacy is not an attribute of a model in isolation but a system-level
property that emerges from design decisions across the pipeline. Responsible
privacy preservation requires that technical safeguards, interface controls, in-
frastructure policies, and regulatory compliance mechanisms work together to
minimize risk throughout the lifecycle of a deployed machine learning system.

16.5.3 Machine Unlearning
Privacy preservation does not end at training time. In many real-world systems,
users must retain the right to revoke consent or request the deletion of their
data, even after a model has been trained and deployed. Supporting this
requirement introduces a core technical challenge: how can a model “forget”
the influence of specific datapoints without requiring full retraining—a task that
is often infeasible in edge, mobile, or embedded deployments with constrained
compute, storage, and connectivity?

Traditional approaches to data deletion assume that the full training dataset
remains accessible and that models can be retrained from scratch after remov-
ing the targeted records. Figure 16.5 contrasts traditional model retraining with
emerging machine unlearning approaches. While retraining involves recon-
structing the model from scratch using a modified dataset, unlearning aims to
remove a specific datapoint’s influence without repeating the entire learning
process.

This distinction becomes critical in systems with tight latency, compute,
or privacy constraints. These assumptions rarely hold in practice. Many de-
ployed machine learning systems do not retain raw training data due to security,
compliance, or cost constraints. In such environments, full retraining is often
impractical and operationally disruptive, especially when data deletion must
be verifiable, repeatable, and audit-ready.

Machine unlearning aims to address this limitation by removing the influence
of individual datapoints from an already trained model without retraining it
entirely. Current approaches approximate this behavior by adjusting internal
parameters, modifying gradient paths, or isolating and pruning components
of the model so that the resulting predictions reflect what would have been

16.5. Technical Foundations 872

Figure 16.5: Machine retraining ver-
sus unlearning.

Removing

Dataset New dataset

Model

Machine Learning Retraining

Computational power and

time consumption

Removing

Dataset New dataset

Model

Machine Learning
Machine

unlearning

Can we remove all influence of

someone’s data when they ask to

delete it, but avoid the full cost of

retraining from scratch?

b) Machine unlearninga) Machine retraining

learned without the deleted data (Bourtoule et al. 2021). These techniques
are still maturing and may require simplified model architectures, additional
tracking metadata, or compromise on model accuracy and stability. They also
introduce new burdens around verification: how to prove that deletion has
occurred in a meaningful way, especially when internal model state is not fully
interpretable.

The motivation for machine unlearning is reinforced by regulatory frame-
works. Laws such as the General Data Protection Regulation (GDPR), the
California Consumer Privacy Act (CCPA), and similar statutes in Canada and
Japan codify the right to be forgotten, including for data used in model train-
ing. These laws increasingly require not just prevention of unauthorized data
access, but proactive revocation—empowering users to request that their infor-
mation cease to influence downstream system behavior. High-profile incidents
in which generative models have reproduced personal content or copyrighted
data highlight the practical urgency of integrating unlearning mechanisms into
responsible system design.

From a systems perspective, machine unlearning introduces nontrivial ar-
chitectural and operational requirements. Systems must be able to track data
lineage, including which datapoints contributed to a given model version. This
often requires structured metadata capture and training pipeline instrumen-
tation. Additionally, systems must support user-facing deletion workflows,
including authentication, submission, and feedback on deletion status. Verifi-
cation may require maintaining versioned model registries, along with mech-
anisms for confirming that the updated model exhibits no residual influence
from the deleted data. These operations must span data storage, training or-
chestration, model deployment, and auditing infrastructure, and they must be
robust to failure or rollback.

These challenges are amplified in resource-constrained deployments. TinyML
systems typically run on devices with no persistent storage, no connectivity,
and highly compressed models. Once deployed, they cannot be updated or
retrained in response to deletion requests. In such settings, machine unlearning
is effectively infeasible post-deployment and must be enforced during initial
model development through static data minimization and conservative gen-
eralization strategies. Even in cloud-based systems, where retraining is more

Chapter 16. Responsible AI 873

tractable, unlearning must contend with distributed training pipelines, replica-
tion across services, and the difÏculty of synchronizing deletion across model
snapshots and logs.

Despite these challenges, machine unlearning is becoming essential for re-
sponsible system design. As machine learning systems become more embedded,
personalized, and adaptive, the ability to revoke training influence becomes
central to maintaining user trust and meeting legal requirements. Critically, un-
learning cannot be retrofitted after deployment. It must be considered during
the architecture and policy design phases, with support for lineage tracking,
re-training orchestration, and deployment roll-forward built into the system
from the beginning.

Machine unlearning represents a shift in privacy thinking—from protecting
what data is collected, to controlling how long that data continues to affect sys-
tem behavior. This lifecycle-oriented perspective introduces new challenges for
model design, infrastructure planning, and regulatory compliance, while also
providing a foundation for more user-controllable, transparent, and adaptable
machine learning systems.

16.5.4 Adversarial Robustness

Machine learning models, particularly deep neural networks, are known to
be vulnerable to small, carefully crafted perturbations that significantly alter
their predictions. These vulnerabilities, first formalized through the concept of
adversarial examples (Szegedy et al. 2013b), highlight a gap between model
performance on curated training data and behavior under real-world variability.
A model that performs reliably on clean inputs may fail when exposed to inputs
that differ only slightly from its training distribution—differences imperceptible
to humans, but sufÏcient to change the model’s output.

This phenomenon is not limited to theory. Adversarial examples have been
used to manipulate real systems, including content moderation pipelines (Bhagoji
et al. 2018), ad-blocking detection (Tramèr et al. 2019), and voice recognition
models (Carlini et al. 2016). In safety-critical domains such as autonomous
driving or medical diagnostics, even rare failures can have high-consequence
outcomes, compromising user trust or opening attack surfaces for malicious
exploitation.

Figure 16.6 illustrates a visually negligible perturbation that causes a confi-
dent misclassification—underscoring how subtle changes can produce dispro-
portionately harmful effects.

Figure 16.6: Perturbation effect on
prediction. Source: Microsoft.

16.5. Technical Foundations 874

10 Lipschitz Constant: A mea-
sure that quantifies the sensitivity of
the output of a function to changes
in its input.

11 Randomized Smoothing: A
technique used to create a proba-
bilistically robust version of a model
against input perturbations.

At its core, adversarial vulnerability stems from an architectural mismatch be-
tween model assumptions and deployment conditions. Many training pipelines
assume data is clean, independent, and identically distributed. In contrast,
deployed systems must operate under uncertainty, noise, domain shift, and pos-
sible adversarial tampering. Robustness, in this context, encompasses not only
the ability to resist attack but also the ability to maintain consistent behavior
under degraded or unpredictable conditions.

Improving robustness begins at training. Adversarial training, one of the
most widely used techniques, augments training data with perturbed exam-
ples. This helps the model learn more stable decision boundaries but typically
increases training time and reduces clean-data accuracy. Implementing adver-
sarial training at scale also places demands on data preprocessing pipelines,
model checkpointing infrastructure, and validation protocols that can accom-
modate perturbed inputs.

Architectural modifications can also promote robustness. Techniques that
constrain a models Lipschitz constant10, regularize gradient sensitivity, or en-
force representation smoothness can make predictions more stable. These
design changes must be compatible with the models expressive needs and the
underlying training framework. For example, smooth models may be preferred
for embedded systems with limited input precision or where safety-critical
thresholds must be respected.

At inference time, systems may implement uncertainty-aware decision-making.
Models can abstain from making predictions when confidence is low, or route
uncertain inputs to fallback mechanisms—such as rule-based components or
human-in-the-loop systems. These strategies require deployment infrastructure
that supports fallback logic, user escalation workflows, or configurable absten-
tion policies. For instance, a mobile diagnostic app might return “inconclusive”
if model confidence falls below a specified threshold, rather than issuing a
potentially harmful prediction.

Monitoring infrastructure plays a critical role in maintaining robustness post-
deployment. Distribution shift detection, anomaly tracking, and behavior drift
analytics allow systems to identify when robustness is degrading over time.
Implementing these capabilities requires persistent logging of model inputs,
predictions, and contextual metadata, as well as secure channels for triggering
retraining or escalation. These tools introduce their own systems overhead and
must be integrated with telemetry services, alerting frameworks, and model
versioning workflows.

Beyond empirical defenses, formal approaches offer stronger guarantees.
Certified defenses, such as randomized smoothing11, provide probabilistic
assurances that a models output will remain stable within a bounded input
region. These methods require multiple forward passes per inference and are
computationally intensive, making them suitable primarily for high-assurance,
resource-rich environments. Their integration into production workflows also
demands compatibility with model serving infrastructure and probabilistic
verification tooling.

Simpler defenses, such as input preprocessing, filter inputs through denois-
ing, compression, or normalization steps to remove adversarial noise. These
transformations must be lightweight enough for real-time execution, especially

Chapter 16. Responsible AI 875

in edge deployments, and robust enough to preserve task-relevant features.
Another approach is ensemble modeling, in which predictions are aggregated
across multiple diverse models. This increases robustness but adds complexity
to inference pipelines, increases memory footprint, and complicates deployment
and maintenance workflows.

System constraints such as latency, memory, power budget, and model up-
date cadence strongly shape which robustness strategies are feasible. Adversar-
ial training increases model size and training duration, which may challenge
CI/CD pipelines and increase retraining costs. Certified defenses demand
computational headroom and inference time tolerance. Monitoring requires
logging infrastructure, data retention policies, and access control. On-device
and TinyML deployments, in particular, often cannot accommodate runtime
checks or dynamic updates. In such cases, robustness must be validated stati-
cally and embedded at compile time.

Ultimately, adversarial robustness is not a standalone model attribute. It is a
system-level property that emerges from coordination across training, model
architecture, inference logic, logging, and fallback pathways. A model that
appears robust in isolation may still fail if deployed in a system that lacks
monitoring or interface safeguards. Conversely, even a partially robust model
can contribute to overall system reliability if embedded within an architecture
that detects uncertainty, limits exposure to untrusted inputs, and supports
recovery when things go wrong.

Robustness, like privacy and fairness, must be engineered not just into the
model, but into the system surrounding it. Responsible ML system design
requires anticipating the ways in which models might fail under real-world
stress—and building infrastructure that makes those failures detectable, recov-
erable, and safe.

16.5.5 Explainability and Interpretability

As machine learning systems are deployed in increasingly consequential do-
mains, the ability to understand and interpret model predictions becomes
essential. Explainability and interpretability refer to the technical and design
mechanisms that make a models behavior intelligible to human stakeholders—
whether developers, domain experts, auditors, regulators, or end users. While
the terms are often used interchangeably, interpretability typically refers to the
inherent transparency of a model, such as a decision tree or linear classifier.
Explainability, in contrast, encompasses techniques for generating post hoc
justifications for predictions made by complex or opaque models.

Explainability plays a central role in system validation, error analysis, user
trust, regulatory compliance, and incident investigation. In high-stakes do-
mains such as healthcare, financial services, and autonomous decision systems,
explanations help determine whether a model is making decisions for legiti-
mate reasons or relying on spurious correlations. For instance, an explainability
tool might reveal that a diagnostic model is overly sensitive to image artifacts
rather than medical features, which is a failure mode that could otherwise
go undetected. Regulatory frameworks in many sectors now mandate that

16.5. Technical Foundations 876

AI systems provide “meaningful information” about how decisions are made,
reinforcing the need for systematic support for explanation.

Explainability methods can be broadly categorized based on when they
operate and how they relate to model structure. Post hoc methods are applied
after training and treat the model as a black box. These methods do not require
access to internal model weights and instead infer influence patterns or feature
contributions from model behavior. Common post hoc techniques include
feature attribution methods such as input gradients, Integrated Gradients,
GradCAM (Selvaraju et al. 2017), LIME (Ribeiro, Singh, and Guestrin 2016),
and SHAP (Lundberg and Lee 2017). These approaches are widely used in
image and tabular domains, where explanations can be rendered as saliency
maps or feature rankings.

Another post hoc approach involves counterfactual explanations, which
describe how a models output would change if the input were modified in
specific ways. These are especially relevant for decision-facing applications
such as credit or hiring systems. For example, a counterfactual explanation
might state that an applicant would have received a loan approval if their
reported income were higher or their debt lower (Wachter, Mittelstadt, and
Russell 2017). Counterfactual generation requires access to domain-specific
constraints and realistic data manifolds, making integration into real-time
systems challenging.

A third class of techniques relies on concept-based explanations, which at-
tempt to align learned model features with human-interpretable concepts. For
example, a convolutional network trained to classify indoor scenes might acti-
vate filters associated with “lamp,” “bed,” or “bookshelf” (C. J. Cai et al. 2019).
These methods are especially useful in domains where subject matter experts
expect explanations in familiar semantic terms. However, they require training
data with concept annotations or auxiliary models for concept detection, which
introduces additional infrastructure dependencies.

While post hoc methods are flexible and broadly applicable, they come
with limitations. Because they approximate reasoning after the fact, they may
produce plausible but misleading rationales. Their effectiveness depends on
model smoothness, input structure, and the fidelity of the explanation technique.
These methods are often most useful for exploratory analysis, debugging, or
user-facing summaries—not as definitive accounts of internal logic.

In contrast, inherently interpretable models are transparent by design. Ex-
amples include decision trees, rule lists, linear models with monotonicity con-
straints, and k-nearest neighbor classifiers. These models expose their reasoning
structure directly, enabling stakeholders to trace predictions through a set of
interpretable rules or comparisons. In regulated or safety-critical domains such
as recidivism prediction or medical triage, inherently interpretable models may
be preferred, even at the cost of some accuracy (Rudin 2019). However, these
models generally do not scale well to high-dimensional or unstructured data,
and their simplicity can limit performance in complex tasks.

The relative interpretability of different model types can be visualized along
a spectrum. As shown in Figure 16.7, models such as decision trees and linear
regression offer transparency by design, whereas more complex architectures
like neural networks and convolutional models require external techniques

Chapter 16. Responsible AI 877

to explain their behavior. This distinction is central to choosing an appropri-
ate model for a given application—particularly in settings where regulatory
scrutiny or stakeholder trust is paramount.

Figure 16.7: Spectrum of model
interpretability. Inherently inter-
pretable models (e.g., decision trees,
linear regression) are transparent
by design, while complex mod-
els (e.g., neural networks, convolu-
tional models) require post hoc ex-
planation techniques.

More

Interpretable

Less

Interpretable

Decision

Trees

Linear

Regression

Logistic

Regression

Random

Forest

Neural

Network

Convolution

Neural

Network

Intrinsically

Interpretable

Hybrid approaches aim to combine the representational capacity of deep
models with the transparency of interpretable components. Concept bottleneck
models (Koh et al. 2020), for example, first predict intermediate, interpretable
variables and then use a simple classifier to produce the final prediction. Pro-
toPNet models (C. Chen et al. 2019) classify examples by comparing them to
learned prototypes, offering visual analogies for users to understand predic-
tions. These hybrid methods are attractive in domains that demand partial
transparency, but they introduce new system design considerations, such as
the need to store and index learned prototypes and surface them at inference
time.

A more recent research direction is mechanistic interpretability, which seeks
to reverse-engineer the internal operations of neural networks. This line of
work, inspired by program analysis and neuroscience, attempts to map neurons,
layers, or activation patterns to specific computational functions (Olah et al.
2020; Geiger et al. 2021). Although promising, this field remains exploratory
and is currently most relevant to the analysis of large foundation models where
traditional interpretability tools are insufÏcient.

From a systems perspective, explainability introduces a number of architec-
tural dependencies. Explanations must be generated, stored, surfaced, and
evaluated within system constraints. The required infrastructure may include
explanation APIs, memory for storing attribution maps, visualization libraries,
and logging mechanisms that capture intermediate model behavior. Models
must often be instrumented with hooks or configured to support repeated
evaluations—particularly for explanation methods that require sampling, per-
turbation, or backpropagation.

These requirements interact directly with deployment constraints. For in-
stance, methods like SHAP and LIME involve multiple forward passes or sur-
rogate model fitting and may be impractical in latency-sensitive or resource-
constrained environments such as edge devices or real-time decision systems.
In such settings, systems may rely on approximations such as precomputed
explanations, simplified attribution methods, or fallback rule-based logic. Ex-
plainability must also align with interface capabilities: wearable devices, for
example, may support only brief textual or audio explanations, requiring de-
signers to prioritize clarity and brevity.

Explainability spans the full machine learning lifecycle. During develop-
ment, interpretability tools are used for dataset auditing, concept validation,
and early debugging. At inference time, they support accountability, decision

16.5. Technical Foundations 878

verification, and user communication. Post-deployment, explanations may
be logged, surfaced in audits, or queried during error investigations. System
design must support each of these phases—ensuring that explanation tools
are integrated into training frameworks, model serving infrastructure, and
user-facing applications.

Compression and optimization techniques also affect explainability. Pruning,
quantization, and architectural simplifications often used in TinyML or mobile
settings can distort internal representations or disable gradient flow, degrading
the reliability of attribution-based explanations. In such cases, interpretability
must be validated post-optimization to ensure that it remains meaningful and
trustworthy. If explanation quality is critical, these transformations must be
treated as part of the design constraint space.

Ultimately, explainability is not an add-on feature—it is a system-wide con-
cern. Designing for interpretability requires careful decisions about who needs
explanations, what kind of explanations are meaningful, and how those ex-
planations can be delivered given the systems latency, compute, and interface
budget. As machine learning becomes embedded in critical workflows, the abil-
ity to explain becomes a core requirement for safe, trustworthy, and accountable
systems.

16.5.6 Model Performance Monitoring
Training-time evaluations, no matter how rigorous, do not guarantee reliable
model performance once a system is deployed. Real-world environments are
dynamic: input distributions shift due to seasonality, user behavior evolves
in response to system outputs, and contextual expectations change with pol-
icy or regulation. These factors can cause predictive performance, and even
more critically, system trustworthiness, to degrade over time. A model that
performs well under training or validation conditions may still make unreliable
or harmful decisions in production.

The implications of such drift extend beyond raw accuracy. Fairness guar-
antees may break down if subgroup distributions shift relative to the training
set, or if features that previously correlated with outcomes become unreliable
in new contexts. Interpretability demands may also evolve—for instance, as
new stakeholder groups seek explanations, or as regulators introduce new
transparency requirements. Trustworthiness, therefore, is not a static property
conferred at training time, but a dynamic system attribute shaped by deploy-
ment context and operational feedback.

To ensure responsible behavior over time, machine learning systems must
incorporate mechanisms for continual monitoring, evaluation, and corrective
action. Monitoring involves more than tracking aggregate accuracy—it requires
surfacing performance metrics across relevant subgroups, detecting shifts in
input distributions, identifying anomalous outputs, and capturing meaningful
user feedback. These signals must then be compared to predefined expectations
around fairness, robustness, and transparency, and linked to actionable system
responses such as model retraining, recalibration, or rollback.

Implementing effective monitoring depends on robust infrastructure. Sys-
tems must log inputs, outputs, and contextual metadata in a structured and

Chapter 16. Responsible AI 879

secure manner. This requires telemetry pipelines that capture model version-
ing, input characteristics, prediction confidence, and post-inference feedback.
These logs support drift detection and provide evidence for retrospective audits
of fairness and robustness. Monitoring systems must also be integrated with
alerting, update scheduling, and policy review processes to support timely and
traceable intervention.

Monitoring also supports feedback-driven improvement. For example, re-
peated user disagreement, correction requests, or operator overrides can sig-
nal problematic behavior. This feedback must be aggregated, validated, and
translated into updates to training datasets, data labeling processes, or model
architecture. However, such feedback loops carry risks: biased user responses
can introduce new inequities, and excessive logging can compromise privacy.
Designing these loops requires careful coordination between user experience
design, system security, and ethical governance.

Monitoring mechanisms vary by deployment architecture. In cloud-based
systems, rich logging and compute capacity allow for real-time telemetry, sched-
uled fairness audits, and continuous integration of new data into retraining
pipelines. These environments support dynamic reconfiguration and central-
ized policy enforcement. However, the volume of telemetry may introduce its
own challenges in terms of cost, privacy risk, and regulatory compliance.

In mobile systems, connectivity is intermittent and data storage is limited.
Monitoring must be lightweight and resilient to synchronization delays. Local
inference systems may collect performance data asynchronously and transmit
it in aggregate to backend systems. Privacy constraints are often stricter, par-
ticularly when personal data must remain on-device. These systems require
careful data minimization and local aggregation techniques to preserve privacy
while maintaining observability.

Edge deployments, such as those in autonomous vehicles, smart factories,
or real-time control systems, demand low-latency responses and operate with
minimal external supervision. Monitoring in these systems must be embed-
ded within the runtime, with internal checks on sensor integrity, prediction
confidence, and behavior deviation. These checks often require low-overhead
implementations of uncertainty estimation, anomaly detection, or consistency
validation. System designers must anticipate failure conditions and ensure that
anomalous behavior triggers safe fallback procedures or human intervention.

TinyML systems, which operate on deeply embedded hardware with no
connectivity, persistent storage, or dynamic update path, present the most
constrained monitoring scenario. In these environments, monitoring must
be designed and compiled into the system prior to deployment. Common
strategies include input range checking, built-in redundancy, static failover
logic, or conservative validation thresholds. Once deployed, these models
operate independently, and any post-deployment failure may require physical
device replacement or firmware-level reset.

Despite these differences, the core challenge is universal: deployed ML sys-
tems must not only perform well initially, but continue to behave responsibly
as the environment changes. Monitoring provides the observability layer that
links system performance to ethical goals and accountability structures. With-
out monitoring, fairness and robustness become invisible. Without feedback,

16.6. Sociotechnical and Ethical Systems Considerations 880

12 Use of historical crime data
to predict future criminal activities
and allocate police resources accord-
ingly.

13 Systems that help users dis-
cover products or content by predict-
ing what’s most relevant to their in-
terests based on prior interactions.

misalignment cannot be corrected. Monitoring, therefore, is the operational
foundation that enables machine learning systems to remain adaptive, auditable,
and aligned with their intended purpose over time.

16.6 Sociotechnical and Ethical Systems Considerations

Responsible machine learning system design extends beyond technical correct-
ness and algorithmic safeguards. Once deployed, these systems operate within
complex sociotechnical environments where their outputs influence, and are
influenced by, human behavior, institutional practices, and evolving societal
norms. Over time, machine learning systems become part of the environments
they are intended to model, creating feedback dynamics that affect future data
collection, model retraining, and downstream decision-making.

Here, we address the broader ethical and systemic challenges associated with
the deployment of machine learning technologies. It examines how feedback
loops between models and environments can reinforce bias, how human-AI col-
laboration introduces new risks and responsibilities, and how conflicts between
stakeholder values complicate the operationalization of fairness and account-
ability. In addition, it considers the role of contestability and institutional
governance in sustaining responsible system behavior. These considerations
highlights that responsibility is not a static property of an algorithm, but a
dynamic outcome of system design, usage, and oversight over time.

16.6.1 System Feedback Loops

Machine learning systems do not merely observe and model the world—they
also shape it. Once deployed, their predictions and decisions often influence
the environments they are intended to analyze. This feedback alters future
data distributions, modifies user behavior, and affects institutional practices,
creating a recursive loop between model outputs and system inputs. Over time,
such dynamics can amplify biases, entrench disparities, or unintentionally shift
the objectives a model was designed to serve.

A well-documented example of this phenomenon is predictive policing12.
When a model trained on historical arrest data predicts higher crime rates in a
particular neighborhood, law enforcement may allocate more patrols to that
area. This increased presence leads to more recorded incidents, which are
then used as input for future model training—further reinforcing the models
original prediction. Even if the model was not explicitly biased at the out-
set, its integration into a feedback loop results in a self-fulfilling pattern that
disproportionately affects already over-policed communities.

Recommender systems13 exhibit similar dynamics in digital environments.
A content recommendation model that prioritizes engagement may gradually
narrow the range of content a user is exposed to, leading to feedback loops that
reinforce existing preferences or polarize opinions. These effects can be difÏcult
to detect using conventional performance metrics, as the system continues to
optimize its training objective even while diverging from broader social or
epistemic goals.

Chapter 16. Responsible AI 881

From a systems perspective, feedback loops present a fundamental challenge
to responsible AI. They undermine the assumption of independently and iden-
tically distributed data and complicate the evaluation of fairness, robustness,
and generalization. Standard validation methods, which rely on static test sets,
may fail to capture the evolving impact of the model on the data-generating
process. Moreover, once such loops are established, interventions aimed at
improving fairness or accuracy may have limited effect unless the underlying
data dynamics are addressed.

Designing for responsibility in the presence of feedback loops requires a
lifecycle view of machine learning systems. It entails not only monitoring
model performance over time, but also understanding how the systems outputs
influence the environment, how these changes are captured in new data, and
how retraining practices either mitigate or exacerbate these effects.

In cloud-based systems, these updates may occur frequently and at scale,
with extensive telemetry available to detect behavior drift. In contrast, edge
and embedded deployments often operate ofÒine or with limited observability.
A smart home system that adapts thermostat behavior based on user inter-
actions may reinforce energy consumption patterns or comfort preferences
in ways that alter the home environment—and subsequently affect future in-
puts to the model. Without connectivity or centralized oversight, these loops
may go unrecognized, despite their impact on both user behavior and system
performance.

Systems must be equipped with mechanisms to detect distributional drift,
identify behavior shaping effects, and support corrective updates that align with
the systems intended goals. Feedback loops are not inherently harmful, but
they must be recognized and managed. When left unexamined, they introduce
systemic risk; when thoughtfully addressed, they provide an opportunity for
learning systems to adapt responsibly in complex, dynamic environments.

16.6.2 Human-AI Collaboration and Oversight

Machine learning systems are increasingly deployed not as standalone agents,
but as components in larger workflows that involve human decision-makers. In
many domains, such as healthcare, finance, and transportation, models serve as
decision-support tools, offering predictions, risk scores, or recommendations
that are reviewed and acted upon by human operators. This collaborative
configuration raises important questions about how responsibility is shared
between humans and machines, how trust is calibrated, and how oversight
mechanisms are implemented in practice.

Human-AI collaboration introduces both opportunities and risks. When de-
signed appropriately, systems can augment human judgment, reduce cognitive
burden, and enhance consistency in decision-making. However, when poorly
designed, they may lead to automation bias, where users over-rely on model
outputs even in the presence of clear errors. Conversely, excessive distrust can
result in algorithm aversion, where users disregard useful model predictions
due to a lack of transparency or perceived credibility. The effectiveness of
collaborative systems depends not only on the model’s performance, but on

16.6. Sociotechnical and Ethical Systems Considerations 882

how the system communicates uncertainty, provides explanations, and allows
for human override or correction.

Oversight mechanisms must be tailored to the deployment context. In high-
stakes domains, such as medical triage or autonomous driving, humans may
be expected to supervise automated decisions in real time. This configuration
places cognitive and temporal demands on the human operator and assumes
that intervention will occur quickly and reliably when needed. In practice,
however, continuous human supervision is often impractical or ineffective,
particularly when the operator must monitor multiple systems or lacks clear
criteria for intervention.

From a systems design perspective, supporting effective oversight requires
more than providing access to raw model outputs. Interfaces must be con-
structed to surface relevant information at the right time, in the right format,
and with appropriate context. Confidence scores, uncertainty estimates, ex-
planations, and change alerts can all play a role in enabling human oversight.
Moreover, workflows must define when and how intervention is possible, who
is authorized to override model outputs, and how such overrides are logged,
audited, and incorporated into future system updates.

Consider a hospital triage system that uses a machine learning model to
prioritize patients in the emergency department. The model generates a risk
score for each incoming patient, which is presented alongside a suggested triage
category. In principle, a human nurse is responsible for confirming or over-
riding the suggestion. However, if the model’s outputs are presented without
sufÏcient justification, such as an explanation of the contributing features or
the context for uncertainty, the nurse may defer to the model even in borderline
cases. Over time, the models outputs may become the de facto triage decision,
especially under time pressure. If a distribution shift occurs (for instance, due
to a new illness or change in patient demographics), the nurse may lack both
the situational awareness and the interface support needed to detect that the
model is underperforming. In such cases, the appearance of human oversight
masks a system in which responsibility has effectively shifted to the model
without clear accountability or recourse.

In such systems, human oversight is not merely a matter of policy decla-
ration, but a function of infrastructure design: how predictions are surfaced,
what information is retained, how intervention is enacted, and how feedback
loops connect human decisions to system updates. Without integration across
these components, oversight becomes fragmented, and responsibility may shift
invisibly from human to machine.

The boundary between decision support and automation is often fluid. Sys-
tems initially designed to assist human decision-makers may gradually assume
greater autonomy as trust increases or organizational incentives shift. This
transition can occur without explicit policy changes, resulting in de facto au-
tomation without appropriate accountability structures. Responsible system
design must therefore anticipate changes in use over time and ensure that
appropriate checks remain in place even as reliance on automation grows.

Ultimately, human-AI collaboration requires careful integration of model
capabilities, interface design, operational policy, and institutional oversight.
Collaboration is not simply a matter of inserting a “human-in-the-loop”; it is a

Chapter 16. Responsible AI 883

14 Group-level Parity: A require-
ment that different demographic
groups receive similar benefits or
outcomes.

systems challenge that spans technical, organizational, and ethical dimensions.
Designing for oversight entails embedding mechanisms that enable interven-
tion, support informed trust, and support shared responsibility between human
operators and machine learning systems.

16.6.3 Normative Pluralism and Value Conflicts

Responsible machine learning cannot be reduced to the optimization of a single
objective. In real-world settings, machine learning systems are deployed into
environments shaped by diverse, and often conflicting, human values. What
constitutes a fair outcome for one stakeholder may be perceived as inequitable
by another. Similarly, decisions that prioritize accuracy or efÏciency may conflict
with goals such as transparency, individual autonomy, or harm reduction. These
tensions are not incidental—they are structural. They reflect the pluralistic
nature of the societies in which machine learning systems are embedded and
the institutional settings in which they are deployed.

Fairness is a particularly prominent site of value conflict. As discussed earlier
in the chapter, fairness can be formalized in multiple, often incompatible ways.
A model that satisfies demographic parity may violate equalized odds; a model
that prioritizes individual fairness may undermine group-level parity14. Choos-
ing among these definitions is not purely a technical decision but a normative
one, informed by domain context, historical patterns of discrimination, and
the perspectives of those affected by model outcomes. In practice, multiple
stakeholders, including engineers, users, auditors, and regulators, may hold
conflicting views on which definitions are most appropriate and why.

These tensions are not confined to fairness alone. Conflicts also arise between
interpretability and predictive performance, privacy and personalization, or
short-term utility and long-term consequences. These tradeoffs manifest differ-
ently depending on the systems deployment architecture, revealing how deeply
value conflicts are tied to the design and operation of ML systems.

Consider a voice-based assistant deployed on a mobile device. To enhance
personalization, the system may learn user preferences locally, without sending
raw data to the cloud. This design improves privacy and reduces latency, but it
may also lead to performance disparities if users with underrepresented usage
patterns receive less accurate or responsive predictions. One way to improve
fairness would be to centralize updates using group-level statistics—but doing
so introduces new privacy risks and may violate user expectations around local
data handling. Here, the design must navigate among valid but competing
values: privacy, fairness, and personalization.

In cloud-based deployments, such as credit scoring platforms or recommen-
dation engines, tensions often arise between transparency and proprietary
protection. End users or regulators may demand clear explanations of why a
decision was made, particularly in situations with significant consequences,
but the models in use may rely on complex ensembles or proprietary training
data. Revealing these internals may be commercially sensitive or technically
infeasible. In such cases, the system must reconcile competing pressures for
institutional accountability and business confidentiality.

16.6. Sociotechnical and Ethical Systems Considerations 884

15 Normative pluralism refers to
the presence of multiple, often con-
flicting, ethical frameworks within
a society.

16 Constrained Training: Train-
ing models under specific rules or
constraints to satisfy fairness, pri-
vacy, or other criteria.

17 Participatory Design: An ap-
proach that actively involves stake-
holders in the design process to en-
sure the results meet their needs.

18 Value-sensitive Design:
A methodologically innovative ap-
proach that integrates ethical and
moral considerations into the design
process.

In edge systems, such as home security cameras or autonomous drones,
resource constraints often dictate model selection and update frequency. Prior-
itizing low latency and energy efÏciency may require deploying compressed or
quantized models that are less robust to distribution shift or adversarial pertur-
bations. More resilient models could improve safety, but they may exceed the
systems memory budget or violate power constraints. Here, safety, efÏciency,
and maintainability must be balanced under hardware-imposed tradeoffs.

On TinyML platforms, where models are deployed to microcontrollers with
no persistent connectivity, tradeoffs are even more pronounced. A system may
be optimized for static performance on a fixed dataset, but unable to incorporate
new fairness constraints, retrain on updated inputs, or generate explanations
once deployed. The value conflict lies not just in what the model optimizes, but
in what the system is able to support post-deployment.

These examples make clear that normative pluralism15 is not an abstract philo-
sophical challenge; it is a recurring systems constraint. Technical approaches
such as multi-objective optimization, constrained training16, and fairness-aware
evaluation can help surface and formalize tradeoffs, but they do not eliminate
the need for judgment. Decisions about whose values to represent, which
harms to mitigate, and how to balance competing objectives cannot be made
algorithmically. They require deliberation, stakeholder input, and governance
structures that extend beyond the model itself.

Participatory17 and value-sensitive design18 methodologies offer potential
paths forward. Rather than treating values as parameters to be optimized
after deployment, these approaches seek to engage stakeholders during the
requirements phase, define ethical tradeoffs explicitly, and trace how they are
instantiated in system architecture. While no design process can satisfy all
values simultaneously, systems that are transparent about their tradeoffs and
open to revision are better positioned to sustain trust and accountability over
time.

Ultimately, machine learning systems are not neutral tools. They embed and
enact value judgments, whether explicitly specified or implicitly assumed. A
commitment to responsible AI requires acknowledging this fact and building
systems that reflect and respond to the ethical and social pluralism of their
operational contexts.

16.6.4 Transparency and Contestability
Transparency is widely recognized as a foundational principle of responsible
machine learning. It enables users, developers, auditors, and regulators to
understand how a system functions, assess its limitations, and identify sources
of harm. Yet transparency alone is not sufÏcient. In high-stakes domains,
individuals and institutions must not only understand system behavior—they
must also be able to challenge, correct, or reverse it when necessary. This
capacity for contestability, which refers to the ability to interrogate and contest
a system’s decisions, is a critical feature of accountability.

Transparency in machine learning systems typically focuses on disclosure:
revealing how models are trained, what data they rely on, what assumptions
are embedded in their design, and what known limitations affect their use. Doc-

Chapter 16. Responsible AI 885

19 Model Cards: Tool that pro-
vides essential information about a
machine learning model’s capabili-
ties and biases.

20 Datasheets for Datasets: Docu-
mentation that describes a dataset’s
creation, composition, and intended
use.

umentation tools such as model cards19 and datasheets for datasets20 support
this goal by formalizing system metadata in a structured, reproducible format.
These resources can improve governance, support compliance, and inform user
expectations. However, transparency as disclosure does not guarantee mean-
ingful control. Even when technical details are available, users may lack the
institutional leverage, interface tools, or procedural access to contest a decision
that adversely affects them.

To move from transparency to contestability, machine learning systems must
be designed with mechanisms for explanation, recourse, and feedback. Expla-
nation refers to the capacity of the system to provide understandable reasons
for its outputs, tailored to the needs and context of the person receiving them.
Recourse refers to the ability of individuals to alter their circumstances and re-
ceive a different outcome. Feedback refers to the ability of users to report errors,
dispute outcomes, or signal concerns—and to have those signals incorporated
into system updates or oversight processes.

These mechanisms are often lacking in practice, particularly in systems de-
ployed at scale or embedded in low-resource devices. For example, in mobile
loan application systems, users may receive a rejection without explanation
and have no opportunity to provide additional information or appeal the de-
cision. The lack of transparency at the interface level, even if documentation
exists elsewhere, makes the system effectively unchallengeable. Similarly, a
predictive model deployed in a clinical setting may generate a risk score that
guides treatment decisions without surfacing the underlying reasoning to the
physician. If the model underperforms for a specific patient subgroup, and this
behavior is not observable or contestable, the result may be unintentional harm
that cannot be easily diagnosed or corrected.

From a systems perspective, enabling contestability requires coordination
across technical and institutional components. Models must expose sufÏcient
information to support explanation. Interfaces must surface this information
in a usable and timely way. Organizational processes must be in place to re-
view feedback, respond to appeals, and update system behavior. Logging and
auditing infrastructure must track not only model outputs, but user interven-
tions and override decisions. In some cases, technical safeguards, including
human-in-the-loop overrides and decision abstention thresholds, may also
serve contestability by ensuring that ambiguous or high-risk decisions defer to
human judgment.

The degree of contestability that is feasible varies by deployment context. In
centralized cloud platforms, it may be possible to offer full explanation APIs,
user dashboards, and appeal workflows. In contrast, in edge and TinyML
deployments, contestability may be limited to logging and periodic updates
based on batch-synchronized feedback. In all cases, the design of machine
learning systems must acknowledge that transparency is not simply a matter
of technical disclosure. It is a structural property of systems that determines
whether users and institutions can meaningfully question, correct, and govern
the behavior of automated decision-making.

16.6. Sociotechnical and Ethical Systems Considerations 886

21 A project by Google to esti-
mate flu activity using search engine
queries, known for its public predic-
tive inaccuracies.

16.6.5 Institutional Embedding of Responsibility

Machine learning systems do not operate in isolation. Their development,
deployment, and ongoing management are embedded within institutional
environments that include technical teams, legal departments, product owners,
compliance ofÏcers, and external stakeholders. Responsibility in such systems
is not the property of a single actor or component—it is distributed across roles,
workflows, and governance processes. Designing for responsible AI therefore
requires attention to the institutional settings in which these systems are built
and used.

This distributed nature of responsibility introduces both opportunities and
challenges. On the one hand, the involvement of multiple stakeholders provides
checks and balances that can help prevent harmful outcomes. On the other
hand, the diffusion of responsibility can lead to accountability gaps, where no
individual or team has clear authority or incentive to intervene when problems
arise. When harm occurs, it may be unclear whether the fault lies with the
data pipeline, the model architecture, the deployment configuration, the user
interface, or the surrounding organizational context.

One illustrative case is Google Flu Trends21, a widely cited example of failure
due to institutional misalignment. The system, which attempted to predict flu
outbreaks from search data, initially performed well but gradually diverged
from reality due to changes in user behavior and shifts in the data distribution.
These issues went uncorrected for years, in part because there were no estab-
lished processes for system validation, external auditing, or escalation when
model performance declined. The failure was not due to a single technical flaw,
but to the absence of an institutional framework that could respond to drift,
uncertainty, and feedback from outside the development team.

Embedding responsibility institutionally requires more than assigning ac-
countability. It requires the design of processes, tools, and incentives that enable
responsible action. Technical infrastructure such as versioned model registries,
model cards, and audit logs must be coupled with organizational structures
such as ethics review boards, model risk committees, and red-teaming proce-
dures. These mechanisms ensure that technical insights are actionable, that
feedback is integrated across teams, and that concerns raised by users, develop-
ers, or regulators are addressed systematically rather than ad hoc.

The level of institutional support required varies across deployment contexts.
In large-scale cloud platforms, governance structures may include internal
accountability audits, compliance workflows, and dedicated teams responsible
for monitoring system behavior. In smaller-scale deployments, including edge
or mobile systems embedded in healthcare devices or public infrastructure,
governance may rely on cross-functional engineering practices and external
certification or regulation. In TinyML deployments, where connectivity and
observability are limited, institutional responsibility may be exercised through
upstream controls such as safety-critical validation, embedded security con-
straints, and lifecycle tracking of deployed firmware.

In all cases, responsible machine learning requires coordination between
technical and institutional systems. This coordination must extend across the
entire model lifecycle—from initial data acquisition and model training to de-

Chapter 16. Responsible AI 887

ployment, monitoring, update, and eventual decommissioning. It must also
incorporate external actors, including domain experts, civil society organiza-
tions, and regulatory authorities, to ensure that responsibility is exercised not
only within the development team but across the broader ecosystem in which
machine learning systems operate.

Responsibility is not a static attribute of a model or a team; it is a dynamic
property of how systems are governed, maintained, and contested over time.
Embedding that responsibility within institutions, by means of policy, infras-
tructure, and accountability mechanisms, is essential for aligning machine
learning systems with the social values and operational realities they are meant
to serve.

16.7 Implementation Challenges
While the principles and methods of responsible machine learning are increas-
ingly well understood, their consistent implementation in real-world systems
remains a significant challenge. Translating ethical intentions into sustained
operational practice requires coordination across teams, infrastructure layers,
data pipelines, and model lifecycle stages. In many cases, the barriers are
not primarily technical, including the computation of fairness metrics or pri-
vacy guarantees, but organizational: unclear ownership, misaligned incentives,
infrastructure limitations, or the absence of mechanisms to propagate responsi-
bility across modular system components. Even when responsibility is treated
as a design goal, it may be deprioritized during deployment, undercut by re-
source constraints, or rendered infeasible by limitations in data access, runtime
support, or evaluation tooling.

This section examines the practical challenges that arise when embedding
responsible AI practices into production ML systems. These include issues
of organizational structure and accountability, limitations in data quality and
availability, tensions between competing optimization objectives, breakdowns
in lifecycle maintainability, and gaps in system-level evaluation. Collectively,
these challenges illustrate the friction between idealized principles and oper-
ational reality—and highlight the importance of systems-level strategies that
embed responsibility into the architecture, infrastructure, and workflows of
machine learning deployment.

16.7.1 Organizational Structures and Incentives
The implementation of responsible machine learning is shaped not only by
technical feasibility but by the organizational context in which systems are de-
veloped and deployed. Within companies, research labs, and public institutions,
responsibility must be translated into concrete roles, workflows, and incentives.
In practice, however, organizational structures often fragment responsibility,
making it difÏcult to coordinate ethical objectives across engineering, product,
legal, and operational teams.

Responsible AI requires sustained investment in practices such as subgroup
performance evaluation, explainability analysis, adversarial robustness testing,
and the integration of privacy-preserving techniques like differential privacy

16.7. Implementation Challenges 888

or federated training. These activities can be time-consuming and resource-
intensive, yet they often fall outside the formal performance metrics used
to evaluate team productivity. For example, teams may be incentivized to
ship features quickly or meet performance benchmarks, even when doing so
undermines fairness or overlooks potential harms. When ethical diligence is
treated as a discretionary task, instead of being an integrated component of
the system lifecycle, it becomes vulnerable to deprioritization under deadline
pressure or organizational churn.

Responsibility is further complicated by ambiguity over ownership. In many
organizations, no single team is responsible for ensuring that a system behaves
ethically over time. Model performance may be owned by one team, user
experience by another, data infrastructure by a third, and compliance by a fourth.
When issues arise, including disparate impact in predictions or insufÏcient
explanation quality, there may be no clear protocol for identifying root causes
or coordinating mitigation. As a result, concerns raised by developers, users,
or auditors may go unaddressed, not because of malicious intent, but due to
lack of process and cross-functional alignment.

Establishing effective organizational structures for responsible AI requires
more than policy declarations. It demands operational mechanisms: desig-
nated roles with responsibility for ethical oversight, clearly defined escalation
pathways, accountability for post-deployment monitoring, and incentives that
reward teams for ethical foresight and system maintainability. In some organi-
zations, this may take the form of Responsible AI committees, cross-functional
review boards, or model risk teams that work alongside developers through-
out the model lifecycle. In others, domain experts or user advocates may be
embedded into product teams to anticipate downstream impacts and evaluate
value tradeoffs in context.

As shown in Figure 16.8, the responsibility for ethical system behavior is
distributed across multiple constituencies, including industry, academia, civil
society, and government. Within organizations, this distribution must be mir-
rored by mechanisms that connect technical design with strategic oversight and
operational control. Without these linkages, responsibility becomes diffuse,
and well-intentioned efforts may be undermined by systemic misalignment.

Ultimately, responsible AI is not merely a question of technical excellence or
regulatory compliance. It is a systems-level challenge that requires aligning
ethical objectives with the institutional structures through which machine learn-
ing systems are designed, deployed, and maintained. Creating and sustaining
these structures is essential for ensuring that responsibility is embedded not
only in the model, but in the organization that governs its use.

16.7.2 Data Constraints and Quality Gaps
Despite broad recognition that data quality is essential for responsible machine
learning, improving data pipelines remains one of the most difÏcult implemen-
tation challenges in practice. Developers and researchers often understand the
importance of representative data, accurate labeling, and mitigation of historical
bias. Yet even when intentions are clear, structural and organizational barriers
frequently prevent meaningful intervention. Responsibility for data is often

Chapter 16. Responsible AI 889

Figure 16.8: How various groups
impact human-centered AI. Source:
Shneiderman (2020).

GOVERNMENT REGULATION

INDUSTRY:

Trustworthy Certification:

External Reviews

Independent Oversight:
Auditing Firms,

Insurance Companies,
NGOs & Civil Society

Professional Societies

ORGANIZATION:

Safety Culture:

Organizational Design

Management Strategies:
Leadership Commitment,

Hiring & Training,
Failures & Near Misses,

Internal Reviews
Industry Standards

TEAM:

Reliable Systems:

Software Engineering

Technical Practices:
Audit Trails, SE Workflows

Verification & Bias Testing
Explainable UIs

22 Subgroup Imbalance: Refers
to the uneven representation of var-
ious groups within a dataset, which
can lead to biased machine learning
models.

23 Label Ambiguity: Occurs
when labels assigned to data are un-
clear or inconsistently applied, com-
plicating machine learning training
and evaluation.

distributed across teams, governed by legacy systems, or embedded in broader
institutional processes that are difÏcult to change.

Subgroup imbalance22, label ambiguity23, and distribution shift, each of
which affect generalization and performance across domains, are well-established
concerns in responsible ML. These issues often manifest in the form of poor cal-
ibration, out-of-distribution failures, or demographic disparities in evaluation
metrics. However, addressing them in real-world settings requires more than
technical knowledge. It requires access to relevant data, institutional support
for remediation, and sufÏcient time and resources to iterate on the dataset itself.
In many machine learning pipelines, once the data is collected and the training
set defined, the data pipeline becomes effectively frozen. Teams may lack both
the authority and the infrastructure to modify or extend the dataset midstream,
especially when data versioning and lineage tracking are tightly integrated into
production analytics workflows.

However, addressing them in real-world settings requires more than tech-
nical knowledge. It requires access to relevant data, institutional support for
remediation, and sufÏcient time and resources to iterate on the dataset itself.
In many machine learning pipelines, once the data is collected and the training
set defined, the data pipeline becomes effectively frozen. Teams may lack both
the authority and the infrastructure to modify or extend the dataset midstream,
even if performance disparities are discovered. Even in modern data pipelines
with automated validation and feature stores, retroactively correcting training
distributions remains difÏcult once dataset versioning and data lineage have
been locked into production.

In domains like healthcare, education, and social services, these challenges
are especially pronounced. Data acquisition may be subject to legal constraints,
privacy regulations, or cross-organizational coordination. For example, a team
developing a triage model may discover that their training data underrepresents
patients from smaller or rural hospitals. Correcting this imbalance would
require negotiating data access with external partners, aligning on feature
standards, and resolving inconsistencies in labeling practices. Even when all

16.7. Implementation Challenges 890

24 Electronic Health Records
(EHR): Digital versions of patients’
medical histories, used extensively
in healthcare for data analysis and
predictive modeling.

parties agree on the need for improvement, the logistical and operational costs
can be prohibitive.

Efforts to collect more representative data may also run into ethical and
political concerns. In some cases, additional data collection could expose
marginalized populations to new risks. This paradox of exposure, in which the
individuals most harmed by exclusion are also those most vulnerable to misuse,
complicates efforts to improve fairness through dataset expansion. For example,
gathering more data on non-binary individuals to support fairness in gender-
sensitive applications may improve model coverage, but it also raises serious
concerns around consent, identifiability, and downstream use. Teams must
navigate these tensions carefully, often without clear institutional guidance.

Even when data is plentiful, upstream biases in data collection systems
can persist unchecked. Many organizations rely on third-party data vendors,
external APIs, or operational databases that were not designed with fairness or
interpretability in mind. For instance, Electronic Health Records24, which are
commonly used in clinical machine learning, often reflect systemic disparities
in care, as well as documentation habits that encode racial or socioeconomic
bias (Himmelstein, Bates, and Zhou 2022). Teams working downstream may
have little visibility into how these records were created, and few levers for
addressing embedded harms.

Improving dataset quality is often not the responsibility of any one team.
Data pipelines may be maintained by infrastructure or analytics groups that
operate independently of the ML engineering or model evaluation teams. This
organizational fragmentation makes it difÏcult to coordinate data audits, track
provenance, or implement feedback loops that connect model behavior to
underlying data issues. In practice, responsibility for dataset quality tends
to fall through the cracks—recognized as important, but rarely prioritized or
resourced.

Addressing these challenges requires long-term investment in infrastructure,
workflows, and cross-functional communication. Technical tools such as data
validation, automated audits, and dataset documentation frameworks (e.g.,
model cards, datasheets, or the Data Nutrition Project) can help, but only when
they are embedded within teams that have the mandate and support to act on
their findings. Ultimately, improving data quality is not just a matter of better
tooling—it is a question of how responsibility for data is assigned, shared, and
sustained across the system lifecycle.

16.7.3 Balancing Competing Objectives

Machine learning system design is often framed as a process of optimization—
improving accuracy, reducing loss, or maximizing utility. Yet in responsible ML
practice, optimization must be balanced against a range of competing objectives,
including fairness, interpretability, robustness, privacy, and resource efÏciency.
These objectives are not always aligned, and improvements in one dimension
may entail tradeoffs in another. While these tensions are well understood in
theory, managing them in real-world systems is a persistent and unresolved
challenge.

https://datanutrition.org/

Chapter 16. Responsible AI 891

25 Pareto Optimization: A
method in decision-making that
searches for solutions where no ob-
jective can be improved without
worsening others.

Consider the tradeoff between model accuracy and interpretability. In many
cases, more interpretable models, including shallow decision trees and linear
models, achieve lower predictive performance than complex ensemble methods
or deep neural networks. In low-stakes applications, this tradeoff may be
acceptable, or even preferred. But in high-stakes domains such as healthcare or
finance, where decisions affect individuals well-being or access to opportunity,
teams are often caught between the demand for performance and the need
for transparent reasoning. Even when interpretability is prioritized during
development, it may be overridden at deployment in favor of marginal gains in
model accuracy.

Similar tensions emerge between personalization and fairness. A recommen-
dation system trained to maximize user engagement may personalize aggres-
sively, using fine-grained behavioral data to tailor outputs to individual users.
While this approach can improve satisfaction for some users, it may entrench
disparities across demographic groups, particularly if personalization draws on
features correlated with race, gender, or socioeconomic status. Adding fairness
constraints may reduce disparities at the group level, but at the cost of reducing
perceived personalization for some users. These effects are often difÏcult to
measure, and even more difÏcult to explain to product teams under pressure
to optimize engagement metrics.

Privacy introduces another set of constraints. Techniques such as differen-
tial privacy, federated learning, or local data minimization can meaningfully
reduce privacy risks. But they also introduce noise, limit model capacity, or
reduce access to training data. In centralized systems, these costs may be ab-
sorbed through infrastructure scaling or hybrid training architectures. In edge
or TinyML deployments, however, the tradeoffs are more acute. A wearable
device tasked with local inference must often balance model complexity, energy
consumption, latency, and privacy guarantees simultaneously. Supporting
one constraint typically weakens another, forcing system designers to prior-
itize among equally important goals. These tensions are further amplified
by deployment-specific design decisions such as quantization levels, activa-
tion clipping, or compression strategies that affect how effectively models can
support multiple objectives at once.

These tradeoffs are not purely technical—they reflect deeper normative judg-
ments about what a system is designed to achieve and for whom. Responsible
ML development requires making these judgments explicit, evaluating them in
context, and subjecting them to stakeholder input and institutional oversight.
Multi-objective optimization frameworks can formalize some of these trade-
offs mathematically, but they cannot resolve value conflicts or prescribe the
“right” balance. In many cases, tradeoffs are revisited multiple times over a sys-
tems lifecycle, as deployment conditions change, metrics evolve, or stakeholder
expectations shift. Designing for constraint-aware tradeoffs may leverage tech-
niques such as Pareto optimization25 or parameter-efÏcient fine-tuning, but
value tradeoffs must still be surfaced, discussed, and governed explicitly.

What makes this challenge particularly difÏcult in implementation is that
these competing objectives are rarely owned by a single team or function. Per-
formance may be optimized by the modeling team, fairness monitored by a
responsible AI group, and privacy handled by legal or compliance departments.

16.7. Implementation Challenges 892

26 DevOps is a set of prac-
tices that combines software devel-
opment (Dev) and IT operations
(Ops) aimed at shortening the sys-
tems development lifecycle.

Without deliberate coordination, system-level tradeoffs can be made implicitly,
piecemeal, or without visibility into long-term consequences. Over time, the
result may be a model that appears well-behaved in isolation but fails to meet
its ethical goals when embedded in production infrastructure.

Balancing competing objectives requires not only technical fluency but a com-
mitment to transparency, deliberation, and alignment across teams. Systems
must be designed to surface tradeoffs rather than obscure them, to make room
for constraint-aware development rather than pursue narrow optimization. In
practice, this may require redefining what “success” looks like—not as perfor-
mance on a single metric, but as sustained alignment between system behavior
and its intended role in a broader social or operational context.

16.7.4 Scalability and Maintenance
Responsible machine learning practices are often introduced during the early
phases of model development: fairness audits are conducted during initial
evaluation, interpretability methods are applied during model selection, and
privacy-preserving techniques are considered during training. However, as
systems transition from research prototypes to production deployments, these
practices frequently degrade or disappear. The gap between what is possible
in principle and what is sustainable in production is a core implementation
challenge for responsible AI.

Many responsible AI interventions are not designed with scalability in mind.
Fairness checks may be performed on a static dataset, but not integrated into
ongoing data ingestion pipelines. Explanation methods may be developed
using development-time tools but never translated into deployable user-facing
interfaces. Privacy constraints may be enforced during training, but overlooked
during post-deployment monitoring or model updates. In each case, what
begins as a responsible design intention fails to persist across system scaling
and lifecycle changes.

Production environments introduce new pressures that reshape system pri-
orities. Models must operate across diverse hardware configurations, interface
with evolving APIs, serve millions of users with low latency, and maintain avail-
ability under operational stress. For instance, maintaining consistent behavior
across CPU, GPU, and edge accelerators requires tight integration between
framework abstractions, runtime schedulers, and hardware-specific compilers.
These constraints demand continuous adaptation and rapid iteration, often de-
prioritizing activities that are difÏcult to automate or measure. Responsible AI
practices, especially those that involve human review, stakeholder consultation,
or post-hoc evaluation, may not be easily incorporated into fast-paced DevOps
pipelines26. As a result, ethical commitments that are present at the prototype
stage may be sidelined as systems mature.

Maintenance introduces further complexity. Machine learning systems are
rarely static. New data is ingested, retraining is performed, features are dep-
recated or added, and usage patterns shift over time. In the absence of rigor-
ous version control, changelogs, and impact assessments, it can be difÏcult to
trace how system behavior evolves or whether responsibility-related properties
such as fairness or robustness are being preserved. Moreover, organizational

Chapter 16. Responsible AI 893

27 Concept drift occurs when
the statistical properties of the tar-
get variable change over time in un-
foreseen ways.

turnover and team restructuring can erode institutional memory. Teams re-
sponsible for maintaining a deployed model may not be the ones who originally
developed or audited it, leading to unintentional misalignment between sys-
tem goals and current implementation. These issues are especially acute in
continual or streaming learning scenarios, where concept drift27 and shifting
data distributions demand active monitoring and real-time updates.

These challenges are magnified in multi-model systems and cross-platform
deployments. A recommendation engine may consist of dozens of interacting
models, each optimized for a different subtask or user segment. A voice assistant
deployed across mobile and edge environments may maintain different versions
of the same model, tuned to local hardware constraints. Coordinating updates,
ensuring consistency, and sustaining responsible behavior in such distributed
systems requires infrastructure that tracks not only code and data, but also
values and constraints.

Addressing scalability and maintenance challenges requires treating respon-
sible AI as a lifecycle property, not a one-time evaluation. This means embed-
ding audit hooks, metadata tracking, and monitoring protocols into system
infrastructure. It also means creating documentation that persists across team
transitions, defining accountability structures that survive project handoffs,
and ensuring that system updates do not inadvertently erase hard-won im-
provements in fairness, transparency, or safety. While such practices can be
difÏcult to implement retroactively, they can be integrated into system design
from the outset through responsible-by-default tooling and workflows.

Ultimately, responsibility must scale with the system. Machine learning mod-
els deployed in real-world environments must not only meet ethical standards
at launch, but continue to do so as they grow in complexity, user reach, and
operational scope. Achieving this requires sustained organizational investment
and architectural planning—not simply technical correctness at a single point
in time.

16.7.5 Standardization and Evaluation Gaps
While the field of responsible machine learning has produced a wide range
of tools, metrics, and evaluation frameworks, there is still little consensus
on how to systematically assess whether a system is responsible in practice.
Many teams recognize the importance of fairness, privacy, interpretability, and
robustness, yet they often struggle to translate these principles into consistent,
measurable standards. The lack of formalized evaluation criteria, combined
with the fragmentation of tools and frameworks, poses a significant barrier to
implementing responsible AI at scale.

This fragmentation is evident both across and within institutions. Academic
research frequently introduces new metrics for fairness or robustness that
are difÏcult to reproduce outside experimental settings. Industrial teams, by
contrast, must prioritize metrics that integrate cleanly with production infras-
tructure, are interpretable by non-specialists, and can be monitored over time.
As a result, practices developed in one context may not transfer well to another,
and performance comparisons across systems may be unreliable or misleading.
For instance, a model evaluated for fairness on one benchmark dataset using de-

16.7. Implementation Challenges 894

mographic parity may not meet the requirements of equalized odds in another
domain or jurisdiction. Without shared standards, these evaluations remain ad
hoc, making it difÏcult to establish confidence in a systems responsible behavior
across contexts.

Responsible AI evaluation also suffers from a mismatch between the unit of
analysis, which is frequently the individual model or batch job, and the level
of deployment, which includes end-to-end system components such as data
ingestion pipelines, feature transformations, inference APIs, caching layers, and
human-in-the-loop workflows. A system that appears fair or interpretable in
isolation may fail to uphold those properties once integrated into a broader
application. Tools that support holistic, system-level evaluation remain under-
developed, and there is little guidance on how to assess responsibility across
interacting components in modern ML stacks.

Further complicating matters is the lack of lifecycle-aware metrics. Most eval-
uation tools are applied at a single point in time—often just before deployment.
Yet responsible AI properties such as fairness and robustness are dynamic.
They depend on how data distributions evolve, how models are updated, and
how users interact with the system. Without continuous or periodic evaluation,
it is difÏcult to determine whether a system remains aligned with its intended
ethical goals after deployment. Post-deployment monitoring tools exist, but
they are rarely integrated with the development-time metrics used to assess
initial model quality. This disconnect makes it hard to detect drift in ethical
performance, or to trace observed harms back to their upstream sources.

Tool fragmentation further contributes to these challenges. Responsible AI
tooling is often distributed across disconnected packages, dashboards, or in-
ternal systems, each designed for a specific task or metric. A team may use
one tool for explainability, another for bias detection, and a third for compli-
ance reporting—with no unified interface for reasoning about system-level
tradeoffs. The lack of interoperability hinders collaboration between teams,
complicates documentation, and increases the risk that important evaluations
will be skipped or performed inconsistently. These challenges are compounded
by missing hooks for metadata propagation or event logging across components
like feature stores, inference gateways, and model registries.

Addressing these gaps requires progress on multiple fronts. First, shared
evaluation frameworks must be developed that define what it means for a
system to behave responsibly—not just in abstract terms, but in measurable,
auditable criteria that are meaningful across domains. Second, evaluation
must be extended beyond individual models to cover full system pipelines,
including user-facing interfaces, update policies, and feedback mechanisms.
Finally, evaluation must become a recurring lifecycle activity, supported by
infrastructure that tracks system behavior over time and alerts developers when
ethical properties degrade.

Without standardized, system-aware evaluation methods, responsible AI
remains a moving target—described in principles but difÏcult to verify in
practice. Building confidence in machine learning systems requires not only
better models and tools, but shared norms, durable metrics, and evaluation
practices that reflect the operational realities of deployed AI.

Chapter 16. Responsible AI 895

28 Some practitioners prefer
the term “AI reliability” over “AI
safety,” as it emphasizes the posi-
tive goal of consistent, dependable
performance rather than focusing
on risk mitigation. Both terms re-
fer to similar underlying principles
of ensuring ML systems behave as
intended.

29 Reward hacking refers to
strategies where systems optimize
for observable metrics that do not
align with actual objectives, leading
often to unwanted behaviors.

Responsible AI cannot be achieved through isolated interventions or static
compliance checks. It requires architectural planning, infrastructure support,
and institutional processes that sustain ethical goals across the system lifecycle.
As ML systems scale, diversify, and embed themselves into sensitive domains,
the ability to enforce properties like fairness, robustness, and privacy must be
supported not only at model selection time, but across retraining, quantiza-
tion, serving, and monitoring stages. Without persistent oversight, responsible
practices degrade as systems evolve—especially when tooling, metrics, and doc-
umentation are not designed to track and preserve them through deployment
and beyond.

Meeting this challenge will require greater standardization, deeper integra-
tion of responsibility-aware practices into CI/CD pipelines, and long-term
investment in system infrastructure that supports ethical foresight. The goal is
not to perfect ethical decision-making in code, but to make responsibility an
operational property—traceable, testable, and aligned with the constraints and
affordances of machine learning systems at scale.

16.8 AI Safety and Value Alignment

While earlier sections focused on robustness and safety as technical properties,
such as resisting distribution shift or adversarial inputs, AI safety28 in a broader
sense concerns the behavior of increasingly autonomous systems that may act
in ways misaligned with human goals. Beyond the robustness of individual
models, the field of AI safety examines how to ensure that machine learning
systems optimize for the right objectives and remain under meaningful human
control.

As machine learning systems increase in autonomy, scale, and deployment
complexity, the nature of responsibility expands beyond model-level fairness
or privacy concerns. It includes ensuring that systems pursue the right ob-
jectives, behave safely in uncertain environments, and remain aligned with
human intentions over time. These concerns fall under the domain of AI safety,
which focuses on preventing unintended or harmful outcomes from capable AI
systems. A central challenge is that today’s ML models often optimize proxy
metrics, such as loss functions, reward functions, or engagement signals, that
do not fully capture human values.

One concrete example comes from recommendation systems, where a model
trained to maximize click-through rate (CTR) may end up promoting content
that increases engagement but diminishes user satisfaction, including clickbait,
misinformation, and emotionally manipulative material29. This behavior is
aligned with the proxy, but misaligned with the actual goal, resulting in a
feedback loop that reinforces undesirable outcomes. As shown in Figure 16.9,
the system learns to optimize for a measurable reward (clicks) rather than
the intended human-centered outcome (satisfaction). The result is emergent
behavior that reflects specification gaming or reward hacking—a central concern
in value alignment and AI safety.

In 1960, Norbert Wiener wrote, “if we use, to achieve our purposes, a me-
chanical agency with whose operation we cannot interfere effectively… we had

16.8. AI Safety and Value Alignment 896

Figure 16.9: Misalignment between
a recommender system’s true objec-
tive and its optimized reward func-
tion. The model optimizes for click-
through rate (a proxy for satisfac-
tion), leading to unintended behav-
iors such as clickbait and misinfor-
mation. These behaviors are rein-
forced through feedback, illustrat-
ing the problem of reward hacking
and the challenge of aligning ML
systems with human values.

True Goal:

Maximize User Satisfaction

Agent:

ML Recommender System

Behavior:

Promote Clickbait or Addictive Content

Unintended Consequences:

Misinformation, Addiction, Misuse
Proxy Reward:

Maximize Clicks

Intended Objective

Feedback

Optimized Instead

better be quite sure that the purpose put into the machine is the purpose which
we desire” (Wiener 1960).

As the capabilities of deep learning models have increasingly approached,
and, in certain instances, exceeded, human performance, the concern that
such systems may pursue unintended or undesirable goals has become more
pressing (S. Russell 2021). Within the field of AI safety, a central focus is the
problem of value alignment: how to ensure that machine learning systems act
in accordance with broad human intentions, rather than optimizing misaligned
proxies or exhibiting emergent behavior that undermines social goals. As
Russell argues in Human-Compatible Artificial Intelligence, much of current
AI research presumes that the objectives to be optimized are known and fixed,
focusing instead on the effectiveness of optimization rather than the design of
objectives themselves.

Yet defining “the right purpose” for intelligent systems is especially dif-
ficult in real-world deployment settings. ML systems often operate within
dynamic environments, interact with multiple stakeholders, and adapt over
time. These conditions make it challenging to encode human values in static
objective functions or reward signals. Frameworks like Value Sensitive Design
aim to address this challenge by providing formal processes for eliciting and
integrating stakeholder values during system design.

Taking a holistic sociotechnical perspective, which accounts for both the
algorithmic mechanisms and the contexts in which systems operate, is essential
for ensuring alignment. Without this, intelligent systems may pursue narrow
performance objectives (e.g., accuracy, engagement, or throughput) while pro-
ducing socially undesirable outcomes. Achieving robust alignment under such
conditions remains an open and critical area of research in ML systems.

The absence of alignment can give rise to well-documented failure modes,
particularly in systems that optimize complex objectives. In reinforcement
learning (RL), for example, models often learn to exploit unintended aspects
of the reward function—a phenomenon known as specification gaming or
reward hacking. Such failures arise when variables not explicitly included in

Chapter 16. Responsible AI 897

the objective are manipulated in ways that maximize reward while violating
human intent.

A particularly influential approach in recent years has been reinforcement
learning from human feedback (RLHF), where large pre-trained models are
fine-tuned using human-provided preference signals (Christiano et al. 2017).
While this method improves alignment over standard RL, it also introduces new
risks. Ngo (Ngo, Chan, and Mindermann 2022) identifies three potential failure
modes introduced by RLHF: (1) situationally aware reward hacking, where
models exploit human fallibility; (2) the emergence of misaligned internal goals
that generalize beyond the training distribution; and (3) the development of
power-seeking behavior that preserves reward maximization capacity, even at
the expense of human oversight.

These concerns are not limited to speculative scenarios. Amodei et al. (2016)
outline six concrete challenges for AI safety: (1) avoiding negative side effects
during policy execution, (2) mitigating reward hacking, (3) ensuring scalable
oversight when ground-truth evaluation is expensive or infeasible, (4) designing
safe exploration strategies that promote creativity without increasing risk, (5)
achieving robustness to distributional shift in testing environments, and (6)
maintaining alignment across task generalization. Each of these challenges
becomes more acute as systems are scaled up, deployed across diverse settings,
and integrated with real-time feedback or continual learning.

16.8.1 Autonomous Systems and Trust
The consequences of autonomous systems that act independently of human
oversight and often outside the bounds of human judgment have been widely
documented across multiple industries. A prominent recent example is the
suspension of Cruises deployment and testing permits by the California Depart-
ment of Motor Vehicles due to “unreasonable risks to public safety”. One such
incident involved a pedestrian who entered a crosswalk just as the stoplight
turned green—an edge case in perception and decision-making that led to a
collision. A more tragic example occurred in 2018, when a self-driving Uber
vehicle in autonomous mode failed to classify a pedestrian pushing a bicycle as
an object requiring avoidance, resulting in a fatality.

While autonomous driving systems are often the focal point of public concern,
similar risks arise in other domains. Remotely piloted drones and autonomous
military systems are already reshaping modern warfare, raising not only safety
and effectiveness concerns but also difÏcult questions about ethical oversight,
rules of engagement, and responsibility. When autonomous systems fail, the
question of who should be held accountable remains both legally and ethically
unresolved.

At its core, this challenge reflects a deeper tension between human and ma-
chine autonomy. Engineering and computer science disciplines have historically
emphasized machine autonomy—improving system performance, minimizing
human intervention, and maximizing automation. A bibliometric analysis of
the ACM Digital Library found that, as of 2019, 90% of the most cited papers
referencing “autonomy” focused on machine, rather than human, autonomy
(Calvo et al. 2020). Productivity, efÏciency, and automation have been widely

https://www.cnbc.com/2023/10/24/california-dmv-suspends-cruises-self-driving-car-permits.html
https://www.cnbc.com/2023/10/17/cruise-under-nhtsa-probe-into-autonomous-driving-pedestrian-injuries.html
https://www.bbc.com/news/technology-54175359
https://www.reuters.com/technology/human-machine-teams-driven-by-ai-are-about-reshape-warfare-2023-09-08/
https://www.cigionline.org/articles/who-responsible-when-autonomous-systems-fail/

16.8. AI Safety and Value Alignment 898

30 Frame Problem: DifÏculty in
specifying all the necessary opera-
tional conditions beforehand for au-
tomated agents.

31 Qualification Problem: Chal-
lenge in artificially intelligent sys-
tems to acknowledge exceptional cir-
cumstances.

treated as default objectives, often without interrogating the assumptions or
tradeoffs they entail for human agency and oversight.

However, these goals can place human interests at risk when systems operate
in dynamic, uncertain environments where full specification of safe behavior is
infeasible. This difÏculty is formally captured by the frame problem30 and qual-
ification problem31, both of which highlight the impossibility of enumerating
all the preconditions and contingencies needed for real-world action to succeed
(McCarthy 1981). In practice, such limitations manifest as brittle autonomy:
systems that appear competent under nominal conditions but fail silently or
dangerously when faced with ambiguity or distributional shift.

To address this, researchers have proposed formal safety frameworks such as
Responsibility-Sensitive Safety (RSS) (Shalev-Shwartz, Shammah, and Shashua
2017), which decompose abstract safety goals into mathematically defined
constraints on system behavior—such as minimum distances, braking profiles,
and right-of-way conditions. These formulations allow safety properties to be
verified under specific assumptions and scenarios. However, such approaches
remain vulnerable to the same limitations they aim to solve: they are only as
good as the assumptions encoded into them and often require extensive domain
modeling that may not generalize well to unanticipated edge cases.

An alternative approach emphasizes human-centered system design, en-
suring that human judgment and oversight remain central to autonomous
decision-making. Value-Sensitive Design (Friedman 1996) proposes incorpo-
rating user values into system design by explicitly considering factors like
capability, complexity, misrepresentation, and the fluidity of user control. More
recently, the METUX model (Motivation, Engagement, and Thriving in the User
Experience) extends this thinking by identifying six “spheres of technology
experience”—Adoption, Interface, Tasks, Behavior, Life, and Society, which af-
fect how technology supports or undermines human flourishing (Peters, Calvo,
and Ryan 2018). These ideas are rooted in Self-Determination Theory (SDT),
which defines autonomy not as control in a technical sense, but as the ability to
act in accordance with ones values and goals (Ryan and Deci 2000).

In the context of ML systems, these perspectives underscore the importance
of designing architectures, interfaces, and feedback mechanisms that preserve
human agency. For instance, recommender systems that optimize engagement
metrics may interfere with behavioral autonomy by shaping user preferences
in opaque ways. By evaluating systems across METUXs six spheres, designers
can anticipate and mitigate downstream effects that compromise meaningful
autonomy, even in cases where short-term system performance appears optimal.

16.8.2 AIs Economic Impact

A recurring concern in the adoption of AI technologies is the potential for
widespread job displacement. As machine learning systems become capable of
performing increasingly complex cognitive and physical tasks, there is grow-
ing fear that they may replace existing workers and reduce the availability
of alternative employment opportunities across industries. These concerns
are particularly acute in sectors with well-structured tasks, including logistics,

Chapter 16. Responsible AI 899

manufacturing, and customer service, where AI-based automation appears
both technically feasible and economically incentivized.

However, the economic implications of automation are not historically un-
precedented. Prior waves of technological change, including industrial mecha-
nization and computerization, have tended to result in job displacement rather
than absolute job loss (Shneiderman 2022). Automation often reduces the cost
and increases the quality of goods and services, thereby expanding access and
driving demand. This demand, in turn, creates new forms of production, distri-
bution, and support work—sometimes in adjacent sectors, sometimes in roles
that did not previously exist.

Empirical studies of industrial robotics and process automation further chal-
lenge the feasibility of “lights-out” factories, systems that are designed for fully
autonomous operation without human oversight. Despite decades of effort,
most attempts to achieve this level of automation have been unsuccessful. Ac-
cording to the MIT Work of the Future task force, such efforts often lead to
zero-sum automation, where productivity increases come at the expense of
system flexibility, adaptability, and fault tolerance. Human workers remain
essential for tasks that require contextual judgment, cross-domain generaliza-
tion, or system-level debugging—capabilities that are still difÏcult to encode in
machine learning models or automation frameworks.

Instead, the task force advocates for a positive-sum automation approach that
augments human work rather than replacing it. This strategy emphasizes the
integration of AI systems into workflows where humans retain oversight and
control, such as semi-autonomous assembly lines or collaborative robotics. It
also recommends bottom-up identification of automatable tasks, with priority
given to those that reduce cognitive load or eliminate hazardous work, alongside
the selection of appropriate metrics that capture both efÏciency and resilience.
Metrics rooted solely in throughput or cost minimization may inadvertently
penalize human-in-the-loop designs, whereas broader metrics tied to safety,
maintainability, and long-term adaptability provide a more comprehensive
view of system performance.

Nonetheless, the long-run economic trajectory does not eliminate the reality
of near-term disruption. Workers whose skills are rendered obsolete by au-
tomation may face wage stagnation, reduced bargaining power, or long-term
displacement—especially in the absence of retraining opportunities or labor
market mobility. Public and legislative efforts will play a critical role in shaping
this transition, including policies that promote equitable access to the benefits
of automation. These may include upskilling initiatives, social safety nets, min-
imum wage increases, and corporate accountability frameworks that ensure
the distributional impacts of AI are monitored and addressed over time.

16.8.3 AI Literacy and Communication
A 1993 survey of 3,000 North American adults’ beliefs about the “electronic
thinking machine” revealed two dominant perspectives on early computing:
the “beneficial tool of man” and the “awesome thinking machine” (Martin 1993).
The latter reflects a perception of computers as mysterious, intelligent, and
potentially uncontrollable—“smarter than people, unlimited, fast, and fright-

16.9. Conclusion 900

ening.” These perceptions, though decades old, remain relevant in the age of
machine learning systems. As the pace of innovation accelerates, responsible
AI development must be accompanied by clear and accurate scientific commu-
nication, especially concerning the capabilities, limitations, and uncertainties
of AI technologies.

As modern AI systems surpass layperson understanding and begin to influ-
ence high-stakes decisions, public narratives tend to polarize between utopian
and dystopian extremes. This is not merely a result of media framing, but of a
more fundamental difÏculty: in technologically advanced societies, the outputs
of scientific systems are often perceived as magical—“understandable only in
terms of what it did, not how it worked” (Handlin 1965). Without scaffolding for
technical comprehension, systems like generative models, autonomous agents,
or large-scale recommender platforms can be misunderstood or mistrusted,
impeding informed public discourse.

Tech companies bear responsibility in this landscape. Overstated claims,
anthropomorphic marketing, or opaque product launches contribute to cycles
of hype and disappointment, eroding public trust. But improving AI literacy
requires more than restraint in corporate messaging. It demands systematic
research on scientific communication in the context of AI. Despite the soci-
etal impact of modern machine learning, an analysis of the Scopus scholarly
database found only a small number of papers that intersect the domains of
“artificial intelligence” and “science communication” (Schäfer 2023).

Addressing this gap requires attention to how narratives about AI are shaped—
not just by companies, but also by academic institutions, regulators, journalists,
non-profits, and policy advocates. The frames and metaphors used by these
actors significantly influence how the public perceives agency, risk, and control
in AI systems (Lindgren 2023). These perceptions, in turn, affect adoption, over-
sight, and resistance, particularly in domains such as education, healthcare, and
employment, where AI deployment intersects directly with lived experience.

From a systems perspective, public understanding is not an externality—
it is part of the deployment context. Misinformation about how AI systems
function can lead to overreliance, misplaced blame, or underutilization of safety
mechanisms. Equally, a lack of understanding of model uncertainty, data bias,
or decision boundaries can exacerbate the risks of automation-induced harm.
For individuals whose jobs are impacted by AI, targeted efforts to build domain-
specific literacy can also support reskilling and adaptation (Ng et al. 2021).

Ultimately, AI literacy is not just about technical fluency. It is about building
public confidence that the goals of system designers are aligned with societal
welfare—and that those building AI systems are not removed from public
values, but accountable to them. As Handlin observed in 1965: “Even those who
never acquire that understanding need assurance that there is a connection between the
goals of science and their welfare, and above all, that the scientist is not a man altogether
apart but one who shares some of their value.”

16.9 Conclusion
Responsible artificial intelligence is essential as machine learning systems in-
creasingly shape decisions in healthcare, employment, finance, and the justice

Chapter 16. Responsible AI 901

system. While these technologies offer substantial benefits, their deployment
without ethical safeguards risks amplifying harm—through biased predictions,
opaque decision-making, privacy violations, and misaligned objectives.

To mitigate these risks, the principles of fairness, explainability, account-
ability, safety, and transparency must be operationalized throughout the ML
lifecycle. Yet implementing these principles presents persistent challenges:
detecting and correcting data imbalance, balancing predictive performance
against interpretability or robustness, ensuring privacy in both centralized
and edge settings, and maintaining alignment in systems that evolve after
deployment. Frameworks such as value-sensitive design provide structured
approaches for surfacing stakeholder values and navigating tradeoffs across
competing system objectives.

Achieving responsible AI in practice will require sustained research, stan-
dardization, and institutional commitment. Robust benchmarks and evaluation
frameworks are needed to compare model behavior under real-world con-
straints, particularly in terms of subgroup performance, distributional robust-
ness, and privacy guarantees. As deployment extends to edge environments
and personalized settings, new methods will be required to support light-
weight explainability and user control in TinyML systems. Policy interventions
and incentive structures must also be updated to prioritize long-term system
reliability and ethical oversight over short-term performance gains.

Crucially, responsible AI is not reducible to technical metrics or checklists. It
demands interdisciplinary collaboration, human-centered design, and continu-
ous reflection on the social contexts in which systems operate. By embedding
ethical considerations into infrastructure, workflows, and governance struc-
tures, the machine learning community can help ensure that AI serves broad
societal interests. The challenge ahead lies in transforming ethical responsibility
from an aspiration into a durable property of ML systems—and doing so at
scale.

16.10 Resources

�� Slides

• What am I building? What is the goal?
• Who is the audience?
• What are the consequences?
• Responsible Data Collection.

çĖ Videos

• Coming soon.

https://docs.google.com/presentation/d/1Z9VpUKGOOfUIg6x04aXLVYl-9QoablElOlxhTLkAVno/edit?usp=drive_link&resourcekey=0-Nr9tvJ9KGgaL44O_iJpe4A
https://docs.google.com/presentation/d/1IwIXrTQNf6MLlXKV-qOuafZhWS9saTxpY2uawQUHKfg/edit?usp=drive_link&resourcekey=0-Jc1kfKFb4OOhs919kyR2mA
https://docs.google.com/presentation/d/1UDmrEZAJtH5LkHA_mDuFovOh6kam9FnC3uBAAah4RJo/edit?usp=drive_link&resourcekey=0-HFb4nRGGNRxJHz8wHXpgtg
https://docs.google.com/presentation/d/1vcmuhLVNFT2asKSCSGh_Ix9ht0mJZxMii8MufEMQhFA/edit?resourcekey=0-_pYLcW5aF3p3Bvud0PPQNg#slide=id.ga4ca29c69e_0_195

16.10. Resources 902

¸Î Exercises

• Coming soon.

Chapter 17

Sustainable AI

Figure 17.1: DALL·E 3 Prompt: 3D
illustration on a light background of a
sustainable AI network interconnected
with a myriad of eco-friendly energy
sources. The AI actively manages and
optimizes its energy from sources like
solar arrays, wind turbines, and hy-
dro dams, emphasizing power efÏciency
and performance. Deep neural net-
works spread throughout, receiving en-
ergy from these sustainable resources.

Purpose
How do environmental considerations influence the design and implementation
of machine learning systems, and what principles emerge from examining AI
through an ecological perspective?

Machine learning systems inherently require significant computational re-
sources, raising critical concerns about their environmental impact. Addressing
these concerns requires a deep understanding of how architectural decisions
affect energy consumption, resource utilization, and ecological sustainability.
Designers and engineers must consider the relationships between computa-
tional demands, resource utilization, and environmental consequences across
various system components. A systematic exploration of these considerations
helps identify key architectural principles and design strategies that harmonize
performance objectives with ecological stewardship.

903

17.1. Overview 904

L� Learning Objectives

• Define the key environmental impacts of AI systems.
• Identify the ethical considerations surrounding sustainable AI.
• Analyze strategies for reducing AI’s carbon footprint.
• Describe the role of energy-efÏcient design in sustainable AI.
• Discuss the importance of policy and regulation for sustainable AI.
• Recognize key challenges in the AI hardware and software lifecycle.

17.1 Overview
Machine learning has become an essential driver of technological progress,
powering advancements across industries and scientific domains. However,
as AI models grow in complexity and scale, the computational demands re-
quired to train and deploy them have increased significantly, raising critical
concerns about sustainability. The environmental impact of AI extends beyond
energy consumption, encompassing carbon emissions, resource extraction, and
electronic waste. As a result, it is imperative to examine AI systems through
the lens of sustainability and assess the trade-offs between performance and
ecological responsibility.

Developing large-scale AI models, such as state-of-the-art language and
vision models, requires substantial computational power. Training a single
large model can consume thousands of megawatt-hours of electricity, equivalent
to powering hundreds of households for a month. Much of this energy is
supplied by data centers, which rely heavily on nonrenewable energy sources,
contributing to global carbon emissions. Estimates indicate that AI-related
emissions are comparable to those of entire industrial sectors, highlighting
the urgency of transitioning to more energy-efÏcient models and renewable-
powered infrastructure.

Beyond energy consumption, AI systems also impact the environment through
hardware manufacturing and resource utilization. Training and inference work-
loads depend on specialized processors, such as GPUs and TPUs, which require
rare earth metals whose extraction and processing generate significant pollution.
Additionally, the growing demand for AI applications accelerates electronic
waste production, as hardware rapidly becomes obsolete. Even small-scale AI
systems, such as those deployed on edge devices, contribute to sustainability
challenges, necessitating careful consideration of their lifecycle impact.

This chapter examines the sustainability challenges associated with AI sys-
tems and explores emerging solutions to mitigate their environmental footprint.
It discusses strategies for improving algorithmic efÏciency, optimizing train-
ing infrastructure, and designing energy-efÏcient hardware. Additionally, it
considers the role of renewable energy sources, regulatory frameworks, and in-
dustry best practices in promoting sustainable AI development. By addressing
these challenges, the field can advance toward more ecologically responsible
AI systems while maintaining technological progress.

Chapter 17. Sustainable AI 905

17.2 Ethical Responsibility
17.2.1 Long-Term Viability
The long-term sustainability of AI is increasingly challenged by the exponen-
tial growth of computational demands required to train and deploy machine
learning models. Over the past decade, AI systems have scaled at an unprece-
dented rate, with compute requirements increasing 350,000× from 2012 to 2019
(Schwartz et al. 2020). This trend shows no signs of slowing down, as ad-
vancements in deep learning continue to prioritize larger models with more
parameters, larger training datasets, and higher computational complexity.
However, sustaining this trajectory poses significant sustainability challenges,
particularly as the efÏciency gains from hardware improvements fail to keep
pace with the rising demands of AI workloads.

Historically, computational efÏciency improved with advances in semicon-
ductor technology. Moore’s Law, which predicted that the number of transistors
on a chip would double approximately every two years, led to continuous im-
provements in processing power and energy efÏciency. However, Moore’s Law
is now reaching fundamental physical limits, making further transistor scaling
increasingly difÏcult and costly. Dennard scaling, which once ensured that
smaller transistors would operate at lower power levels, has also ended, leading
to stagnation in energy efÏciency improvements per transistor. As a result,
while AI models continue to scale in size and capability, the hardware running
these models is no longer improving at the same exponential rate. This growing
divergence between computational demand and hardware efÏciency creates
an unsustainable trajectory in which AI consumes ever-increasing amounts of
energy.

The training of complex AI systems like large deep learning models demands
startlingly high levels of computing power with profound energy implications.
Consider OpenAI’s state-of-the-art language model GPT-3 as a prime example.
This system pushes the frontiers of text generation through algorithms trained
on massive datasets, with training estimated to require 1,300 megawatt-hours
(MWh) of electricity—roughly equivalent to the monthly energy consumption
of 1,450 average U.S. households (Maslej et al. 2023). In recent years, these
generative AI models have gained increasing popularity, leading to more models
being trained with ever-growing parameter counts.

Research shows that increasing model size, dataset size, and compute used
for training improves performance smoothly with no signs of saturation (Ka-
plan et al. 2020), as evidenced in Figure 17.2 where test loss decreases as each
of these three factors increases. Beyond training, AI-powered applications such
as large-scale recommender systems and generative models require continuous
inference at scale, consuming significant energy even after training completes.
As AI adoption grows across industries from finance to healthcare to entertain-
ment, the cumulative energy burden of AI workloads continues to rise, raising
concerns about the environmental impact of widespread deployment.

Beyond electricity consumption, the sustainability challenges of AI extend
to hardware resource demands. High-performance computing (HPC) clusters
and AI accelerators rely on specialized hardware, including GPUs, TPUs, and
FPGAs, all of which require rare earth metals and complex manufacturing

17.2. Ethical Responsibility 906

Figure 17.2: Performance improves
with compute, dataset set, and
model size. Source: Kaplan et al.
(2020).

processes. The production of AI chips is energy-intensive, involving multiple
fabrication steps that contribute to Scope 3 emissions, which account for the ma-
jority of the carbon footprint in semiconductor manufacturing. As model sizes
continue to grow, the demand for AI hardware increases, further exacerbating
the environmental impact of semiconductor production and disposal.

The long-term sustainability of AI requires a shift in how machine learning
systems are designed, optimized, and deployed. As compute demands outpace
efÏciency improvements, addressing AI’s environmental impact will require
rethinking system architecture, energy-aware computing, and lifecycle manage-
ment. Without intervention, the unchecked growth of AI models will continue
to place unsustainable pressures on energy grids, data centers, and natural
resources, underscoring the need for a more systematic approach to sustainable
AI development.

The environmental impact of AI is not just a technical issue but also an ethical
and social one. As AI becomes more integrated into our lives and industries,
its sustainability becomes increasingly critical.

17.2.2 Ethical Issues
The environmental impact of AI raises fundamental ethical questions regarding
the responsibility of developers, organizations, and policymakers to mitigate
its carbon footprint. As AI systems continue to scale, their energy consumption
and resource demands have far-reaching implications, necessitating a proactive
approach to sustainability. Developers and companies that build and deploy
AI systems must consider not only performance and efÏciency but also the
broader environmental consequences of their design choices.

A key ethical challenge lies in balancing technological progress with ecolog-
ical responsibility. The pursuit of increasingly large models often prioritizes
accuracy and capability over energy efÏciency, leading to substantial environ-
mental costs. While optimizing for sustainability may introduce trade-offs,
including increased development time or minor reductions in accuracy, it is an
ethical imperative to integrate environmental considerations into AI system
design. This requires shifting industry norms toward sustainable computing
practices, such as energy-aware training techniques, low-power hardware de-
signs, and carbon-conscious deployment strategies (D. Patterson et al. 2021b).

Beyond sustainability, AI development also raises broader ethical concerns
related to transparency, fairness, and accountability. Figure 17.3 illustrates the
ethical challenges associated with AI development, linking different types of

Chapter 17. Sustainable AI 907

concerns, including inscrutable evidence, unfair outcomes, and traceability,
to issues like opacity, bias, and automation bias. These concerns extend to
sustainability, as the environmental trade-offs of AI development are often
opaque and difÏcult to quantify. The lack of traceability in energy consumption
and carbon emissions can lead to unjustified actions, where companies prioritize
performance gains without fully understanding or disclosing the environmental
costs.

Figure 17.3: Ethical challenges in AI
development. Source: COE

Unjustified actions

Opacity

Bias

Discrimination

Autonomy

Informational privacy

Group privacy

Moral responsibility

Distributed responsibility

Automation bias

Safety and resilience

Ethical auditing

Inconclusive evidence

Inscrutable evidence

Misguided evidence

Unfair outcomes

Transformative effects

Traceability

Ethical ChallengesTypes of concerns

Addressing these concerns also demands greater transparency and account-
ability from AI companies. Large technology firms operate extensive cloud
infrastructures that power modern AI applications, yet their environmental
impact is often opaque. Organizations must take active steps to measure, report,
and reduce their carbon footprint across the entire AI lifecycle, from hardware
manufacturing to model training and inference. Voluntary self-regulation is
an important first step, but policy interventions and industry-wide standards
may be necessary to ensure long-term sustainability. Reported metrics such as
energy consumption, carbon emissions, and efÏciency benchmarks could serve
as mechanisms to hold organizations accountable.

https://www.coe.int/en/web/bioethics/common-ethical-challenges-in-ai

17.2. Ethical Responsibility 908

Furthermore, ethical AI development must encourage open discourse on
environmental trade-offs. Researchers should be empowered to advocate for
sustainability within their institutions and organizations, ensuring that envi-
ronmental concerns are factored into AI development priorities. The broader
AI community has already begun addressing these issues, as exemplified by the
open letter advocating a pause on large-scale AI experiments, which highlights
concerns about unchecked expansion. By fostering a culture of transparency
and ethical responsibility, the AI industry can work toward aligning technolog-
ical advancement with ecological sustainability.

AI has the potential to reshape industries and societies, but its long-term
viability depends on how responsibly it is developed. Ethical AI development is
not only about preventing harm to individuals and communities but also about
ensuring that AI-driven innovation does not come at the cost of environmental
degradation. As stewards of these powerful technologies, developers and
organizations have a profound duty to integrate sustainability into AI’s future
trajectory.

17.2.3 Case Study: DeepMind’s Energy EfÏciency
Google’s data centers form the backbone of services such as Search, Gmail,
and YouTube, handling billions of queries daily. These data centers operate at
massive scales, consuming vast amounts of electricity, particularly for cooling
infrastructure that ensures optimal server performance. Improving the energy
efÏciency of data centers has long been a priority, but conventional engineering
approaches faced diminishing returns due to the complexity of the cooling
systems and the highly dynamic nature of environmental conditions. To address
these challenges, Google collaborated with DeepMind to develop a machine
learning-driven optimization system that could automate and enhance energy
management at scale.

Building on more than a decade of efforts to optimize data center design,
energy-efÏcient hardware, and renewable energy integration, DeepMind’s AI
approach targeted one of the most energy-intensive aspects of data centers:
cooling systems. Traditional cooling relies on manually set heuristics that
account for factors such as server heat output, external weather conditions, and
architectural constraints. However, these systems exhibit nonlinear interactions,
meaning that simple rule-based optimizations often fail to capture the full
complexity of their operations. The result was suboptimal cooling efÏciency,
leading to unnecessary energy waste.

DeepMind’s team trained a neural network model using Google’s historical
sensor data, which included real-time temperature readings, power consump-
tion levels, cooling pump activity, and other operational parameters. The model
learned the intricate relationships between these factors and could dynamically
predict the most efÏcient cooling configurations. Unlike traditional approaches,
which relied on human engineers periodically adjusting system settings, the
AI model continuously adapted in real time to changing environmental and
workload conditions.

The results were unprecedented efÏciency gains. When deployed in live data
center environments, DeepMind’s AI-driven cooling system reduced cooling

https://futureoflife.org/open-letter/pause-giant-ai-experiments/

Chapter 17. Sustainable AI 909

energy consumption by 40%, leading to an overall 15% improvement in Power
Usage Effectiveness (PUE)—a key metric for data center energy efÏciency that
measures the ratio of total energy consumption to the energy used purely for
computing tasks (Barroso, Hölzle, and Ranganathan 2019). Notably, these
improvements were achieved without any additional hardware modifications,
demonstrating the potential of software-driven optimizations to significantly
reduce AI’s carbon footprint.

Beyond a single data center, DeepMind’s AI model provided a generaliz-
able framework that could be adapted to different facility designs and climate
conditions, offering a scalable solution for optimizing power consumption
across global data center networks. This case study exemplifies how AI can be
leveraged not just as a consumer of computational resources but as a tool for
sustainability, driving substantial efÏciency improvements in the infrastructure
that supports machine learning itself.

The integration of data-driven decision-making, real-time adaptation, and
scalable AI models demonstrates the growing role of intelligent resource man-
agement in sustainable AI system design. This breakthrough exemplifies how
machine learning can be applied to optimize the very infrastructure that powers
it, ensuring a more energy-efÏcient future for large-scale AI deployments.

17.3 AI Carbon Footprint
The carbon footprint of artificial intelligence is a critical aspect of its overall
environmental impact. As AI adoption continues to expand, so does its en-
ergy consumption and associated greenhouse gas emissions. Training and
deploying AI models require vast computational resources, often powered
by energy-intensive data centers that contribute significantly to global carbon
emissions. However, the carbon footprint of AI extends beyond electricity
usage, encompassing hardware manufacturing, data storage, and end-user
interactions—all of which contribute to emissions across an AI system’s lifecy-
cle.

Quantifying the carbon impact of AI is complex, as it depends on multiple
factors, including the size of the model, the duration of training, the hardware
used, and the energy sources powering data centers. Large-scale AI models,
such as GPT-3, require thousands of megawatt-hours (MWh) of electricity,
equivalent to the energy consumption of entire communities. The energy
required for inference, the phase during which trained models produce outputs,
is also substantial, particularly for widely deployed AI services such as real-
time translation, image generation, and personalized recommendations. Unlike
traditional software, which has a relatively static energy footprint, AI models
consume energy continuously, leading to an ongoing sustainability challenge.

Beyond direct energy use, the carbon footprint of AI must also account for in-
direct emissions from hardware production and supply chains. Manufacturing
AI accelerators such as GPUs, TPUs, and custom chips involves energy-intensive
fabrication processes that rely on rare earth metals and complex supply chains.
The full life cycle emissions of AI systems, which encompass data centers,
hardware manufacturing, and global AI deployments, must be considered to
develop more sustainable AI practices.

17.3. AI Carbon Footprint 910

Understanding AI’s carbon footprint requires breaking down where emis-
sions come from, how they are measured, and what strategies can be employed
to mitigate them. We explore the following:

• Carbon emissions and energy consumption trends in AI, which quantify
AI’s energy demand and provide real-world comparisons.

• Scopes of carbon emissions (Scope 1, 2, and 3)—differentiating between
direct, indirect, and supply chain-related emissions.

• The energy cost of training vs. inference—analyzing how different phases
of AI impact sustainability.

By dissecting these components, we can better assess the true environmen-
tal impact of AI systems and identify opportunities to reduce their footprint
through more efÏcient design, energy-conscious deployment, and sustainable
infrastructure choices.

17.3.1 Emissions & Consumption
Artificial intelligence systems require vast computational resources, making
them one of the most energy-intensive workloads in modern computing. The
energy consumed by AI systems extends beyond the training of large models to
include ongoing inference workloads, data storage, and communication across
distributed computing infrastructure. As AI adoption scales across industries,
understanding its energy consumption patterns and carbon emissions is critical
for designing more sustainable machine learning infrastructure.

Data centers play a central role in AI’s energy demands, consuming vast
amounts of electricity to power compute servers, storage, and cooling systems.
Without access to renewable energy, these facilities rely heavily on nonrenew-
able sources such as coal and natural gas, contributing significantly to global
carbon emissions. Current estimates suggest that data centers produce up to
2% of total global CO₂ emissions—a figure that is closing in on the airline in-
dustry’s footprint (Yanan Liu et al. 2020). The energy burden of AI is expected
to grow exponentially due to three key factors: increasing data center capacity,
rising AI training workloads, and surging inference demands (D. Patterson,
Gonzalez, Holzle, et al. 2022). Without intervention, these trends risk making
AI’s environmental footprint unsustainably large (Thompson, Spanuth, and
Matthews 2023).

17.3.1.1 Energy Demands in Data Centers

AI workloads are among the most compute-intensive operations in modern
data centers. Companies such as Meta operate hyperscale data centers spanning
multiple football fields in size, housing hundreds of thousands of AI-optimized
servers. The training of large language models (LLMs) such as GPT-4 required
over 25,000 Nvidia A100 GPUs running continuously for 90 to 100 days (S. Choi
and Yoon 2024), consuming thousands of megawatt-hours (MWh) of electricity.
These facilities rely on high-performance AI accelerators like NVIDIA DGX
H100 units, each of which can draw up to 10.2 kW at peak power (Choquette
2023).

Chapter 17. Sustainable AI 911

AI’s rapid adoption is driving a significant increase in data center energy
consumption. As shown in Figure 17.4, the energy demand of AI workloads is
projected to substantially increase total data center energy use, especially after
2024. While efÏciency gains have historically offset rising power needs, these
gains are decelerating, amplifying AI’s environmental impact.

Figure 17.4: Projected Data Cen-
ter and AI Power Demand with
Power EfÏciency Gains (2015–2030).
Source: Masanet et al. (2020), Cisco,
IEA, Goldman Sachs Global Invest-
ment Research.

Power Demand
IncreasingEfficiency Gains

Decelerating

0

250

500

750

1000

0

10

20

2015 2020 2025 2030

Year

D
at

a
C

en
te

r
P

ow
er

 D
em

an
d

(T
W

h)

P
ow

er E
fficiency G

ains (%
)

AI Data Center ex−AI

Cooling is another major factor in AI’s energy footprint. Large-scale AI train-
ing and inference workloads generate massive amounts of heat, necessitating
advanced cooling solutions to prevent hardware failures. Estimates indicate
that 30-40% of a data center’s total electricity usage goes into cooling alone
(Dayarathna, Wen, and Fan 2016). Companies have begun adopting alterna-
tive cooling methods to reduce this demand. For example, Microsoft’s data
center in Ireland leverages a nearby fjord, using over half a million gallons of
seawater daily to dissipate heat. However, as AI models scale in complexity,
cooling demands continue to grow, making sustainable AI infrastructure design
a pressing challenge.

17.3.1.2 AI vs. Other Industries
The environmental impact of AI workloads has emerged as a significant concern,
with carbon emissions approaching levels comparable to established carbon-
intensive sectors. Research demonstrates that training a single large AI model
generates carbon emissions equivalent to multiple passenger vehicles over their
complete lifecycle (Strubell, Ganesh, and McCallum 2019b). To contextualize
AI’s environmental footprint, Figure 17.6 compares the carbon emissions of
large-scale machine learning tasks to transcontinental flights, illustrating the
substantial energy demands of training and inference workloads. It shows a
comparison from lowest to highest carbon footprints, starting with a roundtrip
flight between NY and SF, human life average per year, American life average
per year, US car including fuel over a lifetime, and a Transformer model with
neural architecture search, which has the highest footprint. These comparisons

17.3. AI Carbon Footprint 912

0 The production of AI chips re-
quires rare earth elements such as
neodymium and dysprosium, the
extraction of which has significant
environmental consequences.

underscore the need for more sustainable AI practices to mitigate the industry’s
carbon impact.

Figure 17.5: Carbon footprint of
NLP model in lbs of carbon dioxide.

Transformer (213M parameters)

w/ neural architecture search

US car including fuel

(avg. 1 lifetime)

American life (avg. 1 year)

Human life (avg. 1 year)

Roundtrip flight b/w NY and SF

(1 passenger)

626,155

126,000

36,156

11,023

1,984

Common carbon footprint benchmarks

in lbs of CO2 equivalent

The training phase of large natural language processing models produces
carbon dioxide emissions comparable to hundreds of transcontinental flights.
When examining the broader industry impact, AI’s aggregate computational
carbon footprint is approaching parity with the commercial aviation sector.
Furthermore, as AI applications scale to serve billions of users globally, the
cumulative emissions from continuous inference operations may ultimately
exceed those generated during training.

Figure 17.6 provides a detailed analysis of carbon emissions across various
large-scale machine learning tasks at Meta, illustrating the substantial environ-
mental impact of different AI applications and architectures. This quantitative
assessment of AI’s carbon footprint underscores the pressing need to develop
more sustainable approaches to machine learning development and deploy-
ment. Understanding these environmental costs is crucial for implementing
effective mitigation strategies and advancing the field responsibly.

17.3.2 Updated Analysis
Moreover, AI’s impact extends beyond energy consumption during operation.
The full lifecycle emissions of AI include hardware manufacturing, supply
chain emissions, and end-of-life disposal, making AI a significant contributor
to environmental degradation. AI models not only require electricity to train
and infer, but they also depend on a complex infrastructure of semiconductor
fabrication, rare earth metal mining0, and electronic waste disposal. The next
section breaks down AI’s carbon emissions into Scope 1 (direct emissions),
Scope 2 (indirect emissions from electricity), and Scope 3 (supply chain and
lifecycle emissions) to provide a more detailed view of its environmental impact.

17.3.3 Carbon Emission Scopes
AI is expected to see an annual growth rate of 37.3% between 2023 and 2030.
Yet, applying the same growth rate to operational computing could multiply

https://www.forbes.com/advisor/business/ai-statistics/

Chapter 17. Sustainable AI 913

Figure 17.6: Carbon footprint of
large-scale ML tasks. Source: C.-J.
Wu et al. (2022).

M
ill

io
n

s

L
M

R
M

-1

R
M

-2

R
M

-3

R
M

-4

R
M

-5

B
E

R
T

-N
A

S

E
vo

lv
e

d
T
ra

n
s
fo

rm
e

r

T
5

M
e

e
n

a

G
S

h
a

rd
-6

0
0

B

S
w

it
c
h

T
ra

n
s
fo

rm
e

r

G
P

T
-3

0.00

0.50

1.00
C

O
2

e
(k

g
)

Operational Carbon Footprint of Large-Scale ML Tasks

Offline Training Online Training Inference

Facebook OSS Large-Scale ML Models

*Training footprint only

annual AI energy needs up to 1,000 times by 2030. So, while model optimization
tackles one facet, responsible innovation must also consider total lifecycle costs
at global deployment scales that were unfathomable just years ago but now
pose infrastructure and sustainability challenges ahead.

17.3.3.1 Scope 1
Scope 1 emissions refer to direct greenhouse gas emissions produced by AI data
centers and computing facilities. These emissions result primarily from on-site
power generation, including backup diesel generators used to ensure reliability
in large cloud environments, as well as facility cooling systems. Although many
AI data centers predominantly rely on grid electricity, those with their own
power plants or fossil-fuel-dependent backup systems contribute significantly
to direct emissions, especially in regions where renewable energy sources are
less prevalent (Masanet et al. 2020a).

17.3.3.2 Scope 2
Scope 2 emissions encompass indirect emissions from electricity purchased to
power AI infrastructure. The majority of AI’s operational energy consumption
falls under Scope 2, as cloud providers and enterprise computing facilities
require massive electrical inputs for GPUs, TPUs, and high-density servers. The
carbon intensity associated with Scope 2 emissions varies geographically based
on regional energy mixes. Regions dominated by coal and natural gas electricity
generation create significantly higher AI-related emissions compared to regions
utilizing renewable sources such as wind, hydro, or solar. This geographic
variability motivates companies to strategically position data centers in areas

17.3. AI Carbon Footprint 914

with cleaner energy sources and adopt carbon-aware scheduling strategies to
reduce emissions (Alvim et al. 2022).

17.3.3.3 Scope 3

Scope 3 emissions constitute the largest and most complex category, captur-
ing indirect emissions across the entire AI supply chain and lifecycle. These
emissions originate from manufacturing, transportation, and disposal of AI
hardware, particularly semiconductors and memory modules. Semiconductor
manufacturing is particularly energy-intensive, involving complex processes
such as chemical etching, rare-earth metal extraction, and extreme ultraviolet
(EUV) lithography, all of which produce substantial carbon outputs. Indeed,
manufacturing a single high-performance AI accelerator can generate emis-
sions equivalent to several years of operational energy use (U. Gupta, Kim, et
al. 2022).

Beyond manufacturing, Scope 3 emissions include the downstream impact of
AI once deployed. AI services such as search engines, social media platforms,
and cloud-based recommendation systems operate at enormous scale, requiring
continuous inference across millions or even billions of user interactions. The
cumulative electricity demand of inference workloads can ultimately surpass
the energy used for training, further amplifying AI’s carbon impact. End-user
devices, including smartphones, IoT devices, and edge computing platforms,
also contribute to Scope 3 emissions, as their AI-enabled functionality depends
on sustained computation. Companies such as Meta and Google report that
Scope 3 emissions from AI-powered services make up the largest share of their
total environmental footprint, due to the sheer scale at which AI operates.

These massive facilities provide the infrastructure for training complex neural
networks on vast datasets. For instance, based on leaked information, OpenAI’s
language model GPT-4 was trained on Azure data centers packing over 25,000
Nvidia A100 GPUs, used continuously for over 90 to 100 days.

The GHG Protocol framework, illustrated in Figure 17.7, provides a struc-
tured way to visualize the sources of AI-related carbon emissions. Scope 1
emissions arise from direct company operations, such as data center power
generation and company-owned infrastructure. Scope 2 covers electricity pur-
chased from the grid, the primary source of emissions for cloud computing
workloads. Scope 3 extends beyond an organization’s direct control, including
emissions from hardware manufacturing, transportation, and even the end-user
energy consumption of AI-powered services. Understanding this breakdown
allows for more targeted sustainability strategies, ensuring that efforts to re-
duce AI’s environmental impact are not solely focused on energy efÏciency but
also address the broader supply chain and lifecycle emissions that contribute
significantly to the industry’s carbon footprint.

17.3.4 Training vs. Inference Impact
The energy consumption of AI systems is often closely associated with the
training phase, where substantial computational resources are utilized to de-
velop large-scale machine learning models. However, while training demands
significant power, it represents a one-time cost per model version. In contrast,

https://www.semianalysis.com/p/gpt-4-architecture-infrastructure

Chapter 17. Sustainable AI 915

Figure 17.7: The GHG Protocol
framework categorizes emissions
into Scope 1, 2, and 3, helping or-
ganizations assess their direct and
indirect carbon impact. Source: Cir-
cularise.

inference, which involves the continuous application of trained models to new
data, happens continuously at a massive scale and often becomes the dominant
contributor to energy consumption over time (D. Patterson et al. 2021b). As
AI-powered services, such as real-time translation, recommender systems, and
generative AI applications expand globally, inference workloads increasingly
drive AI’s overall carbon footprint.

17.3.4.1 Training Energy Demands

Training state-of-the-art AI models demands enormous computational resources.
For example, models like GPT-4 were trained using over 25,000 Nvidia A100
GPUs operating continuously for approximately three months within cloud-
based data centers (S. Choi and Yoon 2024). OpenAI’s dedicated supercomputer
infrastructure, built specifically for large-scale AI training, contains 285,000
CPU cores, 10,000 GPUs, and network bandwidth exceeding 400 gigabits per
second per server, illustrating the vast scale and associated energy consumption
of AI training infrastructures (D. Patterson et al. 2021b).

High-performance AI accelerators, such as NVIDIA DGX H100 systems, are
specifically designed for these training workloads. Each DGX H100 unit can
draw up to 10.2 kW at peak load, with clusters often consisting of thousands of
nodes running continuously (Choquette 2023). The intensive computational
loads result in significant heat dissipation, necessitating substantial cooling
infrastructure. Cooling alone can account for 30-40% of total data center energy
consumption (Dayarathna, Wen, and Fan 2016).

While significant, these energy costs occur once per trained model. The
primary sustainability challenge emerges during model deployment, where
inference workloads continuously serve millions or billions of users.

17.3.4.2 Inference Energy Costs

Inference workloads execute every time an AI model responds to queries, classi-
fies images, or makes predictions. Unlike training, inference scales dynamically

17.3. AI Carbon Footprint 916

and continuously across applications such as search engines, recommendation
systems, and generative AI models. Although each individual inference re-
quest consumes far less energy compared to training, the cumulative energy
usage from billions of daily AI interactions quickly surpasses training-related
consumption (D. Patterson et al. 2021b).

For example, AI-driven search engines handle billions of queries per day,
recommendation systems provide personalized content continuously, and gen-
erative AI services such as ChatGPT or DALL-E have substantial per-query
computational costs. The inference energy footprint is especially pronounced in
transformer-based models due to high memory and computational bandwidth
requirements.

As shown in Figure 17.8, the market for inference workloads in data centers is
projected to grow significantly from $4-5 billion in 2017 to $9-10 billion by 2025,
more than doubling in size. Similarly, edge inference workloads are expected
to increase from less than $0.1 billion to $4-4.5 billion in the same period. This
growth substantially outpaces the expansion of training workloads in both
environments, highlighting how the economic footprint of inference is rapidly
outgrowing that of training operations.

Figure 17.8: Market size for infer-
ence and training hardware. Source:
McKinsey.

4-5

2017

9-10

2025
Inference

–1

2017

4-5

2025
Training

Data center, total market, $ billion

< 0.1

2017

4-4.5

2025
Inference

< 0.1

2017

1-1.5

2025
Training

Edge total market, $ billion

Unlike traditional software applications with fixed energy footprints, infer-
ence workloads dynamically scale with user demand. AI services like Alexa,
Siri, and Google Assistant rely on continuous cloud-based inference, processing
millions of voice queries per minute, necessitating uninterrupted operation of
energy-intensive data center infrastructure.

17.3.4.3 Edge AI Impact

Inference does not always happen in large data centers—edge AI is emerging
as a viable alternative to reduce cloud dependency. Instead of routing every AI
request to centralized cloud servers, some AI models can be deployed directly
on user devices or at edge computing nodes. This approach reduces data
transmission energy costs and lowers the dependency on high-power cloud
inference.

Chapter 17. Sustainable AI 917

1 Ultrapure water (UPW): Water
that has been purified to stringent
standards, typically containing less
than 1 part per billion of impurities.
UPW is essential for semiconductor
fabrication, as even trace contami-
nants can impair chip performance
and yield.

However, running inference at the edge does not eliminate energy concerns—
especially when AI is deployed at scale. Autonomous vehicles, for instance,
require millisecond-latency AI inference, meaning cloud processing is imprac-
tical. Instead, vehicles are now being equipped with onboard AI accelerators
that function as “data centers on wheels (Sudhakar, Sze, and Karaman 2023).
These embedded computing systems process real-time sensor data equivalent
to small data centers, consuming significant power even without relying on
cloud inference.

Similarly, consumer devices such as smartphones, wearables, and IoT sen-
sors individually consume relatively little power but collectively contribute
significantly to global energy use due to their sheer numbers. Therefore, the
efÏciency benefits of edge computing must be balanced against the extensive
scale of device deployment.

17.4 Beyond Carbon
While reducing AI’s carbon emissions is critical, the environmental impact
extends far beyond energy consumption. The manufacturing of AI hardware
involves significant resource extraction, hazardous chemical usage, and water
consumption that often receive less attention despite their ecological signifi-
cance.

Modern semiconductor fabrication plants (fabs) that produce AI chips require
millions of gallons of water daily and use over 250 hazardous substances in their
processes (Mills and Le Hunte 1997). In regions already facing water stress,
such as Taiwan, Arizona, and Singapore, this intensive water usage threatens
local ecosystems and communities.

The industry also relies heavily on scarce materials like gallium, indium,
arsenic, and helium, which are essential for AI accelerators and high-speed
communication chips (H.-W. Chen 2006; M. Davies 2011). These materials face
both geopolitical supply risks and depletion concerns.

We will explore these critical but often overlooked aspects of AI’s environ-
mental impact, including water consumption, hazardous waste production, rare
material scarcity, and biodiversity disruption. Understanding these broader
ecological impacts is essential for developing truly sustainable AI infrastructure.

17.4.1 Water Usage
Semiconductor fabrication is an exceptionally water-intensive process, requir-
ing vast quantities of ultrapure water 1 for cleaning, cooling, and chemical
processing. The scale of water consumption in modern fabs is comparable to
that of entire urban populations. For example, TSMC’s latest fab in Arizona is
projected to consume 8.9 million gallons of water per day, accounting for nearly
3% of the city’s total water production. This demand places significant strain
on local water resources, particularly in water-scarce regions such as Taiwan,
Arizona, and Singapore, where semiconductor manufacturing is concentrated.
Semiconductor companies have recognized this challenge and are actively
investing in recycling technologies and more efÏcient water management prac-
tices. STMicroelectronics, for example, recycles and reuses approximately 41%

17.4. Beyond Carbon 918

2 Saltwater Intrusion: The pro-
cess by which seawater enters fresh-
water aquifers due to groundwater
overuse, leading to water quality
degradation.

of its water, significantly reducing its environmental footprint (see Figure 17.9
showing the typical semiconductor fab water cycle).

Figure 17.9: Typical water cycle in
semiconductor manufacturing, il-
lustrating water extraction, ultra-
pure water generation, manufactur-
ing use, recycling processes, and
wastewater treatment before dis-
charge or reuse. Source: ST Sustain-
ability Report.

The primary use of ultrapure water in semiconductor fabrication is for flush-
ing contaminants from wafers at various production stages. Water also serves
as a coolant and carrier fluid in thermal oxidation, chemical deposition, and
planarization processes. A single 300mm silicon wafer requires over 8,300 liters
of water, with more than two-thirds of this being ultrapure water (Cope 2009).
During peak summer months, the cumulative daily water consumption of major
fabs rivals that of cities with populations exceeding half a million people.

The impact of this massive water usage extends beyond consumption. Exces-
sive water withdrawal from local aquifers lowers groundwater levels, leading
to issues such as land subsidence and saltwater intrusion2. In Hsinchu, Taiwan,
one of the world’s largest semiconductor hubs, extensive water extraction by
fabs has led to falling water tables and encroaching seawater contamination,
affecting both agriculture and drinking water supplies.

Figure 17.10 contextualizes the daily water footprint of data centers compared
to other industrial uses, illustrating the immense water demand of high-tech
infrastructure.

While some semiconductor manufacturers implement water recycling sys-
tems, the effectiveness of these measures varies. Intel reports that 97% of its
direct water consumption is attributed to fabrication processes (Cooper et al.
2011), and while water reuse is increasing, the sheer scale of water withdrawals
remains a critical sustainability challenge.

https://sustainabilityreports.st.com/sr20/environment/water.html
https://sustainabilityreports.st.com/sr20/environment/water.html

Chapter 17. Sustainable AI 919

Figure 17.10: Daily Water Footprint
of Datacenters in comparison with
other water uses. Source: Google’s
Data Center Cooling

Beyond depletion, water discharge from semiconductor fabs introduces con-
tamination risks if not properly managed. Wastewater from fabrication contains
metals, acids, and chemical residues that must be thoroughly treated before
release. Although modern fabs employ advanced purification systems, the
extraction of contaminants still generates hazardous byproducts, which, if not
carefully disposed of, pose risks to local ecosystems.

The growing demand for semiconductor manufacturing, driven by AI accel-
eration and computing infrastructure expansion, makes water management a
crucial factor in sustainable AI development. Ensuring the long-term viability of
semiconductor production requires not only reducing direct water consumption
but also enhancing wastewater treatment and developing alternative cooling
technologies that minimize reliance on fresh water sources.

17.4.2 Hazardous Chemicals
Semiconductor fabrication is heavily reliant on highly hazardous chemicals,
which play an essential role in processes such as etching, doping, and wafer
cleaning. The manufacturing of AI hardware, including GPUs, TPUs, and
other specialized accelerators, requires the use of strong acids, volatile solvents,
and toxic gases, all of which pose significant health and environmental risks if
not properly managed. The scale of chemical usage in fabs is immense, with
thousands of metric tons of hazardous substances consumed annually (S. Kim
et al. 2018).

Among the most critical chemical categories used in fabrication are strong
acids, which facilitate wafer etching and oxide removal. Hydrofluoric acid,
sulfuric acid, nitric acid, and hydrochloric acid are commonly employed in the
cleaning and patterning stages of chip production. While effective for these
processes, these acids are highly corrosive and toxic, capable of causing severe
chemical burns and respiratory damage if mishandled. Large semiconductor
fabs require specialized containment, filtration, and neutralization systems to
prevent accidental exposure and environmental contamination.

Solvents are another critical component in chip manufacturing, primarily
used for dissolving photoresists and cleaning wafers. Key solvents include xy-
lene, methanol, and methyl isobutyl ketone (MIBK), which, despite their utility,
present air pollution and worker safety risks. These solvents are volatile organic

https://blog.google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-data-center-cooling/
https://blog.google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-data-center-cooling/

17.4. Beyond Carbon 920

3 Volatile organic compounds
(VOCs): Organic chemicals that eas-
ily evaporate into the air, posing
health risks and contributing to air
pollution. VOCs are commonly
used in semiconductor manufactur-
ing for cleaning, etching, and pho-
toresist removal.

compounds (VOCs)3 that can evaporate into the atmosphere, contributing to
indoor and outdoor air pollution. If not properly contained, VOC exposure can
result in neurological damage, respiratory issues, and long-term health effects
for workers in semiconductor fabs.

Toxic gases are among the most dangerous substances used in AI chip manu-
facturing. Gases such as arsine (AsH₃), phosphine (PH₃), diborane (B₂H₆), and
germane (GeH₄) are used in doping and chemical vapor deposition processes,
essential for fine-tuning semiconductor properties. These gases are highly toxic
and even fatal at low concentrations, requiring extensive handling precautions,
gas scrubbers, and emergency response protocols. Any leaks or accidental
releases in fabs can lead to severe health hazards for workers and surrounding
communities.

While modern fabs employ strict safety controls, protective equipment, and
chemical treatment systems, incidents still occur, leading to chemical spills,
gas leaks, and contamination risks. The challenge of effectively managing
hazardous chemicals is heightened by the ever-increasing complexity of AI
accelerators, which require more advanced fabrication techniques and new
chemical formulations.

Beyond direct safety concerns, the long-term environmental impact of haz-
ardous chemical use remains a major sustainability issue. Semiconductor fabs
generate large volumes of chemical waste, which, if improperly handled, can
contaminate groundwater, soil, and local ecosystems. Regulations in many
countries require fabs to neutralize and treat waste before disposal, but compli-
ance and enforcement vary globally, leading to differing levels of environmental
protection.

To mitigate these risks, fabs must continue advancing green chemistry initia-
tives, exploring alternative etchants, solvents, and gas formulations that reduce
toxicity while maintaining fabrication efÏciency. Additionally, process opti-
mizations that minimize chemical waste, improve containment, and enhance
recycling efforts will be essential to reducing the environmental footprint of AI
hardware production.

17.4.3 Resource Depletion
While silicon is abundant and readily available, the fabrication of AI accelerators,
GPUs, and specialized AI chips depends on scarce and geopolitically sensitive
materials that are far more difÏcult to source. AI hardware manufacturing
requires a range of rare metals, noble gases, and semiconductor compounds,
many of which face supply constraints, geopolitical risks, and environmental
extraction costs. As AI models become larger and more computationally inten-
sive, the demand for these materials continues to rise, raising concerns about
long-term availability and sustainability.

Although silicon forms the foundation of semiconductor devices, high-performance
AI chips depend on rare elements such as gallium, indium, and arsenic, which
are essential for high-speed, low-power electronic components (H.-W. Chen
2006). Gallium and indium, for example, are widely used in compound semi-
conductors, particularly for 5G communications, optoelectronics, and AI accel-
erators. The United States Geological Survey (USGS) has classified indium as a

Chapter 17. Sustainable AI 921

4 Extreme ultraviolet (EUV)
lithography: A cutting-edge
semiconductor manufacturing
technique that uses EUV light
to etch nanoscale features on
silicon wafers. EUV lithography is
essential for producing advanced
AI chips with smaller transistors
and higher performance.

critical material, with global supplies expected to last fewer than 15 years at
the current rate of consumption (M. Davies 2011).

Another major concern is helium, a noble gas critical for semiconductor
cooling, plasma etching, and EUV lithography4 used in next-generation chip
production. Helium is unique in that once released into the atmosphere, it
escapes Earth’s gravity and is lost forever, making it a non-renewable resource
(M. Davies 2011). The semiconductor industry is one of the largest consumers of
helium, and supply shortages have already led to price spikes and disruptions
in fabrication processes. As AI hardware manufacturing scales, the demand
for helium will continue to grow, necessitating more sustainable extraction and
recycling practices.

Beyond raw material availability, the geopolitical control of rare earth ele-
ments poses additional challenges. China currently dominates over 90% of
the world’s rare earth element (REE) refining capacity, including materials
essential for AI chips, such as neodymium (for high-performance magnets in
AI accelerators) and yttrium (for high-temperature superconductors) (A. R. Jha
2014). This concentration of supply creates supply chain vulnerabilities, as
trade restrictions or geopolitical tensions could severely impact AI hardware
production.

Table 17.1 highlights the key materials essential for AI semiconductor manu-
facturing, their applications, and supply concerns.

Table 17.1: Rare materials that are widely used in the semiconductor industry
that are facing resource depletion.

Material
Application in AI Semiconductor
Manufacturing Supply Concerns

Silicon (Si) Primary substrate for chips, wafers,
transistors

Processing constraints; geopolitical risks

Gallium (Ga) GaN-based power amplifiers,
high-frequency components

Limited availability; byproduct of aluminum and
zinc production

Germanium (Ge) High-speed transistors, photodetectors,
optical interconnects

Scarcity; geographically concentrated

Indium (In) Indium Tin Oxide (ITO), optoelectronics Limited reserves; recycling dependency
Tantalum (Ta) Capacitors, stable integrated

components
Conflict mineral; vulnerable supply chains

Rare Earth
Elements (REEs)

Magnets, sensors, high-performance
electronics

High geopolitical risks; environmental extraction
concerns

Cobalt (Co) Batteries for edge computing devices Human rights issues; geographical concentration
(Congo)

Tungsten (W) Interconnects, barriers, heat sinks Limited production sites; geopolitical concerns
Copper (Cu) Interconnects, barriers, heat sinks Limited high-purity sources; geopolitical

concerns
Helium (He) Semiconductor cooling, plasma etching,

EUV lithography
Non-renewable; irretrievable atmospheric loss;
limited extraction capacity

Indium (In) ITO layers, optoelectronic components Limited global reserves; geopolitical
concentration

Cobalt (Co) Batteries for edge computing devices Geographical concentration; human rights
concerns

Tungsten (W) Interconnects, heat sinks Limited production sites; geopolitical concerns
Copper (Cu) Conductive pathways, wiring Geopolitical dependencies; limited recycling

capacity

The rapid growth of AI and semiconductor demand has accelerated the de-
pletion of these critical resources, creating an urgent need for material recycling,
substitution strategies, and more sustainable extraction methods. Some efforts

17.4. Beyond Carbon 922

are underway to explore alternative semiconductor materials that reduce de-
pendency on rare elements, but these solutions require significant advancement
before they become viable alternatives at scale.

17.4.4 Waste Generation

Semiconductor fabrication produces significant volumes of hazardous waste,
including gaseous emissions, VOCs, chemical-laden wastewater, and solid
toxic byproducts. The production of AI accelerators, GPUs, and other high-
performance chips involves multiple stages of chemical processing, etching,
and cleaning, each generating waste materials that must be carefully treated to
prevent environmental contamination.

Fabs release gaseous waste from various processing steps, particularly chem-
ical vapor deposition (CVD), plasma etching, and ion implantation. This in-
cludes toxic and corrosive gases such as arsine (AsH₃), phosphine (PH₃), and
germane (GeH₄), which require advanced scrubber systems to neutralize be-
fore release into the atmosphere. If not properly filtered, these gases pose
severe health hazards and contribute to air pollution and acid rain formation
(Grossman 2007).

VOCs are another major waste category, emitted from photoresist processing,
cleaning solvents, and lithographic coatings. Chemicals such as xylene, acetone,
and methanol readily evaporate into the air, where they contribute to ground-
level ozone formation and indoor air quality hazards for fab workers. In regions
where semiconductor production is concentrated, such as Taiwan and South
Korea, regulators have imposed strict VOC emission controls to mitigate their
environmental impact.

Semiconductor fabs also generate large volumes of spent acids and metal-
laden wastewater, requiring extensive treatment before discharge. Strong acids
such as sulfuric acid, hydrofluoric acid, and nitric acid are used to etch silicon
wafers, removing excess materials during fabrication. When these acids become
contaminated with heavy metals, fluorides, and chemical residues, they must
undergo neutralization and filtration before disposal. Improper handling of
wastewater has led to groundwater contamination incidents, highlighting the
importance of robust waste management systems (Prakash et al. 2023).

The solid waste produced in AI hardware manufacturing includes sludge,
filter cakes, and chemical residues collected from fab exhaust and wastewater
treatment systems. These byproducts often contain concentrated heavy met-
als, rare earth elements, and semiconductor process chemicals, making them
hazardous for conventional landfill disposal. In some cases, fabs incinerate
toxic waste, generating additional environmental concerns related to airborne
pollutants and toxic ash disposal.

Beyond the waste generated during manufacturing, the end-of-life disposal of
AI hardware presents another sustainability challenge. AI accelerators, GPUs,
and server hardware have short refresh cycles, with data center equipment
typically replaced every 3-5 years. This results in millions of tons of e-waste
annually, much of which contains toxic heavy metals such as lead, cadmium,
and mercury. Despite growing efforts to improve electronics recycling, cur-

Chapter 17. Sustainable AI 923

rent systems capture only 17.4% of global e-waste, leaving the majority to be
discarded in landfills or improperly processed (Singh and Ogunseitan 2022).

Addressing the hazardous waste impact of AI requires advancements in both
semiconductor manufacturing and e-waste recycling. Companies are exploring
closed-loop recycling for rare metals, improved chemical treatment processes,
and alternative materials with lower toxicity. However, as AI models continue
to drive demand for higher-performance chips and larger-scale computing
infrastructure, the industry’s ability to manage its waste footprint will be a key
factor in achieving sustainable AI development.

17.4.5 Biodiversity Impact
The environmental footprint of AI hardware extends beyond carbon emissions,
resource depletion, and hazardous waste. The construction and operation of
semiconductor fabrication facilities (fabs), data centers, and supporting infras-
tructure directly impact natural ecosystems, contributing to habitat destruction,
water stress, and pollution. These environmental changes have far-reaching
consequences for wildlife, plant ecosystems, and aquatic biodiversity, highlight-
ing the need for sustainable AI development that considers broader ecological
effects.

Semiconductor fabs and data centers require large tracts of land, often leading
to deforestation and destruction of natural habitats. These facilities are typically
built in industrial parks or near urban centers, but as demand for AI hardware
increases, fabs are expanding into previously undeveloped regions, encroaching
on forests, wetlands, and agricultural land.

The physical expansion of AI infrastructure disrupts wildlife migration pat-
terns, as roads, pipelines, transmission towers, and supply chains fragment
natural landscapes. Species that rely on large, connected ecosystems for sur-
vival, including migratory birds, large mammals, and pollinators, face increased
barriers to movement, reducing genetic diversity and population stability. In
regions with dense semiconductor manufacturing, such as Taiwan and South
Korea, habitat loss has already been linked to declining biodiversity in affected
areas (Hsu et al. 2016).

The massive water consumption of semiconductor fabs poses serious risks to
aquatic ecosystems, particularly in water-stressed regions. Excessive ground-
water extraction for AI chip production can lower water tables, affecting local
rivers, lakes, and wetlands. In Hsinchu, Taiwan, where fabs draw millions of
gallons of water daily, seawater intrusion has been reported in local aquifers,
altering water chemistry and making it unsuitable for native fish species and
vegetation.

Beyond depletion, wastewater discharge from fabs introduces chemical con-
taminants into natural water systems. While many facilities implement ad-
vanced filtration and recycling, even trace amounts of heavy metals, fluorides,
and solvents can accumulate in water bodies, bioaccumulating in fish and dis-
rupting aquatic ecosystems. Additionally, thermal pollution from data centers,
which release heated water back into lakes and rivers, can raise temperatures be-
yond tolerable levels for native species, affecting oxygen levels and reproductive
cycles (LeRoy Poff, Brinson, and Day 2002).

17.5. Semiconductor Life Cycle 924

Semiconductor fabs emit a variety of airborne pollutants, including VOCs,
acid mists, and metal particulates, which can travel significant distances before
settling in the environment. These emissions contribute to air pollution and
acid deposition, which damage plant life, soil quality, and nearby agricultural
systems.

Airborne chemical deposition has been linked to tree decline, reduced crop
yields, and soil acidification, particularly near industrial semiconductor hubs.
In areas with high VOC emissions, plant growth can be stunted by prolonged
exposure, affecting ecosystem resilience and food chains. Additionally, acciden-
tal chemical spills or gas leaks from fabs pose severe risks to both local wildlife
and human populations, requiring strict regulatory enforcement to minimize
long-term ecological damage (Wald and Jones 1987).

The environmental consequences of AI hardware manufacturing demonstrate
the urgent need for sustainable semiconductor production, including reduced
land use, improved water recycling, and stricter emissions controls. Without
intervention, the accelerating demand for AI chips could further strain global
biodiversity, emphasizing the importance of balancing technological progress
with ecological responsibility.

17.5 Semiconductor Life Cycle

The environmental footprint of AI systems extends beyond energy consumption
during model training and inference. A comprehensive assessment of AI’s
sustainability must consider the entire lifecycle—from the extraction of raw
materials used in hardware manufacturing to the eventual disposal of obsolete
computing infrastructure. Life Cycle Analysis (LCA) provides a systematic
approach to quantifying the cumulative environmental impact of AI across its
four key phases: design, manufacture, use, and disposal.

By applying LCA to AI systems, researchers and policymakers can pinpoint
critical intervention points to reduce emissions, improve resource efÏciency,
and implement sustainable practices. This approach provides a holistic un-
derstanding of AI’s ecological costs, extending sustainability considerations
beyond operational power consumption to include hardware supply chains
and electronic waste management.

Figure 17.11 illustrates the four primary stages of an AI system’s lifecycle,
each contributing to its total environmental footprint.

Figure 17.11: AI System Life Cycle
Analysis is divided into four key
phases: Design, Manufacture, Use,
Disposal.

Design Phase Manufacture Phase Use Phase Disposal Phase

X�

�X

Life Cycle Analysis

AI System

The following sections will analyze each lifecycle phase in detail, exploring
its specific environmental impacts and sustainability challenges.

Chapter 17. Sustainable AI 925

17.5.1 Design Phase
The design phase of an AI system encompasses the research, development,
and optimization of machine learning models before deployment. This stage
involves iterating on model architectures, adjusting hyperparameters, and
running training experiments to improve performance. These processes are
computationally intensive, requiring extensive use of hardware resources and
energy. The environmental cost of AI model design is often underestimated,
but repeated training runs, algorithm refinements, and exploratory experi-
mentation contribute significantly to the overall sustainability impact of AI
systems.

Developing an AI model requires running multiple experiments to determine
the most effective architecture. Neural architecture search (NAS), for instance,
automates the process of selecting the best model structure by evaluating hun-
dreds or even thousands of configurations, each requiring a separate training
cycle. Similarly, hyperparameter tuning involves modifying parameters such
as learning rates, batch sizes, and optimization strategies to enhance model
performance, often through exhaustive search techniques. Pre-training and fine-
tuning further add to the computational demands, as models undergo multiple
training iterations on different datasets before deployment. The iterative nature
of this process results in high energy consumption, with studies indicating that
hyperparameter tuning alone can account for up to 80% of training-related
emissions (Strubell, Ganesh, and McCallum 2019b).

The scale of energy consumption in the design phase becomes evident when
examining large AI models. OpenAI’s GPT-3, for example, required an esti-
mated 1,300 megawatt-hours (MWh) of electricity for training, a figure compara-
ble to the energy consumption of 1,450 U.S. homes over an entire month (Maslej
et al. 2023). However, this estimate only reflects the final training run and does
not account for the extensive trial-and-error processes that preceded model
selection. In deep reinforcement learning applications, such as DeepMind’s Al-
phaZero, models undergo repeated training cycles to improve decision-making
policies, further amplifying energy demands.

The carbon footprint of AI model design varies significantly depending on
the computational resources required and the energy sources powering the data
centers where training occurs. A widely cited study found that training a single
large-scale natural language processing (NLP) model could produce emissions
equivalent to the lifetime carbon footprint of five cars (Strubell, Ganesh, and
McCallum 2019b). The impact is even more pronounced when training is
conducted in data centers reliant on fossil fuels. For instance, models trained
in coal-powered facilities in Virginia (USA) generate far higher emissions than
those trained in regions powered by hydroelectric or nuclear energy. Hardware
selection also plays a crucial role; training on energy-efÏcient tensor processing
units (TPUs) can significantly reduce emissions compared to using traditional
graphics processing units (GPUs).

Table 17.2 summarizes the estimated carbon emissions associated with train-
ing various AI models, illustrating the correlation between model complexity
and environmental impact.

17.5. Semiconductor Life Cycle 926

Table 17.2: Estimated carbon emissions associated with training various AI mod-
els, based on computational requirements and energy consumption.
Source: Adapted from (D. Patterson, Gonzalez, Holzle, et al. 2022;
Strubell, Ganesh, and McCallum 2019b).

AI Model
Training Compute

(FLOPs) Estimated CO2 Emissions (kg)
Equivalent Car Miles

Driven

GPT-3 3.1×1023 502,000 kg 1.2 million miles
T5-11B 2.3×1022 85,000 kg 210,000 miles
BERT (Base) 3.3×1018 650 kg 1,500 miles
ResNet-50 2.0×1017 35 kg 80 miles

Addressing the sustainability challenges of the design phase requires inno-
vations in training efÏciency and computational resource management. Re-
searchers have explored techniques such as sparse training, low-precision arith-
metic, and weight-sharing methods to reduce the number of required computa-
tions without sacrificing model performance. The use of pre-trained models has
also gained traction as a means of minimizing resource consumption. Instead
of training models from scratch, researchers can fine-tune smaller versions of
pre-trained networks, leveraging existing knowledge to achieve similar results
with lower computational costs.

Optimizing model search algorithms further contributes to sustainability.
Traditional neural architecture search methods require evaluating a large num-
ber of candidate architectures, but recent advances in energy-aware NAS ap-
proaches prioritize efÏciency by reducing the number of training iterations
needed to identify optimal configurations. Companies have also begun imple-
menting carbon-aware computing strategies by scheduling training jobs during
periods of lower grid carbon intensity or shifting workloads to data centers
with cleaner energy sources (U. Gupta, Elgamal, et al. 2022).

The design phase sets the foundation for the entire AI lifecycle, influencing
energy demands in both the training and inference stages. As AI models grow
in complexity, their development processes must be reevaluated to ensure that
sustainability considerations are integrated at every stage. The decisions made
during model design not only determine computational efÏciency but also
shape the long-term environmental footprint of AI technologies.

17.5.2 Manufacturing Phase
The manufacturing phase of AI systems is one of the most resource-intensive
aspects of their lifecycle, involving the fabrication of specialized semiconductor
hardware such as GPUs, TPUs, FPGAs, and other AI accelerators. The pro-
duction of these chips requires large-scale industrial processes, including raw
material extraction, wafer fabrication, lithography, doping, and packaging—all
of which contribute significantly to environmental impact (@ Bhamra et al.
2024). This phase not only involves high energy consumption but also generates
hazardous waste, relies on scarce materials, and has long-term consequences
for resource depletion.

Chapter 17. Sustainable AI 927

17.5.2.1 Fabrication Materials
The foundation of AI hardware lies in semiconductors, primarily silicon-based
integrated circuits that power AI accelerators. However, modern AI chips rely
on more than just silicon; they require specialty materials such as gallium,
indium, arsenic, and helium, each of which carries unique environmental
extraction costs. These materials are often classified as critical elements due
to their scarcity, geopolitical sensitivity, and high energy costs associated with
mining and refining (Bhamra et al. 2024).

Silicon itself is abundant, but refining it into high-purity wafers requires
extensive energy-intensive processes. The production of a single 300mm sili-
con wafer requires over 8,300 liters of water, along with strong acids such as
hydrofluoric acid, sulfuric acid, and nitric acid used for etching and cleaning
(Cope 2009). The demand for ultra-pure water in semiconductor fabrication
places a significant burden on local water supplies, with leading fabs consuming
millions of gallons per day.

Beyond silicon, gallium and indium are essential for high-performance com-
pound semiconductors, such as those used in high-speed AI accelerators and
5G communications. The U.S. Geological Survey has classified indium as a
critically endangered material, with global supplies estimated to last fewer than
15 years at current consumption rates (M. Davies 2011). Meanwhile, helium, a
crucial cooling agent in chip production, is a non-renewable resource that, once
released, escapes Earth’s gravity, making it permanently unrecoverable. The
continued expansion of AI hardware manufacturing is accelerating the deple-
tion of these critical elements, raising concerns about long-term sustainability.

The environmental burden of semiconductor fabrication is further amplified
by the use of EUV lithography, a process required for manufacturing sub-5nm
chips. EUV systems consume massive amounts of energy, requiring high-
powered lasers and complex optics. The International Semiconductor Roadmap
estimates that each EUV tool consumes approximately one megawatt (MW)
of electricity, significantly increasing the carbon footprint of cutting-edge chip
production.

17.5.2.2 Manufacturing Energy Consumption
The energy required to manufacture AI hardware is substantial, with the total
energy cost per chip often exceeding its entire operational lifetime energy use.
The manufacturing of a single AI accelerator can emit more carbon than years
of continuous use in a data center, making fabrication a key hotspot in AI’s
environmental impact.

17.5.2.3 Hazardous Waste and Water Usage in Fabs
Semiconductor fabrication also generates large volumes of hazardous waste,
including gaseous emissions, VOCs, chemical wastewater, and solid byproducts.
The acids and solvents used in chip production produce toxic waste streams
that require specialized handling to prevent contamination of surrounding
ecosystems. Despite advancements in wastewater treatment, trace amounts of
metals and chemical residues can still be released into rivers and lakes, affecting
aquatic biodiversity and human health (Prakash et al. 2023).

17.5. Semiconductor Life Cycle 928

5 Taiwan Semiconductor Manu-
facturing Company (TSMC) is one
of the world’s largest semiconduc-
tor fabs, consuming millions of gal-
lons of water daily in chip produc-
tion, raising concerns about water
scarcity.

The demand for water in semiconductor fabs has also raised concerns about
regional water stress. The TSMC5 fab in Arizona is projected to consume 8.9
million gallons per day, a figure that accounts for nearly 3% of the city’s water
supply. While some fabs have begun investing in water recycling systems, these
efforts remain insufÏcient to offset the growing demand.

17.5.2.4 Sustainable Initiatives

Recognizing the sustainability challenges of semiconductor manufacturing,
industry leaders have started implementing initiatives to reduce energy con-
sumption, waste generation, and emissions. Companies like Intel, TSMC, and
Samsung have pledged to transition towards carbon-neutral semiconductor
fabrication through several key approaches. Many fabs are incorporating renew-
able energy sources, with facilities in Taiwan and Europe increasingly powered
by hydroelectric and wind energy. Water conservation efforts have expanded
through closed-loop recycling systems that reduce dependence on local water
supplies. Manufacturing processes are being redesigned with eco-friendly
etching and lithography techniques that minimize hazardous waste generation.
Additionally, companies are developing energy-efÏcient chip architectures,
such as low-power AI accelerators optimized for performance per watt, to re-
duce the environmental impact of both manufacturing and operation. Despite
these efforts, the overall environmental footprint of AI chip manufacturing
continues to grow as demand for AI accelerators escalates. Without significant
improvements in material efÏciency, recycling, and fabrication techniques, the
manufacturing phase will remain a major contributor to AI’s sustainability
challenges.

The manufacturing phase of AI hardware represents one of the most resource-
intensive and environmentally impactful aspects of AI’s lifecycle. The extraction
of critical materials, high-energy fabrication processes, and hazardous waste
generation all contribute to AI’s growing carbon footprint. While industry
efforts toward sustainable semiconductor manufacturing are gaining momen-
tum, scaling these initiatives to meet rising AI demand remains a significant
challenge.

Addressing the sustainability of AI hardware will require a combination
of material innovation, supply chain transparency, and greater investment
in circular economy models that emphasize chip recycling and reuse. As AI
systems continue to advance, their long-term viability will depend not only
on computational efÏciency but also on reducing the environmental burden of
their underlying hardware infrastructure.

17.5.3 Use Phase
The use phase of AI systems represents one of the most energy-intensive stages
in their lifecycle, encompassing both training and inference workloads. As AI
adoption grows across industries, the computational requirements for devel-
oping and deploying models continue to increase, leading to greater energy
consumption and carbon emissions. The operational costs of AI systems extend
beyond the direct electricity used in processing; they also include the power de-
mands of data centers, cooling infrastructure, and networking equipment that

Chapter 17. Sustainable AI 929

support large-scale AI workloads. Understanding the sustainability challenges
of this phase is critical for mitigating AI’s long-term environmental impact.

AI model training is among the most computationally expensive activities in
the use phase. Training large-scale models involves running billions or even
trillions of mathematical operations across specialized hardware, such as GPUs
and TPUs, for extended periods. The energy consumption of training has risen
sharply in recent years as AI models have grown in complexity. OpenAI’s
GPT-3, for example, required approximately 1,300 megawatt-hours (MWh) of
electricity, an amount equivalent to powering 1,450 U.S. homes for a month
(Maslej et al. 2023). The carbon footprint of such training runs depends largely
on the energy mix of the data center where they are performed. A model
trained in a region relying primarily on fossil fuels, such as coal-powered data
centers in Virginia, generates significantly higher emissions than one trained in
a facility powered by hydroelectric or nuclear energy.

Beyond training, the energy demands of AI do not end once a model is
developed. The inference phase, where a trained model is used to generate
predictions, is responsible for an increasingly large share of AI’s operational
carbon footprint. In real-world applications, inference workloads run continu-
ously, handling billions of requests daily across services such as search engines,
recommendation systems, language models, and autonomous systems. The
cumulative energy impact of inference is substantial, especially in large-scale
deployments. While a single training run for a model like GPT-3 is energy-
intensive, inference workloads running across millions of users can consume
even more power over time. Studies have shown that inference now accounts for
more than 60% of total AI-related energy consumption, exceeding the carbon
footprint of training in many cases (D. Patterson, Gonzalez, Holzle, et al. 2022).

Data centers play a central role in enabling AI, housing the computational
infrastructure required for training and inference. These facilities rely on thou-
sands of high-performance servers, each drawing significant power to process
AI workloads. The power usage effectiveness of a data center, which measures
the efÏciency of its energy use, directly influences AI’s carbon footprint. Many
modern data centers operate with PUE values between 1.1 and 1.5, meaning
that for every unit of power used for computation, an additional 10% to 50% is
consumed for cooling, power conversion, and infrastructure overhead (Barroso,
Hölzle, and Ranganathan 2019). Cooling systems, in particular, are a major
contributor to data center energy consumption, as AI accelerators generate
substantial heat during operation.

The geographic location of data centers has a direct impact on their sustain-
ability. Facilities situated in regions with renewable energy availability can
significantly reduce emissions compared to those reliant on fossil fuel-based
grids. Companies such as Google and Microsoft have invested in carbon-aware
computing strategies, scheduling AI workloads during periods of high renew-
able energy production to minimize their carbon impact (U. Gupta, Elgamal, et
al. 2022). Google’s DeepMind, for instance, developed an AI-powered cooling
optimization system that reduced data center cooling energy consumption by
40%, lowering the overall carbon footprint of AI infrastructure.

The increasing energy demands of AI raise concerns about grid capacity and
sustainability trade-offs. AI workloads often compete with other high-energy

17.5. Semiconductor Life Cycle 930

sectors, such as manufacturing and transportation, for limited electricity supply.
In some regions, the rise of AI-driven data centers has led to increased stress on
power grids, necessitating new infrastructure investments. The so-called “duck
curve” problem, where renewable energy generation fluctuates throughout the
day, poses additional challenges for balancing AI’s energy demands with grid
availability. The shift toward distributed AI computing and edge processing is
emerging as a potential solution to reduce reliance on centralized data centers,
shifting some computational tasks closer to end users.

Mitigating the environmental impact of AI’s use phase requires a combina-
tion of hardware, software, and infrastructure-level optimizations. Advances
in energy-efÏcient chip architectures, such as low-power AI accelerators and
specialized inference hardware, have shown promise in reducing per-query
energy consumption. AI models themselves are being optimized for efÏciency
through techniques such as quantization, pruning, and distillation, which allow
for smaller, faster models that maintain high accuracy while requiring fewer
computational resources. Meanwhile, ongoing improvements in cooling efÏ-
ciency, renewable energy integration, and data center operations are essential
for ensuring that AI’s growing footprint remains sustainable in the long term.

As AI adoption continues to expand, energy efÏciency must become a central
consideration in model deployment strategies. The use phase will remain a
dominant contributor to AI’s environmental footprint, and without significant
intervention, the sector’s electricity consumption could grow exponentially. Sus-
tainable AI development requires a coordinated effort across industry, academia,
and policymakers to promote responsible AI deployment while ensuring that
technological advancements do not come at the expense of long-term environ-
mental sustainability.

17.5.4 Disposal Phase
The disposal phase of AI systems is often overlooked in discussions of sustain-
ability, yet it presents significant environmental challenges. The rapid advance-
ment of AI hardware has led to shorter hardware lifespans, contributing to
growing electronic waste (e-waste) and resource depletion. As AI accelerators,
GPUs, and high-performance processors become obsolete within a few years,
managing their disposal has become a pressing sustainability concern. Unlike
traditional computing devices, AI hardware contains complex materials, rare
earth elements, and hazardous substances that complicate recycling and waste
management efforts. Without effective strategies for repurposing, recycling, or
safely disposing of AI hardware, the environmental burden of AI infrastructure
will continue to escalate.

The lifespan of AI hardware is relatively short, particularly in data centers
where performance efÏciency dictates frequent upgrades. On average, GPUs,
TPUs, and AI accelerators are replaced every three to five years, as newer, more
powerful models enter the market. This rapid turnover results in a constant cycle
of hardware disposal, with large-scale AI deployments generating substantial
e-waste. Unlike consumer electronics, which may have secondary markets for
resale or reuse, AI accelerators often become unviable for commercial use once
they are no longer state-of-the-art. The push for ever-faster and more efÏcient

Chapter 17. Sustainable AI 931

AI models accelerates this cycle, leading to an increasing volume of discarded
high-performance computing hardware.

One of the primary environmental concerns with AI hardware disposal is
the presence of hazardous materials. AI accelerators contain heavy metals
such as lead, cadmium, and mercury, as well as toxic chemical compounds
used in semiconductor fabrication. If not properly handled, these materials
can leach into soil and water sources, causing long-term environmental and
health hazards. The burning of e-waste releases toxic fumes, contributing to air
pollution and exposing workers in informal recycling operations to harmful
substances. Studies estimate that only 17.4% of global e-waste is properly
collected and recycled, leaving the majority to end up in landfills or informal
waste processing sites with inadequate environmental protections (Singh and
Ogunseitan 2022).

The complex composition of AI hardware presents significant challenges
for recycling. Unlike traditional computing components, which are relatively
straightforward to dismantle, AI accelerators incorporate specialized multi-
layered circuits, exotic metal alloys, and tightly integrated memory architectures
that make material recovery difÏcult. The disassembly and separation of valu-
able elements such as gold, palladium, and rare earth metals require advanced
recycling technologies that are not widely available. The presence of mixed
materials further complicates the process, as some components are chemically
bonded or embedded in ways that make extraction inefÏcient.

Despite these challenges, efforts are being made to develop sustainable dis-
posal solutions for AI hardware. Some manufacturers have begun designing AI
accelerators with modular architectures, allowing for easier component replace-
ment and extending the usable lifespan of devices. Research is also underway
to improve material recovery processes, making it possible to extract and reuse
critical elements such as gallium, indium, and tungsten from discarded chips.
Emerging techniques such as hydrometallurgical and biometallurgical process-
ing show promise in extracting rare metals with lower environmental impact
compared to traditional smelting and refining methods.

The circular economy model offers a promising approach to mitigating the
e-waste crisis associated with AI hardware. Instead of following a linear “use
and discard” model, circular economy principles emphasize reuse, refurbish-
ment, and recycling to extend the lifecycle of computing devices. Companies
such as Google and Microsoft have launched initiatives to repurpose decommis-
sioned AI hardware for secondary applications, such as running lower-priority
machine learning tasks or redistributing functional components to research in-
stitutions. These efforts help reduce the overall demand for new semiconductor
production while minimizing waste generation.

In addition to corporate sustainability initiatives, policy interventions and
regulatory frameworks are critical in addressing the disposal phase of AI sys-
tems. Governments worldwide are beginning to implement extended producer
responsibility (EPR) policies, which require technology manufacturers to take
accountability for the environmental impact of their products throughout their
entire lifecycle. In regions such as the European Union, strict e-waste manage-
ment regulations mandate that electronic manufacturers participate in certified
recycling programs and ensure the safe disposal of hazardous materials. How-

17.6. Mitigating Environmental Impact 932

6 William Stanley Jevons ob-
served during the Industrial Revo-
lution that technological improve-
ments in coal efÏciency paradoxi-
cally led to increased coal consump-
tion rather than conservation. In his
1865 book “The Coal Question”, he
noted that more efÏcient steam en-
gines made coal power more eco-
nomical, which expanded its indus-
trial applications and ultimately in-
creased total coal usage. This prin-
ciple became known as Jevons Para-
dox.

ever, enforcement remains inconsistent, and significant gaps exist in global
e-waste tracking and management.

The future of AI hardware disposal will depend on advancements in recycling
technology, regulatory enforcement, and industry-wide adoption of sustainable
design principles. The growing urgency of AI-driven e-waste underscores the
need for integrated lifecycle management strategies that account for the full
environmental impact of AI infrastructure, from raw material extraction to end-
of-life recovery. Without concerted efforts to improve hardware sustainability,
the rapid expansion of AI will continue to exert pressure on global resources
and waste management systems.

17.6 Mitigating Environmental Impact

The rapid expansion of AI has brought remarkable advancements in automation,
language understanding, and decision-making, but it has also led to a significant
and growing environmental impact. AI models, particularly large-scale deep
learning systems, require massive computational resources for both training and
inference. This results in high energy consumption, extensive carbon emissions,
and resource-intensive hardware manufacturing. As AI adoption accelerates,
the challenge of ensuring environmentally sustainable AI development becomes
more urgent.

Addressing AI’s environmental footprint requires a multi-faceted approach,
integrating energy-efÏcient AI models, optimized hardware, sustainable data
center operations, and carbon-aware computing strategies. Additionally, AI
systems must be designed with lifecycle sustainability in mind, ensuring that
models remain efÏcient throughout their deployment, from training to infer-
ence.

A fundamental principle that must guide all efforts to mitigate AI’s environ-
mental impact is Jevon’s Paradox. This paradox, observed by William Stanley
Jevons in the 19th century6 (Jevons 1865), says that improvements in technologi-
cal efÏciency can lead to an increase in overall consumption. In the context of AI,
even as we develop more energy-efÏcient models and hardware, the increased
accessibility and adoption of AI technologies could lead to a net increase in
energy consumption and resource utilization. Therefore, we must approach
mitigation strategies with a keen awareness of this potential rebound effect,
ensuring that efÏciency gains do not inadvertently drive greater consumption.
This section explores key strategies for mitigating AI’s environmental impact,
beginning with sustainable AI development principles.

This effect is illustrated in Figure 17.12. As AI systems become more efÏcient,
the cost per unit of computation decreases, whether for language model tokens,
computer vision inferences, or recommendation system predictions. In the
figure, moving from point A to point B represents a drop in computation
cost. However, this price reduction leads to increased usage across all AI
applications, as shown by the corresponding shift from point C to point D
on the horizontal axis. While there are savings from reduced costs, the total
consumption of AI services increases even more rapidly, ultimately resulting
in higher overall resource usage and environmental impact. This dynamic

Chapter 17. Sustainable AI 933

highlights the core of Jevon’s Paradox in AI: efÏciency alone is not sufÏcient to
guarantee sustainability.

Figure 17.12: Jevon’s Paradox in AI
efÏciency improvements and usage.

AI Usage

Cost of

AI Services

Demand Response

Curve for AI Usage

A

B

50% Drop
in Costs

C DConsumption of Teach more than
doubles total costs are higher

Savings
from

reduced
AI costs

Savings are offset
by increased AI usage

17.6.1 Sustainable Development
The design and development of AI models have historically prioritized perfor-
mance, often at the expense of efÏciency. However, as computational demands
rise and AI systems scale, this approach is becoming increasingly unsustain-
able. A single training run of a large transformer-based model can emit as
much carbon as five cars over their entire lifetime (Strubell, Ganesh, and Mc-
Callum 2019b). Furthermore, many AI models require frequent retraining to
adapt to evolving data, compounding their energy consumption. Addressing
these sustainability challenges requires a shift from brute-force computation
to efÏciency-driven innovation. By optimizing model architectures, reducing
redundant training, and integrating sustainability principles throughout the
AI lifecycle, the environmental impact of AI can be significantly reduced.

17.6.1.1 Energy-EfÏcient Design

Many deep learning models rely on billions of parameters, requiring trillions
of floating-point operations per second (FLOPS) during training and inference.
While these large models achieve state-of-the-art performance, research in-
dicates that much of their computational complexity is unnecessary. Many
parameters contribute little to final predictions, leading to wasteful resource
utilization. To mitigate this inefÏciency, several optimization techniques have
been developed to reduce the computational overhead of AI models while
maintaining accuracy.

One of the most widely used methods for improving energy efÏciency is
pruning, a technique that removes unnecessary connections from a trained
neural network. By systematically eliminating redundant weights, pruning
reduces both the model size and the number of computations required during
inference. Studies have shown that structured pruning can remove up to 90%

17.6. Mitigating Environmental Impact 934

of weights in models such as ResNet-50 while maintaining comparable accu-
racy. This approach enables AI models to operate efÏciently on lower-power
hardware, making them more suitable for deployment in resource-constrained
environments.

Another technique for reducing energy consumption is quantization, which
lowers the numerical precision of computations in AI models. Standard deep
learning models typically use 32-bit floating-point precision, but many oper-
ations can be performed with 8-bit or even 4-bit integers without significant
accuracy loss. By using lower precision, quantization reduces memory re-
quirements, speeds up inference, and lowers power consumption. For example,
NVIDIA’s TensorRT framework applies post-training quantization to deep learn-
ing models, achieving a threefold increase in inference speed while maintaining
nearly identical accuracy. Similarly, Intel’s Q8BERT demonstrates that quantiz-
ing the BERT language model to 8-bit integers can reduce its size by a factor of
four with minimal performance degradation (Zafrir et al. 2019).

A third approach, knowledge distillation, allows large AI models to transfer
their learned knowledge to smaller, more efÏcient models. In this process, a
large teacher model trains a smaller student model to approximate its predic-
tions, enabling the student model to achieve competitive performance with
significantly fewer parameters. Google’s DistilBERT exemplifies this technique,
retaining 97% of the original BERT model’s accuracy while using only 40% of
its parameters. Knowledge distillation techniques enable AI practitioners to
deploy lightweight models that require substantially less computational power
while delivering high-quality predictions.

While these optimization techniques improve efÏciency, they also introduce
trade-offs. Pruning and quantization can lead to small reductions in model ac-
curacy, requiring fine-tuning to balance performance and sustainability. Knowl-
edge distillation, on the other hand, demands additional training cycles, mean-
ing that energy savings are realized primarily during deployment rather than in
the training phase. Furthermore, we must consider Jevon’s Paradox: will these
efÏciency gains lead to a proliferation of AI applications, ultimately increasing
overall energy consumption? To counteract this, strategies that combine efÏ-
ciency with limitations on resource usage are necessary. Nonetheless, these
techniques represent essential strategies for reducing the energy footprint of
AI models without compromising their effectiveness.

17.6.1.2 Lifecycle-Aware Systems
In addition to optimizing individual models, AI systems must be designed
with a broader lifecycle-aware perspective. Many AI deployments operate
with a short-term mindset, where models are trained, deployed, and then
discarded within a few months. This frequent retraining cycle leads to exces-
sive computational waste. By incorporating sustainability considerations into
the AI development pipeline, it is possible to extend model lifespan, reduce
unnecessary computation, and minimize environmental impact.

One of the most effective ways to reduce redundant computation is to limit
the frequency of full model retraining. Many production AI systems do not
require complete retraining from scratch; instead, they can be updated using in-
cremental learning techniques that adapt existing models to new data. Transfer

Chapter 17. Sustainable AI 935

learning is a widely used approach in which a pre-trained model is fine-tuned
on a new dataset, significantly reducing the computational cost compared to
training a model from the ground up (Narang et al. 2021). This technique is par-
ticularly valuable for domain adaptation, where models trained on large general
datasets can be customized for specific applications with minimal retraining.

Another critical aspect of lifecycle-aware AI development is the integration
of LCA methodologies. LCA provides a systematic framework for quantifying
the environmental impact of AI systems at every stage of their lifecycle, from
initial training to long-term deployment. Organizations such as MLCommons
are actively developing sustainability benchmarks that measure factors such as
energy efÏciency per inference and carbon emissions per model training cycle
(Henderson et al. 2020b). By embedding LCA principles into AI workflows,
developers can identify sustainability bottlenecks early in the design process
and implement corrective measures before models enter production.

Beyond training efÏciency and design evaluation, AI deployment strategies
can further enhance sustainability. Cloud-based AI models often rely on central-
ized data centers, requiring significant energy for data transfer and inference. In
contrast, edge computing enables AI models to run directly on end-user devices,
reducing the need for constant cloud communication. Deploying AI models
on specialized low-power hardware at the edge not only improves latency and
privacy but also significantly decreases energy consumption (X. Xu et al. 2021).

However, Jevon’s Paradox reminds us that optimizing individual stages might
not lead to overall sustainability. For example, even if we improve the recy-
clability of AI hardware, increased production due to greater demand could
still lead to increased resource depletion. Therefore, limiting the production of
unneeded hardware is also important. By adopting a lifecycle-aware approach
to AI development, practitioners can reduce the environmental impact of AI
systems while promoting long-term sustainability.

17.6.1.3 Policy and Incentives

While technical optimizations play a crucial role in mitigating AI’s environ-
mental impact, they must be reinforced by policy incentives and industry-wide
commitments to sustainability. Several emerging initiatives aim to integrate
sustainability principles into AI development at scale.

One promising approach is carbon-aware AI scheduling, where AI work-
loads are dynamically allocated based on the availability of renewable energy.
Companies such as Google have developed scheduling algorithms that shift AI
training jobs to times when wind or solar power is abundant, reducing reliance
on fossil fuels (D. Patterson, Gonzalez, Le, et al. 2022). These strategies are
particularly effective in large-scale data centers, where peak energy demand
can be aligned with periods of low-carbon electricity generation.

Benchmarks and leaderboards focused on sustainability are also gaining
traction within the AI community. The ML.ENERGY Leaderboard, for example,
ranks AI models based on energy efÏciency and carbon footprint, encouraging
researchers to optimize models not only for performance but also for sustain-
ability. Similarly, MLCommons is working on standardized benchmarks that
evaluate AI efÏciency in terms of power consumption per inference, providing

https://ml.energy/leaderboard

17.6. Mitigating Environmental Impact 936

7 Sustainable Digital Markets Act
(SDMA): A legislative initiative by
the European Union aimed at pro-
moting transparency in AI energy
consumption and enforcing sustain-
ability standards in digital markets.

a transparent framework for comparing the environmental impact of different
models.

Regulatory efforts are beginning to shape the future of sustainable AI. The
European Union’s Sustainable Digital Markets Act7 has introduced guidelines
for transparent AI energy reporting, requiring tech companies to disclose the
carbon footprint of their AI operations. As regulatory frameworks evolve, orga-
nizations will face increasing pressure to integrate sustainability considerations
into their AI development practices (Commission 2023).

By aligning technical optimizations with industry incentives and policy
regulations, AI practitioners can ensure that sustainability becomes an inte-
gral component of AI development. The shift toward energy-efÏcient models,
lifecycle-aware design, and transparent environmental reporting will be critical
in mitigating AI’s ecological impact while continuing to drive innovation.

17.6.2 Infrastructure Optimization

The sustainability of AI systems is shaped not only by the efÏciency of machine
learning models but also by the infrastructure that powers them. While algorith-
mic improvements such as pruning, quantization, and knowledge distillation
reduce computational requirements at the model level, the broader energy
footprint of AI is largely dictated by how and where these computations are
performed. Large-scale AI workloads are executed in cloud data centers, which
house thousands of interconnected servers running continuously to support
machine learning training and inference. These facilities consume enormous
amounts of electricity, with some hyperscale data centers drawing over 100
megawatts of power, an amount comparable to the energy demand of a small
city (N. P. Jones, Johnson, and Montgomery 2021). In addition to direct energy
consumption, the cooling requirements of AI infrastructure introduce further
sustainability challenges. Data centers must dissipate significant amounts of
heat generated by AI accelerators, often relying on energy-intensive air condi-
tioning or water-based cooling systems. As AI adoption continues to expand,
these infrastructure-level considerations will play an increasingly central role
in determining the overall environmental impact of machine learning systems.

Addressing these challenges requires a shift toward energy-efÏcient AI in-
frastructure. The integration of renewable energy into cloud data centers, the
adoption of advanced cooling strategies, and the development of carbon-aware
workload scheduling can significantly reduce the carbon footprint of AI opera-
tions. By designing AI infrastructure to align with sustainability principles, it
is possible to minimize the environmental cost of computation while maintain-
ing the performance required for modern machine learning workloads. This
section explores the key approaches to optimizing AI infrastructure, focusing
on energy-efÏcient data centers, dynamic workload scheduling based on car-
bon intensity, and AI-driven cooling strategies. These advancements offer a
pathway toward more sustainable AI deployment, ensuring that the growth of
machine learning does not come at the expense of long-term environmental
responsibility.

Chapter 17. Sustainable AI 937

17.6.2.1 Green Data Centers

The increasing computational demands of AI have made data centers one of
the largest consumers of electricity in the digital economy. Large-scale cloud
data centers provide the infrastructure necessary for training and deploying
machine learning models, but their energy consumption is substantial. A
single hyperscale data center can consume over 100 megawatts of power, a level
comparable to the electricity usage of a small city. Without intervention, the
continued growth of AI workloads threatens to push the energy consumption
of data centers beyond sustainable levels. The industry must adopt strategies
to optimize power efÏciency, integrate renewable energy sources, and improve
cooling mechanisms to mitigate the environmental impact of AI infrastructure.

One of the most promising approaches to reducing data center emissions is
the transition to renewable energy. Major cloud providers, including Google,
Microsoft, and Amazon Web Services, have committed to powering their data
centers with renewable energy, but implementation challenges remain. Un-
like fossil fuel plants, which provide consistent electricity output, renewable
sources such as wind and solar are intermittent, with generation levels fluctu-
ating throughout the day. To address this variability, AI infrastructure must
incorporate energy storage solutions, such as large-scale battery deployments,
and implement intelligent scheduling mechanisms that shift AI workloads
to times when renewable energy availability is highest. Google, for example,
has set a goal to operate its data centers on 24/7 carbon-free energy by 2030,
ensuring that every unit of electricity consumed is matched with renewable
generation rather than relying on carbon offsets alone.

Cooling systems represent another major contributor to the energy footprint
of data centers, often accounting for 30 to 40 percent of total electricity con-
sumption. Traditional cooling methods rely on air conditioning units and me-
chanical chillers, both of which require significant power and water resources.
To improve efÏciency, data centers are adopting alternative cooling strategies
that reduce energy waste. Liquid cooling, which transfers heat away from AI
accelerators using specially designed coolant systems, is significantly more
effective than traditional air cooling and is now being deployed in high-density
computing clusters. Free-air cooling, which utilizes natural airflow instead of
mechanical refrigeration, has also been adopted in temperate climates, where
external conditions allow for passive cooling. Microsoft has taken this a step
further by deploying underwater data centers that use the surrounding ocean
as a natural cooling mechanism, reducing the need for active temperature
regulation.

Beyond hardware-level optimizations, AI itself is being used to improve the
energy efÏciency of data center operations. DeepMind has developed machine
learning algorithms capable of dynamically adjusting cooling parameters based
on real-time sensor data. These AI-powered cooling systems analyze tempera-
ture, humidity, and fan speeds, making continuous adjustments to optimize
energy efÏciency. When deployed in Google’s data centers, DeepMind’s system
achieved a 40 percent reduction in cooling energy consumption, demonstrat-
ing the potential of AI to enhance the sustainability of the infrastructure that
supports machine learning workloads.

17.6. Mitigating Environmental Impact 938

However, Jevon’s Paradox suggests that even highly efÏcient data centers
could contribute to increased consumption if they enable a massive expansion of
AI-driven services. Optimizing the energy efÏciency of data centers is critical to
reducing the environmental impact of AI, but efÏciency alone is not enough. We
must also consider strategies for limiting the growth of data center capacity. The
integration of renewable energy, the adoption of advanced cooling solutions,
and the use of AI-driven optimizations can significantly decrease the carbon
footprint of AI infrastructure. As AI continues to scale, these innovations will
play a central role in ensuring that machine learning remains aligned with
sustainability goals.

17.6.2.2 Carbon-Aware Scheduling

Beyond improvements in hardware and cooling systems, optimizing when and
where AI workloads are executed is another critical strategy for reducing AI’s
environmental impact. The electricity used to power data centers comes from
energy grids that fluctuate in carbon intensity based on the mix of power sources
available at any given time. Fossil fuel-based power plants supply a significant
portion of global electricity, but the share of renewable energy varies by region
and time of day. Without optimization, AI workloads may be executed when
carbon-intensive energy sources dominate the grid, unnecessarily increasing
emissions. By implementing carbon-aware scheduling, AI computations can be
dynamically shifted to times and locations where low-carbon energy is available,
significantly reducing emissions without sacrificing performance.

Google has pioneered one of the most advanced implementations of carbon-
aware computing in its cloud infrastructure. In 2020, the company introduced a
scheduling system that delays non-urgent AI tasks until times when renewable
energy sources such as solar or wind power are more abundant. This approach
enables AI workloads to align with the natural variability of clean energy avail-
ability, reducing reliance on fossil fuels while maintaining high computational
efÏciency. Google has further extended this strategy by geographically dis-
tributing AI workloads, moving computations to data centers in regions where
clean energy is more accessible. By shifting large-scale AI training jobs from
fossil fuel-heavy grids to low-carbon power sources, the company has demon-
strated that significant emissions reductions can be achieved through intelligent
workload placement.

The potential for carbon-aware scheduling extends beyond hyperscale cloud
providers. Companies that rely on AI infrastructure can integrate carbon inten-
sity metrics into their own computing pipelines, making informed decisions
about when to run machine learning jobs. Microsoft’s sustainability-aware
cloud computing initiative allows organizations to select carbon-optimized vir-
tual machines, ensuring that workloads are executed with the lowest possible
emissions. Research efforts are also underway to develop open-source carbon-
aware scheduling frameworks, enabling a broader range of AI practitioners to
incorporate sustainability into their computing strategies.

The effectiveness of carbon-aware AI scheduling depends on accurate real-
time data about grid emissions. Electricity providers and sustainability orga-
nizations have begun publishing grid carbon intensity data through publicly

Chapter 17. Sustainable AI 939

available APIs, allowing AI systems to dynamically respond to changes in en-
ergy supply. For instance, the Electricity Maps API provides real-time CO₂
emissions data for power grids worldwide, enabling AI infrastructure to ad-
just computational workloads based on carbon availability. As access to grid
emissions data improves, carbon-aware computing will become a scalable and
widely adoptable solution for reducing the environmental impact of AI opera-
tions.

By shifting AI computations to times and places with cleaner energy sources,
carbon-aware scheduling represents a powerful tool for making AI infrastruc-
ture more sustainable. Unlike hardware-based optimizations that require physi-
cal upgrades, scheduling improvements can be implemented through software,
offering an immediate and cost-effective pathway to emissions reductions. As
more organizations integrate carbon-aware scheduling into their AI workflows,
the cumulative impact on reducing global AI-related carbon emissions could
be substantial.

While these strategies apply broadly to AI workloads, inference operations
present unique sustainability challenges and opportunities. Unlike training,
which represents a one-time energy cost, inference constitutes an ongoing and
growing energy demand as AI applications scale worldwide. Cloud providers
are increasingly adopting carbon-aware scheduling specifically for inference
workloads, dynamically shifting these operations to regions powered by abun-
dant renewable energy (Alvim et al. 2022). However, as shown in Figure 17.13,
the variability of renewable energy production presents significant challenges.
The European grid data illustrates how renewable sources fluctuate throughout
the day—solar energy peaks at midday, while wind energy shows distinct peaks
in mornings and evenings. Currently, fossil and coal-based generation methods
supplement energy needs when renewables fall short.

Figure 17.13: Energy sources and
generation capabilities. Source: En-
ergy Charts.

To fully leverage carbon-aware scheduling for AI inference workloads, inno-
vation in energy storage solutions is essential for consistent renewable energy
use. The base energy load is currently met with nuclear energy—a constant

https://www.energy-charts.info/
https://www.energy-charts.info/

17.6. Mitigating Environmental Impact 940

source that produces no direct carbon emissions but lacks the flexibility to
accommodate renewable energy variability. Tech companies like Microsoft
have shown interest in nuclear energy to power their data centers, as their more
constant demand profile (compared to residential use) aligns well with nuclear
generation characteristics.

Beyond scheduling, optimizing inference sustainability requires complemen-
tary hardware and software innovations. Model quantization techniques enable
lower-precision arithmetic to significantly cut power consumption without sac-
rificing accuracy (A. et al. Gholami 2021). Knowledge distillation methods
allow compact, energy-efÏcient models to replicate the performance of larger,
resource-intensive networks (Hinton, Vinyals, and Dean 2015b). Coupled with
specialized inference accelerators like Google’s TPUs, these approaches sub-
stantially reduce inference’s environmental impact.

Software frameworks specifically designed for energy efÏciency also play
a crucial role. Energy-aware AI frameworks, such as Zeus (You, Chung, and
Chowdhury 2023) and Perseus (Chung et al. 2023), balance computational
speed and power efÏciency during both training and inference. These platforms
optimize model execution by analyzing trade-offs between speed and energy
consumption, facilitating widespread adoption of energy-efÏcient AI strategies,
particularly for inference operations that must run continuously at scale.

17.6.2.3 AI-Driven Thermal Optimization

Cooling systems are one of the most energy-intensive components of AI in-
frastructure, often accounting for 30-40% of total data center electricity con-
sumption. As AI workloads become more computationally demanding, the
heat generated by high-performance accelerators, such as GPUs and TPUs, con-
tinues to increase. Without efÏcient cooling solutions, data centers must rely
on power-hungry air conditioning systems or water-intensive thermal manage-
ment strategies, both of which contribute to AI’s overall environmental footprint.
To address this challenge, AI-driven cooling optimization has emerged as a
powerful strategy for improving energy efÏciency while maintaining reliable
operations.

DeepMind has demonstrated the potential of AI-driven cooling by deploying
machine learning models to optimize temperature control in Google’s data
centers. Traditional cooling systems rely on fixed control policies, making
adjustments based on predefined thresholds for temperature and airflow. How-
ever, these rule-based systems often operate inefÏciently, consuming more
energy than necessary. By contrast, DeepMind’s AI-powered cooling system
continuously analyzes real-time sensor data, including temperature, humidity,
cooling pump speeds, and fan activity, to identify the most energy-efÏcient con-
figuration for a given workload. Using deep reinforcement learning, the system
dynamically adjusts cooling settings to minimize energy consumption while
ensuring that computing hardware remains within safe operating temperatures.

When deployed in production, DeepMind’s AI-driven cooling system achieved
a 40% reduction in cooling energy usage, leading to an overall 15% reduction
in total data center power consumption. This level of efÏciency improvement
demonstrates how AI itself can be used to mitigate the environmental impact

Chapter 17. Sustainable AI 941

of machine learning infrastructure. The success of DeepMind’s system has
inspired further research into AI-driven cooling, with other cloud providers
exploring similar machine learning-based approaches to dynamically optimize
thermal management.

Beyond AI-driven control systems, advances in liquid cooling and immersion
cooling are further improving the energy efÏciency of AI infrastructure. Unlike
traditional air cooling, which relies on the circulation of cooled air through
server racks, liquid cooling transfers heat directly away from high-performance
AI chips using specially designed coolants. This approach significantly reduces
the energy required for heat dissipation, allowing data centers to operate at
higher densities with lower power consumption. Some facilities have taken this
concept even further with immersion cooling, where entire server racks are
submerged in non-conductive liquid coolants. This technique eliminates the
need for traditional air-based cooling systems entirely, drastically cutting down
on electricity usage and water consumption.

Microsoft has also explored innovative cooling solutions, deploying under-
water data centers that take advantage of natural ocean currents to dissipate
heat. By placing computing infrastructure in sealed submersible enclosures,
Microsoft has demonstrated that ocean-based cooling can reduce power usage
while extending hardware lifespan due to the controlled and stable underwater
environment. While such approaches are still experimental, they highlight the
growing interest in alternative cooling technologies that can make AI infras-
tructure more sustainable.

AI-driven cooling and thermal management represent an immediate and
scalable opportunity for reducing the environmental impact of AI infrastructure.
Unlike major hardware upgrades, which require capital-intensive investment,
software-based cooling optimizations can be deployed rapidly across existing
data centers. By leveraging AI to enhance cooling efÏciency, in combination
with emerging liquid and immersion cooling technologies, the industry can sig-
nificantly reduce energy consumption, lower operational costs, and contribute
to the long-term sustainability of AI systems.

17.6.3 Addressing Full Environmental Footprint
As AI systems continue to scale, efforts to mitigate their environmental impact
have largely focused on improving energy efÏciency in model design and op-
timizing data center infrastructure. While these advancements are essential,
they only address part of the problem. AI’s environmental impact extends far
beyond operational energy use, encompassing everything from the water con-
sumption in semiconductor manufacturing to the growing burden of electronic
waste. A truly sustainable AI ecosystem must account for the full life cycle
of AI hardware and software, integrating sustainability at every stage—from
material sourcing to disposal.

Earlier in this chapter, we explored the LCA of AI systems, highlighting
the substantial carbon emissions, water consumption, and material waste as-
sociated with AI hardware manufacturing and deployment. Many of these
environmental costs are embedded in the supply chain and do not appear
in operational energy reports, leading to an incomplete picture of AI’s true

17.6. Mitigating Environmental Impact 942

sustainability. Moreover, data centers remain water-intensive, with cooling
systems consuming millions of gallons per day, and AI accelerators are often
refreshed on short life cycles, leading to mounting e-waste.

This section builds on those discussions by examining how AI’s broader
environmental footprint can be reduced. We explore strategies to mitigate AI’s
supply chain impact, curb water consumption, and extend hardware longevity.
Moving beyond optimizing infrastructure, this approach takes a holistic view
of AI sustainability, ensuring that improvements are not just localized to energy
efÏciency but embedded throughout the entire AI ecosystem.

17.6.3.1 Revisiting Life Cycle Impact

AI’s environmental footprint extends far beyond electricity consumption during
model training and inference. The full life cycle of AI systems, including hard-
ware manufacturing and disposal, contributes significantly to global carbon
emissions, resource depletion, and electronic waste. Earlier in this chapter, we
examined the LCA of AI hardware, which revealed that emissions are not solely
driven by power consumption but also by the materials and processes involved
in fabricating AI accelerators, storage devices, and networking infrastructure.

One of the most striking findings from LCA studies is the embodied carbon
cost of AI hardware. Unlike operational emissions, which can be reduced by
shifting to cleaner energy sources, embodied emissions result from the raw
material extraction, semiconductor fabrication, and supply chain logistics that
precede an AI accelerator’s deployment. Research indicates that manufacturing
emissions alone can account for up to 30% of an AI system’s total carbon
footprint, with this number potentially growing as data centers improve their
reliance on renewable energy sources.

Moreover, AI’s water consumption has often been overlooked in sustainabil-
ity discussions. Semiconductor fabrication plants, in which AI accelerators
are produced, are among the most water-intensive industrial facilities in the
world, consuming millions of gallons daily for wafer cleaning and chemical
processing. Data centers, too, rely on large amounts of water for cooling, with
some hyperscale facilities using as much as 450,000 gallons per day—a number
that continues to rise as AI workloads become more power-dense. Given that
many of the world’s chip manufacturing hubs are located in water-stressed
regions, such as Taiwan and Arizona, AI’s dependence on water raises serious
sustainability concerns.

Beyond emissions and water use, AI hardware also contributes to a grow-
ing e-waste problem. The rapid evolution of AI accelerators has led to short
hardware refresh cycles, where GPUs and TPUs are frequently replaced with
newer, more efÏcient versions. While improving efÏciency is critical, discarding
functional hardware after only a few years leads to unnecessary electronic waste
and resource depletion. Many AI chips contain rare earth metals and toxic
components, which, if not properly recycled, can contribute to environmental
pollution.

Mitigating AI’s environmental impact requires addressing these broader
challenges—not just through energy efÏciency improvements but by rethinking
AI’s hardware life cycle, reducing water-intensive processes, and developing

Chapter 17. Sustainable AI 943

sustainable recycling practices. In the following sections, we explore strategies
to tackle these issues head-on, ensuring that AI’s progress aligns with long-term
sustainability goals.

17.6.3.2 Mitigating Supply Chain Impact

Addressing AI’s environmental impact requires intervention at the supply chain
level, where significant emissions, resource depletion, and waste generation
occur before AI hardware even reaches deployment. While much of the dis-
cussion around AI sustainability focuses on energy efÏciency in data centers,
the embodied carbon emissions from semiconductor fabrication, raw material
extraction, and hardware transportation represent a substantial and often over-
looked portion of AI’s total footprint. These supply chain emissions are difÏcult
to offset, making it essential to develop strategies that reduce their impact at
the source.

One of the primary concerns is the carbon intensity of semiconductor manu-
facturing. Fabricating AI accelerators such as GPUs, TPUs, and custom ASICs
requires extreme precision and involves processes such as EUV lithography,
chemical vapor deposition, and ion implantation, each of which consumes
vast amounts of electricity. Since many semiconductor manufacturing hubs
operate in regions where grid electricity is still predominantly fossil-fuel-based,
the energy demands of chip fabrication contribute significantly to AI’s carbon
footprint. Research suggests that semiconductor fabrication alone can account
for up to 30% of an AI system’s total emissions, underscoring the need for more
sustainable manufacturing processes.

Beyond carbon emissions, AI’s reliance on rare earth elements and critical
minerals presents additional sustainability challenges. High-performance AI
hardware depends on materials such as gallium, neodymium, and cobalt, which
are essential for producing efÏcient and powerful computing components.
However, extracting these materials is highly resource-intensive and often
results in toxic waste, deforestation, and habitat destruction. The environmental
cost is compounded by geopolitical factors, as over 90% of the world’s rare earth
refining capacity is controlled by China, creating vulnerabilities in AI’s global
supply chain. Ensuring responsible sourcing of these materials is critical to
reducing AI’s ecological and social impact.

Several approaches can mitigate the environmental burden of AI’s supply
chain. Reducing the energy intensity of chip manufacturing is one avenue, with
some semiconductor manufacturers exploring low-energy fabrication processes
and renewable-powered production facilities. Another approach focuses on
extending the lifespan of AI hardware, as frequent hardware refresh cycles
contribute to unnecessary waste. AI accelerators are often designed for peak
training performance but remain viable for inference workloads long after they
are retired from high-performance computing clusters. Repurposing older AI
chips for less computationally intensive tasks, rather than discarding them
outright, could significantly reduce the frequency of hardware replacement.

Recycling and closed-loop supply chains also play a crucial role in making AI
hardware more sustainable. Recovering and refining valuable materials from
retired GPUs, TPUs, and ASICs can reduce reliance on virgin resource extraction

17.6. Mitigating Environmental Impact 944

while minimizing e-waste. Industry-wide recycling initiatives, combined with
hardware design that prioritizes recyclability, could significantly improve AI’s
long-term sustainability.

Prioritizing supply chain sustainability in AI is not just an environmental
necessity but also an opportunity for innovation. By integrating energy-efÏcient
fabrication, responsible material sourcing, and circular hardware design, the
AI industry can take meaningful steps toward reducing its environmental
impact before these systems ever reach operation. These efforts, combined
with continued advances in energy-efÏcient AI computing, will be essential to
ensuring that AI’s growth does not come at an unsustainable ecological cost.

17.6.3.3 Reducing Water and Resource Consumption

Mitigating AI’s environmental impact requires direct action to reduce its water
consumption and resource intensity. AI’s reliance on semiconductor fabrication
and data centers creates significant strain on water supplies and critical ma-
terials, particularly in regions already facing resource scarcity. Unlike carbon
emissions, which can be offset through renewable energy, water depletion and
material extraction have direct, localized consequences, making it essential to
integrate sustainability measures at the design and operational levels.

One of the most effective strategies for reducing AI’s water footprint is im-
proving water recycling in semiconductor fabrication. Leading manufacturers
are implementing closed-loop water systems, which allow fabs to reuse and
treat water rather than continuously consuming fresh supplies. Companies
such as Intel and TSMC have already developed advanced filtration and recla-
mation processes that recover over 80% of the water used in chip production.
Expanding these efforts across the industry is essential for minimizing the
impact of AI hardware manufacturing.

Similarly, data centers can reduce water consumption by optimizing cooling
systems. Many hyperscale facilities still rely on evaporative cooling, which
consumes vast amounts of water. Transitioning to direct-to-chip liquid cooling
or air-based cooling technologies can significantly reduce water use. In regions
with water scarcity, some operators have begun using wastewater or desalinated
water for cooling rather than drawing from potable sources. These methods
help mitigate the environmental impact of AI infrastructure while maintaining
efÏcient operation.

On the materials side, reducing AI’s dependency on rare earth metals and
critical minerals is crucial for long-term sustainability. While some materials,
such as silicon, are abundant, others, including gallium, neodymium, and
cobalt, are subject to geopolitical constraints and environmentally damaging
extraction methods. Researchers are actively exploring alternative materials
and low-waste manufacturing processes to reduce reliance on these limited
resources. Additionally, recycling programs for AI accelerators and other com-
puting hardware can recover valuable materials, reducing the need for virgin
extraction.

Beyond individual mitigation efforts, industry-wide collaboration is neces-
sary to develop standards for responsible water use, material sourcing, and
recycling programs. Governments and regulatory bodies can also incentivize

Chapter 17. Sustainable AI 945

sustainable practices by enforcing water conservation mandates, responsible
mining regulations, and e-waste recycling requirements. By prioritizing these
mitigation strategies, the AI industry can work toward minimizing its ecological
footprint while continuing to advance technological progress.

17.6.3.4 Systemic Sustainability Approaches

Mitigating AI’s environmental impact requires more than isolated optimizations—
it demands a systemic shift toward sustainable AI development. Addressing the
long-term sustainability of AI means integrating circular economy principles,
establishing regulatory policies, and fostering industry-wide collaboration to
ensure that sustainability is embedded into the AI ecosystem from the ground
up.

Jevon’s Paradox highlights the limitations of focusing solely on individual
efÏciency improvements. We need systemic solutions that address the broader
drivers of AI consumption. This includes policies that promote sustainable
AI practices, incentives for responsible resource usage, and public awareness
campaigns that encourage mindful AI consumption.

One of the most effective ways to achieve lasting sustainability is by align-
ing AI development with circular economy principles. Unlike the traditional
linear model of “build, use, discard,” a circular approach prioritizes reuse,
refurbishment, and recycling to extend the lifespan of AI hardware (Stahel
2016). Manufacturers and cloud providers can adopt modular hardware de-
signs, allowing individual components, including memory and accelerators, to
be upgraded without replacing entire servers. In addition, AI hardware should
be designed with recyclability in mind, ensuring that valuable materials can be
extracted and reused instead of contributing to electronic waste.

Regulatory frameworks also play a crucial role in enforcing sustainability
standards. Governments can introduce carbon transparency mandates, requir-
ing AI infrastructure providers to report the full lifecycle emissions of their
operations, including embodied carbon from manufacturing (Masanet et al.
2020b). Additionally, stricter water use regulations for semiconductor fabs
and e-waste recycling policies can help mitigate AI’s resource consumption.
Some jurisdictions have already implemented extended producer responsibility
laws, which hold manufacturers accountable for the end-of-life disposal of their
products. Expanding these policies to AI hardware could incentivize more
sustainable design practices.

At the industry level, collaborative efforts are essential for scaling sustainable
AI practices. Leading AI companies and research institutions should establish
shared sustainability benchmarks that track energy efÏciency, carbon footprint,
and resource usage. Furthermore, standardized green AI certifications could
guide consumers and enterprises toward more sustainable technology choices
(Strubell, Ganesh, and McCallum 2019a). Cloud providers can also commit to
24/7 carbon-free energy (CFE) goals, ensuring that AI workloads are powered
by renewable sources in real-time rather than relying on carbon offsets that fail
to drive meaningful emissions reductions.

Achieving systemic change in AI sustainability requires a multi-stakeholder
approach. Governments, industry leaders, and researchers must work together

17.6. Mitigating Environmental Impact 946

to set sustainability standards, invest in greener infrastructure, and transition
toward a circular AI economy. By embedding sustainability into the entire AI
development pipeline, the industry can move beyond incremental optimizations
and build a truly sustainable foundation for future innovation.

17.6.4 Case Study: Google’s Framework

To mitigate emissions from rapidly expanding AI workloads, Google engineers
identified four key optimization areas, identified as the ‘4 Ms’, where systematic
improvements collectively reduce the carbon footprint of machine learning:

• Model: The selection of efÏcient AI architectures reduces computation
requirements by 5-10X without compromising model quality. Google
has extensively researched sparse models and neural architecture search
methodologies, resulting in efÏcient architectures such as the Evolved
Transformer and Primer.

• Machine: The implementation of AI-specific hardware offers 2-5X im-
provements in performance per watt compared to general-purpose sys-
tems. Google’s TPUs demonstrate 5-13X greater carbon efÏciency relative
to non-optimized GPUs.

• Mechanization: The utilization of optimized cloud computing infrastruc-
ture with high utilization rates yields 1.4-2X energy reductions compared
to conventional on-premise data centers. Google’s facilities consistently
exceed industry standards for PUE.

• Map: The strategic positioning of data centers in regions with low-carbon
electricity supplies reduces gross emissions by 5-10X. Google maintains
real-time monitoring of renewable energy usage across its global infras-
tructure.

The combined effect of these practices produces multiplicative efÏciency
gains. For instance, implementing the optimized Transformer model on TPUs
in strategically located data centers reduced energy consumption by a factor of
83 and CO₂ emissions by a factor of 747.

Despite substantial growth in AI deployment across Google’s product ecosys-
tem, systematic efÏciency improvements have effectively constrained energy
consumption growth. A significant indicator of this progress is the observa-
tion that AI workloads have maintained a consistent 10% to 15% proportion of
Google’s total energy consumption from 2019 through 2021. As AI functionality
expanded across Google’s services, corresponding increases in compute cycles
were offset by advancements in algorithms, specialized hardware, infrastructure
design, and geographical optimization.

Empirical case studies demonstrate how engineering principles focused on
sustainable AI development enable simultaneous improvements in both perfor-
mance and environmental impact. For example, comparative analysis between
GPT-3 (considered state-of-the-art in mid-2020) and Google’s GLaM model
reveals improved accuracy metrics alongside reduced training computation re-
quirements and lower-carbon energy sources—resulting in a 14-fold reduction
in CO₂ emissions within an 18-month development cycle.

Chapter 17. Sustainable AI 947

Furthermore, Google’s analysis indicates that previous published estimates
overestimated machine learning’s energy requirements by factors ranging from
100 to 100,000X due to methodological limitations and absence of empirical
measurements. Through transparent reporting of optimization metrics, Google
provides a factual basis for efÏciency initiatives while correcting disproportion-
ate projections regarding machine learning’s environmental impact.

While substantial progress has been achieved in constraining the carbon
footprint of AI operations, Google acknowledges that continued efÏciency
advancements are essential for responsible innovation as AI applications prolif-
erate. Their ongoing optimization framework encompasses:

1. Life-Cycle Analysis: Demonstrating that computational investments such
as neural architecture search, while initially resource-intensive, generate
significant downstream efÏciencies that outweigh initial costs. Despite
higher energy expenditure during the discovery phase compared to man-
ual engineering approaches, NAS ultimately reduces cumulative emis-
sions by generating optimized architectures applicable across numerous
deployments.

2. Resource Allocation Prioritization: Concentrating sustainability initia-
tives on data center and server-side optimization where energy consump-
tion is most concentrated. While Google continues to enhance inference
efÏciency on edge devices, primary focus remains on training infras-
tructure and renewable energy procurement to maximize environmental
return on investment.

3. Economies of Scale: Leveraging the efÏciency advantages inherent in
well-designed cloud infrastructure through workload consolidation. As
computation transitions from distributed on-premise environments to
centralized providers with robust sustainability frameworks, aggregate
emissions reductions accelerate.

4. Renewable Energy Integration: Prioritizing renewable energy procure-
ment, as Google has achieved a 100% match of energy consumption with
renewable sources since 2017, to further reduce the environmental impact
of computational workloads.

These integrated approaches indicate that AI efÏciency improvements are
accelerating rather than plateauing. Google’s multifaceted strategy combining
systematic measurement, carbon-aware development methodologies, trans-
parency in reporting, and renewable energy transition establishes a replicable
framework for sustainable AI scaling. These empirical results provide a founda-
tion for broader industry adoption of comprehensive sustainability practices.

17.7 Embedded AI and E-Waste
The deployment of AI is rapidly expanding beyond centralized data centers
into edge and embedded devices, enabling real-time decision-making without
requiring constant cloud connectivity. This shift has led to major efÏciency
gains, reducing latency, bandwidth consumption, and network congestion
while enabling new applications in smart consumer devices, industrial automa-
tion, healthcare, and autonomous systems. However, the rise of embedded AI

17.7. Embedded AI and E-Waste 948

brings new environmental challenges, particularly regarding electronic waste,
disposable smart devices, and planned obsolescence.

Unlike high-performance AI accelerators in data centers, which are designed
for long-term use and high computational throughput, embedded AI hard-
ware is often small, low-cost, and disposable. Many AI-powered IoT sensors,
wearables, and smart appliances are built with short lifespans and limited
upgradeability, making them difÏcult, if not entirely impossible, to repair or
recycle (C. P. Baldé 2017). As a result, these devices contribute to a rapidly grow-
ing electronic waste crisis, one that remains largely overlooked in discussions
on AI sustainability.

The scale of this issue is staggering. As illustrated in Figure 17.14, the num-
ber of Internet of Things (IoT) devices is projected to exceed 30 billion by 2030,
with AI-powered chips increasingly embedded into everything from household
appliances and medical implants to industrial monitoring systems and agri-
cultural sensors (Statista 2022). This exponential growth in connected devices
presents a significant environmental challenge, as many of these devices will
become obsolete within just a few years, leading to an unprecedented surge
in e-waste. Without sustainable design practices and improved lifecycle man-
agement, the expansion of AI at the edge risks exacerbating global electronic
waste accumulation and straining recycling infrastructure.

Figure 17.14: Number of Inter-
net of Things (IoT) connected de-
vices worldwide from 2019 to 2023.
Source: Statista.

2019 2020 2021 2022 2023 2024* 2025* 2026* 2027* 2028* 2029* 2030*

0

5

10

15

20

25

30

8.6
9.76

11.28

13.14

15.14

17.8
19.08

21.09

23.14

25.21

27.31

29.42

C
o

n
n

e
c
te

d
d

e
v
ic

e
s

in
b

il
li
o

n
s

While AI-powered data centers have been scrutinized for their carbon foot-
print and energy demands, far less attention has been paid to the environmental
cost of embedding AI into billions of short-lived devices. Addressing this chal-
lenge requires rethinking how AI hardware is designed, manufactured, and
disposed of, ensuring that edge AI systems contribute to technological progress
without leaving behind an unsustainable legacy of waste.

17.7.1 E-Waste Crisis
Electronic waste, or e-waste, is one of the fastest-growing environmental chal-
lenges of the digital age. Defined as discarded electronic devices containing
batteries, circuit boards, and semiconductor components, e-waste presents se-
vere risks to both human health and the environment. Toxic materials such as

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

Chapter 17. Sustainable AI 949

lead, mercury, cadmium, and brominated flame retardants, commonly found in
AI-enabled hardware, can contaminate soil and groundwater when improperly
disposed of. Despite the potential for recycling and material recovery, most
e-waste remains improperly handled, leading to hazardous waste accumulation
and significant environmental degradation.

The scale of the problem is staggering. Today, global e-waste production
exceeds 50 million metric tons annually, with projections indicating that this
figure will surpass 75 million tons by 2030 as consumer electronics and AI-
powered IoT devices continue to proliferate. According to the United Nations,
e-waste generation could reach 120 million tons per year by 2050 if current
consumption patterns persist (Un and Forum 2019). The combination of short
product lifespans, rising global demand, and limited recycling infrastructure
has accelerated this crisis.

AI-driven consumer devices, such as smart speakers, fitness trackers, and
home automation systems, are among the most significant contributors to e-
waste. Unlike modular and serviceable computing systems, many of these
devices are designed to be disposable, meaning that when a battery fails or a
component malfunctions, the entire product is discarded rather than repaired.
This built-in disposability exacerbates the unsustainable cycle of consumption
and waste, leading to higher material extraction rates and increased pressure
on waste management systems.

Developing nations are disproportionately affected by e-waste dumping,
as they often lack the infrastructure to process obsolete electronics safely. In
2019, only 13% to 23% of e-waste in lower-income countries was formally col-
lected for recycling, with the remainder either incinerated, illegally dumped,
or manually dismantled in unsafe conditions (Un and Forum 2019). Many
discarded AI-powered devices end up in informal recycling operations, where
low-paid workers are exposed to hazardous materials without proper pro-
tective equipment. Open-air burning of plastic components and crude metal
extraction methods release toxic fumes and heavy metals into the surrounding
environment, posing severe health risks.

The global recycling rate for e-waste remains alarmingly low, with only 20%
of all discarded electronics processed through environmentally sound recy-
cling channels. The remaining 80% is either landfilled, incinerated, or dumped
illegally, leading to long-term environmental contamination and resource deple-
tion. Without stronger policies, better product design, and expanded e-waste
management systems, the rapid growth of AI-powered devices will significantly
worsen this crisis.

AI-driven electronics should not become another major contributor to the
global e-waste problem. Tackling this challenge requires a multi-pronged
approach, including more sustainable design practices, stronger regulatory
oversight, and greater investment in global e-waste recycling infrastructure.
Without intervention, AI’s environmental impact will extend far beyond its
energy consumption, leaving behind a legacy of toxic waste and resource de-
pletion.

17.7. Embedded AI and E-Waste 950

17.7.2 Disposable Electronics
The rapid proliferation of low-cost AI-powered microcontrollers, smart sensors,
and connected devices has transformed various industries, from consumer
electronics and healthcare to industrial automation and agriculture. While
these embedded AI systems enable greater efÏciency and automation, their
short lifespans and non-recyclable designs pose a significant sustainability
challenge. Many of these devices are treated as disposable electronics, designed
with limited durability, non-replaceable batteries, and little to no repairability,
making them destined for the waste stream within just a few years of use.

One of the primary drivers of AI-powered device disposability is the falling
cost of microelectronics. The miniaturization of computing hardware has en-
abled manufacturers to embed tiny AI processors and wireless connectivity
modules into everyday products, often for under $1 per chip. As a result, AI
functionality is increasingly being integrated into single-use and short-lived
products, including smart packaging, connected medical devices, wearables,
and home appliances. While these innovations improve convenience and real-
time data collection, they lack proper end-of-life management strategies, leading
to a surge in hard-to-recycle electronic waste (V. Forti 2020).

17.7.2.1 Non-Replaceable Batteries Cost

Many disposable AI devices incorporate sealed, non-replaceable lithium-ion
batteries, making them inherently unsustainable. Smart earbuds, wireless
sensors, and even some fitness trackers lose functionality entirely once their
batteries degrade, forcing consumers to discard the entire device. Unlike mod-
ular electronics with user-serviceable components, most AI-powered wearables
and IoT devices are glued or soldered shut, preventing battery replacement or
repair.

This issue extends beyond consumer gadgets. Industrial AI sensors and
remote monitoring devices, often deployed in agriculture, infrastructure, and
environmental monitoring, frequently rely on non-replaceable batteries with
a limited lifespan. Once depleted, these sensors, many of which are installed
in remote or difÏcult-to-access locations, become e-waste, requiring costly and
environmentally disruptive disposal or replacement (Ciez and Whitacre 2019).

The environmental impact of battery waste is particularly concerning. Lithium
mining, essential for battery production, is an energy-intensive process that
consumes vast amounts of water and generates harmful byproducts. Addi-
tionally, the improper disposal of lithium batteries poses fire and explosion
risks, particularly in landfills and waste processing facilities. As the demand
for AI-powered devices grows, addressing the battery sustainability crisis will
be critical to mitigating AI’s long-term environmental footprint.

17.7.2.2 Recycling Challenges

Unlike traditional computing hardware, including desktop computers and en-
terprise servers, which can be disassembled and refurbished, most AI-enabled
consumer electronics are not designed for recycling. Many of these devices con-
tain mixed-material enclosures, embedded circuits, and permanently attached

Chapter 17. Sustainable AI 951

components, making them difÏcult to dismantle and recover materials from
(Patel et al. 2016).

Additionally, AI-powered IoT devices are often too small to be efÏciently re-
cycled using conventional e-waste processing methods. Large-scale electronics,
such as laptops and smartphones, have well-established recycling programs
that allow for material recovery. In contrast, tiny AI-powered sensors, ear-
buds, and embedded chips are often too costly and labor-intensive to separate
into reusable components. As a result, they frequently end up in landfills or
incinerators, contributing to pollution and resource depletion.

The environmental impact of battery waste is particularly concerning. Lithium
mining, essential for battery production, is an energy-intensive process that
consumes vast amounts of water and generates harmful byproducts (Bouri
2015). Additionally, the improper disposal of lithium batteries poses fire and
explosion risks, particularly in landfills and waste processing facilities. As the
demand for AI-powered devices grows, addressing the battery sustainability
crisis will be critical to mitigating AI’s long-term environmental footprint (Zhan,
Oldenburg, and Pan 2018).

17.7.2.3 Need for Sustainable Design

Addressing the sustainability challenges of disposable AI electronics requires a
fundamental shift in design philosophy. Instead of prioritizing cost-cutting and
short-term functionality, manufacturers must embed sustainability principles
into the development of AI-powered devices. This includes:

• Designing for longevity: AI-powered devices should be built with re-
placeable components, modular designs, and upgradable software to
extend their usability.

• Enabling battery replacement: Consumer and industrial AI devices
should incorporate easily swappable batteries rather than sealed enclo-
sures that prevent repair.

• Standardizing repairability: AI hardware should adopt universal stan-
dards for repair, ensuring that components can be serviced rather than
discarded.

• Developing biodegradable or recyclable materials: Research into eco-
friendly circuit boards, biodegradable polymers, and sustainable packag-
ing can help mitigate waste.

Incentives and regulations can also encourage manufacturers to prioritize
sustainable AI design. Governments and regulatory bodies can implement right-
to-repair laws, extended producer responsibility policies, and e-waste take-
back programs to ensure that AI-powered devices are disposed of responsibly.
Additionally, consumer awareness campaigns can educate users on responsible
e-waste disposal and encourage sustainable purchasing decisions.

The future of AI-powered electronics must be circular rather than linear,
ensuring that devices are designed with sustainability in mind and do not
contribute disproportionately to the global e-waste crisis. By rethinking de-
sign, improving recyclability, and promoting responsible disposal, the industry

17.7. Embedded AI and E-Waste 952

8 Apple was fined €25 million by
French regulators in 2020 for inten-
tionally slowing down older iPhone
models without informing users, a
practice that has sparked global de-
bate on software-induced obsoles-
cence.

can mitigate the negative environmental impacts of AI at the edge while still
enabling technological progress.

17.7.3 AI Hardware Obsolescence
The concept of planned obsolescence refers to the intentional design of products
with artificially limited lifespans, forcing consumers to upgrade or replace
them sooner than necessary. While this practice has long been associated with
consumer electronics and household appliances, it is increasingly prevalent
in AI-powered hardware, from smartphones and wearables to industrial AI
sensors and cloud infrastructure. This accelerated replacement cycle not only
drives higher consumption and production but also contributes significantly to
the growing e-waste crisis (Slade 2007).

One of the most visible examples of planned obsolescence in AI hardware is
the software-driven degradation of device performance. Many manufacturers
introduce software updates that, while ostensibly meant to enhance security
and functionality, often degrade the performance of older devices. For example,
Apple has faced scrutiny for deliberately slowing down older iPhone models via
iOS updates (Luna 2018a). While the company claimed that these updates were
meant to prevent battery-related shutdowns, critics argued that they pushed
consumers toward unnecessary upgrades rather than encouraging repair or
battery replacement.

This pattern extends to AI-powered consumer electronics, where firmware
updates can render older models incompatible with newer features, effectively
forcing users to replace their devices. Many smart home systems, connected
appliances, and AI assistants suffer from forced obsolescence due to discon-
tinued cloud support or software services, rendering hardware unusable even
when physically intact (Luna 2018b)8.

17.7.3.1 Lock-In and Proprietary Components

Another form of planned obsolescence arises from hardware lock-in, where
manufacturers deliberately prevent users from repairing or upgrading their
devices. Many AI-powered devices feature proprietary components, making
it impossible to swap out batteries, upgrade memory, or replace failing parts.
Instead of designing for modularity and longevity, manufacturers prioritize
sealed enclosures and soldered components, ensuring that even minor failures
lead to complete device replacement (Johnson 2018).

For example, many AI wearables and smart devices integrate non-replaceable
batteries, meaning that when the battery degrades (often in just two to three
years), the entire device becomes e-waste. Similarly, smartphones, laptops,
and AI-enabled tablets increasingly use soldered RAM and storage, preventing
users from upgrading hardware and extending its lifespan (M. Russell 2022).

Planned obsolescence also affects industrial AI hardware, including AI-
powered cameras, factory sensors, and robotics. Many industrial automation
systems rely on vendor-locked software ecosystems, where manufacturers dis-
continue support for older models to push customers toward newer, more
expensive replacements. This creates a cycle of forced upgrades, where com-

Chapter 17. Sustainable AI 953

9 Many industrial AI systems
rely on proprietary software ecosys-
tems, where manufacturers discon-
tinue updates and support for older
hardware, forcing companies to pur-
chase new equipment to maintain
compatibility.

10 Semiconductor fabrication is
one of the most resource-intensive
manufacturing processes, consum-
ing vast amounts of water and en-
ergy while generating hazardous
chemical waste.

panies must frequently replace otherwise functional AI hardware simply to
maintain software compatibility (Sharma 2020)9.

17.7.3.2 Environmental Cost

Planned obsolescence is not just a financial burden on consumers—it has severe
environmental consequences. By shortening product lifespans and discour-
aging repairability, manufacturers increase the demand for new electronic
components, leading to higher resource extraction, energy consumption, and
carbon emissions.

The impact of this cycle is particularly concerning given the high environ-
mental cost of semiconductor manufacturing. Producing AI chips, GPUs, and
other advanced computing components requires vast amounts of water, rare
earth minerals, and energy10. For example, a single 5nm semiconductor fabri-
cation plant consumes millions of gallons of ultrapure water daily and relies
on energy-intensive processes that generate significant CO₂ emissions (Mills
and Le Hunte 1997; Harris 2023). When AI-powered devices are discarded
prematurely, the environmental cost of manufacturing is effectively wasted,
amplifying AI’s overall sustainability challenges.

Additionally, many discarded AI devices contain hazardous materials, in-
cluding lead, mercury, and brominated flame retardants, which can leach into
the environment if not properly recycled (Puckett 2016). The acceleration of
AI-powered consumer electronics and industrial hardware turnover will only
worsen the global e-waste crisis, further straining waste management and recy-
cling systems.

17.7.3.3 Extending Hardware Lifespan

Addressing planned obsolescence requires a shift in design philosophy, moving
toward repairable, upgradable, and longer-lasting AI hardware. Some potential
solutions include:

• Right-to-Repair Legislation: Many governments are considering right-
to-repair laws, which would require manufacturers to provide repair
manuals, replacement parts, and diagnostic tools for AI-powered de-
vices. This would enable consumers and businesses to extend hardware
lifespans rather than replacing entire systems (Johnson 2018).

• Modular AI Hardware: Designing AI-powered devices with modular
components—such as replaceable batteries, upgradeable memory, and
standardized ports—can significantly reduce electronic waste while im-
proving cost-effectiveness for consumers (F. C. Inc. 2022).

• Modular AI Hardware: Designing AI-powered devices with modular
components, such as replaceable batteries, upgradeable memory, and
standardized ports, can significantly reduce electronic waste while im-
proving cost-effectiveness for consumers (F. C. Inc. 2022).

• Extended Software Support: Companies should commit to longer soft-
ware support cycles, ensuring that older AI-powered devices remain
functional rather than being rendered obsolete due to artificial compati-
bility constraints (S. Brown 2021).

17.8. Policy and Regulation 954

11 The European Commission’s
AI Act regulates AI systems’ devel-
opment, deployment, and use, in-
cluding provisions for sustainabil-
ity reporting and energy efÏciency
requirements.

12 The Corporate Sustainabil-
ity Reporting Directive (CSRD) man-
dates that large companies disclose
environmental and social informa-
tion, including AI-related emissions
and energy consumption.

• Consumer Awareness & Circular Economy: Encouraging trade-in and
recycling programs, along with consumer education on sustainable AI
purchasing, can help shift demand toward repairable and long-lasting
devices (Cheshire 2021).

Several tech companies are already experimenting with more sustainable
AI hardware. For example, Framework, a startup focused on modular laptops,
offers fully repairable, upgradeable systems that prioritize long-term usability
over disposable design. Similar efforts in the smartphone and AI-driven IoT
sectors could help reduce the environmental footprint of planned obsolescence.

The widespread adoption of AI-powered devices presents a critical oppor-
tunity to rethink the lifecycle of electronics. If left unchecked, planned ob-
solescence will continue to drive wasteful consumption patterns, accelerate
e-waste accumulation, and exacerbate the resource extraction crisis. However,
with policy interventions, industry innovation, and consumer advocacy, AI
hardware can be designed for durability, repairability, and sustainability.

The future of AI should not be disposable. Instead, companies, researchers,
and policymakers must prioritize long-term sustainability, ensuring that AI’s
environmental footprint is minimized while its benefits are maximized. Ad-
dressing planned obsolescence in AI hardware is a key step toward making AI
truly sustainable—not just in terms of energy efÏciency but in its entire lifecycle,
from design to disposal.

17.8 Policy and Regulation
The increasing energy consumption and carbon emissions of AI systems have
raised concerns among policymakers, industry leaders, and environmental
advocates. As AI adoption accelerates, regulatory frameworks are becoming
essential to ensure that AI development and deployment align with global
sustainability goals. Without policy intervention, the rapid scaling of AI infras-
tructure risks exacerbating climate change, resource depletion, and electronic
waste generation (Vinuesa et al. 2020).

Policymakers face a delicate balancing act—on one hand, AI innovation
drives economic growth and scientific progress, but on the other, its unchecked
expansion could have significant environmental consequences. To address
this, policy mechanisms such as measurement and reporting mandates, emis-
sion restrictions, financial incentives, and self-regulatory initiatives are being
explored worldwide. Government agencies, international organizations, and
private sector coalitions are working to establish standardized methodologies
for assessing AI’s carbon footprint, encourage efÏciency improvements, and
promote green AI infrastructure investments.

However, policy fragmentation across regions poses challenges. The Euro-
pean Union, for instance, is leading regulatory efforts through initiatives like
the AI Act11 and sustainability disclosure requirements under the Corporate
Sustainability Reporting Directive (CSRD)12, while U.S. policymakers have
largely relied on voluntary reporting and market-based incentives. China and
other nations are taking their own approaches, creating potential barriers to a
unified global AI sustainability strategy

Chapter 17. Sustainable AI 955

This section explores the various policy tools available for mitigating AI’s
environmental impact, analyzing the role of governments, regulatory bod-
ies, and industry-led efforts. By examining both mandatory and voluntary
approaches, we assess how regulations can drive AI sustainability without
impeding technological progress.

17.8.1 Measurement and Reporting
A critical first step toward mitigating AI’s environmental impact is accurate
measurement and transparent reporting of energy consumption and carbon
emissions. Without standardized tracking mechanisms, it is difÏcult to assess
AI’s true sustainability impact or identify areas for improvement. Government
regulations and industry initiatives are beginning to mandate energy audits,
emissions disclosures, and standardized efÏciency metrics for AI workloads.
These policies aim to increase transparency, inform better decision-making, and
hold organizations accountable for their environmental footprint.

The lack of universally accepted metrics for assessing AI’s environmental
impact has been a significant challenge. Current sustainability evaluations often
rely on ad hoc reporting by companies, with inconsistent methodologies for
measuring energy consumption and emissions. To address this, policymakers
and industry leaders are advocating for formalized sustainability benchmarks
that assess AI’s carbon footprint at multiple levels. Computational complexity
and model efÏciency are key factors, as they determine how much computation
is required for a given AI task. Data center efÏciency, often measured through
power usage effectiveness, plays a crucial role in evaluating how much of a data
center’s power consumption directly supports computation rather than being
lost to cooling and infrastructure overhead. The carbon intensity of energy
supply is another critical consideration, as AI operations running on grids
powered primarily by fossil fuels have a far greater environmental impact than
those powered by renewable energy sources.

Several industry efforts are working toward standardizing sustainability
reporting for AI. The MLCommons benchmarking consortium has begun in-
corporating energy efÏciency as a factor in AI model assessments, recognizing
the need for standardized comparisons of model energy consumption. Mean-
while, regulatory bodies are pushing for mandatory disclosures. In Europe,
the proposed AI Act includes provisions for requiring organizations using AI
at scale to report energy consumption and carbon emissions associated with
their models. The European Commission has signaled that sustainability re-
porting requirements for AI may soon be aligned with broader environmental
disclosure regulations under the CSRD.

One of the biggest challenges in implementing AI sustainability reporting
is balancing transparency with the potential burden on organizations. While
greater transparency is essential for accountability, requiring detailed reporting
for every AI workload could create excessive overhead, particularly for smaller
firms and research institutions. To address this, policymakers are exploring
scalable approaches that integrate sustainability considerations into existing
industry standards without imposing rigid compliance costs. Developing light-
weight reporting mechanisms that leverage existing monitoring tools within

17.8. Policy and Regulation 956

13 Emissions trading systems
(ETS) are market-based mechanisms
that cap the total amount of green-
house gas emissions allowed within
a jurisdiction, with organizations re-
quired to purchase or trade emis-
sions allowances to meet their com-
pliance obligations.

data centers and cloud platforms can help ease this burden while still improving
visibility into AI’s environmental footprint.

To be most constructive, measurement and reporting policies should focus on
enabling continuous refinement rather than imposing simplistic restrictions or
rigid caps. Given AI’s rapid evolution, regulations that incorporate flexibility
while embedding sustainability into evaluation metrics will be most effective in
driving meaningful reductions in energy consumption and emissions. Rather
than stifling innovation, well-designed policies can encourage AI developers to
prioritize efÏciency from the outset, fostering a culture of responsible AI design
that aligns with long-term sustainability goals.

17.8.2 Restriction Mechanisms
Beyond measurement and reporting mandates, direct policy interventions can
restrict AI’s environmental impact through regulatory limits on energy con-
sumption, emissions, or model scaling. While AI’s rapid growth has spurred
innovation, it has also introduced new sustainability challenges that may re-
quire governments to impose guardrails to curb excessive environmental costs.
Restrictive mechanisms, such as computational caps, conditional access to pub-
lic resources, financial incentives, and even outright bans on inefÏcient AI
practices, are all potential tools for reducing AI’s carbon footprint. However,
their effectiveness depends on careful policy design that balances sustainability
with continued technological advancement.

One potential restriction mechanism involves setting limits on the computa-
tional power available for training large AI models. The European Commis-
sion’s proposed AI Act has explored this concept by introducing economy-
wide constraints on AI training workloads. This approach mirrors emissions
trading systems (ETS)13 in environmental policy, where organizations must
either operate within predefined energy budgets or procure additional capacity
through regulated exchanges. While such limits could help prevent unneces-
sary computational waste, they also raise concerns about limiting innovation,
particularly for researchers and smaller companies that may struggle to access
high-performance computing resources (Schwartz et al. 2020).

Another policy tool involves conditioning access to public datasets and
government-funded computing infrastructure based on model efÏciency. AI
researchers and developers increasingly rely on large-scale public datasets and
subsidized cloud resources to train models. Some have proposed that gov-
ernments could restrict these resources to AI projects that meet strict energy
efÏciency criteria. For instance, the MLCommons benchmarking consortium
could integrate sustainability metrics into its standardized performance leader-
boards, incentivizing organizations to optimize for efÏciency alongside accuracy.
However, while conditioned access could promote sustainable AI practices, it
also risks creating disparities by limiting access to computational resources for
those unable to meet predefined efÏciency thresholds.

Financial incentives and disincentives represent another regulatory mech-
anism for driving sustainable AI. Carbon taxes on AI-related compute con-
sumption could discourage excessive model scaling while generating funds
for efÏciency-focused research. Similar to existing environmental regulations,

Chapter 17. Sustainable AI 957

organizations could be required to pay fees based on the emissions associated
with their AI workloads, encouraging them to optimize for lower energy con-
sumption. Conversely, tax credits could reward companies developing efÏcient
AI techniques, fostering investment in greener computing technologies. While
financial mechanisms can effectively guide market behavior, they must be care-
fully calibrated to avoid disproportionately burdening smaller AI developers
or discouraging productive use cases.

In extreme cases, outright bans on particularly wasteful AI applications may
be considered. If measurement data consistently pinpoints certain AI practices
as disproportionately harmful with no feasible path to remediation, govern-
ments may choose to prohibit these activities altogether. However, defining
harmful AI use cases is challenging due to AI’s dual-use nature, where the
same technology can have both beneficial and detrimental applications. Policy-
makers must approach bans cautiously, ensuring that restrictions target clearly
unsustainable practices without stifling broader AI innovation.

Ultimately, restriction mechanisms must strike a careful balance between
environmental responsibility and economic growth. Well-designed policies
should encourage AI efÏciency while preserving the flexibility needed for
continued technological progress. By integrating restrictions with incentives
and reporting mandates, policymakers can create a comprehensive framework
for guiding AI toward a more sustainable future.

17.8.3 Government Incentives

In addition to regulatory restrictions, governments can play a proactive role
in advancing sustainable AI development through incentives that encourage
energy-efÏcient practices. Financial support, tax benefits, grants, and strategic
investments in Green AI research can drive the adoption of environmentally
friendly AI technologies. Unlike punitive restrictions, incentives provide posi-
tive reinforcement, making sustainability a competitive advantage rather than
a regulatory burden.

One common approach to promoting sustainability is through tax incentives.
Governments already offer tax credits for adopting renewable energy sources,
such as the U.S. Residential Clean Energy Credit and commercial energy ef-
ficiency deductions. Similar programs could be extended to AI companies
that optimize their models and infrastructure for lower energy consumption.
AI developers who integrate efÏciency-enhancing techniques, such as model
pruning, quantization, or adaptive scheduling, could qualify for tax reductions,
creating a financial incentive for Green AI development.

Beyond tax incentives, direct government funding for sustainable AI research
is an emerging strategy. Spain has already committed 300 million euros toward
AI projects that explicitly focus on sustainability. Such funding can acceler-
ate breakthroughs in energy-efÏcient AI by supporting research into novel
low-power algorithms, specialized AI hardware, and eco-friendly data center
designs. Public-private partnerships can further enhance these efforts, allowing
AI companies to collaborate with research institutions and government agencies
to pioneer sustainable solutions.

https://www.irs.gov/credits-deductions/residential-clean-energy-credit
https://www.energy.gov/eere/buildings/179d-commercial-buildings-energy-efficiency-tax-deduction
https://www.energy.gov/eere/buildings/179d-commercial-buildings-energy-efficiency-tax-deduction
https://www.state.gov/artificial-intelligence-for-accelerating-progress-on-the-sustainable-development-goals-addressing-societys-greatest-challenges/

17.8. Policy and Regulation 958

Governments can also incentivize sustainability by integrating Green AI
criteria into public procurement policies. Many AI companies provide cloud
computing, software services, and AI-driven analytics to government agen-
cies. By mandating that vendors meet sustainability benchmarks, including
operating on carbon-neutral data centers and using energy-efÏcient AI models,
governments can use their purchasing power to set industry-wide standards.
Similar policies have already been applied to green building initiatives, where
governments require contractors to meet environmental certifications. Ap-
plying the same approach to AI could accelerate the adoption of sustainable
practices.

Another innovative policy tool is the introduction of carbon credits specifi-
cally tailored for AI workloads. Under this system, AI companies could offset
emissions by investing in renewable energy projects or carbon capture technolo-
gies. AI firms exceeding predefined emissions thresholds would be required to
purchase carbon credits, creating a market-based mechanism that naturally in-
centivizes efÏciency. This concept aligns with broader cap-and-trade programs
that have successfully reduced emissions in industries like manufacturing and
energy production. However, as seen with the challenges surrounding unbun-
dled Energy Attribute Certificates (EACs), carbon credit programs must be
carefully structured to ensure genuine emissions reductions rather than allow-
ing companies to simply “buy their way out” of sustainability commitments.

While government incentives offer powerful mechanisms for promoting
Green AI, their design and implementation require careful consideration. In-
centives should be structured to drive meaningful change without creating
loopholes that allow organizations to claim benefits without genuine improve-
ments in sustainability. Additionally, policies must remain flexible enough to
accommodate rapid advancements in AI technology. By strategically combin-
ing tax incentives, funding programs, procurement policies, and carbon credit
systems, governments can create an ecosystem where sustainability is not just
a regulatory requirement but an economic advantage.

17.8.4 Self-Regulation
While government policies play a crucial role in shaping sustainable AI prac-
tices, the AI industry itself has the power to drive significant environmental
improvements through self-regulation. Many leading AI companies and re-
search organizations have already adopted voluntary commitments to reduce
their carbon footprints, improve energy efÏciency, and promote sustainable
development. These efforts can complement regulatory policies and, in some
cases, even set higher standards than those mandated by governments.

One of the most visible self-regulation strategies is the commitment by major
AI companies to operate on renewable energy. Companies like Google, Mi-
crosoft, Amazon, and Meta have pledged to procure enough clean energy to
match 100% of their electricity consumption. Google has gone further by aiming
for 24/7 Carbon-Free Energy by ensuring that its data centers run exclusively
on renewables every hour of every day. These commitments not only reduce
operational emissions but also create market demand for renewable energy,
accelerating the transition to a greener grid. However, as seen with the use of

https://techcommunity.microsoft.com/t5/green-tech-blog/charting-the-path-towards-sustainable-ai-with-azure-machine/ba-p/2866923
https://techcommunity.microsoft.com/t5/green-tech-blog/charting-the-path-towards-sustainable-ai-with-azure-machine/ba-p/2866923
https://cloud.google.com/blog/topics/sustainability/google-clouds-clean-energy-portfolio-expands-with-new-24-7-carbon-free-energy/

Chapter 17. Sustainable AI 959

unbundled EACs, transparency and accountability in renewable energy claims
remain critical to ensuring genuine decarbonization rather than superficial
offsets.

Another form of self-regulation is the internal adoption of carbon pricing
models. Some companies implement shadow pricing, where they assign an
internal cost to carbon emissions in financial decision-making. By incorporating
these costs into budgeting and investment strategies, AI companies can priori-
tize energy-efÏcient infrastructure and low-emission AI models. This approach
mirrors broader corporate sustainability efforts in industries like aviation and
manufacturing, where internal carbon pricing has proven to be an effective tool
for driving emissions reductions.

Beyond energy consumption, AI developers can implement voluntary ef-
ficiency checklists that guide sustainable design choices. Organizations like
the AI Sustainability Coalition have proposed frameworks that outline best
practices for model development, hardware selection, and operational energy
management. These checklists can serve as practical tools for AI engineers to
integrate sustainability into their workflows. Companies that publicly commit
to following these guidelines set an example for the broader industry, demon-
strating that sustainability is not just an afterthought but a core design principle.

Independent sustainability audits further enhance accountability by provid-
ing third-party evaluations of AI companies’ environmental impact. Firms
specializing in technology sustainability, such as Carbon Trust and Green Soft-
ware Foundation, offer audits that assess energy consumption, carbon emis-
sions, and adherence to green computing best practices. AI companies that
voluntarily undergo these audits and publish their findings help build trust
with consumers, investors, and regulators. Transparency in environmental
reporting allows stakeholders to verify whether companies are meeting their
sustainability commitments.

Self-regulation in AI sustainability also extends to open-source collabora-
tions. Initiatives like CodeCarbon and ML CO2 Impact provide tools that allow
developers to estimate and track the carbon footprint of their AI models. By
integrating these tools into mainstream AI development platforms like Ten-
sorFlow and PyTorch, the industry can normalize sustainability tracking as
a standard practice. Encouraging developers to measure and optimize their
energy consumption fosters a culture of accountability and continuous improve-
ment.

While self-regulation is an important step toward sustainability, it cannot
replace government oversight. Voluntary commitments are only as strong as
the incentives driving them, and without external accountability, some com-
panies may prioritize profit over sustainability. However, when combined
with regulatory frameworks, self-regulation can accelerate progress by allow-
ing industry leaders to set higher standards than those mandated by law. By
embedding sustainability into corporate strategy, AI companies can demon-
strate that technological advancement and environmental responsibility are
not mutually exclusive.

https://climatechange.ai/
https://codecarbon.io/
https://mlco2.github.io/impact/#compute

17.8. Policy and Regulation 960

17.8.5 Global Impact

While AI sustainability efforts are gaining traction, they remain fragmented
across national policies, industry initiatives, and regional energy infrastructures.
AI’s environmental footprint is inherently global, spanning supply chains,
cloud data centers, and international markets. A lack of coordination between
governments and corporations risks inefÏciencies, contradictory regulations,
and loopholes that allow companies to shift environmental burdens rather than
genuinely reduce them. Establishing global frameworks for AI sustainability is
therefore crucial for aligning policies, ensuring accountability, and fostering
meaningful progress in mitigating AI’s environmental impact.

One of the primary challenges in global AI sustainability efforts is regulatory
divergence. Countries and regions are taking vastly different approaches to
AI governance. The European Union’s AI Act, for example, introduces com-
prehensive risk-based regulations that include provisions for energy efÏciency
and environmental impact assessments for AI systems. By contrast, the United
States has largely adopted a market-driven approach, emphasizing corporate
self-regulation and voluntary sustainability commitments rather than enforce-
able mandates. Meanwhile, China has prioritized AI dominance through heavy
government investment, with sustainability playing a secondary role to techno-
logical leadership. This regulatory patchwork creates inconsistencies in how
AI-related emissions, resource consumption, and energy efÏciency are tracked
and managed.

One proposed solution to this fragmentation is the standardization of sus-
tainability reporting metrics for AI systems. Organizations such as the OECD,
IEEE, and United Nations have pushed for unified environmental impact re-
porting standards similar to financial disclosure frameworks. This would allow
companies to track and compare their carbon footprints, energy usage, and
resource consumption using common methodologies. The adoption of LCA
standards for AI, as observed in wider environmental accounting practices,
would enable more accurate assessments of AI’s total environmental impact,
from hardware manufacturing to deployment and decommissioning.

Beyond reporting, energy grid decarbonization remains a critical global con-
sideration. The sustainability of AI is heavily influenced by the carbon intensity
of electricity in different regions. For example, training a large AI model in a
coal-powered region like Poland results in significantly higher carbon emis-
sions than training the same model in hydroelectric-powered Norway. However,
market-based energy accounting practices, including the purchase of unbun-
dled Energy Attribute Certificates (EACs), have allowed some companies to
claim carbon neutrality despite operating in high-emission grids. This has led
to concerns that sustainability claims may not always reflect actual emissions
reductions but instead rely on financial instruments that shift carbon responsi-
bility rather than eliminating it. As a response, Google has championed 24/7
Carbon-Free Energy (CFE), which aims to match local energy consumption with
renewable sources in real-time rather than relying on distant offsets. If widely
adopted, this model could become a global benchmark for AI sustainability
accounting.

Chapter 17. Sustainable AI 961

14 Basel Convention: An inter-
national treaty regulating the trans-
boundary movement of hazardous
waste to prevent its disposal in coun-
tries with weaker environmental
protections.

Another key area of global concern is AI hardware supply chains and elec-
tronic waste management. The production of AI accelerators, GPUs, and data
center hardware depends on a complex network of raw material extraction,
semiconductor fabrication, and electronic assembly spanning multiple conti-
nents. The environmental impact of this supply chain, which includes rare-earth
mineral mining in Africa, chip manufacturing in Taiwan, and final assembly in
China, often falls outside the jurisdiction of AI companies themselves. This un-
derscores the need for international agreements on sustainable semiconductor
production, responsible mining practices, and e-waste recycling policies.

The Basel Convention14, which regulates hazardous waste exports, could
provide a model for addressing AI-related e-waste challenges at a global scale.
The convention restricts the transfer of toxic electronic waste from developed
nations to developing countries, where unsafe recycling practices can harm
workers and pollute local ecosystems. Expanding such agreements to cover
AI-specific hardware components, such as GPUs and inference chips, could
ensure that end-of-life disposal is handled responsibly rather than outsourced
to regions with weaker environmental protections.

International collaboration in AI sustainability is not just about mitigating
harm but also leveraging AI as a tool for environmental progress. AI models are
already being deployed for climate forecasting, renewable energy optimization,
and precision agriculture, demonstrating their potential to contribute to global
sustainability goals. Governments, research institutions, and industry leaders
must align on best practices for scaling AI solutions that support climate action,
ensuring that AI is not merely a sustainability challenge but also a powerful
tool for global environmental resilience.

Ultimately, sustainable AI requires a coordinated global approach that in-
tegrates regulatory alignment, standardized sustainability reporting, energy
decarbonization, supply chain accountability, and responsible e-waste man-
agement. Without such collaboration, regional disparities in AI governance
could hinder meaningful progress, allowing inefÏciencies and externalized
environmental costs to persist. As AI continues to evolve, establishing global
frameworks that balance technological advancement with environmental re-
sponsibility will be critical in shaping an AI-driven future that is not only
intelligent but also sustainable.

17.9 Public Engagement
As artificial intelligence (AI) becomes increasingly intertwined with efforts to
address environmental challenges, public perception plays a pivotal role in
shaping its adoption, regulation, and long-term societal impact. While AI is
often viewed as a powerful tool for advancing sustainability, through applica-
tions including smart energy management, climate modeling, and conservation
efforts, it also faces scrutiny over its environmental footprint, ethical concerns,
and transparency.

Public discourse surrounding AI and sustainability is often polarized. On
one side, AI is heralded as a transformative force capable of accelerating cli-
mate action, reducing carbon emissions, and optimizing resource use. On
the other, concerns persist about the high energy consumption of AI models,

17.9. Public Engagement 962

the potential for unintended environmental consequences, and the opaque
nature of AI-driven decision-making. These contrasting viewpoints influence
policy development, funding priorities, and societal acceptance of AI-driven
sustainability initiatives.

Bridging the gap between AI researchers, policymakers, and the public is
essential for ensuring that AI’s contributions to sustainability are both scientifi-
cally grounded and socially responsible. This requires clear communication
about AI’s capabilities and limitations, greater transparency in AI decision-
making processes, and mechanisms for inclusive public participation. Without
informed public engagement, misunderstandings and skepticism could hin-
der the adoption of AI solutions that have the potential to drive meaningful
environmental progress.

17.9.1 AI Awareness

Public understanding of AI and its role in sustainability remains limited, often
shaped by media narratives that highlight either its transformative potential
or its risks. Surveys such as the Pew Research Center poll found that while
a majority of people have heard of AI, their understanding of its specific ap-
plications, especially in the context of sustainability, remains shallow. Many
associate AI with automation, recommendation systems, or chatbots but may
not be aware of its broader implications in climate science, energy optimization,
and environmental monitoring.

A key factor influencing public perception is the framing of AI’s sustainability
contributions. Optimistic portrayals emphasize AI’s ability to enhance renew-
able energy integration, improve climate modeling accuracy, and enable smart
infrastructure for reduced emissions. Organizations such as Climate Change
AI actively promote AI’s potential in environmental applications, fostering a
positive narrative. Conversely, concerns about AI’s energy-intensive training
processes, ethical considerations, and potential biases contribute to skepticism.
Studies analyzing public discourse on AI sustainability reveal an even split
between optimism and caution, with some fearing that AI’s environmental
costs may outweigh its benefits.

In many cases, public attitudes toward AI-driven sustainability efforts are
shaped by trust in institutions. AI systems deployed by reputable environmental
organizations or in collaboration with scientific communities tend to receive
more favorable reception. However, corporate-led AI sustainability initiatives
often face skepticism, particularly if they are perceived as greenwashing—
a practice where companies exaggerate their commitment to environmental
responsibility without substantial action.

To foster informed public engagement, increasing AI literacy is crucial. This
involves education on AI’s actual energy consumption, potential for optimiza-
tion, and real-world applications in sustainability. Universities, research institu-
tions, and industry leaders can play a pivotal role in making AI’s sustainability
impact more accessible to the general public through open reports, interactive
tools, and clear communication strategies.

https://www.pewresearch.org/internet/2023/08/17/what-americans-know-about-ai-cybersecurity-and-big-tech/
https://www.climatechange.ai/
https://www.climatechange.ai/

Chapter 17. Sustainable AI 963

17.9.2 Messaging and Discourse
How AI is communicated to the public significantly influences perceptions
of its role in sustainability. The messaging around AI-driven environmental
efforts must balance technical accuracy, realistic expectations, and transparency
to ensure constructive discourse.

Optimistic narratives emphasize AI’s potential as a powerful tool for sus-
tainability. Initiatives such as Climate Change AI and AI-driven conservation
projects highlight applications in wildlife protection, climate modeling, energy
efÏciency, and pollution monitoring. These examples are often framed as AI
augmenting human capabilities, enabling more precise and scalable solutions
to environmental challenges. Such positive framing encourages public support
and investment in AI-driven sustainability research.

However, skepticism remains, particularly regarding AI’s own environmen-
tal footprint. Critical perspectives highlight the massive energy demands of
AI model training, particularly for large-scale neural networks. The Asilo-
mar AI Principles and other cautionary frameworks stress the need for trans-
parency, ethical guardrails, and energy-conscious AI development. The rise
of generative AI models has further amplified concerns about data center en-
ergy consumption, supply chain sustainability, and the long-term viability of
compute-intensive AI workloads.

A key challenge in AI sustainability messaging is avoiding extremes. Public
discourse often falls into two polarized views: one where AI is seen as an indis-
pensable tool for solving climate change, and another where AI is portrayed as
an unchecked technology accelerating ecological harm. Neither view fully cap-
tures the nuanced reality. AI, like any technology, is a tool whose environmental
impact depends on how it is developed, deployed, and governed.

To build public trust and engagement, AI sustainability messaging should
prioritize three key aspects. First, it must acknowledge clear trade-offs by pre-
senting both the benefits and limitations of AI for sustainability, including en-
ergy consumption, data biases, and real-world deployment challenges. Second,
messaging should rely on evidence-based claims, communicating AI’s impact
through data-driven assessments, lifecycle analyses, and transparent carbon
accounting rather than speculative promises. Third, the framing should remain
human-centered, emphasizing collaborative AI systems that work alongside
scientists, policymakers and communities rather than fully automated, opaque
decision-making systems. Through this balanced, transparent approach, AI
can maintain credibility while driving meaningful environmental progress.

Effective public engagement relies on bridging the knowledge gap between
AI practitioners and non-experts, ensuring that AI’s role in sustainability is
grounded in reality, openly discussed, and continuously evaluated.

17.9.3 Transparency and Trust
As AI systems become more integrated into sustainability efforts, transparency
and trust are crucial for ensuring public confidence in their deployment. The
complexity of AI models, particularly those used in environmental monitor-
ing, resource optimization, and emissions tracking, often makes it difÏcult
for stakeholders to understand how decisions are being made. Without clear

https://www.climatechange.ai/
https://futureoflife.org/open-letter/ai-principles/
https://futureoflife.org/open-letter/ai-principles/

17.9. Public Engagement 964

explanations of how AI systems operate, concerns about bias, accountability,
and unintended consequences can undermine public trust.

A key aspect of transparency involves ensuring that AI models used in sus-
tainability applications are explainable and interpretable. The National Institute
of Standards and Technology (NIST) Principles for Explainable AI provide a
framework for designing systems that offer meaningful and understandable
explanations of their outputs. These principles emphasize that AI-generated
decisions should be contextually relevant, accurately reflect the model’s logic,
and clearly communicate the limitations of the system (Phillips et al. 2020).
In sustainability applications, where AI influences environmental policy, con-
servation strategies, and energy management, interpretability is essential for
public accountability.

Transparency is also necessary in AI sustainability claims. Many technology
companies promote AI-driven sustainability initiatives, yet without standard-
ized reporting, it is difÏcult to verify the actual impact. The Montréal Carbon
Pledge offers a valuable framework for accountability in this space:

“As institutional investors, we must act in the best long-term interests
of our beneficiaries. In this fiduciary role, long-term investment
risks are associated with greenhouse gas emissions, climate change,
and carbon regulation. Measuring our carbon footprint is integral
to understanding better, quantifying, and managing the carbon
and climate change-related impacts, risks, and opportunities in our
investments. Therefore, as a first step, we commit to measuring and
disclosing the carbon footprint of our investments annually to use
this information to develop an engagement strategy and identify
and set carbon footprint reduction targets.” — Montréal Carbon
Pledge

This commitment to measuring and disclosing carbon footprints serves as a
model for how AI sustainability claims could be validated. A similar commit-
ment for AI, where companies disclose the environmental footprint of training
and deploying models, would provide the public with a clearer picture of AI’s
sustainability contributions. Without such measures, companies risk accusa-
tions of “greenwashing,” where claims of sustainability benefits are exaggerated
or misleading.

Beyond corporate accountability, transparency in AI governance ensures that
AI systems deployed for sustainability are subject to ethical oversight. The
integration of AI into environmental decision-making raises questions about
who has control over these technologies and how they align with societal values.
Efforts such as the OECD AI Policy Observatory highlight the need for regula-
tory frameworks that require AI developers to disclose energy consumption,
data sources, and model biases when deploying AI in critical sustainability ap-
plications. Public accessibility to this information would enable greater scrutiny
and foster trust in AI-driven solutions.

Building trust in AI for sustainability requires not only clear explanations
of how models function but also proactive efforts to include stakeholders in
decision-making processes. Transparency mechanisms such as open-access

https://www.nist.gov/
https://www.nist.gov/

Chapter 17. Sustainable AI 965

datasets, public AI audits, and participatory model development can enhance
accountability. By ensuring that AI applications in sustainability remain under-
standable, verifiable, and ethically governed, trust can be established, enabling
broader public support for AI-driven environmental solutions.

17.9.4 Engagement and Awareness

Public engagement plays a crucial role in shaping the adoption and effectiveness
of AI-driven sustainability efforts. While AI has the potential to drive significant
environmental benefits, its success depends on how well the public understands
and supports its applications. Widespread misconceptions, limited awareness
of AI’s role in sustainability, and concerns about ethical and environmental
risks can hinder meaningful engagement. Addressing these issues requires
deliberate efforts to educate, involve, and empower diverse communities in
discussions about AI’s impact on environmental sustainability.

Surveys indicate that while AI is widely recognized, the specific ways it
intersects with sustainability remain unclear to the general public. A study
conducted by the Pew Research Center found that while 87% of respondents had
some awareness of AI, only a small fraction could explain how it affects energy
consumption, emissions, or conservation efforts. This gap in understanding
can lead to skepticism, with some viewing AI as a potential contributor to
environmental harm due to its high computational demands rather than as
a tool for addressing climate challenges. To build public confidence in AI
sustainability initiatives, clear communication is essential.

Efforts to improve AI literacy in sustainability contexts can take multiple
forms. Educational campaigns highlighting AI’s role in optimizing renewable
energy grids, reducing food waste, or monitoring biodiversity can help de-
mystify the technology. Programs such as Climate Change AI and Partnership
on AI actively work to bridge this gap by providing accessible research, case
studies, and policy recommendations that illustrate AI’s benefits in addressing
climate change. Similarly, media representation plays a significant role in shap-
ing perceptions, and responsible reporting on AI’s environmental potential, in
conjunction with its challenges, can provide a more balanced narrative.

Beyond education, engagement requires active participation from various
stakeholders, including local communities, environmental groups, and pol-
icymakers. Many AI-driven sustainability projects focus on data collection
and automation but lack mechanisms for involving affected communities in
decision-making. For example, AI models used in water conservation or wild-
fire prediction may rely on data that overlooks the lived experiences of local
populations. Creating channels for participatory AI design, in which communi-
ties contribute insights, validate model outputs, and influence policy, can lead
to more inclusive and context-aware sustainability solutions.

Transparency and public input are particularly important when AI decisions
affect resource allocation, environmental justice, or regulatory actions. AI-
driven carbon credit markets, for instance, require mechanisms to ensure that
communities in developing regions benefit from sustainability initiatives rather
than facing unintended harms such as land displacement or exploitation. Public

17.9. Public Engagement 966

consultations, open-data platforms, and independent AI ethics committees can
help integrate societal values into AI-driven sustainability policies.

Ultimately, fostering public engagement and awareness in AI sustainability
requires a multi-faceted approach that combines education, communication,
and participatory governance. By ensuring that AI systems are accessible,
understandable, and responsive to community needs, public trust and support
for AI-driven sustainability solutions can be strengthened. This engagement is
essential to aligning AI innovation with societal priorities and ensuring that
environmental AI systems serve the broader public good.

17.9.5 Equitable AI Access
Ensuring equitable access to AI-driven sustainability solutions is essential for
fostering global environmental progress. While AI has demonstrated its ability
to optimize energy grids, monitor deforestation, and improve climate modeling,
access to these technologies remains unevenly distributed. Developing nations,
marginalized communities, and small-scale environmental organizations often
lack the infrastructure, funding, and expertise necessary to leverage AI effec-
tively. Addressing these disparities is crucial to ensuring that the benefits of AI
sustainability solutions reach all populations rather than exacerbating existing
environmental and socio-economic inequalities.

One of the primary barriers to equitable AI access is the digital divide. Many
AI sustainability applications rely on advanced computing infrastructure, cloud
resources, and high-quality datasets, which are predominantly concentrated in
high-income regions. A recent OECD report on national AI compute capacity
highlighted that many countries lack a strategic roadmap for developing AI
infrastructure, leading to a growing gap between AI-rich and AI-poor regions
(Oecd 2023). Without targeted investment in AI infrastructure, lower-income
countries remain excluded from AI-driven sustainability advancements. Ex-
panding access to computing resources, supporting open-source AI frameworks,
and providing cloud-based AI solutions for environmental monitoring could
help bridge this gap.

In addition to infrastructure limitations, a lack of high-quality, region-specific
data poses a significant challenge. AI models trained on datasets from industri-
alized nations may not generalize well to other geographic and socio-economic
contexts. For example, an AI model optimized for water conservation in North
America may be ineffective in regions facing different climate patterns, agri-
cultural practices, or regulatory structures. Efforts to localize AI sustainability
applications, through the collection of diverse datasets, partnerships with local
organizations, and the integration of indigenous knowledge, can enhance the
relevance and impact of AI solutions in underrepresented regions.

Access to AI tools also requires technical literacy and capacity-building ini-
tiatives. Many small environmental organizations and community-driven sus-
tainability projects do not have the in-house expertise needed to develop or
deploy AI solutions effectively. Capacity-building efforts, such as AI training
programs, knowledge-sharing networks, and collaborations between academic
institutions and environmental groups, can empower local stakeholders to
adopt AI-driven sustainability practices. Organizations like Climate Change AI

Chapter 17. Sustainable AI 967

and the Partnership on AI have taken steps to provide resources and guidance
on using AI for environmental applications, but more widespread efforts are
needed to democratize access.

Funding mechanisms also play a critical role in determining who benefits
from AI-driven sustainability. While large corporations and well-funded re-
search institutions can afford to invest in AI-powered environmental solutions,
smaller organizations often lack the necessary financial resources. Government
grants, philanthropic funding, and international AI-for-good initiatives could
help ensure that grassroots sustainability efforts can leverage AI technologies.
For instance, Spain has allocated 300 million euros specifically for AI and sus-
tainability projects, setting a precedent for public investment in environmentally
responsible AI innovation. Expanding such funding models globally could
foster more inclusive AI adoption.

Beyond technical and financial barriers, policy interventions are necessary to
ensure that AI sustainability efforts are equitably distributed. Without regula-
tory frameworks that prioritize inclusion, AI-driven environmental solutions
may disproportionately benefit regions with existing technological advantages
while neglecting areas with the most pressing sustainability challenges. Gov-
ernments and international bodies should establish policies that encourage
equitable AI adoption, such as requiring AI sustainability projects to consider
social impact assessments or mandating transparent reporting on AI-driven
environmental initiatives.

Ensuring equitable access to AI for sustainability is not merely a technical
challenge but a fundamental issue of environmental justice. As AI continues to
shape global sustainability efforts, proactive measures must be taken to prevent
technology from reinforcing existing inequalities. By investing in AI infras-
tructure, localizing AI applications, supporting capacity-building efforts, and
implementing inclusive policies, AI can become a tool that empowers all com-
munities in the fight against climate change and environmental degradation.

17.10 Future Challenges
As AI continues to evolve, its role in environmental sustainability is set to
expand. Advances in AI have the potential to accelerate progress in renewable
energy, climate modeling, biodiversity conservation, and resource efÏciency.
However, realizing this potential requires addressing significant challenges
related to energy efÏciency, infrastructure sustainability, data availability, and
governance. The future of AI and sustainability hinges on balancing innovation
with responsible environmental stewardship, ensuring that AI-driven progress
does not come at the cost of increased environmental degradation.

17.10.1 Future Directions
A major priority in AI sustainability is the development of more energy-efÏcient
models and algorithms. Optimizing deep learning models to minimize compu-
tational cost is a key research direction, with techniques such as model pruning,
quantization, and low-precision numerics demonstrating significant potential
for reducing energy consumption without compromising performance. These

17.10. Future Challenges 968

strategies aim to improve the efÏciency of AI workloads while leveraging spe-
cialized hardware accelerators to maximize computational throughput with
minimal energy expenditure. The continued development of non-von Neu-
mann computing paradigms, such as neuromorphic computing and in-memory
computing, presents another avenue for energy-efÏcient AI architectures, as
explored in the Hardware Acceleration chapter.

Another crucial direction involves the integration of renewable energy into
AI infrastructure. Given that data centers are among the largest contributors to
AI’s carbon footprint, shifting towards clean energy sources like solar, wind,
and hydroelectric power is imperative. The feasibility of this transition depends
on advancements in sustainable energy storage technologies, such as those
being developed by companies like Ambri, an MIT spinoff working on liquid
metal battery solutions. These innovations could enable data centers to operate
on renewable energy with greater reliability, reducing dependency on fossil
fuel-based grid power. However, achieving this transition at scale requires col-
laborative efforts between AI companies, energy providers, and policymakers
to develop grid-aware AI scheduling and carbon-aware workload manage-
ment strategies, ensuring that compute-intensive AI tasks are performed when
renewable energy availability is at its peak.

Beyond energy efÏciency, AI sustainability will also benefit from intelligent
resource allocation and waste reduction strategies. Improving the utilization of
computing resources, reducing redundant model training cycles, and imple-
menting efÏcient data sampling techniques can substantially decrease energy
consumption. A key challenge in AI model development is the trade-off between
experimentation and efÏciency—techniques such as neural architecture search
and hyperparameter optimization can improve model performance but often
require vast computational resources. Research into efÏcient experimentation
methodologies could help strike a balance, allowing for model improvements
while mitigating the environmental impact of excessive training runs.

17.10.2 Challenges

Despite these promising directions, significant obstacles must be addressed to
make AI truly sustainable. One of the most pressing challenges is the lack of
standardized measurement and reporting frameworks for evaluating AI’s envi-
ronmental footprint. Unlike traditional industries, where LCA methodologies
are well-established, AI systems require more comprehensive and adaptable
approaches that account for the full environmental impact of both hardware
(compute infrastructure) and software (model training and inference cycles).
While efforts such as MLCommons have begun integrating energy efÏciency
into benchmarking practices, a broader, globally recognized standard is neces-
sary to ensure consistency in reporting AI-related emissions.

Another critical challenge is optimizing AI infrastructure for longevity and
sustainability. AI accelerators and data center hardware must be designed with
maximized utilization, extended operational lifespans, and minimal environ-
mental impact in mind. Unlike conventional hardware refresh cycles, which
often prioritize performance gains over sustainability, future AI infrastructure

https://ambri.com/
https://mlcommons.org/

Chapter 17. Sustainable AI 969

must prioritize reusability, modular design, and circular economy principles to
minimize electronic waste and reduce reliance on rare earth materials.

From a software perspective, minimizing redundant computation is essen-
tial to reducing energy-intensive workloads. The practice of training larger
models on increasingly vast datasets, while beneficial for accuracy, comes with
diminishing returns in sustainability. A data-centric approach to AI model
development, as highlighted in recent work (C.-J. Wu et al. 2022), suggests
that the predictive value of data decays over time, making it crucial to identify
and filter the most relevant data subsets. Smarter data sampling strategies can
optimize training processes, ensuring that only the most informative data is
used to refine models, reducing the energy footprint without sacrificing model
quality.

A further challenge lies in data accessibility and transparency. Many AI sus-
tainability efforts rely on corporate and governmental disclosures of energy us-
age, carbon emissions, and environmental impact data. However, data gaps and
inconsistencies hinder efforts to accurately assess AI’s footprint. Greater trans-
parency from AI companies regarding their sustainability initiatives, coupled
with open-access datasets for environmental impact research, would enable
more rigorous analysis and inform best practices for sustainable AI develop-
ment.

Finally, the rapid pace of AI innovation poses challenges for regulation and
governance. Policymakers must develop agile, forward-looking policies that
promote sustainability while preserving the flexibility needed for AI research
and innovation. Regulatory frameworks should encourage efÏcient AI prac-
tices, such as promoting carbon-aware computing, incentivizing energy-efÏcient
AI model development, and ensuring that AI-driven environmental applica-
tions align with broader sustainability goals. Achieving this requires close
collaboration between AI researchers, environmental scientists, energy sector
stakeholders, and policymakers to develop a regulatory landscape that fosters
responsible AI growth while minimizing ecological harm.

17.10.3 Towards Sustainable AI

The future of AI in sustainability is both promising and fraught with challenges.
To harness AI’s full potential while mitigating its environmental impact, the
field must embrace energy-efÏcient model development, renewable energy
integration, hardware and software optimizations, and transparent environ-
mental reporting. Addressing these challenges will require multidisciplinary
collaboration across technical, industrial, and policy domains, ensuring that
AI’s trajectory aligns with global sustainability efforts.

By embedding sustainability principles into AI system design, optimizing
compute infrastructure, and establishing clear accountability mechanisms, AI
can serve as a catalyst for environmental progress rather than a contributor to
ecological degradation. The coming years will be pivotal in shaping AI’s role in
sustainability, determining whether it amplifies existing challenges or emerges
as a key tool in the fight against climate change and resource depletion.

17.11. Conclusion 970

17.11 Conclusion

The integration of AI into environmental sustainability presents both immense
opportunities and formidable challenges. As AI systems continue to scale in
complexity and influence, their environmental footprint must be addressed
through energy-efÏcient design, responsible infrastructure deployment, trans-
parent accountability measures, and policy-driven interventions. While AI
offers powerful capabilities for climate modeling, emissions reduction, resource
optimization, and biodiversity conservation, its reliance on compute-intensive
hardware, large-scale data processing, and energy-hungry model training ne-
cessitates a careful balance between progress and sustainability.

This chapter has explored the full lifecycle impact of AI systems, from their
carbon footprint and energy consumption to hardware manufacturing, e-waste
concerns, and the role of embedded AI in the growing “Internet of Trash.” We
have examined strategies for mitigating AI’s environmental impact, includ-
ing advances in green AI infrastructure, energy-aware model optimization,
and lifecycle-aware AI development. Additionally, we have highlighted the
importance of policy and regulatory frameworks in shaping a sustainable AI
ecosystem, emphasizing the need for measurement and reporting mandates,
incentive structures, and governance mechanisms that align AI innovation with
long-term environmental goals.

Public perception and engagement remain central to the discourse on AI and
sustainability. Transparent AI practices, explainable models, and ethical gover-
nance frameworks will be key to fostering trust and ensuring that AI solutions
are inclusive, equitable, and accountable. The responsible deployment of AI
in sustainability efforts must incorporate stakeholder input, interdisciplinary
collaboration, and a commitment to minimizing unintended consequences.

Looking ahead, the path toward sustainable AI requires continuous advance-
ments in hardware efÏciency, carbon-aware computing, renewable energy inte-
gration, and equitable access to AI resources. Overcoming challenges such as
data gaps, inconsistent environmental reporting, and planned obsolescence in
AI hardware will require collective efforts from AI researchers, environmental
scientists, policymakers, and industry leaders. By embedding sustainability at
the core of AI development, we can ensure that AI not only accelerates techno-
logical progress but also contributes meaningfully to a more sustainable and
resilient future.

AI has the potential to be a force for good in the fight against climate change
and resource depletion, but its long-term impact depends on the choices we
make today. Through innovation, regulation, and collective responsibility, AI
can evolve as a technology that enhances environmental sustainability rather
than exacerbating ecological strain. The decisions made by AI practitioners,
policymakers, and society at large will shape whether AI serves as a tool for
sustainable progress or an unchecked driver of environmental harm. The
imperative now is to act deliberately, designing AI systems that align with global
sustainability goals and contribute to a future where technological advancement
and ecological well-being coexist harmoniously.

Chapter 17. Sustainable AI 971

17.12 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 18

Robust AI

Figure 18.1: DALL·E 3 Prompt: Create
an image featuring an advanced AI sys-
tem symbolized by an intricate, glowing
neural network, deeply nested within a
series of progressively larger and more
fortified shields. Each shield layer rep-
resents a layer of defense, showcasing
the system’s robustness against external
threats and internal errors. The neural
network, at the heart of this fortress of
shields, radiates with connections that
signify the AI’s capacity for learning
and adaptation. This visual metaphor
emphasizes not only the technological
sophistication of the AI but also its re-
silience and security, set against the
backdrop of a state-of-the-art, secure
server room filled with the latest in tech-
nological advancements. The image
aims to convey the concept of ultimate
protection and resilience in the field of
artificial intelligence.Purpose

How do we develop fault-tolerant and resilient machine learning systems for real-world
deployment?

The integration of machine learning systems into real-world applications
demands fault-tolerant execution. However, these systems are inherently vul-
nerable to a spectrum of challenges that can degrade their capabilities. From
subtle hardware anomalies to sophisticated adversarial attacks and the un-
predictable nature of real-world data, the potential for failure is ever-present.
This reality underscores the need to fundamentally rethink how AI systems are
designed and deployed, placing robustness and trustworthiness at the forefront.
Building resilient machine learning systems is not merely a technical objective;
it is a foundational requirement for ensuring their safe and effective operation
in dynamic and uncertain environments.

973

18.1. Overview 974

L� Learning Objectives

• Identify common hardware faults impacting AI performance.
• Explain how hardware faults (transient and permanent) affect AI

systems.
• Define adversarial attacks and their impact on ML models.
• Recognize the vulnerabilities of ML models to data poisoning.
• Explain the challenges posed by distribution shifts in ML models.
• Describe the role of software fault detection and mitigation in AI

systems.
• Understand the importance of a holistic software development

approach for robust AI.

18.1 Overview
As ML systems become increasingly integrated into various domains, ranging
from cloud-based services to edge devices and embedded systems, the impact of
hardware and software faults on their performance and reliability grows more
pronounced. Looking ahead, as these systems become more complex and are
deployed in safety-critical applications, the need for robust and fault-tolerant
designs becomes paramount.

ML systems are expected to play critical roles in autonomous vehicles, smart
cities, healthcare, and industrial automation. In these domains, the conse-
quences of systemic failures, including hardware and software faults, and
malicious inputs such as adversarial attacks and data poisoning, and envi-
ronmental shifts, can be severe, potentially resulting in loss of life, economic
disruption, or environmental harm.

To address these risks, researchers and engineers must develop advanced
techniques for fault detection, isolation, and recovery, ensuring the reliable
operation of future ML systems.

�� Definition of Robust AI

Robust Artificial Intelligence (Robust AI) refers to the ability of AI
systems to maintain performance and reliability in the presence of internal
and external system errors, and malicious inputs and changes to the data or
environment. Robust AI systems are designed to be fault-tolerant and error-
resilient, capable of functioning effectively despite variations and errors
within the operational environment. Achieving Robust AI involves strategies
for fault detection, mitigation, and recovery, as well as prioritizing resilience
throughout the AI development lifecycle.

We focus specifically on categories of faults and errors that can impact the
robustness of ML systems: errors arising from the underlying system, malicious
manipulation, and environmental changes.

Chapter 18. Robust AI 975

Systemic hardware failures present significant challenges across computing
systems. Whether transient, permanent, or intermittent, these faults can cor-
rupt computations and degrade system performance. The impact ranges from
temporary glitches to complete component failures, requiring robust detection
and mitigation strategies to maintain reliable operation.

Malicious manipulation of ML models remains a critical concern as ML sys-
tems face various threats to their integrity. Adversarial attacks, data poisoning
attempts, and distribution shifts can cause models to misclassify inputs, exhibit
distorted behavior patterns, or produce unreliable outputs. These vulnera-
bilities underscore the importance of developing resilient architectures and
defensive mechanisms to protect model performance.

Environmental changes introduce another dimension of potential faults that
must be carefully managed. Bugs, design flaws, and implementation errors
within algorithms, libraries, and frameworks can propagate through the system,
creating systemic vulnerabilities. Rigorous testing, monitoring, and quality
control processes help identify and address these software-related issues before
they impact production systems.

The specific approaches to achieving robustness vary significantly based
on deployment context and system constraints. Large-scale cloud computing
environments and data centers typically emphasize fault tolerance through
redundancy, distributed processing architectures, and sophisticated error de-
tection mechanisms. In contrast, edge devices and embedded systems must
address robustness challenges within strict computational, memory, and en-
ergy limitations. This necessitates careful optimization and targeted hardening
strategies appropriate for resource-constrained environments.

Regardless of deployment context, the essential characteristics of a robust
ML system include fault tolerance, error resilience, and sustained performance.
By understanding and addressing these multifaceted challenges, it is possible
to develop reliable ML systems capable of operating effectively in real-world
environments.

This chapter not only explores the tools, frameworks, and techniques used
to detect and mitigate faults, attacks, and distribution shifts, but also empha-
sizes the importance of prioritizing resilience throughout the AI development
lifecycle—from data collection and model training to deployment and moni-
toring. Proactively addressing robustness challenges is key to unlocking the
full potential of ML technologies while ensuring their safe, dependable, and
responsible deployment.

18.2 Real-World Applications
Understanding the importance of robustness in machine learning systems
requires examining how faults manifest in practice. Real-world case studies
illustrate the consequences of hardware and software faults across cloud, edge,
and embedded environments. These examples highlight the critical need for
fault-tolerant design, rigorous testing, and robust system architectures to ensure
reliable operation in diverse deployment scenarios.

18.2. Real-World Applications 976

18.2.1 Cloud
In February 2017, Amazon Web Services (AWS) experienced a significant outage
due to human error during routine maintenance. An engineer inadvertently
entered an incorrect command, resulting in the shutdown of multiple servers.
This outage disrupted many AWS services, including Amazon’s AI-powered
assistant, Alexa. As a consequence, Alexa-enabled devices, including Amazon
Echo and third-party products that utilize Alexa Voice Service, were unrespon-
sive for several hours. This incident underscores the impact of human error on
cloud-based ML systems and the importance of robust maintenance protocols
and failsafe mechanisms.

In another case (Vangal et al. 2021), Facebook encountered a silent data cor-
ruption (SDC) issue in its distributed querying infrastructure, illustrated in
Figure 18.2. SDC refers to undetected errors during computation or data trans-
fer that propagate silently through system layers. Facebook’s system processed
SQL-like queries across datasets and supported a compression application de-
signed to reduce data storage footprints. Files were compressed when not in
use and decompressed upon read requests. A size check was performed before
decompression to ensure the file was valid. However, an unexpected fault
occasionally returned a file size of zero for valid files, leading to decompres-
sion failures and missing entries in the output database. The issue appeared
sporadically, with some computations returning correct file sizes, making it
particularly difÏcult to diagnose.

Figure 18.2: Silent data corruption
in database applications. Source:
Facebook.

Scale math.pow()

Decompress file

size calculation

Defective
CPU

Spark shuffle and
merge database

Spark pre-shuffle
data store

(compressed)

Shuffle and merge

2. Compute (1.1)53
3. Result = 0

3. Expecte4d Result = 156.24

1. Compute file size

for decompression
4. Write file to

database if size > 0

5. Missing rows in DB

This case illustrates how silent data corruption can propagate across multiple
layers of the application stack, resulting in data loss and application failures in
large-scale distributed systems. Left unaddressed, such errors can degrade ML
system performance. For example, corrupted training data or inconsistencies
in data pipelines due to SDC may compromise model accuracy and reliability.
Similar challenges have been reported by other major companies. As shown in
Figure 18.3, Jeff Dean, Chief Scientist at Google DeepMind and Google Research,
highlighted these issues in AI hypercomputers during a keynote at MLSys 2024.

https://aws.amazon.com/message/41926/
https://arxiv.org/pdf/2102.11245
https://en.wikipedia.org/wiki/Jeff_Dean
https://mlsys.org/

Chapter 18. Robust AI 977

Figure 18.3: Silent data corruption
(SDC) errors are a major issue for AI
hypercomputers. Source: Jeff Dean
at MLSys 2024, Keynote (Google).

0 Autopilot: Tesla’s driver as-
sistance system that provides semi-
autonomous capabilities like steer-
ing, braking, and acceleration while
requiring active driver supervision.

18.2.2 Edge

In the edge computing domain, self-driving vehicles provide prominent exam-
ples of how faults can critically affect ML systems. These vehicles depend on
machine learning for perception, decision-making, and control, making them
particularly vulnerable to both hardware and software faults.

Figure 18.4: Tesla in the fatal Califor-
nia crash was on Autopilot. Source:
BBC News

In May 2016, a fatal crash occurred when a Tesla Model S operating in Au-
topilot mode0 collided with a white semi-trailer truck. The system, relying on
computer vision and ML algorithms, failed to distinguish the trailer against a
bright sky, leading to a high-speed impact. The driver, reportedly distracted at
the time, did not intervene, as shown in Figure 18.4. This incident raised serious
concerns about the reliability of AI-based perception systems and emphasized
the need for robust failsafe mechanisms in autonomous vehicles. A similar
case occurred in March 2018, when an Uber self-driving test vehicle struck and
killed a pedestrian in Tempe, Arizona. The accident was attributed to a flaw in

https://en.wikipedia.org/wiki/Jeff_Dean
https://mlsys.org/
https://www.bbc.com/news/world-us-canada-43604440
https://money.cnn.com/2018/03/19/technology/uber-autonomous-car-fatal-crash/index.html?iid=EL

18.2. Real-World Applications 978

the vehicle’s object recognition software, which failed to classify the pedestrian
as an obstacle requiring avoidance.

18.2.3 Embedded
Embedded systems operate in resource-constrained and often safety-critical
environments. As AI capabilities are increasingly integrated into these systems,
the complexity and consequences of faults grow significantly.

One example comes from space exploration. In 1999, NASA’s Mars Polar
Lander mission experienced a catastrophic failure due to a software error in
its touchdown detection system (Figure 18.5). The lander’s software misinter-
preted the vibrations from the deployment of its landing legs as a successful
touchdown, prematurely shutting off its engines and causing a crash. This
incident underscores the importance of rigorous software validation and robust
system design, particularly for remote missions where recovery is impossi-
ble. As AI becomes more integral to space systems, ensuring robustness and
reliability will be essential to mission success.

Figure 18.5: NASA’s Failed Mars Po-
lar Lander mission in 1999 cost over
$200M. Source: SlashGear

Another example occurred in 2015, when a Boeing 787 Dreamliner experi-
enced a complete electrical shutdown mid-flight due to a software bug in its
generator control units. The failure stemmed from a scenario in which power-
ing up all four generator control units simultaneously, following 248 days of
uninterrupted operation, caused them to enter failsafe mode, disabling all AC
electrical power.

“If the four main generator control units (associated with the engine-
mounted generators) were powered up at the same time, after 248 days of
continuous power, all four GCUs will go into failsafe mode at the same time,
resulting in a loss of all AC electrical power regardless of flight phase.” —
Federal Aviation Administration directive (2015)

https://spaceref.com/uncategorized/nasa-reveals-probable-cause-of-mars-polar-lander-and-deep-space-2-mission-failures/
https://www.slashgear.com/1094840/nasas-failed-mars-missions-that-cost-over-200-million/
https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf

Chapter 18. Robust AI 979

1 Model Uncertainty: The inade-
quacy of a machine learning model
to capture the full complexity of the
underlying data-generating process.

As AI is increasingly applied in aviation, including tasks such as autonomous
flight control and predictive maintenance, the robustness of embedded systems
becomes critical for passenger safety.

Finally, consider the case of implantable medical devices. For instance, a
smart pacemaker that experiences a fault or unexpected behavior due to soft-
ware or hardware failure could place a patient’s life at risk. As AI systems take
on perception, decision-making, and control roles in such applications, new
sources of vulnerability emerge, including data-related errors, model uncer-
tainty1, and unpredictable behaviors in rare edge cases. Moreover, the opaque
nature of some AI models complicates fault diagnosis and recovery.

18.3 Hardware Faults
Hardware faults are a significant challenge in computing systems, including
both traditional and ML systems. These faults occur when physical components,
including processors, memory modules, storage devices, and interconnects,
malfunction or behave abnormally. Hardware faults can cause incorrect com-
putations, data corruption, system crashes, or complete system failure, com-
promising the integrity and trustworthiness of the computations performed by
the system (S. Jha et al. 2019). A complete system failure refers to a situation
where the entire computing system becomes unresponsive or inoperable due
to a critical hardware malfunction. This type of failure is the most severe, as it
renders the system unusable and may lead to data loss or corruption, requiring
manual intervention to repair or replace the faulty components.

ML systems depend on complex hardware architectures and large-scale com-
putations to train and deploy models that learn from data and make intelligent
predictions. As a result, hardware faults can disrupt the MLOps pipeline, intro-
ducing errors that compromise model accuracy, robustness, and reliability (G.
Li et al. 2017). Understanding the types of hardware faults, their mechanisms,
and their impact on system behavior is essential for developing strategies to
detect, mitigate, and recover from these issues.

The following sections will explore the three main categories of hardware
faults: transient, permanent, and intermittent. We will discuss their definitions,
characteristics, causes, mechanisms, and examples of how they manifest in
computing systems. Detection and mitigation techniques specific to each fault
type will also be covered.

• Transient Faults: Transient faults are temporary and non-recurring. They
are often caused by external factors such as cosmic rays, electromagnetic
interference, or power fluctuations. A common example of a transient
fault is a bit flip, where a single bit in a memory location or register
changes its value unexpectedly. Transient faults can lead to incorrect com-
putations or data corruption, but they do not cause permanent damage
to the hardware.

• Permanent Faults: Permanent faults, also called hard errors, are irre-
versible and persist over time. They are typically caused by physical
defects or wear-out of hardware components. Examples of permanent
faults include stuck-at faults, where a bit or signal is permanently set to

https://www.bbc.com/future/article/20221011-how-space-weather-causes-computer-errors

18.3. Hardware Faults 980

a specific value (e.g., always 0 or always 1), and device failures, such as
a malfunctioning processor or a damaged memory module. Permanent
faults can result in complete system failure or significant performance
degradation.

• Intermittent Faults: Intermittent faults are recurring faults that appear
and disappear intermittently. Unstable hardware conditions, such as loose
connections, aging components, or manufacturing defects, often cause
them. Intermittent faults can be challenging to diagnose and reproduce
because they may occur sporadically and under specific conditions. Exam-
ples include intermittent short circuits or contact resistance issues. These
faults can lead to unpredictable system behavior and sporadic errors.

Understanding this fault taxonomy and its relevance to both traditional com-
puting and ML systems provides a foundation for making informed decisions
when designing, implementing, and deploying fault-tolerant solutions. This
knowledge is crucial for improving the reliability and trustworthiness of com-
puting systems and ML applications.

18.3.1 Transient Faults
Transient faults in hardware can manifest in various forms, each with its own
unique characteristics and causes. These faults are temporary in nature and do
not result in permanent damage to the hardware components.

18.3.1.1 Characteristics

All transient faults are characterized by their short duration and non-permanent
nature. They do not persist or leave any lasting impact on the hardware. How-
ever, they can still lead to incorrect computations, data corruption, or system
misbehavior if not properly handled. A classic example is shown in Figure 18.6,
where a single bit in memory unexpectedly changes state, potentially altering
critical data or computations.

Some of the common types of transient faults include Single Event Upsets
(SEUs) caused by ionizing radiation, voltage fluctuations (Reddi and Gupta
2013) due to power supply noise or electromagnetic interference, Electromag-
netic Interference (EMI) induced by external electromagnetic fields, Electrostatic
Discharge (ESD) resulting from sudden static electricity flow, crosstalk caused
by unintended signal coupling, ground bounce triggered by simultaneous
switching of multiple outputs, timing violations due to signal timing constraint
breaches, and soft errors in combinational logic affecting the output of logic
circuits (Mukherjee, Emer, and Reinhardt, n.d.). Understanding these different
types of transient faults is crucial for designing robust and resilient hardware
systems that can mitigate their impact and ensure reliable operation.

18.3.1.2 Causes

Transient faults can be attributed to various external factors. One common cause
is cosmic rays—high-energy particles originating from outer space. When
these particles strike sensitive areas of the hardware, such as memory cells
or transistors, they can induce charge disturbances that alter the stored or

Chapter 18. Robust AI 981

Figure 18.6: An illustration of a bit-
flip error, where a single bit in mem-
ory changes state, leading to data
corruption or computation errors.

1 1 1 1 1 1

1 1 1 1 1 1

0 0 0

0 01

Bit-Flip

• • •

• • • Memory before

Memory after

2 Glitches: Momentary deviation
in voltage, current, or signal, often
causing incorrect operation.

3 Combinational logic: Digital
logic, wherein the output depends
only on the current input states, not
any past states.

transmitted data. This is illustrated in Figure 18.7. Another cause of transient
faults is electromagnetic interference (EMI) from nearby devices or power
fluctuations. EMI can couple with the circuits and cause voltage spikes or
glitches that temporarily disrupt the normal operation of the hardware.

Figure 18.7: Mechanism of Hard-
ware Transient Fault Occurrence.
Source: NTT

18.3.1.3 Mechanisms

Transient faults can manifest through different mechanisms depending on
the affected hardware component. In memory devices like DRAM or SRAM,
transient faults often lead to bit flips, where a single bit changes its value
from 0 to 1 or vice versa. This can corrupt the stored data or instructions. In
logic circuits, transient faults can cause glitches2 or voltage spikes propagating
through the combinational logic3, resulting in incorrect outputs or control
signals. Transient faults can also affect communication channels, causing bit
errors or packet losses during data transmission.

18.3.1.4 Impact on ML

A common example of a transient fault is a bit flip in the main memory. If an
important data structure or critical instruction is stored in the affected memory
location, it can lead to incorrect computations or program misbehavior. For
instance, a bit flip in the memory storing a loop counter can cause the loop to

https://www.trentonsystems.com/en-us/resource-hub/blog/what-is-electromagnetic-interference
https://group.ntt/en/newsrelease/2018/11/22/181122a.html

18.3. Hardware Faults 982

execute indefinitely or terminate prematurely. Transient faults in control regis-
ters or flag bits can alter the flow of program execution, leading to unexpected
jumps or incorrect branch decisions. In communication systems, transient faults
can corrupt transmitted data packets, resulting in retransmissions or data loss.

In ML systems, transient faults can have significant implications during the
training phase (Yi He et al. 2023). ML training involves iterative computations
and updates to model parameters based on large datasets. If a transient fault
occurs in the memory storing the model weights or gradients, it can lead to
incorrect updates and compromise the convergence and accuracy of the training
process. For example, a bit flip in the weight matrix of a neural network can
cause the model to learn incorrect patterns or associations, leading to degraded
performance (Wan et al. 2021). Transient faults in the data pipeline, such as
corruption of training samples or labels, can also introduce noise and affect the
quality of the learned model.

As shown in Figure 18.8, a real-world example from Google’s production fleet
highlights how an SDC anomaly caused a significant deviation in the gradient
norm—a measure of the magnitude of updates to the model parameters. Such
deviations can disrupt the optimization process, leading to slower convergence
or failure to reach an optimal solution.

Figure 18.8: SDC in ML training
phase results in anomalies in the
gradient norm. Source: Jeff Dean,
MLSys 2024 Keynote (Google)

During the inference phase, transient faults can impact the reliability and
trustworthiness of ML predictions. If a transient fault occurs in the memory
storing the trained model parameters or during the computation of inference
results, it can lead to incorrect or inconsistent predictions. For instance, a bit
flip in the activation values of a neural network can alter the final classification
or regression output (Mahmoud et al. 2020). In safety-critical applications,
such as autonomous vehicles or medical diagnosis, these faults can have severe
consequences, resulting in incorrect decisions or actions that may compromise
safety or lead to system failures (G. Li et al. 2017; S. Jha et al. 2019).

Chapter 18. Robust AI 983

4 Stochastic Computing: A
collection of techniques using ran-
dom bits and logic operations to
perform arithmetic and data pro-
cessing, promising better fault toler-
ance.

5 Lookup Table: A data structure
used to replace a runtime computa-
tion with a simpler array indexing
operation.

Transient faults can be amplified in resource-constrained environments like
TinyML, where limited computational and memory resources exacerbate their
impact. One prominent example is Binarized Neural Networks (BNNs) (Cour-
bariaux et al. 2016), which represent network weights in single-bit precision to
achieve computational efÏciency and faster inference times. While this binary
representation is advantageous for resource-constrained systems, it also makes
BNNs particularly fragile to bit-flip errors. For instance, prior work (Aygun,
Gunes, and De Vleeschouwer 2021) has shown that a two-hidden-layer BNN
architecture for a simple task such as MNIST classification suffers performance
degradation from 98% test accuracy to 70% when random bit-flipping soft errors
are inserted through model weights with a 10% probability. To address these
vulnerabilities, techniques like flip-aware training and emerging approaches
such as stochastic computing4 are being explored to enhance fault tolerance.

18.3.2 Permanent Faults
Permanent faults are hardware defects that persist and cause irreversible dam-
age to the affected components. These faults are characterized by their persis-
tent nature and require repair or replacement of the faulty hardware to restore
normal system functionality.

18.3.2.1 Characteristics

Permanent faults cause persistent and irreversible malfunctions in hardware
components. The faulty component remains non-operational until it is repaired
or replaced. These faults are consistent and reproducible, meaning the faulty be-
havior is observed every time the affected component is used. They can impact
processors, memory modules, storage devices, or interconnects—potentially
leading to system crashes, data corruption, or complete system failure.

One notable example of a permanent fault is the Intel FDIV bug, discovered in
1994. This flaw affected the floating-point division (FDIV) units of certain Intel
Pentium processors, causing incorrect results for specific division operations
and leading to inaccurate calculations.

The FDIV bug occurred due to an error in the lookup table5 used by the divi-
sion unit. In rare cases, the processor would fetch an incorrect value, resulting
in a slightly less precise result than expected. For instance, Figure 18.9 shows a
fraction 4195835/3145727 plotted on a Pentium processor with the FDIV fault.
The triangular regions highlight where erroneous calculations occurred. Ideally,
all correct values would round to 1.3338, but the faulty results showed 1.3337,
indicating a mistake in the 5th digit.

Although the error was small, it could compound across many operations,
significantly affecting results in precision-critical applications such as scientific
simulations, financial calculations, and computer-aided design. The bug ulti-
mately led to incorrect outcomes in these domains and underscored the severe
consequences permanent faults can have.

The FDIV bug serves as a cautionary tale for ML systems. In such systems,
permanent faults in hardware components can result in incorrect computations,
impacting model accuracy and reliability. For example, if an ML system relies
on a processor with a faulty floating-point unit, similar to the FDIV bug, it

https://en.wikipedia.org/wiki/Stochastic_computing
https://en.wikipedia.org/wiki/Pentium_FDIV_bug

18.3. Hardware Faults 984

Figure 18.9: Intel Pentium pro-
cessor with the FDIV permanent
fault. The triangular regions are
where erroneous calculations oc-
curred. Source: Byte Magazine

6 The movement of metal atoms
in a conductor under the influence
of an electric field.

7 The failure of an oxide layer in
a transistor due to excessive electric
field stress.

8 Degradation caused by re-
peated cycling through high and
low temperatures.

could introduce persistent errors during training or inference. These errors
may propagate through the model, leading to inaccurate predictions or skewed
learning outcomes.

This is especially critical in safety-sensitive applications like autonomous
driving, medical diagnosis, or financial forecasting, where the consequences of
incorrect computations can be severe. ML practitioners must be aware of these
risks and incorporate fault-tolerant techniques, including hardware redundancy,
error detection and correction, and robust algorithm design, to mitigate them.
Additionally, thorough hardware validation and testing can help identify and
resolve permanent faults before they affect system performance and reliability.

18.3.2.2 Causes
Permanent faults can arise from two primary sources: manufacturing defects
and wear-out mechanisms. Manufacturing defects are flaws introduced dur-
ing the fabrication process, including improper etching, incorrect doping, or
contamination. These defects may result in non-functional or partially func-
tional components. In contrast, wear-out mechanisms occur over time due to
prolonged use and operational stress. Phenomena like electromigration6, ox-
ide breakdown7, and thermal stress8 degrade component integrity, eventually
leading to permanent failure.

18.3.2.3 Mechanisms
Permanent faults manifest through several mechanisms, depending on their
nature and location. A common example is the stuck-at fault (Seong et al. 2010),
where a signal or memory cell becomes permanently fixed at either 0 or 1,
regardless of the intended input, as shown in Figure 18.10. This type of fault
can occur in logic gates, memory cells, or interconnects and typically results in
incorrect computations or persistent data corruption.

Other mechanisms include device failures, in which hardware components
such as transistors or memory cells cease functioning entirely due to manufac-
turing defects or degradation over time. Bridging faults, which occur when
two or more signal lines are unintentionally connected, can introduce short
circuits or incorrect logic behaviors that are difÏcult to isolate.

https://www.halfhill.com/byte/1995-3_truth.html
https://www.sciencedirect.com/science/article/pii/B9780128181058000206
https://semiengineering.com/what-causes-semiconductor-aging/

Chapter 18. Robust AI 985

Figure 18.10: Stuck-at Fault Model
in Digital Circuits. Source: Accendo
Reliability

SAO SA1

SAO SA1

SAO SA1

SAO SA1

SAO SA1

SAO SA1

SAO SA1

SAO SA1

SAO SA1

SAO SA1

In more subtle cases, delay faults can arise when the propagation time of
a signal exceeds the allowed timing constraints. Although the logical values
may be correct, the violation of timing expectations can still result in erroneous
behavior. Similarly, interconnect faults, including open circuits caused by bro-
ken connections, high-resistance paths that impede current flow, and increased
capacitance that distorts signal transitions, can significantly degrade circuit
performance and reliability.

Memory subsystems are particularly vulnerable to permanent faults. Tran-
sition faults can prevent a memory cell from successfully changing its state,
while coupling faults result from unwanted interference between adjacent cells,
leading to unintentional state changes. Additionally, neighborhood pattern
sensitive faults occur when the state of a memory cell is incorrectly influenced
by the data stored in nearby cells, reflecting a more complex interaction between
circuit layout and logic behavior.

Finally, permanent faults can also occur in critical infrastructure components
such as the power supply network or clock distribution system. Failures in
these subsystems can affect circuit-wide functionality, introduce timing errors,
or cause widespread operational instability.

Taken together, these mechanisms illustrate the varied and often complex
ways in which permanent faults can undermine the behavior of computing
systems. For ML applications in particular, where correctness and consistency
are vital, understanding these fault modes is essential for developing resilient
hardware and software solutions.

18.3.2.4 Impact on ML

Permanent faults can severely disrupt the behavior and reliability of computing
systems. For example, a stuck-at fault in a processor’s arithmetic logic unit
(ALU) can produce persistent computational errors, leading to incorrect pro-
gram behavior or crashes. In memory modules, such faults may corrupt stored
data, while in storage devices, they can result in bad sectors or total data loss.
Interconnect faults may interfere with data transmission, leading to system
hangs or corruption.

For ML systems, these faults pose significant risks in both the training and
inference phases. During training, permanent faults in processors or memory

https://accendoreliability.com/digital-circuits-stuck-fault-model/
https://accendoreliability.com/digital-circuits-stuck-fault-model/

18.3. Hardware Faults 986

9 Error-Correcting Codes: Meth-
ods used in data storage and trans-
mission to detect and correct errors.

10 Checkpoint and Restart Mech-
anisms: Techniques that periodi-
cally save a program’s state so it can
resume from the last saved state af-
ter a failure.

can lead to incorrect gradient calculations, corrupt model parameters, or prema-
turely halted training processes (Yi He et al. 2023). Similarly, faults in storage
can compromise training datasets or saved models, affecting consistency and
reliability.

In the inference phase, faults can distort prediction results or lead to runtime
failures. For instance, errors in the hardware storing model weights might lead
to outdated or corrupted models being used, while processor faults could yield
incorrect outputs (J. J. Zhang et al. 2018).

To mitigate these impacts, ML systems must incorporate both hardware and
software fault-tolerant techniques. Hardware-level methods include component
redundancy and error-correcting codes (J. Kim, Sullivan, and Erez 2015).9
Software approaches, like checkpoint and restart mechanisms10 (Egwutuoha et
al. 2013), allow systems to recover to a known-good state after a failure. Regular
monitoring, testing, and maintenance can also help detect and replace failing
components before critical errors occur.

Ultimately, designing ML systems with built-in fault tolerance is essential
to ensure resilience. Incorporating redundancy, error-checking, and fail-safe
mechanisms helps preserve model integrity, accuracy, and trustworthiness—
even in the face of permanent hardware faults.

18.3.3 Intermittent Faults

Intermittent faults are hardware faults that occur sporadically and unpre-
dictably in a system. An example is illustrated in Figure 18.11, where cracks
in the material can introduce increased resistance in circuitry. These faults
are particularly challenging to detect and diagnose because they appear and
disappear intermittently, making it difÏcult to reproduce and isolate the root
cause. Depending on their frequency and location, intermittent faults can lead
to system instability, data corruption, and performance degradation.

Figure 18.11: Increased resistance
due to an intermittent fault – crack
between copper bump and package
solder. Source: Constantinescu

https://ieeexplore.ieee.org/document/4925824

Chapter 18. Robust AI 987

18.3.3.1 Characteristics

Intermittent faults are defined by their sporadic and non-deterministic behavior.
They occur irregularly and may manifest for short durations, disappearing
without a consistent pattern. Unlike permanent faults, they do not appear
every time the affected component is used, which makes them particularly
difÏcult to detect and reproduce. These faults can affect a variety of hardware
components, including processors, memory modules, storage devices, and
interconnects. As a result, they may lead to transient errors, unpredictable
system behavior, or data corruption.

Their impact on system reliability can be significant. For instance, an inter-
mittent fault in a processor’s control logic may disrupt the normal execution
path, causing irregular program flow or unexpected system hangs. In memory
modules, such faults can alter stored values inconsistently, leading to errors
that are difÏcult to trace. Storage devices affected by intermittent faults may
suffer from sporadic read/write errors or data loss, while intermittent faults
in communication channels can cause data corruption, packet loss, or unsta-
ble connectivity. Over time, these failures can accumulate, degrading system
performance and reliability (Rashid, Pattabiraman, and Gopalakrishnan 2015).

18.3.3.2 Causes

The causes of intermittent faults are diverse, ranging from physical degradation
to environmental influences. One common cause is the aging and wear-out of
electronic components. As hardware endures prolonged operation, thermal
cycling, and mechanical stress, it may develop cracks, fractures, or fatigue that
introduce intermittent faults. For instance, solder joints in ball grid arrays
(BGAs) or flip-chip packages can degrade over time, leading to intermittent
open circuits or short circuits.

Manufacturing defects and process variations can also introduce marginal
components that behave reliably under most circumstances but fail intermit-
tently under stress or extreme conditions. For example, Figure 18.12 shows
a residue-induced intermittent fault in a DRAM chip that leads to sporadic
failures.

Figure 18.12: Residue induced in-
termittent fault in a DRAM chip.
Source: Hynix Semiconductor

https://ieeexplore.ieee.org/document/4925824

18.3. Hardware Faults 988

Environmental factors such as thermal cycling, humidity, mechanical vibra-
tions, or electrostatic discharge can exacerbate these weaknesses and trigger
faults that would not otherwise appear. Loose or degrading physical connec-
tions, including those found in connectors or printed circuit boards, are also
common sources of intermittent failures, particularly in systems exposed to
movement or temperature variation.

18.3.3.3 Mechanisms

Intermittent faults can manifest through various physical and logical mecha-
nisms depending on their root causes. One such mechanism is the intermittent
open or short circuit, where physical discontinuities or partial connections
cause signal paths to behave unpredictably. These faults may momentarily
disrupt signal integrity, leading to glitches or unexpected logic transitions.

Another common mechanism is the intermittent delay fault (J. Zhang et
al. 2018), where signal propagation times fluctuate due to marginal timing
conditions, resulting in synchronization issues and incorrect computations. In
memory cells or registers, intermittent faults can appear as transient bit flips or
soft errors, corrupting data in ways that are difÏcult to detect or reproduce. Be-
cause these faults are often condition-dependent, they may only emerge under
specific thermal, voltage, or workload conditions, adding further complexity to
their diagnosis.

18.3.3.4 Impact on ML

Intermittent faults pose significant challenges for ML systems by undermining
computational consistency and model reliability. During the training phase,
such faults in processing units or memory can cause sporadic errors in the
computation of gradients, weight updates, or loss values. These errors may not
be persistent but can accumulate across iterations, degrading convergence and
leading to unstable or suboptimal models. Intermittent faults in storage may
corrupt input data or saved model checkpoints, further affecting the training
pipeline (Yi He et al. 2023).

In the inference phase, intermittent faults may result in inconsistent or er-
roneous predictions. Processing errors or memory corruption can distort ac-
tivations, outputs, or intermediate representations of the model, particularly
when faults affect model parameters or input data. Intermittent faults in data
pipelines, such as unreliable sensors or storage systems, can introduce subtle
input errors that degrade model robustness and output accuracy. In high-stakes
applications like autonomous driving or medical diagnosis, these inconsisten-
cies can result in dangerous decisions or failed operations.

Mitigating the effects of intermittent faults in ML systems requires a multi-
layered approach (Rashid, Pattabiraman, and Gopalakrishnan 2012). At the
hardware level, robust design practices, environmental controls, and the use of
higher-quality or more reliable components can reduce susceptibility to fault
conditions. Redundancy and error detection mechanisms can help identify and
recover from transient manifestations of intermittent faults.

At the software level, techniques such as runtime monitoring, anomaly de-
tection, and adaptive control strategies can provide resilience. Data validation

Chapter 18. Robust AI 989

11 Scan Chains: Dedicated
paths incorporated within a proces-
sor that grant access to internal reg-
isters and logic for testing.

12 R. W. Hamming’s seminal pa-
per introduced error detection and
correction codes, significantly ad-
vancing digital communication reli-
ability.

13 In parity checks, an extra bit
accounts for the total number of 1s
in a data word, enabling fundamen-
tal error detection.

checks, outlier detection, model ensembling, and runtime model adaptation
are examples of fault-tolerant methods that can be integrated into ML pipelines
to improve reliability in the presence of sporadic errors.

Ultimately, designing ML systems that can gracefully handle intermittent
faults is essential to maintaining their accuracy, consistency, and dependability.
This involves proactive fault detection, regular system monitoring, and ongo-
ing maintenance to ensure early identification and remediation of issues. By
embedding resilience into both the architecture and operational workflow, ML
systems can remain robust even in environments prone to sporadic hardware
failures.

18.3.4 Detection and Mitigation
Various fault detection techniques, including hardware-level and software-level
approaches, and effective mitigation strategies can enhance the resilience of ML
systems. Additionally, resilient ML system design considerations, case studies
and examples, and future research directions in fault-tolerant ML systems
provide insights into building robust systems.

18.3.4.1 Detection Techniques
Fault detection techniques are important for identifying and localizing hard-
ware faults in ML systems. These techniques can be broadly categorized into
hardware-level and software-level approaches, each offering unique capabilities
and advantages.

Hardware-Level Detection. Hardware-level fault detection techniques are
implemented at the physical level of the system and aim to identify faults in the
underlying hardware components. There are several hardware techniques, but
broadly, we can bucket these different mechanisms into the following categories.

Built-in self-test (BIST) Mechanisms. BIST is a powerful technique for detecting
faults in hardware components (Bushnell and Agrawal 2002). It involves in-
corporating additional hardware circuitry into the system for self-testing and
fault detection. BIST can be applied to various components, such as proces-
sors, memory modules, or application-specific integrated circuits (ASICs). For
example, BIST can be implemented in a processor using scan chains11, which
are dedicated paths that allow access to internal registers and logic for testing
purposes.

During the BIST process, predefined test patterns are applied to the proces-
sor’s internal circuitry, and the responses are compared against expected values.
Any discrepancies indicate the presence of faults. Intel’s Xeon processors, for
instance, include BIST mechanisms to test the CPU cores, cache memory, and
other critical components during system startup.

Error Detection Codes. Error detection codes are widely used to detect data
storage and transmission errors (Hamming 1950)12. These codes add redundant
bits to the original data, allowing the detection of bit errors. Example: Parity
checks are a simple form of error detection code shown in Figure 18.1313. In a
single-bit parity scheme, an extra bit is appended to each data word, making
the number of 1s in the word even (even parity) or odd (odd parity).

18.3. Hardware Faults 990

Figure 18.13: Parity bit example.
Source: Computer Hope

0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

sequence of

seven bits

with eighth

even parity bit

with eighth

odd parity bit

Parity bit examples

ComputerHope.com

14 Double Modular Redundancy
(DMR): A fault-tolerance process in
which computations are duplicated
to identify and correct errors.

15 Triple Modular Redundancy
(TMR): A fault-tolerance process
where three instances of a compu-
tation are performed to identify and
correct errors.

When reading the data, the parity is checked, and if it doesn’t match the
expected value, an error is detected. More advanced error detection codes, such
as cyclic redundancy checks (CRC), calculate a checksum based on the data and
append it to the message. The checksum is recalculated at the receiving end
and compared with the transmitted checksum to detect errors. Error-correcting
code (ECC) memory modules, commonly used in servers and critical systems,
employ advanced error detection and correction codes to detect and correct
single-bit or multi-bit errors in memory.

Hardware redundancy and voting mechanisms. Hardware redundancy involves
duplicating critical components and comparing their outputs to detect and
mask faults (Sheaffer, Luebke, and Skadron 2007). Voting mechanisms, such as
double modular redundancy (DMR)14 or triple modular redundancy (TMR)15,
employ multiple instances of a component and compare their outputs to identify
and mask faulty behavior (Arifeen, Hassan, and Lee 2020).

In a DMR or TMR system, two or three identical instances of a hardware
component, such as a processor or a sensor, perform the same computation
in parallel. The outputs of these instances are fed into a voting circuit, which
compares the results and selects the majority value as the final output. If one of
the instances produces an incorrect result due to a fault, the voting mechanism
masks the error and maintains the correct output. TMR is commonly used in
aerospace and aviation systems, where high reliability is critical. For instance,
the Boeing 777 aircraft employs TMR in its primary flight computer system to
ensure the availability and correctness of flight control functions (Yeh, n.d.).

Tesla’s self-driving computers, on the other hand, employ a DMR architec-
ture to ensure the safety and reliability of critical functions such as perception,
decision-making, and vehicle control, as shown in Figure 18.14. In Tesla’s imple-
mentation, two identical hardware units, often called “redundant computers”
or “redundant control units,” perform the same computations in parallel. Each
unit independently processes sensor data, executes algorithms, and generates
control commands for the vehicle’s actuators, such as steering, acceleration,
and braking (Bannon et al. 2019).

The outputs of these two redundant units are continuously compared to
detect any discrepancies or faults. If the outputs match, the system assumes
that both units function correctly, and the control commands are sent to the
vehicle’s actuators. However, if there is a mismatch between the outputs, the

https://www.computerhope.com/jargon/p/paritybi.htm

Chapter 18. Robust AI 991

Figure 18.14: Tesla full self-driving
computer with dual redundant
SoCs. Source: Tesla

16 Hot Spares: In a system redun-
dancy design, these are the backup
components kept ready to instanta-
neously replace failing components
without disrupting the operation.

system identifies a potential fault in one of the units and takes appropriate
action to ensure safe operation.

DMR in Tesla’s self-driving computer provides an extra safety and fault
tolerance layer. By having two independent units performing the same compu-
tations, the system can detect and mitigate faults that may occur in one of the
units. This redundancy helps prevent single points of failure and ensures that
critical functions remain operational despite hardware faults.

The system may employ additional mechanisms to determine which unit is
faulty in a mismatch. This can involve using diagnostic algorithms, comparing
the outputs with data from other sensors or subsystems, or analyzing the
consistency of the outputs over time. Once the faulty unit is identified, the
system can isolate it and continue operating using the output from the non-
faulty unit.

Tesla also incorporates redundancy mechanisms beyond DMR. For example,
they use redundant power supplies, steering and braking systems, and diverse
sensor suites (e.g., cameras, radar, and ultrasonic sensors) to provide multiple
layers of fault tolerance. These redundancies collectively contribute to the
overall safety and reliability of the self-driving system.

It’s important to note that while DMR provides fault detection and some level
of fault tolerance, TMR may provide a different level of fault masking. In DMR,
if both units experience simultaneous faults or the fault affects the comparison
mechanism, the system may be unable to identify the fault. Therefore, Tesla’s
SDCs rely on a combination of DMR and other redundancy mechanisms to
achieve a high level of fault tolerance.

The use of DMR in Tesla’s self-driving computer highlights the importance
of hardware redundancy in safety-critical applications. By employing redun-
dant computing units and comparing their outputs, the system can detect and
mitigate faults, enhancing the overall safety and reliability of the self-driving
functionality.

Another approach to hardware redundancy is the use of hot spares16, as
employed by Google in its data centers to address SDC during ML training. Un-
like DMR and TMR, which rely on parallel processing and voting mechanisms
to detect and mask faults, hot spares provide fault tolerance by maintaining
backup hardware units that can seamlessly take over computations when a fault
is detected. As illustrated in Figure 18.15, during normal ML training, multiple

https://old.hotchips.org/hc31/HC31_2.3_Tesla_Hotchips_ppt_Final_0817.pdf

18.3. Hardware Faults 992

synchronous training workers process data in parallel. However, if a worker
becomes defective and causes SDC, an SDC checker automatically identifies the
issues. Upon detecting the SDC, the SDC checker moves the training to a hot
spare and sends the defective machine for repair. This redundancy safeguards
the continuity and reliability of ML training, effectively minimizing downtime
and preserving data integrity.

Figure 18.15: Google employs hot
spare cores to transparently handle
SDCs in the data center. Source:
Jeff Dean, MLSys 2024 Keynote
(Google)

Normal training state Defective machine

causes SDC

SDC checker

automatically

identifies SDC

SDC checker moves

training to hot spare

and sends defective

machine for repair

Synchronous Training Worker SDC checker Hot spare

Watchdog timers. Watchdog timers are hardware components that monitor the
execution of critical tasks or processes (Pont and Ong 2002). They are commonly
used to detect and recover from software or hardware faults that cause a system
to become unresponsive or stuck in an infinite loop. In an embedded system,
a watchdog timer can be configured to monitor the execution of the main
control loop, as illustrated in Figure 18.16. The software periodically resets the
watchdog timer to indicate that it functions correctly. Suppose the software fails
to reset the timer within a specified time limit (timeout period). In that case, the
watchdog timer assumes that the system has encountered a fault and triggers
a predefined recovery action, such as resetting the system or switching to a
backup component. Watchdog timers are widely used in automotive electronics,
industrial control systems, and other safety-critical applications to ensure the
timely detection and recovery from faults.

Figure 18.16: Watchdog timer exam-
ple in detecting MCU faults. Source:
Ablic

Software-Level Detection. Software-level fault detection techniques rely on
software algorithms and monitoring mechanisms to identify system faults.
These techniques can be implemented at various levels of the software stack,
including the operating system, middleware, or application level.

https://www.ablic.com/en/semicon/products/automotive/automotive-watchdog-timer/intro/

Chapter 18. Robust AI 993

Runtime monitoring and anomaly detection. Runtime monitoring involves con-
tinuously observing the behavior of the system and its components during
execution (Francalanza et al. 2017). It helps detect anomalies, errors, or unex-
pected behavior that may indicate the presence of faults. For example, consider
an ML-based image classification system deployed in a self-driving car. Runtime
monitoring can be implemented to track the classification model’s performance
and behavior (Mahmoud et al. 2021).

Anomaly detection algorithms can be applied to the model’s predictions or
intermediate layer activations, such as statistical outlier detection or machine
learning-based approaches (e.g., One-Class SVM or Autoencoders) (Chandola,
Banerjee, and Kumar 2009). Figure 18.17 shows example of anomaly detection.
Suppose the monitoring system detects a significant deviation from the expected
patterns, such as a sudden drop in classification accuracy or out-of-distribution
samples. In that case, it can raise an alert indicating a potential fault in the model
or the input data pipeline. This early detection allows for timely intervention
and fault mitigation strategies to be applied.

Figure 18.17: An example of
anomaly detection using an SVM
to analyze system logs and identify
anomalies. Advanced methods, in-
cluding unsupervised approaches,
have been developed to enhance
anomaly detection. Source: Google

System Data Anomalies Detected

Unlabeled Data Normal Anomaly

Anomaly

Detection SVM

Consistency checks and data validation. Consistency checks and data validation
techniques ensure data integrity and correctness at different processing stages
in an ML system (A. Lindholm et al. 2019). These checks help detect data
corruption, inconsistencies, or errors that may propagate and affect the sys-
tem’s behavior. Example: In a distributed ML system where multiple nodes
collaborate to train a model, consistency checks can be implemented to validate
the integrity of the shared model parameters. Each node can compute a check-
sum or hash of the model parameters before and after the training iteration, as
shown in Figure 18.17. Any inconsistencies or data corruption can be detected
by comparing the checksums across nodes. Additionally, range checks can be
applied to the input data and model outputs to ensure they fall within expected
bounds. For instance, if an autonomous vehicle’s perception system detects an
object with unrealistic dimensions or velocities, it can indicate a fault in the
sensor data or the perception algorithms (Wan et al. 2023).

Heartbeat and timeout mechanisms. Heartbeat mechanisms and timeouts are
commonly used to detect faults in distributed systems and ensure the liveness
and responsiveness of components (Kawazoe Aguilera, Chen, and Toueg 1997).
These are quite similar to the watchdog timers found in hardware. For example,
in a distributed ML system, where multiple nodes collaborate to perform tasks
such as data preprocessing, model training, or inference, heartbeat mechanisms

https://www.google.com/url?sa=i&url=http%3A%2F%2Fresearch.google%2Fblog%2Funsupervised-and-semi-supervised-anomaly-detection-with-data-centric-ml%2F&psig=AOvVaw1p9owe13lxfZogUHTZnxrj&ust=1714877457779000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCIjMmMP-8oUDFQAAAAAdAAAAABAE

18.3. Hardware Faults 994

can be implemented to monitor the health and availability of each node. Each
node periodically sends a heartbeat message to a central coordinator or its
peer nodes, indicating its status and availability. Suppose a node fails to send
a heartbeat within a specified timeout period, as shown in Figure 18.18. In
that case, it is considered faulty, and appropriate actions can be taken, such as
redistributing the workload or initiating a failover mechanism. Timeouts can
also be used to detect and handle hanging or unresponsive components. For
example, if a data loading process exceeds a predefined timeout threshold, it
may indicate a fault in the data pipeline, and the system can take corrective
measures.

Figure 18.18: Heartbeat messages in
distributed systems. Source: Geeks-
forGeeks Node 1 Node 2 Node 3

Ack

Ack
Ack

Heartbeat

Heartbeat

Heartbeat

What are Heartbeat Messages?

Software-implemented fault tolerance (SIFT) techniques. SIFT techniques introduce
redundancy and fault detection mechanisms at the software level to improve
the reliability and fault tolerance of the system (Reis et al., n.d.). Example:
N-version programming is a SIFT technique where multiple functionally equiv-
alent software component versions are developed independently by different
teams. This can be applied to critical components such as the model inference
engine in an ML system. Multiple versions of the inference engine can be
executed in parallel, and their outputs can be compared for consistency. It is
considered the correct result if most versions produce the same output. If there
is a discrepancy, it indicates a potential fault in one or more versions, and appro-
priate error-handling mechanisms can be triggered. Another example is using
software-based error correction codes, such as Reed-Solomon codes (Plank
1997), to detect and correct errors in data storage or transmission, as shown in
Figure 18.19. These codes add redundancy to the data, enabling detecting and
correcting certain errors and enhancing the system’s fault tolerance.

Figure 18.19: 𝑛-bits representation
of the Reed-Solomon codes. Source:
GeeksforGeeks

DATA PARITY

K 2t

Representation on n-bits solomon codes

n-bits

https://www.geeksforgeeks.org/what-are-heartbeat-messages/
https://www.geeksforgeeks.org/what-are-heartbeat-messages/
https://www.geeksforgeeks.org/what-is-reed-solomon-code/

Chapter 18. Robust AI 995

¸Î Caution 1: Anomaly Detection

In this Colab, play the role of an AI fault detective! You’ll build an
autoencoder-based anomaly detector to pinpoint errors in heart health
data. Learn how to identify malfunctions in ML systems, a vital skill
for creating dependable AI. We’ll use Keras Tuner to fine-tune your
autoencoder for top-notch fault detection. This experience directly links
to the Robust AI chapter, demonstrating the importance of fault detection
in real-world applications like healthcare and autonomous systems. Get
ready to strengthen the reliability of your AI creations!

18.3.5 Summary
Table 18.1 provides a comparative analysis of transient, permanent, and in-
termittent faults. It outlines the primary characteristics or dimensions that
distinguish these fault types. Here, we summarize the relevant dimensions we
examined and explore the nuances that differentiate transient, permanent, and
intermittent faults in greater detail.

Table 18.1: Comparison of transient, permanent, and intermittent faults.

Dimension Transient Faults Permanent Faults Intermittent Faults

Duration Short-lived, temporary Persistent, remains until
repair or replacement

Sporadic, appears and disappears
intermittently

Persistence Disappears after the
fault condition passes

Consistently present
until addressed

Recurs irregularly, not always present

Causes External factors (e.g.,
electromagnetic
interference cosmic
rays)

Hardware defects,
physical damage,
wear-out

Unstable hardware conditions, loose
connections, aging components

Manifesta-
tion

Bit flips, glitches,
temporary data
corruption

Stuck-at faults, broken
components, complete
device failures

Occasional bit flips, intermittent signal
issues, sporadic malfunctions

Impact on
ML Systems

Introduces temporary
errors or noise in
computations

Causes consistent
errors or failures,
affecting reliability

Leads to sporadic and unpredictable
errors, challenging to diagnose and
mitigate

Detection Error detection codes,
comparison with
expected values

Built-in self-tests, error
detection codes,
consistency checks

Monitoring for anomalies, analyzing
error patterns and correlations

Mitigation Error correction codes,
redundancy, checkpoint
and restart

Hardware repair or
replacement,
component
redundancy, failover
mechanisms

Robust design, environmental control,
runtime monitoring, fault-tolerant
techniques

18.4 Model Robustness

18.4.1 Adversarial Attacks
We first introduced adversarial attacks when discussing how slight changes to
input data can trick a model into making incorrect predictions. These attacks
often involve adding small, carefully designed perturbations to input data,

https://colab.research.google.com/drive/1TXaQzsSj2q0E3Ni1uxFDXGpY1SCnu46v?usp=sharing

18.4. Model Robustness 996

which can cause the model to misclassify it, as shown in Figure 18.20. In this
section, we will look at the different types of adversarial attacks and their impact
on machine learning models. Understanding these attacks highlights why it
is important to build models that are robust and able to handle these kinds of
challenges.

Figure 18.20: A small adversarial
noise added to the original image
can make the neural network clas-
sify the image as a Guacamole in-
stead of an Egyptian cat. Source: Su-
tanto

18.4.1.1 Mechanisms

Gradient-based Attacks. One prominent category of adversarial attacks is
gradient-based attacks. These attacks leverage the gradients of the ML model’s
loss function to craft adversarial examples. The Fast Gradient Sign Method
(FGSM) is a well-known technique in this category. FGSM perturbs the input
data by adding small noise in the direction of the gradient of the loss with
respect to the input. The goal is to maximize the model’s prediction error with
minimal distortion to the original input.

The adversarial example is generated using the following formula:𝑥adv = 𝑥+𝜖 ⋅ sign(∇𝑥𝐽(𝜃,𝑥,𝑦))
Where:

• 𝑥 is the original input,
• 𝑦 is the true label,
• 𝜃 represents the model parameters,
• 𝐽(𝜃,𝑥,𝑦) is the loss function,
• 𝜖 is a small scalar that controls the magnitude of the perturbation.

This method allows for fast and efÏcient generation of adversarial examples
by taking a single step in the direction that increases the loss most rapidly, as
shown in Figure 18.21.

Another variant, the Projected Gradient Descent (PGD) attack, extends FGSM
by iteratively applying the gradient update step, allowing for more refined and
powerful adversarial examples. PGD projects each perturbation step back into
a constrained norm ball around the original input, ensuring that the adversarial
example remains within a specified distortion limit. This makes PGD a stronger
white-box attack and a benchmark for evaluating model robustness.

https://www.mdpi.com/2079-9292/10/1/52
https://www.mdpi.com/2079-9292/10/1/52
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

Chapter 18. Robust AI 997

Figure 18.21: Gradient-Based At-
tacks. Source: Ivezic

The Jacobian-based Saliency Map Attack (JSMA) is another gradient-based
approach that identifies the most influential input features and perturbs them
to create adversarial examples. By constructing a saliency map based on the
Jacobian of the model’s outputs with respect to inputs, JSMA selectively alters
a small number of input dimensions that are most likely to influence the target
class. This makes JSMA more precise and targeted than FGSM or PGD, often
requiring fewer perturbations to fool the model.

Gradient-based attacks are particularly effective in white-box settings, where
the attacker has access to the model’s architecture and gradients. Their efÏciency
and relative simplicity have made them popular tools for both attacking and
evaluating model robustness in research.

Optimization-based Attacks. These attacks formulate the generation of adver-
sarial examples as an optimization problem. The Carlini and Wagner (C&W)
attack is a prominent example in this category. It finds the smallest perturbation
that can cause misclassification while maintaining the perceptual similarity to
the original input. The C&W attack employs an iterative optimization process
to minimize the perturbation while maximizing the model’s prediction error.
It uses a customized loss function with a confidence term to generate more
confident misclassifications.

C&W attacks are especially difÏcult to detect because the perturbations
are typically imperceptible to humans, and they often bypass many existing
defenses. The attack can be formulated under various norm constraints (e.g.,
L2, L∞) depending on the desired properties of the adversarial perturbation.

Another optimization-based approach is the Elastic Net Attack to DNNs
(EAD), which incorporates elastic net regularization (a combination of L1 and
L2 penalties) to generate adversarial examples with sparse perturbations. This
can lead to minimal and localized changes in the input, which are harder to
identify and filter. EAD is particularly useful in settings where perturbations
need to be constrained in both magnitude and spatial extent.

These attacks are more computationally intensive than gradient-based meth-
ods but offer finer control over the adversarial example’s properties. They are
often used in high-stakes domains where stealth and precision are critical.

Transfer-based Attacks. Transfer-based attacks exploit the transferability prop-
erty of adversarial examples. Transferability refers to the phenomenon where
adversarial examples crafted for one ML model can often fool other models,

https://defence.ai/ai-security/gradient-based-attacks/

18.4. Model Robustness 998

even if they have different architectures or were trained on different datasets.
This enables attackers to generate adversarial examples using a surrogate model
and then transfer them to the target model without requiring direct access to
its parameters or gradients.

This property underlies the feasibility of black-box attacks, where the ad-
versary cannot query gradients but can still fool a model by crafting attacks
on a publicly available or similar substitute model. Transfer-based attacks are
particularly relevant in practical threat scenarios, such as attacking commercial
ML APIs, where the attacker can observe inputs and outputs but not internal
computations.

Attack success often depends on factors like similarity between models, align-
ment in training data, and the regularization techniques used. Techniques like
input diversity (random resizing, cropping) and momentum during optimiza-
tion can be used to increase transferability.

Physical-world Attacks. Physical-world attacks bring adversarial examples
into the realm of real-world scenarios. These attacks involve creating physical
objects or manipulations that can deceive ML models when captured by sensors
or cameras. Adversarial patches, for example, are small, carefully designed
patterns that can be placed on objects to fool object detection or classification
models. These patches are designed to work under varying lighting conditions,
viewing angles, and distances, making them robust in real-world environments.

When attached to real-world objects, such as a stop sign or a piece of cloth-
ing, these patches can cause models to misclassify or fail to detect the objects
accurately. Notably, the effectiveness of these attacks persists even after being
printed out and viewed through a camera lens, bridging the digital and physical
divide in adversarial ML.

Adversarial objects, such as 3D-printed sculptures or modified road signs, can
also be crafted to deceive ML systems in physical environments. For example,
a 3D turtle object was shown to be consistently classified as a rifle by an image
classifier, even when viewed from different angles. These attacks underscore
the risks facing AI systems deployed in physical spaces, such as autonomous
vehicles, drones, and surveillance systems.

Research into physical-world attacks also includes efforts to develop universal
adversarial perturbations—perturbations that can fool a wide range of inputs
and models. These threats raise serious questions about safety, robustness, and
generalization in AI systems.

Summary. Table 18.2 provides a concise overview of the different categories
of adversarial attacks, including gradient-based attacks (FGSM, PGD, JSMA),
optimization-based attacks (C&W, EAD), transfer-based attacks, and physical-
world attacks (adversarial patches and objects). Each attack is briefly described,
highlighting its key characteristics and mechanisms.

Chapter 18. Robust AI 999

Table 18.2: Different attack types on ML models.

Attack
Category Attack Name Description

Gradient-
based

Fast Gradient Sign Method
(FGSM) Projected Gradient
Descent (PGD)
Jacobian-based Saliency
Map Attack (JSMA)

Perturbs input data by adding small noise in the gradient
direction to maximize prediction error. Extends FGSM by
iteratively applying the gradient update step for more refined
adversarial examples. Identifies influential input features and
perturbs them to create adversarial examples.

Optimization-
based

Carlini and Wagner (C&W)
Attack Elastic Net Attack to
DNNs (EAD)

Finds the smallest perturbation that causes misclassification while
maintaining perceptual similarity. Incorporates elastic net
regularization to generate adversarial examples with sparse
perturbations.

Transfer-
based

Transferability-based
Attacks

Exploits the transferability of adversarial examples across
different models, enabling black-box attacks.

Physical-
world

Adversarial Patches
Adversarial Objects

Small, carefully designed patches placed on objects to fool object
detection or classification models. Physical objects (e.g.,
3D-printed sculptures, modified road signs) crafted to deceive ML
systems in real-world scenarios.

The mechanisms of adversarial attacks reveal the intricate interplay between
the ML model’s decision boundaries, the input data, and the attacker’s ob-
jectives. By carefully manipulating the input data, attackers can exploit the
model’s sensitivities and blind spots, leading to incorrect predictions. The
success of adversarial attacks highlights the need for a deeper understanding
of ML models’ robustness and generalization properties.

Defending against adversarial attacks requires a multifaceted approach. Ad-
versarial training is one common defense strategy in which models are trained
on adversarial examples to improve robustness. Exposing the model to ad-
versarial examples during training teaches it to classify them correctly and
become more resilient to attacks. Defensive distillation, input preprocessing,
and ensemble methods are other techniques that can help mitigate the impact
of adversarial attacks.

As adversarial machine learning evolves, researchers explore new attack
mechanisms and develop more sophisticated defenses. The arms race between
attackers and defenders drives the need for constant innovation and vigilance
in securing ML systems against adversarial threats. Understanding the mecha-
nisms of adversarial attacks is crucial for developing robust and reliable ML
models that can withstand the ever-evolving landscape of adversarial examples.

18.4.1.2 Impact on ML

Adversarial attacks on machine learning systems have emerged as a significant
concern in recent years, highlighting the potential vulnerabilities and risks
associated with the widespread adoption of ML technologies. These attacks
involve carefully crafted perturbations to input data that can deceive or mislead
ML models, leading to incorrect predictions or misclassifications, as shown in
Figure 18.22. The impact of adversarial attacks on ML systems is far-reaching
and can have serious consequences in various domains.

One striking example of the impact of adversarial attacks was demonstrated
by researchers in 2017. They experimented with small black and white stickers
on stop signs (Eykholt et al. 2017). To the human eye, these stickers did not
obscure the sign or prevent its interpretability. However, when images of the

18.4. Model Robustness 1000

Figure 18.22: Adversarial example
generation applied to GoogLeNet
(Szegedy et al., 2014a) on ImageNet.
Source: Goodfellow

sticker-modified stop signs were fed into standard trafÏc sign classification ML
models, a shocking result emerged. The models misclassified the stop signs as
speed limit signs over 85% of the time.

This demonstration shed light on the alarming potential of simple adversarial
stickers to trick ML systems into misreading critical road signs. The implications
of such attacks in the real world are significant, particularly in the context of
autonomous vehicles. If deployed on actual roads, these adversarial stickers
could cause self-driving cars to misinterpret stop signs as speed limits, leading
to dangerous situations, as shown in Figure 18.23. Researchers warned that
this could result in rolling stops or unintended acceleration into intersections,
endangering public safety.

Figure 18.23: GrafÏti on a stop sign
tricked a self-driving car into think-
ing it was a 45 mph speed limit sign.
Source: Eykholt

The case study of the adversarial stickers on stop signs provides a concrete
illustration of how adversarial examples exploit how ML models recognize
patterns. By subtly manipulating the input data in ways that are invisible to
humans, attackers can induce incorrect predictions and create serious risks,
especially in safety-critical applications like autonomous vehicles. The attack’s
simplicity highlights the vulnerability of ML models to even minor changes in
the input, emphasizing the need for robust defenses against such threats.

The impact of adversarial attacks extends beyond the degradation of model
performance. These attacks raise significant security and safety concerns, partic-
ularly in domains where ML models are relied upon for critical decision-making.
In healthcare applications, adversarial attacks on medical imaging models could

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1707.08945

Chapter 18. Robust AI 1001

lead to misdiagnosis or incorrect treatment recommendations, jeopardizing pa-
tient well-being (M.-J. Tsai, Lin, and Lee 2023). In financial systems, adversarial
attacks could enable fraud or manipulation of trading algorithms, resulting in
substantial economic losses.

Moreover, adversarial vulnerabilities undermine the trustworthiness and
interpretability of ML models. If carefully crafted perturbations can easily
fool models, confidence in their predictions and decisions erodes. Adversarial
examples expose the models’ reliance on superficial patterns and the inability to
capture the true underlying concepts, challenging the reliability of ML systems
(Fursov et al. 2021).

Defending against adversarial attacks often requires additional computa-
tional resources and can impact the overall system performance. Techniques
like adversarial training, where models are trained on adversarial examples to
improve robustness, can significantly increase training time and computational
requirements (Bai et al. 2021). Runtime detection and mitigation mechanisms,
such as input preprocessing (Addepalli et al. 2020) or prediction consistency
checks, introduce latency and affect the real-time performance of ML systems.

The presence of adversarial vulnerabilities also complicates the deployment
and maintenance of ML systems. System designers and operators must consider
the potential for adversarial attacks and incorporate appropriate defenses and
monitoring mechanisms. Regular updates and retraining of models become
necessary to adapt to new adversarial techniques and maintain system security
and performance over time.

The impact of adversarial attacks on ML systems is significant and multi-
faceted. These attacks expose ML models’ vulnerabilities, from degrading
model performance and raising security and safety concerns to challenging
model trustworthiness and interpretability. Developers and researchers must
prioritize the development of robust defenses and countermeasures to mitigate
the risks posed by adversarial attacks. By addressing these challenges, we can
build more secure, reliable, and trustworthy ML systems that can withstand
the ever-evolving landscape of adversarial threats.

18.4.2 Data Poisoning
Data poisoning presents a critical challenge to the integrity and reliability of
machine learning systems. By introducing carefully crafted malicious data
into the training pipeline, adversaries can subtly manipulate model behavior
in ways that are difÏcult to detect through standard validation procedures.
Unlike adversarial examples, which target models at inference time, poisoning
attacks exploit upstream components of the system—such as data collection,
labeling, or ingestion. As ML systems are increasingly deployed in automated
and high-stakes environments, understanding how poisoning occurs and how
it propagates through the system is essential for developing effective defenses.

18.4.2.1 Characteristics

Data poisoning is an attack in which the training data is deliberately manipu-
lated to compromise the performance or behavior of a machine learning model,
as described in (Biggio, Nelson, and Laskov 2012) and illustrated in Figure 18.24.

18.4. Model Robustness 1002

Attackers may alter existing training samples, introduce malicious examples,
or interfere with the data collection pipeline. The result is a model that learns
biased, inaccurate, or exploitable patterns.

Figure 18.24: Samples of dirty-label
poison data regarding mismatched
text/image pairs. Source: (Shan et
al. 2023)

In most cases, data poisoning unfolds in three stages.
In the injection stage, the attacker introduces poisoned samples into the train-

ing dataset. These samples may be altered versions of existing data or entirely
new instances designed to blend in with clean examples. While they appear
benign on the surface, these inputs are engineered to influence model behavior
in subtle but deliberate ways. The attacker may target specific classes, insert
malicious triggers, or craft outliers intended to distort the decision boundary.

During the training phase, the machine learning model incorporates the
poisoned data and learns spurious or misleading patterns. These learned
associations may bias the model toward incorrect classifications, introduce
vulnerabilities, or embed backdoors. Because the poisoned data is often statis-
tically similar to clean data, the corruption process typically goes unnoticed
during standard model training and evaluation.

Finally, in the deployment stage, the attacker leverages the compromised
model for malicious purposes. This could involve triggering specific behaviors,
including the misclassification of an input that contains a hidden pattern, or
simply exploiting the model’s degraded accuracy in production. In real-world
systems, such attacks can be difÏcult to trace back to training data, especially if
the system’s behavior appears erratic only in edge cases or under adversarial
conditions.

The consequences of such manipulation are especially severe in high-stakes
domains like healthcare, where even small disruptions to training data can
lead to dangerous misdiagnoses or loss of trust in AI-based systems (Marulli,
Marrone, and Verde 2022).

Four main categories of poisoning attacks have been identified in the litera-
ture (Oprea, Singhal, and Vassilev 2022). In availability attacks, a substantial
portion of the training data is poisoned with the aim of degrading overall
model performance. A classic example involves flipping labels—for instance,
systematically changing instances with true label 𝑦 = 1 to 𝑦 = 0 in a binary
classification task. These attacks render the model unreliable across a wide
range of inputs, effectively making it unusable.

In contrast, targeted poisoning attacks aim to compromise only specific classes
or instances. Here, the attacker modifies just enough data to cause a small set
of inputs to be misclassified, while overall accuracy remains relatively stable.
This subtlety makes targeted attacks especially hard to detect.

Chapter 18. Robust AI 1003

Backdoor poisoning introduces hidden triggers into training data—subtle
patterns or features that the model learns to associate with a particular output.
When the trigger appears at inference time, the model is manipulated into
producing a predetermined response. These attacks are often effective even if
the trigger pattern is imperceptible to human observers.

Subpopulation poisoning focuses on compromising a specific subset of the
data population. While similar in intent to targeted attacks, subpopulation
poisoning applies availability-style degradation to a localized group, for exam-
ple, a particular demographic or feature cluster, while leaving the rest of the
model’s performance intact. This distinction makes such attacks both highly
effective and especially dangerous in fairness-sensitive applications.

A common thread across these poisoning strategies is their subtlety. Ma-
nipulated samples are typically indistinguishable from clean data, making
them difÏcult to identify through casual inspection or standard data validation.
These manipulations might involve small changes to numeric values, slight
label inconsistencies, or embedded visual patterns—each designed to blend
into the data distribution while still affecting model behavior.

Such attacks may be carried out by internal actors, like data engineers or
annotators with privileged access, or by external adversaries who exploit weak
points in the data collection pipeline. In crowdsourced environments or open
data collection scenarios, poisoning can be as simple as injecting malicious
samples into a shared dataset or influencing user-generated content.

Crucially, poisoning attacks often target the early stages of the ML pipeline,
such as collection and preprocessing, where there may be limited oversight.
If data is pulled from unverified sources or lacks strong validation protocols,
attackers can slip in poisoned data that appears statistically normal. The absence
of integrity checks, robust outlier detection, or lineage tracking only heightens
the risk.

Ultimately, the goal of these attacks is to corrupt the learning process itself.
A model trained on poisoned data may learn spurious correlations, overfit
to false signals, or become vulnerable to highly specific exploit conditions.
Whether the result is a degraded model or one with a hidden exploit path, the
trustworthiness and safety of the system are fundamentally compromised.

18.4.2.2 Mechanisms

Data poisoning can be implemented through a variety of mechanisms, depend-
ing on the attacker’s access to the system and understanding of the data pipeline.
These mechanisms reflect different strategies for how the training data can be
corrupted to achieve malicious outcomes.

One of the most direct approaches involves modifying the labels of training
data. In this method, an attacker selects a subset of training samples and alters
their labels—flipping 𝑦 = 1 to 𝑦 = 0, or reassigning categories in multi-class
settings. As shown in Figure 18.25, even small-scale label inconsistencies can
lead to significant distributional shifts and learning disruptions.

Another mechanism involves modifying the input features of training exam-
ples without changing the labels. This might include imperceptible pixel-level
changes in images, subtle perturbations in structured data, or embedding fixed

18.4. Model Robustness 1004

Figure 18.25: Garbage In – Garbage
Out. Source: (Shan et al. 2023)

patterns that act as triggers for backdoor attacks. These alterations are often
designed using optimization techniques that maximize their influence on the
model while minimizing detectability.

More sophisticated attacks generate entirely new, malicious training exam-
ples. These synthetic samples may be created using adversarial methods, gen-
erative models, or even data synthesis tools. The aim is to carefully craft inputs
that will distort the decision boundary of the model when incorporated into the
training set. Such inputs may appear natural and legitimate but are engineered
to introduce vulnerabilities.

Other attackers focus on weaknesses in data collection and preprocessing. If
the training data is sourced from web scraping, social media, or untrusted user
submissions, poisoned samples can be introduced upstream. These samples
may pass through insufÏcient cleaning or validation checks, reaching the model
in a “trusted” form. This is particularly dangerous in automated pipelines
where human review is limited or absent.

In physically deployed systems, attackers may manipulate data at the source—
for example, altering the environment captured by a sensor. A self-driving
car might encounter poisoned data if visual markers on a road sign are sub-
tly altered, causing the model to misclassify it during training. This kind of
environmental poisoning blurs the line between adversarial attacks and data
poisoning, but the mechanism, which involves compromising the training data,
is the same.

Online learning systems represent another unique attack surface. These
systems continuously adapt to new data streams, making them particularly
susceptible to gradual poisoning. An attacker may introduce malicious samples
incrementally, causing slow but steady shifts in model behavior. This form of
attack is illustrated in Figure 18.26.

Insider collaboration adds a final layer of complexity. Malicious actors with
legitimate access to training data, including annotators, researchers, or data
vendors, can craft poisoning strategies that are more targeted and subtle than
external attacks. These insiders may have knowledge of the model architec-

Chapter 18. Robust AI 1005

Figure 18.26: Data Poisoning Attack.Poisoned Model

Aggregation

Server

Client 1

×

×

Client 2

×

×

Owner on server

Local Data

Poisoned Global Model

Poisoned Local Data

ture or training procedures, giving them an advantage in designing effective
poisoning schemes.

Defending against these diverse mechanisms requires a multi-pronged ap-
proach: secure data collection protocols, anomaly detection, robust prepro-
cessing pipelines, and strong access control. Validation mechanisms must be
sophisticated enough to detect not only outliers but also cleverly disguised
poisoned samples that sit within the statistical norm.

18.4.2.3 Impact on ML
The effects of data poisoning extend far beyond simple accuracy degradation.
In the most general sense, a poisoned dataset leads to a corrupted model. But
the specific consequences depend on the attack vector and the adversary’s
objective.

One common outcome is the degradation of overall model performance.
When large portions of the training set are poisoned, often through label flipping
or the introduction of noisy features, the model struggles to identify valid
patterns, leading to lower accuracy, recall, or precision. In mission-critical
applications like medical diagnosis or fraud detection, even small performance
losses can result in significant real-world harm.

Targeted poisoning presents a different kind of danger. Rather than under-
mining the model’s general performance, these attacks cause specific misclassi-
fications. A malware detector, for instance, may be engineered to ignore one
particular signature, allowing a single attack to bypass security. Similarly, a
facial recognition model might be manipulated to misidentify a specific indi-
vidual, while functioning normally for others.

Some poisoning attacks introduce hidden vulnerabilities in the form of back-
doors or trojans. These poisoned models behave as expected during evaluation
but respond in a malicious way when presented with specific triggers. In
such cases, attackers can “activate” the exploit on demand, bypassing system
protections without triggering alerts.

Bias is another insidious impact of data poisoning. If an attacker poisons
samples tied to a specific demographic or feature group, they can skew the

18.4. Model Robustness 1006

17 Dual-use Dilemma: In AI,
the challenge of mitigating misuse
of technology that has both positive
and negative potential uses.

model’s outputs in biased or discriminatory ways. Such attacks threaten fair-
ness, amplify existing societal inequities, and are difÏcult to diagnose if the
overall model metrics remain high.

Ultimately, data poisoning undermines the trustworthiness of the system
itself. A model trained on poisoned data cannot be considered reliable, even if
it performs well in benchmark evaluations. This erosion of trust has profound
implications, particularly in fields like autonomous systems, financial modeling,
and public policy.

18.4.2.4 Case Study: Art Protection via Poisoning

Interestingly, not all data poisoning is malicious. Researchers have begun to
explore its use as a defensive tool, particularly in the context of protecting
creative work from unauthorized use by generative AI models.

A compelling example is Nightshade, developed by researchers at the Univer-
sity of Chicago to help artists prevent their work from being scraped and used to
train image generation models without consent (Shan et al. 2023). Nightshade
allows artists to apply subtle perturbations to their images before publishing
them online. These changes are invisible to human viewers but cause serious
degradation in generative models that incorporate them into training.

When Stable Diffusion was trained on just 300 poisoned images, the model
began producing bizarre outputs—such as cows when prompted with “car,” or
cat-like creatures in response to “dog.” These results, visualized in Figure 18.27,
show how effectively poisoned samples can distort a model’s conceptual associ-
ations.

Figure 18.27: NightShade’s poi-
soning effects on Stable Diffusion.
Source: (Shan et al. 2023)

What makes Nightshade especially potent is the cascading effect of poisoned
concepts. Because generative models rely on semantic relationships between
categories, a poisoned “car” can bleed into related concepts like “truck,” “bus,”
or “train,” leading to widespread hallucinations.

However, like any powerful tool, Nightshade also introduces risks. The same
technique used to protect artistic content could be repurposed to sabotage
legitimate training pipelines, highlighting the dual-use dilemma17 at the heart

Chapter 18. Robust AI 1007

of modern machine learning security.

18.4.3 Distribution Shifts

18.4.3.1 Characteristics

Distribution shift refers to the phenomenon where the data distribution en-
countered by a machine learning model during deployment differs from the
distribution it was trained on, as shown in Figure 18.28. This change in distri-
bution is not necessarily the result of a malicious attack. Rather, it often reflects
the natural evolution of real-world environments over time. In essence, the
statistical properties, patterns, or assumptions in the data may change between
training and inference phases, which can lead to unexpected or degraded model
performance.

Figure 18.28: The curly brackets en-
close the distribution shift between
the environments. Here, z stands for
the spurious feature, and y stands
for label class.

a) Diversity Shift

z

p(z)

p(y = 0 | z) p(y = 1 | z)

b) Correlation Shift

Domain 1

Domain 2

A distribution shift typically takes one of several forms:
• Covariate shift, where the input distribution 𝑃 (𝑥) changes while the

conditional label distribution 𝑃 (𝑦 ∣ 𝑥) remains stable.
• Label shift, where the label distribution 𝑃 (𝑦) changes while 𝑃 (𝑥 ∣ 𝑦)

stays the same.
• Concept drift, where the relationship between inputs and outputs—𝑃 (𝑦 ∣𝑥)—evolves over time.
• Concept drift, where the relationship between inputs and outputs, 𝑃 (𝑦 ∣𝑥), evolves over time.

These formal definitions help frame more intuitive examples of shift that are
commonly encountered in practice.

One of the most common causes is domain mismatch, where the model is
deployed on data from a different domain than it was trained on. For example,
a sentiment analysis model trained on movie reviews may perform poorly when
applied to tweets, due to differences in language, tone, and structure. In this
case, the model has learned domain-specific features that do not generalize
well to new contexts.

18.4. Model Robustness 1008

Another major source is temporal drift, where the input distribution evolves
gradually or suddenly over time. In production settings, data changes due to
new trends, seasonal effects, or shifts in user behavior. For instance, in a fraud
detection system, fraud patterns may evolve as adversaries adapt. Without
ongoing monitoring or retraining, models become stale and ineffective. This
form of shift is visualized in Figure 18.29.

Contextual changes arise when deployment environments differ from train-
ing conditions due to external factors such as lighting, sensor variation, or user
behavior. For example, a vision model trained in a lab under controlled lighting
may underperform when deployed in outdoor or dynamic environments.

Another subtle but critical factor is unrepresentative training data. If the
training dataset fails to capture the full variability of the production environ-
ment, the model may generalize poorly. For example, a facial recognition model
trained predominantly on one demographic group may produce biased or inac-
curate predictions when deployed more broadly. In this case, the shift reflects
missing diversity or structure in the training data.

Figure 18.29: Concept drift refers to
a change in data patterns and rela-
tionships over time.

Feature B

Feature A

Feature B

Feature A

T = 0 T = 1

Spam

Not spam

Distribution shifts like these can dramatically reduce the performance and
reliability of ML models in production. Building robust systems requires not
only understanding these shifts, but actively detecting and responding to them
as they emerge.

18.4.3.2 Mechanisms

Distribution shifts arise from a variety of underlying mechanisms—both natural
and system-driven. Understanding these mechanisms helps practitioners detect,
diagnose, and design mitigation strategies.

One common mechanism is a change in data sources. When data collected at
inference time comes from different sensors, APIs, platforms, or hardware than
the training data, even subtle differences in resolution, formatting, or noise can
introduce significant shifts. For example, a speech recognition model trained
on audio from one microphone type may struggle with data from a different
device.

Temporal evolution refers to changes in the underlying data over time. In
recommendation systems, user preferences shift. In finance, market conditions
change. These shifts may be slow and continuous or abrupt and disruptive.
Without temporal awareness or continuous evaluation, models can become

Chapter 18. Robust AI 1009

obsolete, frequently without prior indication. To illustrate this, Figure 18.30
shows how selective breeding over generations has significantly changed the
physical characteristics of a dog breed. The earlier version of the breed exhibits
a lean, athletic build, while the modern version is stockier, with a distinctively
different head shape and musculature. This transformation is analogous to
how data distributions can shift in real-world systems—initial data used to
train a model may differ substantially from the data encountered over time.
Just as evolutionary pressures shape biological traits, dynamic user behavior,
market forces, or changing environments can shift the distribution of data
in machine learning applications. Without periodic retraining or adaptation,
models exposed to these evolving distributions may underperform or become
unreliable.

Figure 18.30: Temporal evolution
in practice. The evolution of a dog
breed over time illustrates how dis-
tribution shifts can lead to signif-
icant changes in underlying data.
In ML systems, similar distribution
shifts can occur when models en-
counter new or evolving data distri-
butions, often requiring retraining
or adaptation to maintain accuracy
and performance. Without account-
ing for temporal evolution, models
can become misaligned with the tar-
get data, leading to degraded perfor-
mance and unreliable predictions.Domain-specific variation arises when a model trained on one setting is ap-

plied to another. A medical diagnosis model trained on data from one hospital
may underperform in another due to differences in equipment, demograph-
ics, or clinical workflows. These variations often require explicit adaptation
strategies, such as domain generalization or fine-tuning.

Selection bias occurs when the training data does not accurately reflect the
target population. This may result from sampling strategies, data access con-
straints, or labeling choices. The result is a model that overfits to specific
segments and fails to generalize. Addressing this requires thoughtful data
collection and continuous validation.

Feedback loops are a particularly subtle mechanism. In some systems, model
predictions influence user behavior, which in turn affects future inputs. For
instance, a dynamic pricing model might set prices that change buying patterns,
which then distort the distribution of future training data. These loops can
reinforce narrow patterns and make model behavior difÏcult to predict.

Lastly, adversarial manipulation can induce distribution shifts deliberately.
Attackers may introduce out-of-distribution samples or craft inputs that exploit
weak spots in the model’s decision boundary. These inputs may lie far from
the training distribution and can cause unexpected or unsafe predictions.

These mechanisms often interact, making real-world distribution shift de-
tection and mitigation complex. From a systems perspective, this complexity
necessitates ongoing monitoring, logging, and feedback pipelines—features
often absent in early-stage or static ML deployments.

18.4. Model Robustness 1010

18.4.3.3 Impact on ML

Distribution shift can affect nearly every dimension of ML system performance,
from prediction accuracy and latency to user trust and system maintainability.

A common and immediate consequence is degraded predictive performance.
When the data at inference time differs from training data, the model may
produce systematically inaccurate or inconsistent predictions. This erosion
of accuracy is particularly dangerous in high-stakes applications like fraud
detection, autonomous vehicles, or clinical decision support.

Another serious effect is loss of reliability and trustworthiness. As distribu-
tion shifts, users may notice inconsistent or erratic behavior. For example, a
recommendation system might begin suggesting irrelevant or offensive con-
tent. Even if overall accuracy metrics remain acceptable, loss of user trust can
undermine the system’s value.

Distribution shift also amplifies model bias. If certain groups or data seg-
ments are underrepresented in the training data, the model may fail more fre-
quently on those groups. Under shifting conditions, these failures can become
more pronounced, resulting in discriminatory outcomes or fairness violations.

There is also a rise in uncertainty and operational risk. In many production
settings, model decisions feed directly into business operations or automated
actions. Under shift, these decisions become less predictable and harder to
validate, increasing the risk of cascading failures or poor decisions downstream.

From a system maintenance perspective, distribution shifts complicate re-
training and deployment workflows. Without robust mechanisms for drift de-
tection and performance monitoring, shifts may go unnoticed until performance
degrades significantly. Once detected, retraining may be required—raising chal-
lenges related to data collection, labeling, model rollback, and validation. This
creates friction in continuous integration and deployment (CI/CD) workflows
and can significantly slow down iteration cycles.

Moreover, distribution shift increases vulnerability to adversarial attacks. At-
tackers can exploit the model’s poor calibration on unfamiliar data, using slight
perturbations to push inputs outside the training distribution and cause fail-
ures. This is especially concerning when system feedback loops or automated
decisioning pipelines are in place.

From a systems perspective, distribution shift is not just a modeling concern—
it is a core operational challenge. It requires end-to-end system support: mech-
anisms for data logging, drift detection, automated alerts, model versioning,
and scheduled retraining. ML systems must be designed to detect when per-
formance degrades in production, diagnose whether a distribution shift is the
cause, and trigger appropriate mitigation actions. This might include human-
in-the-loop review, fallback strategies, model retraining pipelines, or staged
deployment rollouts.

In mature ML systems, handling distribution shift becomes a matter of infras-
tructure, observability, and automation, not just modeling technique. Failing to
account for it risks silent model failure in dynamic, real-world environments—
precisely where ML systems are expected to deliver the most value.

A summary of common types of distribution shifts, their effects on model
performance, and potential system-level responses is shown in Table 18.3.

Chapter 18. Robust AI 1011

18.4.3.4 Summary of Distribution Shifts and System Implications

Table 18.3: Common types of distribution shift, their effects, and system-level
mitigations.

Type of Shift Cause or Example Consequence for Model System-Level Response

Covariate
Shift

Change in input features (e.g.,
sensor calibration drift)

Model misclassifies new
inputs despite consistent
labels

Monitor input distributions;
retrain with updated
features

Label Shift Change in label distribution (e.g.,
new class frequencies in usage)

Prediction probabilities
become skewed

Track label priors; reweight
or adapt output calibration

Concept
Drift

Evolving relationship between
inputs and outputs (e.g. fraud
tactics)

Model performance
degrades over time

Retrain frequently; use
continual or online learning

Domain
Mismatch

Train on reviews, deploy on
tweets

Poor generalization due to
different vocabularies or
styles

Use domain adaptation or
fine-tuning

Contextual
Change

New deployment environment
(e.g., lighting, user behavior)

Performance varies by
context

Collect contextual data;
monitor conditional
accuracy

Selection
Bias

Underrepresentation during
training

Biased predictions for
unseen groups

Validate dataset balance;
augment training data

Feedback
Loops

Model outputs affect future
inputs (e.g., recommender
systems)

Reinforced drift,
unpredictable patterns

Monitor feedback effects;
consider counterfactual
logging

Adversarial
Shift

Attackers introduce OOD inputs
or perturbations

Model becomes vulnerable
to targeted failures

Use robust training; detect
out-of-distribution inputs

18.4.4 Detection and Mitigation
The detection and mitigation of threats to ML systems requires combining
defensive strategies across multiple layers. These include techniques to identify
and counter adversarial attacks, data poisoning attempts, and distribution
shifts that can degrade model performance and reliability. Through systematic
application of these protections, ML systems can maintain robustness when
deployed in dynamic real-world environments.

18.4.4.1 Adversarial Attacks
As discussed earlier, adversarial attacks pose a significant threat to the robust-
ness and reliability of ML systems. These attacks involve crafting carefully
designed inputs, known as adversarial examples, to deceive ML models and
cause them to make incorrect predictions. To safeguard ML systems against
such attacks, it is crucial to develop effective techniques for detecting and
mitigating these threats.

Detection Techniques. Detecting adversarial examples is the first line of de-
fense against adversarial attacks. Several techniques have been proposed to
identify and flag suspicious inputs that may be adversarial.

Statistical methods aim to detect adversarial examples by analyzing the statis-
tical properties of the input data. These methods often compare the input data
distribution to a reference distribution, such as the training data distribution or
a known benign distribution. Techniques like the Kolmogorov-Smirnov (Berger
and Zhou 2014) test or the Anderson-Darling test can be used to measure the
discrepancy between the distributions and flag inputs that deviate significantly
from the expected distribution.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm

18.4. Model Robustness 1012

Kernel density estimation (KDE) is a non-parametric technique used to esti-
mate the probability density function of a dataset. In the context of adversarial
example detection, KDE can be used to estimate the density of benign exam-
ples in the input space. Adversarial examples often lie in low-density regions
and can be detected by comparing their estimated density to a threshold. In-
puts with an estimated density below the threshold are flagged as potential
adversarial examples.

Another technique is feature squeezing (Panda, Chakraborty, and Roy 2019),
which reduces the complexity of the input space by applying dimensionality
reduction or discretization. The idea behind feature squeezing is that adver-
sarial examples often rely on small, imperceptible perturbations that can be
eliminated or reduced through these transformations. Inconsistencies can be
detected by comparing the model’s predictions on the original input and the
squeezed input, indicating the presence of adversarial examples.

Model uncertainty estimation techniques try to quantify the confidence or
uncertainty associated with a model’s predictions. Adversarial examples of-
ten exploit regions of high uncertainty in the model’s decision boundary. By
estimating the uncertainty using techniques like Bayesian neural networks,
dropout-based uncertainty estimation, or ensemble methods, inputs with high
uncertainty can be flagged as potential adversarial examples.

Defense Strategies. Once adversarial examples are detected, various defense
strategies can be employed to mitigate their impact and improve the robustness
of ML models.

Adversarial training is a technique that involves augmenting the training
data with adversarial examples and retraining the model on this augmented
dataset. Exposing the model to adversarial examples during training teaches
it to classify them correctly and becomes more robust to adversarial attacks.
Adversarial training can be performed using various attack methods, such as
the Fast Gradient Sign Method or Projected Gradient Descent (Madry et al.
2017).

Defensive distillation (Papernot et al. 2016) is a technique that trains a second
model (the student model) to mimic the behavior of the original model (the
teacher model). The student model is trained on the soft labels produced by the
teacher model, which are less sensitive to small perturbations. Using the student
model for inference can reduce the impact of adversarial perturbations, as the
student model learns to generalize better and is less sensitive to adversarial
noise.

Input preprocessing and transformation techniques try to remove or mitigate
the effect of adversarial perturbations before feeding the input to the ML model.
These techniques include image denoising, JPEG compression, random resizing,
padding, or applying random transformations to the input data. By reducing
the impact of adversarial perturbations, these preprocessing steps can help
improve the model’s robustness to adversarial attacks.

Ensemble methods combine multiple models to make more robust predic-
tions. The ensemble can reduce the impact of adversarial attacks by using
a diverse set of models with different architectures, training data, or hyper-
parameters. Adversarial examples that fool one model may not fool others

https://mathisonian.github.io/kde/
https://www.tensorflow.org/tutorials/generative/adversarial_fgsm

Chapter 18. Robust AI 1013

in the ensemble, leading to more reliable and robust predictions. Model di-
versification techniques, such as using different preprocessing techniques or
feature representations for each model in the ensemble, can further enhance
the robustness.

Evaluation and Testing. Conduct thorough evaluation and testing to assess
the effectiveness of adversarial defense techniques and measure the robustness
of ML models.

Adversarial robustness metrics quantify the model’s resilience to adversar-
ial attacks. These metrics can include the model’s accuracy on adversarial
examples, the average distortion required to fool the model, or the model’s per-
formance under different attack strengths. By comparing these metrics across
different models or defense techniques, practitioners can assess and compare
their robustness levels.

Standardized adversarial attack benchmarks and datasets provide a common
ground for evaluating and comparing the robustness of ML models. These
benchmarks include datasets with pre-generated adversarial examples and
tools and frameworks for generating adversarial attacks. Examples of pop-
ular adversarial attack benchmarks include the MNIST-C, CIFAR-10-C, and
ImageNet-C (Hendrycks and Dietterich 2019) datasets, which contain corrupted
or perturbed versions of the original datasets.

Practitioners can develop more robust and resilient ML systems by lever-
aging these adversarial example detection techniques, defense strategies, and
robustness evaluation methods. However, it is important to note that adversar-
ial robustness is an ongoing research area, and no single technique provides
complete protection against all types of adversarial attacks. A comprehensive
approach that combines multiple defense mechanisms and regular testing is
essential to maintain the security and reliability of ML systems in the face of
evolving adversarial threats.

18.4.4.2 Data Poisoning

Data poisoning attacks aim to corrupt training data used to build ML models,
undermining their integrity. As illustrated in Figure 18.31, these attacks can
manipulate or pollute the training data in ways that cause models to learn
incorrect patterns, leading to erroneous predictions or undesirable behaviors
when deployed. Given the foundational role of training data in ML system
performance, detecting and mitigating data poisoning is critical for maintaining
model trustworthiness and reliability.

Anomaly Detection Techniques. Statistical outlier detection methods identify
data points that deviate significantly from most data. These methods assume
that poisoned data instances are likely to be statistical outliers. Techniques such
as the Z-score method, Tukey’s method, or the Mahalanobis distance can be
used to measure the deviation of each data point from the central tendency
of the dataset. Data points that exceed a predefined threshold are flagged as
potential outliers and considered suspicious for data poisoning.

Clustering-based methods group similar data points together based on their
features or attributes. The assumption is that poisoned data instances may form

https://github.com/google-research/mnist-c
https://paperswithcode.com/dataset/cifar-10c
https://ubalt.pressbooks.pub/mathstatsguides/chapter/z-score-basics/
https://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm
https://www.statisticshowto.com/mahalanobis-distance/

18.4. Model Robustness 1014

Figure 18.31: Malicious data injec-
tion. Source: Li

Poisoned

Model

Analyze

and clean

Defender

Attacker

Malicious data

injection

Train

R

Item

User

Retrain

distinct clusters or lie far away from the normal data clusters. By applying clus-
tering algorithms like K-means, DBSCAN, or hierarchical clustering, anomalous
clusters or data points that do not belong to any cluster can be identified. These
anomalous instances are then treated as potentially poisoned data.

Autoencoders are neural networks trained to reconstruct the input data from
a compressed representation, as shown in Figure 18.32. They can be used for
anomaly detection by learning the normal patterns in the data and identifying
instances that deviate from them. During training, the autoencoder is trained
on clean, unpoisoned data. At inference time, the reconstruction error for
each data point is computed. Data points with high reconstruction errors are
considered abnormal and potentially poisoned, as they do not conform to the
learned normal patterns.

Figure 18.32: Autoencoder. Source:
Dertat

Code

OutputInput

Encoder Decoder

Sanitization and Preprocessing. Data poisoning can be avoided by cleaning
data, which involves identifying and removing or correcting noisy, incomplete,
or inconsistent data points. Techniques such as data deduplication, missing
value imputation, and outlier removal can be applied to improve the quality of
the training data. By eliminating or filtering out suspicious or anomalous data
points, the impact of poisoned instances can be reduced.

https://www.mdpi.com/2227-7390/12/2/247
https://www.oreilly.com/library/view/data-algorithms/9781491906170/ch12.html
https://www.oreilly.com/library/view/machine-learning-algorithms/9781789347999/50efb27d-abbe-4855-ad81-a5357050161f.xhtml
https://www.oreilly.com/library/view/cluster-analysis-5th/9780470978443/chapter04.html
https://medium.com/towards-data-science/applied-deep-learning-part-3-autoencoders-1c083af4d798

Chapter 18. Robust AI 1015

18 Huber Loss: A loss func-
tion used in robust regression that is
less sensitive to outliers in data than
squared error loss.

19 Regularization: A method
used in neural networks to prevent
overfitting in models by adding a
cost term to the loss function.

20 Minimax: A decision-making
strategy, used in game theory and
decision theory, which tries to mini-
mize the maximum possible loss.

Data validation involves verifying the integrity and consistency of the training
data. This can include checking for data type consistency, range validation,
and cross-field dependencies. By defining and enforcing data validation rules,
anomalous or inconsistent data points indicative of data poisoning can be
identified and flagged for further investigation.

Data provenance and lineage tracking involve maintaining a record of data’s
origin, transformations, and movements throughout the ML pipeline. By docu-
menting the data sources, preprocessing steps, and any modifications made to
the data, practitioners can trace anomalies or suspicious patterns back to their
origin. This helps identify potential points of data poisoning and facilitates the
investigation and mitigation process.

Robust Training. Robust optimization techniques can be used to modify the
training objective to minimize the impact of outliers or poisoned instances.
This can be achieved by using robust loss functions less sensitive to extreme
values, such as the Huber loss or the modified Huber loss18. Regularization
techniques19, such as L1 or L2 regularization, can also help in reducing the
model’s sensitivity to poisoned data by constraining the model’s complexity
and preventing overfitting.

Robust loss functions are designed to be less sensitive to outliers or noisy data
points. Examples include the modified Huber loss, the Tukey loss (Beaton and
Tukey 1974), and the trimmed mean loss. These loss functions down-weight or
ignore the contribution of abnormal instances during training, reducing their
impact on the model’s learning process. Robust objective functions, such as
the minimax20 or distributionally robust objective, aim to optimize the model’s
performance under worst-case scenarios or in the presence of adversarial per-
turbations.

Data augmentation techniques involve generating additional training ex-
amples by applying random transformations or perturbations to the existing
data Figure 18.33. This helps in increasing the diversity and robustness of the
training dataset. By introducing controlled variations in the data, the model
becomes less sensitive to specific patterns or artifacts that may be present in
poisoned instances. Randomization techniques, such as random subsampling
or bootstrap aggregating, can also help reduce the impact of poisoned data by
training multiple models on different subsets of the data and combining their
predictions.

Figure 18.33: An image of the num-
ber “3” in original form and with
basic augmentations applied.

Secure Data Sourcing. Implementing the best data collection and curation
practices can help mitigate the risk of data poisoning. This includes establish-
ing clear data collection protocols, verifying the authenticity and reliability of

https://medium.com/towards-data-science/l1-and-l2-regularization-methods-ce25e7fc831c
https://pytorch.org/docs/stable/generated/torch.nn.HuberLoss.html

18.4. Model Robustness 1016

21 Principle of Least Privilege: A
security concept in which a user is
given the minimum levels of access
necessary to complete his/her job
functions.

22 Data Sanitization: The process
of deliberately, permanently, and ir-
reversibly removing or destroying
the data stored on a memory device
to make it unrecoverable.

23 Bayesian Neural Networks:
Neural networks that incorporate
probability distributions over their
weights, enabling uncertainty quan-
tification in predictions and more
robust decision making.

24 Ensemble Methods: An
ML approach that combines several
models to improve prediction accu-
racy.

data sources, and conducting regular data quality assessments. Sourcing data
from trusted and reputable providers and following secure data handling prac-
tices can reduce the likelihood of introducing poisoned data into the training
pipeline.

Strong data governance and access control mechanisms are essential to pre-
vent unauthorized modifications or tampering with the training data. This
involves defining clear roles and responsibilities for data access, implementing
access control policies based on the principle of least privilege,21 and moni-
toring and logging data access activities. By restricting access to the training
data and maintaining an audit trail, potential data poisoning attempts can be
detected and investigated.

Detecting and mitigating data poisoning attacks requires a multifaceted ap-
proach that combines anomaly detection, data sanitization,22 robust training
techniques, and secure data sourcing practices. By implementing these mea-
sures, ML practitioners can improve the resilience of their models against data
poisoning and ensure the integrity and trustworthiness of the training data.
However, it is important to note that data poisoning is an active area of research,
and new attack vectors and defense mechanisms continue to emerge. Staying
informed about the latest developments and adopting a proactive and adap-
tive approach to data security is crucial for maintaining the robustness of ML
systems.

18.4.4.3 Distribution Shifts

Detection and Mitigation. Recall that distribution shifts occur when the data
distribution encountered by a machine learning (ML) model during deployment
differs from the distribution it was trained on. These shifts can significantly im-
pact the model’s performance and generalization ability, leading to suboptimal
or incorrect predictions. Detecting and mitigating distribution shifts is crucial
to ensure the robustness and reliability of ML systems in real-world scenarios.

Detection Techniques. Statistical tests can be used to compare the distributions
of the training and test data to identify significant differences. Techniques such
as the Kolmogorov-Smirnov test or the Anderson-Darling test measure the
discrepancy between two distributions and provide a quantitative assessment
of the presence of distribution shift. By applying these tests to the input features
or the model’s predictions, practitioners can detect if there is a statistically
significant difference between the training and test distributions.

Divergence metrics quantify the dissimilarity between two probability dis-
tributions. Commonly used divergence metrics include the Kullback-Leibler
(KL) divergence and the Jensen-Shannon (JS) divergence. By calculating the
divergence between the training and test data distributions, practitioners can
assess the extent of the distribution shift. High divergence values indicate a
significant difference between the distributions, suggesting the presence of a
distribution shift.

Uncertainty quantification techniques, such as Bayesian neural networks23 or
ensemble methods24, can estimate the uncertainty associated with the model’s
predictions. When a model is applied to data from a different distribution,
its predictions may have higher uncertainty. By monitoring the uncertainty

https://towardsdatascience.com/understanding-kl-divergence-f3ddc8dff254
https://towardsdatascience.com/understanding-kl-divergence-f3ddc8dff254
https://medium.com/towards-data-science/how-to-understand-and-use-jensen-shannon-divergence-b10e11b03fd6

Chapter 18. Robust AI 1017

levels, practitioners can detect distribution shifts. If the uncertainty consistently
exceeds a predetermined threshold for test samples, it suggests that the model
is operating outside its trained distribution.

In addition, domain classifiers are trained to distinguish between different
domains or distributions. Practitioners can detect distribution shifts by train-
ing a classifier to differentiate between the training and test domains. If the
domain classifier achieves high accuracy in distinguishing between the two
domains, it indicates a significant difference in the underlying distributions.
The performance of the domain classifier serves as a measure of the distribution
shift.

Mitigation Techniques. Transfer learning leverages knowledge gained from
one domain to improve performance in another, as shown in Figure 18.34. By
using pre-trained models or transferring learned features from a source domain
to a target domain, transfer learning can help mitigate the impact of distribution
shifts. The pre-trained model can be fine-tuned on a small amount of labeled
data from the target domain, allowing it to adapt to the new distribution.
Transfer learning is particularly effective when the source and target domains
share similar characteristics or when labeled data in the target domain is scarce.

Figure 18.34: Transfer learning.
Source: Bhavsar

Data 1 Model 1 Head Predictions 1

Task 1

Data 2 Model 1 New Head Predictions 2

Task 2

Knowledge transfer

Continual learning, also known as lifelong learning, enables ML models to
learn continuously from new data distributions while retaining knowledge
from previous distributions. Techniques such as elastic weight consolidation
(EWC) (Kirkpatrick et al. 2017) or gradient episodic memory (GEM) (Lopez-
Paz and Ranzato 2017) allow models to adapt to evolving data distributions
over time. These techniques aim to balance the plasticity of the model (ability
to learn from new data) with the stability of the model (retaining previously
learned knowledge). By incrementally updating the model with new data and
mitigating catastrophic forgetting, continual learning helps models stay robust
to distribution shifts.

Data augmentation techniques, such as those we have seen previously, in-
volve applying transformations or perturbations to the existing training data
to increase its diversity and improve the model’s robustness to distribution
shifts. By introducing variations in the data, such as rotations, translations,
scaling, or adding noise, data augmentation helps the model learn invariant
features and generalize better to unseen distributions. Data augmentation can
be performed during training and inference to improve the model’s ability to
handle distribution shifts.

https://medium.com/modern-nlp/transfer-learning-in-nlp-f5035cc3f62f

18.5. Software Faults 1018

25 F1 Score: A measure of a
model’s accuracy that combines pre-
cision (correct positive predictions)
and recall (proportion of actual pos-
itives identified) into a single metric.
Calculated as the harmonic mean of
precision and recall.

Ensemble methods combine multiple models to make predictions more ro-
bust to distribution shifts. By training models on different subsets of the data,
using different algorithms, or with different hyperparameters, ensemble meth-
ods can capture diverse aspects of the data distribution. When presented with
a shifted distribution, the ensemble can leverage the strengths of individual
models to make more accurate and stable predictions. Techniques like bagging,
boosting, or stacking can create effective ensembles.

Regularly updating models with new data from the target distribution is
crucial to mitigate the impact of distribution shifts. As the data distribution
evolves, models should be retrained or fine-tuned on the latest available data
to adapt to the changing patterns. Monitoring model performance and data
characteristics can help detect when an update is necessary. By keeping the
models up to date, practitioners can ensure they remain relevant and accurate
in the face of distribution shifts.

Evaluating models using robust metrics less sensitive to distribution shifts
can provide a more reliable assessment of model performance. Metrics such as
the area under the precision-recall curve (AUPRC) or the F1 score25 are more
robust to class imbalance and can better capture the model’s performance across
different distributions. Additionally, using domain-specific evaluation metrics
that align with the desired outcomes in the target domain can provide a more
meaningful measure of the model’s effectiveness.

Detecting and mitigating distribution shifts is an ongoing process that re-
quires continuous monitoring, adaptation, and improvement. By employing a
combination of detection techniques and mitigation strategies, ML practitioners
can proactively identify and address distribution shifts, ensuring the robustness
and reliability of their models in real-world deployments. It is important to note
that distribution shifts can take various forms and may require domain-specific
approaches depending on the nature of the data and the application. Staying
informed about the latest research and best practices in handling distribution
shifts is essential for building resilient ML systems.

18.5 Software Faults
Machine learning systems rely on complex software infrastructures that extend
far beyond the models themselves. These systems are built on top of frameworks,
libraries, and runtime environments that facilitate model training, evaluation,
and deployment. As with any large-scale software system, the components
that support ML workflows are susceptible to faults—unintended behaviors
resulting from defects, bugs, or design oversights in the software. These faults
can manifest across all stages of an ML pipeline and, if not identified and
addressed, may impair performance, compromise security, or even invalidate
results. This section examines the nature, causes, and consequences of software
faults in ML systems, as well as strategies for their detection and mitigation.

18.5.1 Characteristics
Software faults in ML frameworks originate from various sources, including
programming errors, architectural misalignments, and version incompatibili-

Chapter 18. Robust AI 1019

ties. These faults exhibit several important characteristics that influence how
they arise and propagate in practice.

One defining feature of software faults is their diversity. Faults can range from
syntactic and logical errors to more complex manifestations such as memory
leaks, concurrency bugs, or failures in integration logic. The broad variety of
potential fault types complicates both their identification and resolution, as
they often surface in non-obvious ways.

A second key characteristic is their tendency to propagate across system
boundaries. An error introduced in a low-level module, such as a tensor al-
location routine or a preprocessing function, can produce cascading effects
that disrupt model training, inference, or evaluation. Because ML frameworks
are often composed of interconnected components, a fault in one part of the
pipeline can introduce failures in seemingly unrelated modules.

Some faults are intermittent, manifesting only under specific conditions such
as high system load, particular hardware configurations, or rare data inputs.
These transient faults are notoriously difÏcult to reproduce and diagnose, as
they may not consistently appear during standard testing procedures.

Furthermore, software faults may subtly interact with ML models themselves.
For example, a bug in a data transformation script might introduce systematic
noise or shift the distribution of inputs, leading to biased or inaccurate predic-
tions. Similarly, faults in the serving infrastructure may result in discrepancies
between training-time and inference-time behaviors, undermining deployment
consistency.

The consequences of software faults extend to a range of system properties.
Faults may impair performance by introducing latency or inefÏcient memory
usage; they may reduce scalability by limiting parallelism; or they may compro-
mise reliability and security by exposing the system to unexpected behaviors
or malicious exploitation.

Finally, the manifestation of software faults is often shaped by external depen-
dencies, such as hardware platforms, operating systems, or third-party libraries.
Incompatibilities arising from version mismatches or hardware-specific behav-
ior may result in subtle, hard-to-trace bugs that only appear under certain
runtime conditions.

A thorough understanding of these characteristics is essential for developing
robust software engineering practices in ML. It also provides the foundation
for the detection and mitigation strategies described later in this section.

18.5.2 Mechanisms
Software faults in ML frameworks arise through a variety of mechanisms,
reflecting the complexity of modern ML pipelines and the layered architecture of
supporting tools. These mechanisms correspond to specific classes of software
failures that commonly occur in practice.

One prominent class involves resource mismanagement, particularly with re-
spect to memory. Improper memory allocation, including the failure to release
buffers or file handles, can lead to memory leaks and, eventually, to resource
exhaustion. This is especially detrimental in deep learning applications, where
large tensors and GPU memory allocations are common. As shown in Fig-

18.5. Software Faults 1020

ure 18.35, inefÏcient memory usage or the failure to release GPU resources can
cause training procedures to halt or significantly degrade runtime performance.

Figure 18.35: Example of GPU out-
of-the-memory and suboptimal uti-
lization issues

Another recurring fault mechanism stems from concurrency and synchro-
nization errors. In distributed or multi-threaded environments, incorrect co-
ordination among parallel processes can lead to race conditions, deadlocks,
or inconsistent states. These issues are often tied to the improper use of asyn-
chronous operations, such as non-blocking I/O or parallel data ingestion. Syn-
chronization bugs can corrupt the consistency of training states or produce
unreliable model checkpoints.

Compatibility problems frequently arise from changes to the software en-
vironment. For example, upgrading a third-party library without validating
downstream effects may introduce subtle behavioral changes or break existing
functionality. These issues are exacerbated when the training and inference
environments differ in hardware, operating system, or dependency versions.
Reproducibility in ML experiments often hinges on managing these environ-
mental inconsistencies.

Faults related to numerical instability are also common in ML systems, partic-
ularly in optimization routines. Improper handling of floating-point precision,
division by zero, or underflow/overflow conditions can introduce instabil-
ity into gradient computations and convergence procedures. As described
in this resource, the accumulation of rounding errors across many layers of
computation can distort learned parameters or delay convergence.

Exception handling, though often overlooked, plays a crucial role in the
stability of ML pipelines. Inadequate or overly generic exception management
can cause systems to fail silently or crash under non-critical errors. Moreover,
ambiguous error messages and poor logging practices impede diagnosis and
prolong resolution times.

These fault mechanisms, while diverse in origin, share the potential to signif-
icantly impair ML systems. Understanding how they arise provides the basis
for effective system-level safeguards.

18.5.3 Impact on ML

The consequences of software faults can be profound, affecting not only the
correctness of model outputs but also the broader usability and reliability of an
ML system in production.

Performance degradation is a common symptom, often resulting from mem-
ory leaks, inefÏcient resource scheduling, or contention between concurrent
threads. These issues tend to accumulate over time, leading to increased latency,
reduced throughput, or even system crashes. As noted by (Maas et al. 2024),

https://odsc.medium.com/optimizing-ml-serving-with-asynchronous-architectures-1071fc1be8e2
https://odsc.medium.com/optimizing-ml-serving-with-asynchronous-architectures-1071fc1be8e2
https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/chapter22.04-Numerical-Error-and-Instability.html

Chapter 18. Robust AI 1021

the accumulation of performance regressions across components can severely
restrict the operational capacity of ML systems deployed at scale.

In addition to slowing system performance, faults can lead to inaccurate
predictions. For example, preprocessing errors or inconsistencies in feature
encoding can subtly alter the input distribution seen by the model, producing
biased or unreliable outputs. These kinds of faults are particularly insidious, as
they may not trigger any obvious failure but still compromise downstream de-
cisions. Over time, rounding errors and precision loss can amplify inaccuracies,
particularly in deep architectures with many layers or long training durations.

Reliability is also undermined by software faults. Systems may crash unex-
pectedly, fail to recover from errors, or behave inconsistently across repeated
executions. Intermittent faults are especially problematic in this context, as they
erode user trust while eluding conventional debugging efforts. In distributed
settings, faults in checkpointing or model serialization can cause training inter-
ruptions or data loss, reducing the resilience of long-running training pipelines.

Security vulnerabilities frequently arise from overlooked software faults.
Buffer overflows, improper validation, or unguarded inputs can open the sys-
tem to manipulation or unauthorized access. Attackers may exploit these
weaknesses to alter the behavior of models, extract private data, or induce
denial-of-service conditions. As described by (Q. Li et al. 2023), such vulnera-
bilities pose serious risks, particularly when ML systems are integrated into
critical infrastructure or handle sensitive user data.

Moreover, the presence of faults complicates development and maintenance.
Debugging becomes more time-consuming, especially when fault behavior is
non-deterministic or dependent on external configurations. Frequent software
updates or library patches may introduce regressions that require repeated
testing. This increased engineering overhead can slow iteration, inhibit experi-
mentation, and divert resources from model development.

Taken together, these impacts underscore the importance of systematic soft-
ware engineering practices in ML—practices that anticipate, detect, and mitigate
the diverse failure modes introduced by software faults.

18.5.4 Detection and Mitigation
Addressing software faults in ML systems requires an integrated strategy that
spans development, testing, deployment, and monitoring. A comprehensive
mitigation framework should combine proactive detection methods with robust
design patterns and operational safeguards.

To help summarize these techniques and clarify where each strategy fits
in the ML lifecycle, Table 18.4 below categorizes detection and mitigation ap-
proaches by phase and objective. This table provides a high-level overview that
complements the detailed explanations that follow.

Table 18.4: Summary of detection and mitigation techniques for software faults.

Category Technique Purpose When to Apply

Testing and
Validation

Unit testing, integration testing,
regression testing

Verify correctness and identify
regressions

During development

18.5. Software Faults 1022

Category Technique Purpose When to Apply

Static
Analysis and
Linting

Static analyzers, linters, code
reviews

Detect syntax errors, unsafe
operations, enforce best practices

Before integration

Runtime
Monitoring &
Logging

Metric collection, error logging, profiling | Observe system behavior, detect anomalies | During
training and deployment |

Fault-Tolerant
Design

Exception handling, modular
architecture, checkpointing

Minimize impact of failures,
support recovery

Design and
implementation
phase

Update
Management

Dependency auditing, test
staging, version tracking

Prevent regressions and
compatibility issues

Before system
upgrades or
deployment

Environment
Isolation

Containerization (e.g., Docker,
Kubernetes), virtual
environments

Ensure reproducibility, avoid
environment-specific bugs

Development,
testing, deployment

CI/CD and
Automation

Automated test pipelines,
monitoring hooks, deployment
gates

Enforce quality assurance and
catch faults early

Continuously
throughout
development

The first line of defense involves systematic testing. Unit testing verifies that
individual components behave as expected under normal and edge-case condi-
tions. Integration testing ensures that modules interact correctly across bound-
aries, while regression testing detects errors introduced by code changes. Con-
tinuous testing is essential in fast-moving ML environments, where pipelines
evolve rapidly and small modifications may have system-wide consequences.
As shown in Figure 18.36, automated regression tests help preserve functional
correctness over time.

Figure 18.36: Automated regression
testing. Source: UTOR

Static code analysis tools complement dynamic tests by identifying potential
issues at compile time. These tools catch common errors such as variable misuse,
unsafe operations, or violation of language-specific best practices. Combined
with code reviews and consistent style enforcement, static analysis reduces the
incidence of avoidable programming faults.

Runtime monitoring is critical for observing system behavior under real-
world conditions. Logging frameworks should capture key signals such as
memory usage, input/output traces, and exception events. Monitoring tools can
track model throughput, latency, and failure rates, providing early warnings of
software faults. Profiling, as illustrated in this Microsoft resource, helps identify

https://u-tor.com/topic/regression-vs-integration
https://microsoft.github.io/code-with-engineering-playbook/machine-learning/profiling-ml-and-mlops-code/

Chapter 18. Robust AI 1023

performance bottlenecks and inefÏciencies indicative of deeper architectural
issues.

Robust system design further improves fault tolerance. Structured excep-
tion handling and assertion checks prevent small errors from cascading into
system-wide failures. Redundant computations, fallback models, and failover
mechanisms improve availability in the presence of component failures. Modu-
lar architectures that encapsulate state and isolate side effects make it easier to
diagnose and contain faults. Checkpointing techniques, such as those discussed
in (Eisenman et al. 2022), enable recovery from mid-training interruptions with-
out data loss.

Keeping ML software up to date is another key strategy. Applying regular
updates and security patches helps address known bugs and vulnerabilities.
However, updates must be validated through test staging environments to
avoid regressions. Reviewing release notes and change logs ensures teams are
aware of any behavioral changes introduced in new versions.

Containerization technologies like Docker and Kubernetes allow teams to
define reproducible runtime environments that mitigate compatibility issues.
By isolating system dependencies, containers prevent faults introduced by
system-level discrepancies across development, testing, and production.

Finally, automated pipelines built around continuous integration and contin-
uous deployment (CI/CD) provide an infrastructure for enforcing fault-aware
development. Testing, validation, and monitoring can be embedded directly
into the CI/CD flow. As shown in Figure 18.37, such pipelines reduce the
risk of unnoticed regressions and ensure only tested code reaches deployment
environments.

Figure 18.37: Continuous Inte-
gration/Continuous Deployment
(CI/CD) procedure. Source: geeks-
forgeeks

Together, these practices form a holistic approach to software fault man-
agement in ML systems. When adopted comprehensively, they reduce the
likelihood of system failures, improve long-term maintainability, and foster
trust in model performance and reproducibility.

18.6 Tools and Frameworks
Given the importance of developing robust AI systems, in recent years, re-
searchers and practitioners have developed a wide range of tools and frame-
works to understand how hardware faults manifest and propagate to impact
ML systems. These tools and frameworks play a crucial role in evaluating the re-
silience of ML systems to hardware faults by simulating various fault scenarios
and analyzing their impact on the system’s performance. This enables designers
to identify potential vulnerabilities and develop effective mitigation strategies,
ultimately creating more robust and reliable ML systems that can operate safely

https://github.com/pytorch/pytorch/releases
https://www.docker.com
https://kubernetes.io
https://www.geeksforgeeks.org/ci-cd-continuous-integration-and-continuous-delivery/
https://www.geeksforgeeks.org/ci-cd-continuous-integration-and-continuous-delivery/

18.6. Tools and Frameworks 1024

despite hardware faults. This section provides an overview of widely used fault
models in the literature and the tools and frameworks developed to evaluate
the impact of such faults on ML systems.

18.6.1 Fault and Error Models
As discussed previously, hardware faults can manifest in various ways, includ-
ing transient, permanent, and intermittent faults. In addition to the type of
fault under study, how the fault manifests is also important. For example, does
the fault happen in a memory cell or during the computation of a functional
unit? Is the impact on a single bit, or does it impact multiple bits? Does the
fault propagate all the way and impact the application (causing an error), or
does it get masked quickly and is considered benign? All these details impact
what is known as the fault model, which plays a major role in simulating and
measuring what happens to a system when a fault occurs.

To effectively study and understand the impact of hardware faults on ML
systems, it is essential to understand the concepts of fault models and error
models. A fault model describes how a hardware fault manifests itself in the
system, while an error model represents how the fault propagates and affects
the system’s behavior.

Fault models are often classified by several key properties. First, they can be
defined by their duration: transient faults are temporary and vanish quickly;
permanent faults persist indefinitely; and intermittent faults occur sporadically,
making them particularly difÏcult to identify or predict. Another dimension
is fault location, with faults arising in hardware components such as memory
cells, functional units, or interconnects. Faults can also be characterized by their
granularity—some faults affect only a single bit (e.g., a bitflip), while others
impact multiple bits simultaneously, as in burst errors.

Error models, in contrast, describe the behavioral effects of faults as they
propagate through the system. These models help researchers understand how
initial hardware-level disturbances might manifest in the system’s behavior,
such as through corrupted weights or miscomputed activations in an ML model.
These models may operate at various abstraction levels, from low-level hardware
errors to higher-level logical errors in ML frameworks.

The choice of fault or error model is central to robustness evaluation. For
example, a system built to study single-bit transient faults (Sangchoolie, Pat-
tabiraman, and Karlsson 2017) will not offer meaningful insight into the effects
of permanent multi-bit faults (Wilkening et al. 2014), since its design and
assumptions are grounded in a different fault model entirely.

It’s also important to consider how and where an error model is implemented.
A single-bit flip at the architectural register level, modeled using simulators
like gem5 (Binkert et al. 2011), differs meaningfully from a similar bit flip in
a PyTorch model’s weight tensor. While both simulate value-level perturba-
tions, the lower-level model captures microarchitectural effects that are often
abstracted away in software frameworks.

Interestingly, certain fault behavior patterns remain consistent regardless of
abstraction level. For example, research has consistently demonstrated that
single-bit faults cause more disruption than multi-bit faults, whether examining

Chapter 18. Robust AI 1025

hardware-level effects or software-visible impacts (Sangchoolie, Pattabiraman,
and Karlsson 2017; Papadimitriou and Gizopoulos 2021). However, other
important behaviors like error masking (Mohanram and Touba, n.d.) may only
be observable at lower abstraction levels. As illustrated in Figure 18.38, this
masking phenomenon can cause faults to be filtered out before they propagate
to higher levels, meaning software-based tools may miss these effects entirely.

Figure 18.38: Example of error mask-
ing in microarchitectural compo-
nents (Ko 2021)

Soft error

Corrupted data

are read?

Incorrect output

or system crash?

Masked

(microacrhitecture)

Masked

(software)

Failure

Microarchitecture-level analysis

• Errors on unused components

• Overwritten by write operations

• Errors on speculative instructions

Software-level analysis

• Dynamically dead instructions

• Logical, compare instructions

• Uninfluential branch instructions

Yes

Yes

No

No

System-level masking effect analysis

To address these discrepancies, tools like Fidelity (Yi He, Balaprakash, and
Li 2020) have been developed to align fault models across abstraction layers.
By mapping software-observed fault behaviors to corresponding hardware-
level patterns (E. Cheng et al. 2016), Fidelity offers a more accurate means of
simulating hardware faults at the software level. While lower-level tools capture
the true propagation of errors through a hardware system, they are generally
slower and more complex. Software-level tools, such as those implemented in
PyTorch or TensorFlow, are faster and easier to use for large-scale robustness
testing, albeit with less precision.

18.6.2 Hardware-Based Fault Injection
Hardware-based fault injection methods allow researchers to directly introduce
faults into physical systems and observe their effects on machine learning (ML)
models. These approaches are essential for validating assumptions made in
software-level fault injection tools and for studying how real-world hardware
faults influence system behavior. While most error injection tools used in ML
robustness research are software-based, because of their speed and scalability,
hardware-based approaches remain critical for grounding higher-level error
models. They are considered the most accurate means of studying the impact
of faults on ML systems by manipulating the hardware directly to introduce
errors.

As illustrated in Figure 18.39, hardware faults can arise at various points
within a deep neural network (DNN) processing pipeline. These faults may
affect the control unit, on-chip memory (SRAM), off-chip memory (DRAM),

18.6. Tools and Frameworks 1026

processing elements, and accumulators, leading to erroneous results. In the
depicted example, a DNN tasked with recognizing trafÏc signals correctly iden-
tifies a red light under normal conditions. However, hardware-induced faults,
caused by phenomena such as aging, electromigration, soft errors, process vari-
ations, and manufacturing defects, can introduce errors that cause the DNN
to misclassify the signal as a green light, potentially leading to catastrophic
consequences in real-world applications.

Figure 18.39: Hardware errors can
occur due to a variety of reasons
and at different times and/or loca-
tions in a system, which can be ex-
plored when studying the impact of
hardware-based errors on systems
(Ahmadilivani et al. 2024)

These methods enable researchers to observe the system’s behavior under
real-world fault conditions. Both software-based and hardware-based error
injection tools are described in this section in more detail.

18.6.2.1 Methods

Two of the most common hardware-based fault injection methods are FPGA-
based fault injection and radiation or beam testing.

FPGA-based Fault Injection. Field-Programmable Gate Arrays (FPGAs)
are reconfigurable integrated circuits that can be programmed to implement
various hardware designs. In the context of fault injection, FPGAs offer high
precision and accuracy, as researchers can target specific bits or sets of bits
within the hardware. By modifying the FPGA configuration, faults can be
introduced at specific locations and times during the execution of an ML model.
FPGA-based fault injection allows for fine-grained control over the fault model,
enabling researchers to study the impact of different types of faults, such as
single-bit flips or multi-bit errors. This level of control makes FPGA-based
fault injection a valuable tool for understanding the resilience of ML systems to
hardware faults.

While FPGA-based methods allow precise, controlled fault injection, other
approaches aim to replicate fault conditions found in natural environments.

Radiation or BeamTesting. Radiation or beam testing (Velazco, Foucard, and
Peronnard 2010) exposes hardware running ML models to high-energy particles

Chapter 18. Robust AI 1027

26 Beam Testing: A testing
method that exposes hardware to
controlled particle radiation to eval-
uate its resilience to soft errors.
Common in aerospace, medical de-
vices, and high-reliability comput-
ing.

like protons or neutrons. As shown in Figure 18.40, specialized test facilities
enable controlled radiation exposure to induce bitflips and other hardware-level
faults. This approach is widely regarded as one of the most accurate methods
for measuring error rates from particle strikes during application execution.
Beam testing provides highly realistic fault scenarios that mirror conditions
in radiation-rich environments, making it particularly valuable for validating
systems destined for space missions or particle physics experiments. However,
while beam testing offers exceptional realism, it lacks the precise targeting
capabilities of FPGA-based injection - particle beams cannot be aimed at specific
hardware bits or components with high precision. Despite this limitation and
its significant operational complexity and cost, beam testing remains a trusted
industry practice for rigorously evaluating hardware reliability under real-
world radiation effects.

Figure 18.40: Radiation test setup
for semiconductor components (Lee
et al. 2022) Source: JD Instrument

18.6.2.2 Limitations

Despite their high accuracy, hardware-based fault injection methods have sev-
eral limitations that can hinder their widespread adoption.

First, cost is a major barrier. Both FPGA-based and beam testing26 approaches
require specialized hardware and facilities, which can be expensive to set up
and maintain. This makes them less accessible to research groups with limited
funding or infrastructure.

Second, these methods face challenges in scalability. Injecting faults and col-
lecting data directly on hardware is time-consuming, which limits the number
of experiments that can be run in a reasonable timeframe. This is especially re-
strictive when analyzing large ML systems or performing statistical evaluations
across many fault scenarios.

https://jdinstruments.net/tester-capabilities-radiation-test/

18.6. Tools and Frameworks 1028

Third, there are flexibility limitations. Hardware-based methods may not be
as adaptable as software-based alternatives when modeling a wide variety of
fault and error types. Changing the experimental setup to accommodate a new
fault model often requires time-intensive hardware reconfiguration.

Despite these limitations, hardware-based fault injection remains essential
for validating the accuracy of software-based tools and for studying system
behavior under real-world fault conditions. By combining the high fidelity of
hardware-based methods with the scalability and flexibility of software-based
tools, researchers can develop a more complete understanding of ML systems’
resilience to hardware faults and craft effective mitigation strategies.

18.6.3 Software-Based Fault Injection
As machine learning frameworks like TensorFlow, PyTorch, and Keras have
become the dominant platforms for developing and deploying ML models,
software-based fault injection tools have emerged as a flexible and scalable way
to evaluate the robustness of these systems to hardware faults. Unlike hardware-
based approaches, which operate directly on physical systems, software-based
methods simulate the effects of hardware faults by modifying a model’s under-
lying computational graph, tensor values, or intermediate computations.

These tools have become increasingly popular in recent years because they
integrate directly with ML development pipelines, require no specialized hard-
ware, and allow researchers to conduct large-scale fault injection experiments
quickly and cost-effectively. By simulating hardware-level faults, including
bit flips in weights, activations, or gradients, at the software level, these tools
enable efÏcient testing of fault tolerance mechanisms and provide valuable
insight into model vulnerabilities.

In the remainder of this section, we will examine the advantages and limita-
tions of software-based fault injection methods, introduce major classes of tools
(both general-purpose and domain-specific), and discuss how they contribute
to building resilient ML systems.

18.6.3.1 Advantages and Trade-offs

Software-based fault injection tools offer several advantages that make them
attractive for studying the resilience of ML systems.

One of the primary benefits is speed. Since these tools operate entirely
within the software stack, they avoid the overhead associated with modifying
physical hardware or configuring specialized test environments. This efÏciency
enables researchers to perform a large number of fault injection experiments in
significantly less time. The ability to simulate a wide range of faults quickly
makes these tools particularly useful for stress-testing large-scale ML models
or conducting statistical analyses that require thousands of injections.

Another major advantage is flexibility. Software-based fault injectors can
be easily adapted to model various types of faults. Researchers can simulate
single-bit flips, multi-bit corruptions, or even more complex behaviors such
as burst errors or partial tensor corruption. Additionally, software tools allow
faults to be injected at different stages of the ML pipeline, at the stages of

Chapter 18. Robust AI 1029

training, inference, or gradient computation, enabling precise targeting of
different system components or layers.

These tools are also highly accessible, as they require only standard ML de-
velopment environments. Unlike hardware-based methods, there is no need
for costly experimental setups, custom circuitry, or radiation testing facilities.
This accessibility opens up fault injection research to a broader range of in-
stitutions and developers, including those working in academia, startups, or
resource-constrained environments.

However, these advantages come with certain trade-offs. Chief among them
is accuracy. Because software-based tools model faults at a higher level of
abstraction, they may not fully capture the low-level hardware interactions
that influence how faults actually propagate. For example, a simulated bit
flip in an ML framework may not account for how data is buffered, cached,
or manipulated at the hardware level, potentially leading to oversimplified
conclusions.

Closely related is the issue of fidelity. While it is possible to approximate real-
world fault behaviors, software-based tools may diverge from true hardware
behavior, particularly when it comes to subtle interactions like masking, timing,
or data movement. The results of such simulations depend heavily on the
underlying assumptions of the error model and may require validation against
real hardware measurements to be reliable.

Despite these limitations, software-based fault injection tools play an in-
dispensable role in the study of ML robustness. Their speed, flexibility, and
accessibility allow researchers to perform wide-ranging evaluations and inform
the development of fault-tolerant ML architectures. In subsequent sections, we
explore the major tools in this space, highlighting their capabilities and use
cases.

18.6.3.2 Limitations

While software-based fault injection tools offer significant advantages in terms
of speed, flexibility, and accessibility, they are not without limitations. These
constraints can impact the accuracy and realism of fault injection experiments,
particularly when assessing the robustness of ML systems to real-world hard-
ware faults.

One major concern is accuracy. Because software-based tools operate at
higher levels of abstraction, they may not always capture the full spectrum
of effects that hardware faults can produce. Low-level hardware interactions,
including subtle timing errors, voltage fluctuations, and architectural side
effects, can be missed entirely in high-level simulations. As a result, fault
injection studies that rely solely on software models may under- or overestimate
a system’s true vulnerability to certain classes of faults.

Closely related is the issue of fidelity. While software-based methods are
often designed to emulate specific fault behaviors, the extent to which they
reflect real-world hardware conditions can vary. For example, simulating a
single-bit flip in the value of a neural network weight may not fully replicate
how that same bit error would propagate through memory hierarchies or affect
computation units on an actual chip. The more abstract the tool, the greater

18.6. Tools and Frameworks 1030

the risk that the simulated behavior will diverge from physical behavior under
fault conditions.

Moreover, because software-based tools are easier to modify, there is a risk
of unintentionally deviating from realistic fault assumptions. This can occur if
the chosen fault model is overly simplified or not grounded in empirical data
from actual hardware behavior. As discussed later in the section on bridging
the hardware-software gap, tools like Fidelity (Yi He, Balaprakash, and Li
2020) attempt to address these concerns by aligning software-level models with
known hardware-level fault characteristics.

Despite these limitations, software-based fault injection remains a critical part
of the ML robustness research toolkit. When used appropriately, particularly
when used in conjunction with hardware-based validation, these tools provide
a scalable and efÏcient way to explore large design spaces, identify vulnerable
components, and develop mitigation strategies. As fault modeling techniques
continue to evolve, the integration of hardware-aware insights into software-
based tools will be key to improving their realism and impact.

18.6.3.3 Tool Types

Over the past several years, software-based fault injection tools have been
developed for a wide range of ML frameworks and use cases. These tools vary
in their level of abstraction, target platforms, and the types of faults they can
simulate. Many are built to integrate with popular machine learning libraries
such as PyTorch and TensorFlow, making them accessible to researchers and
practitioners already working within those ecosystems.

One of the earliest and most influential tools is Ares (Reagen et al. 2018),
initially designed for the Keras framework. Developed at a time when deep
neural networks (DNNs) were growing in popularity, Ares was one of the
first tools to systematically explore the effects of hardware faults on DNNs. It
provided support for injecting single-bit flips and evaluating bit-error rates
(BER) across weights and activation values. Importantly, Ares was validated
against a physical DNN accelerator implemented in silicon, demonstrating its
relevance for hardware-level fault modeling. As the field matured, Ares was
extended to support PyTorch, allowing researchers to analyze fault behavior in
more modern ML settings.

Building on this foundation, PyTorchFI (Mahmoud et al. 2020) was intro-
duced as a dedicated fault injection library for PyTorch. Developed in collabora-
tion with Nvidia Research, PyTorchFI allows fault injection into key components
of ML models, including weights, activations, and gradients. Its native support
for GPU acceleration makes it especially well-suited for evaluating large mod-
els efÏciently. As shown in Figure 18.41, even simple bit-level faults can cause
severe visual and classification errors, including the appearance of ‘phantom’
objects in images, which could have downstream safety implications in domains
like autonomous driving.

The modular and accessible design of PyTorchFI has led to its adoption in sev-
eral follow-on projects. For example, PyTorchALFI (developed by Intel xColabs)
extends PyTorchFI’s capabilities to evaluate system-level safety in automotive
applications. Similarly, Dr. DNA (D. Ma et al. 2024) from Meta introduces a

Chapter 18. Robust AI 1031

Figure 18.41: Hardware bitflips
in ML workloads can cause phan-
tom objects and misclassifications,
which can erroneously be used
downstream by larger systems, such
as in autonomous driving. Shown
above is a correct and faulty ver-
sion of the same image using the Py-
TorchFI injection framework.

more streamlined, Pythonic API to simplify fault injection workflows. Another
notable extension is GoldenEye (Mahmoud et al. 2022), which incorporates
alternative numeric datatypes, including AdaptivFloat (Tambe et al. 2020) and
BlockFloat, with bfloat16 as a specific example, to study the fault tolerance of
non-traditional number formats under hardware-induced bit errors.

For researchers working within the TensorFlow ecosystem, TensorFI (Z. Chen
et al. 2020) provides a parallel solution. Like PyTorchFI, TensorFI enables fault
injection into the TensorFlow computational graph and supports a variety of
fault models. One of TensorFI’s strengths is its broad applicability—it can
be used to evaluate many types of ML models beyond DNNs. Additional
extensions such as BinFi (Z. Chen et al. 2019) aim to accelerate the fault injection
process by focusing on the most critical bits in a model. This prioritization can
help reduce simulation time while still capturing the most meaningful error
patterns.

At a lower level of the software stack, NVBitFI (T. Tsai et al. 2021) offers a
platform-independent tool for injecting faults directly into GPU assembly code.
Developed by Nvidia, NVBitFI is capable of performing fault injection on any
GPU-accelerated application, not just ML workloads. This makes it an especially
powerful tool for studying resilience at the instruction level, where errors
can propagate in subtle and complex ways. NVBitFI represents an important
complement to higher-level tools like PyTorchFI and TensorFI, offering fine-
grained control over GPU-level behavior and supporting a broader class of
applications beyond machine learning.

Together, these tools offer a wide spectrum of fault injection capabilities.
While some are tightly integrated with high-level ML frameworks for ease of
use, others enable lower-level fault modeling with higher fidelity. By choosing
the appropriate tool based on the level of abstraction, performance needs, and
target application, researchers can tailor their studies to gain more actionable
insights into the robustness of ML systems. The next section focuses on how
these tools are being applied in domain-specific contexts, particularly in safety-
critical systems such as autonomous vehicles and robotics.

18.6.3.4 Domain-Specific Examples
To address the unique challenges posed by specific application domains, re-
searchers have developed specialized fault injection tools tailored to differ-

18.6. Tools and Frameworks 1032

27 Multimodal Sensor Data: In-
formation collected simultaneously
from multiple types of sensors (e.g.,
cameras, LiDAR, radar) to provide
complementary perspectives of the
environment. Critical for robust per-
ception in autonomous systems.

ent machine learning (ML) systems. In high-stakes environments such as
autonomous vehicles and robotics, domain-specific tools play a crucial role in
evaluating system safety and reliability under hardware fault conditions. This
section highlights three such tools: DriveFI and PyTorchALFI, which focus
on autonomous vehicles, and MAVFI, which targets uncrewed aerial vehicles
(UAVs). Each tool enables the injection of faults into mission-critical compo-
nents, including perception, control, and sensor systems, providing researchers
with insights into how hardware errors may propagate through real-world ML
pipelines.

DriveFI (S. Jha et al. 2019) is a fault injection tool developed for autonomous
vehicle systems. It facilitates the injection of hardware faults into the perception
and control pipelines, enabling researchers to study how such faults affect
system behavior and safety. Notably, DriveFI integrates with industry-standard
platforms like Nvidia DriveAV and Baidu Apollo, offering a realistic environ-
ment for testing. Through this integration, DriveFI enables practitioners to
evaluate the end-to-end resilience of autonomous vehicle architectures in the
presence of fault conditions.

PyTorchALFI (Gräfe et al. 2023) extends the capabilities of PyTorchFI for use
in the autonomous vehicle domain. Developed by Intel xColabs, PyTorchALFI
enhances the underlying fault injection framework with domain-specific fea-
tures. These include the ability to inject faults into multimodal sensor data27,
such as inputs from cameras and LiDAR systems. This allows for a deeper
examination of how perception systems in autonomous vehicles respond to
underlying hardware faults, further refining our understanding of system vul-
nerabilities and potential failure modes.

MAVFI (Hsiao et al. 2023) is a domain-specific fault injection framework tai-
lored for robotics applications, particularly uncrewed aerial vehicles. Built atop
the Robot Operating System (ROS), MAVFI provides a modular and extensible
platform for injecting faults into various UAV subsystems, including sensors,
actuators, and flight control algorithms. By assessing how injected faults im-
pact flight stability and mission success, MAVFI offers a practical means for
developing and validating fault-tolerant UAV architectures.

Together, these tools demonstrate the growing sophistication of fault injection
research across application domains. By enabling fine-grained control over
where and how faults are introduced, domain-specific tools provide actionable
insights that general-purpose frameworks may overlook. Their development
has greatly expanded the ML community’s capacity to design and evaluate
resilient systems—particularly in contexts where reliability, safety, and real-time
performance are critical.

18.6.4 Bridging Hardware-Software Gap
While software-based fault injection tools offer many advantages in speed, flex-
ibility, and accessibility, they do not always capture the full range of effects that
hardware faults can impose on a system. This is largely due to the abstraction
gap: software-based tools operate at a higher level and may overlook low-level
hardware interactions or nuanced error propagation mechanisms that influence
the behavior of ML systems in critical ways.

Chapter 18. Robust AI 1033

As discussed in the work by (Bolchini et al. 2023), hardware faults can exhibit
complex spatial distribution patterns that are difÏcult to replicate using purely
software-based fault models. They identify four characteristic fault propagation
patterns: single point, where the fault corrupts a single value in a feature map;
same row, where a partial or entire row in a feature map is corrupted; bullet
wake, where the same location across multiple feature maps is affected; and
shatter glass, a more complex combination of both same row and bullet wake
behaviors. These diverse patterns, visualized in Figure 18.42, highlight the
limits of simplistic injection strategies and emphasize the need for hardware-
aware modeling when evaluating ML system robustness.

Figure 18.42: Hardware errors may
manifest themselves in different
ways at the software level, as clas-
sified by Bolchini et al. (2023). Spa-
tial distribution patterns (erroneous
values are colored in red). (a) Single
point: The fault causes the corrup-
tion of a single value of a single fea-
ture map. (b) Same row: The fault
causes the total or partial corrup-
tion of a row in a single feature map.
(c) Bullet wake: The fault corrupts
the same location in all or multiple
feature maps. (d) Shatter glass: The
fault causes the combination of the
effects of same row and bullet wake
patterns.

(a) Single point (b) Same row

(c) Bullet wake (d) Shatttered glass

To address this abstraction gap, researchers have developed tools that explic-
itly aim to map low-level hardware error behavior to software-visible effects.
One such tool is Fidelity, which bridges this gap by studying how hardware-
level faults propagate and become observable at higher software layers. The
next section discusses Fidelity in more detail.

18.6.4.1 Fidelity

Fidelity (Yi He, Balaprakash, and Li 2020) is a tool designed to model hardware
faults more accurately within software-based fault injection experiments. Its
core goal is to bridge the gap between low-level hardware fault behavior and
the higher-level effects observed in machine learning systems by simulating
how faults propagate through the compute stack.

The central insight behind Fidelity is that not all faults need to be modeled
individually at the hardware level to yield meaningful results. Instead, Fidelity
focuses on how faults manifest at the software-visible state and identifies equiv-
alence relationships that allow representative modeling of entire fault classes.
To accomplish this, it relies on several key principles:

First, fault propagation is studied to understand how a fault originating in
hardware can move through various layers, including architectural registers,
memory hierarchies, and numerical operations, eventually altering values in

18.6. Tools and Frameworks 1034

software. Fidelity captures these pathways to ensure that injected faults in
software reflect the way faults would actually manifest in a real system.

Second, the tool identifies fault equivalence, which refers to grouping hard-
ware faults that lead to similar observable outcomes in software. By focusing
on representative examples rather than modeling every possible hardware bit
flip individually, Fidelity allows more efÏcient simulations without sacrificing
accuracy.

Finally, Fidelity uses a layered modeling approach, capturing the system’s
behavior at various abstraction levels—from hardware fault origin to its effect
in the ML model’s weights, activations, or predictions. This layering ensures
that the impact of hardware faults is realistically simulated in the context of
the ML system.

By combining these techniques, Fidelity allows researchers to run fault injec-
tion experiments that closely mirror the behavior of real hardware systems, but
with the efÏciency and flexibility of software-based tools. This makes Fidelity
especially valuable in safety-critical settings, where the cost of failure is high
and an accurate understanding of hardware-induced faults is essential.

18.6.4.2 Capturing Hardware Behavior

Capturing the true behavior of hardware faults in software-based fault injection
tools is critical for advancing the reliability and robustness of ML systems. This
fidelity becomes especially important when hardware faults have subtle but
significant effects that may not be evident when modeled at a high level of
abstraction.

There are several reasons why accurately reflecting hardware behavior is
essential. First, accuracy is paramount. Software-based tools that mirror the
actual propagation and manifestation of hardware faults provide more de-
pendable insights into how faults influence model behavior. These insights are
crucial for designing and validating fault-tolerant architectures and ensuring
that mitigation strategies are grounded in realistic system behavior.

Second, reproducibility is improved when hardware effects are faithfully
captured. This allows fault injection results to be reliably reproduced across
different systems and environments, which is a cornerstone of rigorous scientific
research. Researchers can better compare results, validate findings, and ensure
consistency across studies.

Third, efÏciency is enhanced when fault models focus on the most represen-
tative and impactful fault scenarios. Rather than exhaustively simulating every
possible bit flip, tools can target a subset of faults that are known, by means
of accurate modeling, to affect the system in meaningful ways. This selective
approach saves computational resources while still providing comprehensive
insights.

Finally, understanding how hardware faults appear at the software level is
essential for designing effective mitigation strategies. When researchers know
how specific hardware-level issues affect different components of an ML system,
they can develop more targeted hardening techniques—such as retraining
specific layers, applying redundancy selectively, or improving architectural
resilience in bottleneck components.

Chapter 18. Robust AI 1035

Tools like Fidelity are central to this effort. By establishing mappings between
low-level hardware behavior and higher-level software effects, Fidelity and
similar tools empower researchers to conduct fault injection experiments that
are not only faster and more scalable, but also grounded in real-world system
behavior.

As ML systems continue to increase in scale and are deployed in increasingly
safety-critical environments, this kind of hardware-aware modeling will become
even more important. Ongoing research in this space aims to further refine the
translation between hardware and software fault models and to develop tools
that offer both efÏciency and realism in evaluating ML system resilience. These
advances will provide the community with more powerful, reliable methods
for understanding and defending against the effects of hardware faults.

18.7 Conclusion

The pursuit of robust AI is a multifaceted endeavor that is critical for the reliable
deployment of machine learning systems in real-world environments. As ML
move from controlled research settings to practical applications, robustness
becomes not just a desirable feature but a foundational requirement. Deploying
AI in practice means engaging directly with the challenges that can compromise
system performance, safety, and reliability.

We examined the broad spectrum of issues that threaten AI robustness,
beginning with hardware-level faults. Transient faults may introduce temporary
computational errors, while permanent faults, including the well-known Intel
FDIV bug, can lead to persistent inaccuracies that affect system behavior over
time.

Beyond hardware, machine learning models themselves are susceptible to a
variety of threats. Adversarial examples, such as the misclassification of mod-
ified stop signs, reveal how subtle input manipulations can cause erroneous
outputs. Likewise, data poisoning techniques, exemplified by the Nightshade
project, illustrate how malicious training data can degrade model performance
or implant hidden backdoors, posing serious security risks in practical deploy-
ments.

The chapter also addressed the impact of distribution shifts, which often
result from temporal evolution or domain mismatches between training and
deployment environments. Such shifts challenge a model’s ability to gener-
alize and perform reliably under changing conditions. Compounding these
issues are faults in the software infrastructure, including frameworks, libraries,
and runtime components, which can propagate unpredictably and undermine
system integrity.

To navigate these risks, the use of robust tools and evaluation frameworks
is essential. Tools such as PyTorchFI and Fidelity enable researchers and prac-
titioners to simulate fault scenarios, assess vulnerabilities, and systematically
improve system resilience. These resources are critical for translating theoretical
robustness principles into operational safeguards.

Ultimately, building robust AI requires a comprehensive and proactive ap-
proach. Fault tolerance, security mechanisms, and continuous monitoring

18.8. Resources 1036

must be embedded throughout the AI development lifecycle—from data col-
lection and model training to deployment and maintenance. As this chapter
has demonstrated, applying AI in real-world contexts means addressing these
robustness challenges head-on to ensure that systems operate safely, reliably,
and effectively in complex and evolving environments.

18.8 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 19

AI for Good

Figure 19.1: DALL·E 3 Prompt: Il-
lustration of planet Earth wrapped in
shimmering neural networks, with di-
verse humans and AI robots working to-
gether on various projects like planting
trees, cleaning the oceans, and develop-
ing sustainable energy solutions. The
positive and hopeful atmosphere repre-
sents a united effort to create a better
future.

Purpose
How can we harness machine learning systems to address critical societal challenges,
and what principles guide the development of solutions that create lasting positive
impact?

The application of AI systems to societal challenges represents the culmi-
nation of technical capability and social responsibility. Impact-driven devel-
opment reveals essential patterns for translating technological potential into
meaningful change, highlighting critical relationships between system design
and societal outcomes. The implementation of solutions for social good show-
cases pathways for addressing complex challenges while maintaining technical
rigor and operational effectiveness. Understanding these impact dynamics
provides insights into creating transformative systems, establishing principles
for designing AI solutions that advance human welfare, and promote positive
societal transformation.

1037

19.1. Overview 1038

0 Resource-constrained environ-
ments: Areas with limited comput-
ing capabilities, connectivity, and
support infrastructure.

L� Learning Objectives

• Explore how AI systems can address critical real-world societal
challenges.

• Recognize key design patterns for ML systems in social impact.
• Select suitable design patterns based on resource availability and

adaptability needs.
• Explore how Cloud ML, Edge ML, Mobile ML, and Tiny ML inte-

grate into these patterns.
• Evaluate the strengths and limitations of design patterns for specific

deployment scenarios.

19.1 Overview

Previous chapters examined the fundamental components of machine learning
systems - from neural architectures and training methodologies to accelera-
tion techniques and deployment strategies. These chapters established how
to build, optimize, and operate ML systems at scale. The examples and tech-
niques focused primarily on scenarios where computational resources, reliable
infrastructure, and technical expertise were readily available.

Machine learning systems, however, extend beyond commercial and indus-
trial applications. While recommendation engines, computer vision systems,
and natural language processors drive business value, ML systems also hold
immense potential for addressing pressing societal challenges. This potential
remains largely unrealized due to the distinct challenges of deploying ML
systems in resource-constrained environments0.

Engineering ML systems for social impact differs fundamentally from com-
mercial deployments. These systems must operate in environments with limited
computing resources, intermittent connectivity, and minimal technical support
infrastructure. Such constraints reshape every aspect of ML system design—
from model architecture and training approaches to deployment patterns and
maintenance strategies. Success requires rethinking traditional ML system
design patterns to create solutions that are robust, maintainable, and effective
despite these limitations.

Building ML systems for AI for social good is an engineering challenge.

�� Definition of AI for Good

AI for Good refers to the design, development, and deployment of machine
learning systems aimed at addressing critical societal and environmental chal-
lenges. These systems seek to enhance human welfare, promote sustainability,
and contribute to global development goals by leveraging machine learning
and related AI technologies to create positive, equitable, and lasting impact.

Chapter 19. AI for Good 1039

This chapter highlights some AI applications for social good and examines
the unique requirements, constraints, and opportunities in engineering ML
systems for social impact. We analyze how core ML system components adapt
to resource-constrained environments, explore architectural patterns that en-
able robust deployment across the computing spectrum, and study real-world
implementations in healthcare, agriculture, education, and environmental mon-
itoring. Through these examples and the discussions involved, we develop
frameworks for designing ML systems that deliver sustainable social impact.

19.2 Global Challenges
History provides sobering examples of where timely interventions and coor-
dinated responses could have dramatically altered outcomes. The 2014-2016
Ebola outbreak in West Africa, for instance, highlighted the catastrophic con-
sequences of delayed detection and response systems (WHO). Similarly, the
2011 famine in Somalia, despite being forecasted months in advance, caused
immense suffering due to inadequate mechanisms to mobilize and allocate
resources effectively (ReliefWeb). In the aftermath of the 2010 Haiti earthquake,
the lack of rapid and reliable damage assessment significantly hampered efforts
to direct aid where it was most needed (USGS).

Today, similar challenges persist across diverse domains, particularly in
resource-constrained environments. In healthcare, remote and underserved
communities often experience preventable health crises due to the absence of
timely access to medical expertise. A lack of diagnostic tools and specialists
means that treatable conditions can escalate into life-threatening situations,
creating unnecessary suffering and loss of life. Agriculture, a sector critical
to global food security, faces parallel struggles. Smallholder farmers, respon-
sible for producing much of the world’s food, make crucial decisions with
limited information. Increasingly erratic weather patterns, pest outbreaks, and
soil degradation compound their difÏculties, often resulting in reduced yields
and heightened food insecurity, particularly in vulnerable regions. These chal-
lenges demonstrate how systemic barriers and resource constraints perpetuate
inequities and undermine resilience.

Similar systemic barriers are evident in education, where inequity further
amplifies challenges in underserved areas. Many schools lack sufÏcient teach-
ers, adequate resources, and personalized support for students. This not only
widens the gap between advantaged and disadvantaged learners but also cre-
ates long-term consequences for social and economic development. Without
access to quality education, entire communities are left at a disadvantage,
perpetuating cycles of poverty and inequality. These inequities are deeply
interconnected with broader challenges, as gaps in education often exacerbate
issues in other critical sectors such as healthcare and agriculture.

The strain on ecosystems introduces another dimension to these challenges.
Environmental degradation, including deforestation, pollution, and biodiver-
sity loss, threatens livelihoods and destabilizes the ecological balance necessary
for sustaining human life. Vast stretches of forests, oceans, and wildlife habitats
remain unmonitored and unprotected, particularly in regions with limited
resources. This leaves ecosystems vulnerable to illegal activities such as poach-

https://www.who.int/emergencies/situations/ebola-outbreak-2014-2016-West-Africa
https://reliefweb.int/report/somalia/somalia-famine-2011-2012
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/2010-haiti-earthquake-overview?qt-science_center_objects=0#qt-science_center_objects

19.3. Key AI Applications 1040

ing, logging, and pollution, further intensifying the pressures on communities
already grappling with economic and social disparities. These interwoven
challenges underscore the need for holistic solutions that address both human
and environmental vulnerabilities.

Although these issues vary in scope and scale, they share several critical
characteristics. They disproportionately affect vulnerable populations, exac-
erbating existing inequalities. Resource constraints in affected regions pose
significant barriers to implementing solutions. Moreover, addressing these
challenges requires navigating trade-offs between competing priorities and
limited resources, often under conditions of great uncertainty.

Technology holds the potential to play a transformative role in addressing
these issues. By providing innovative tools to enhance decision-making, in-
crease efÏciency, and deliver solutions at scale, it offers hope for overcoming the
barriers that have historically hindered progress. Among these technologies,
machine learning systems stand out for their capacity to process vast amounts
of information, uncover patterns, and generate insights that can inform action
in even the most resource-constrained environments. However, realizing this
potential requires deliberate and systematic approaches to ensure these tools
are designed and implemented to serve the needs of all communities effectively
and equitably.

19.3 Key AI Applications
AI technologies, such as Cloud ML, Mobile ML, Edge ML, and Tiny ML, are
unlocking transformative solutions to some of the world’s most pressing chal-
lenges. By adapting to diverse constraints and leveraging unique strengths,
these technologies are driving innovation in agriculture, healthcare, disaster
response, and environmental conservation. This section explores how these
paradigms bring social good to life through real-world applications.

19.3.1 Agriculture

çĖ Important 11: Plant Village Nuru
Watch on YouTube
Plant Village Nuru

Scan with your phone
to watch the video

TV Watch on YouTube

In Sub-Saharan Africa, cassava farmers have long battled diseases that devas-
tate crops and livelihoods. Now, with the help of mobile ML-powered smart-
phone apps, as shown in Figure 19.2, they can snap a photo of a leaf and receive
instant feedback on potential diseases. This early detection system has reduced
cassava losses from 40% to just 5%, offering hope to farmers in disconnected
regions where access to agricultural advisors is limited (Ramcharan et al. 2017).

Across Southeast Asia, rice farmers are confronting increasingly unpre-
dictable weather patterns. In Indonesia, Tiny ML sensors are transforming their
ability to adapt by monitoring microclimates across paddies. These low-power
devices process data locally to optimize water usage, enabling precision irriga-
tion even in areas with minimal infrastructure (Tirtalistyani, Murtiningrum,
and Kanwar 2022).

https://youtu.be/MD61bddZtbg?si=Ake2uP8vC_lsvYhd
https://youtu.be/MD61bddZtbg?si=Ake2uP8vC_lsvYhd

Chapter 19. AI for Good 1041

Figure 19.2: AI helps farmers to de-
tect plant diseases.

1 Vector-borne diseases: Illnesses
caused by pathogens transmitted
by vectors like mosquitoes, ticks, or
fleas.

On a global scale, Microsoft’s FarmBeats is pioneering the integration of IoT
sensors, drones, and Cloud ML to create actionable insights for farmers. By
leveraging weather forecasts, soil conditions, and crop health data, the platform
allows farmers to optimize inputs like water and fertilizer, reducing waste and
improving yields. Together, these innovations illustrate how AI technologies are
bringing precision agriculture to life, addressing food security, sustainability,
and climate resilience.

19.3.2 Healthcare
For millions in underserved communities, access to healthcare often means
long waits and travel to distant clinics. Tiny ML is changing that by enabling
diagnostics to occur at the patient’s side. For example, a low-cost wearable
developed by Respira x Colabs uses embedded machine learning to analyze
cough patterns and detect pneumonia. Designed for remote areas, the device
operates independently of internet connectivity and is powered by a simple
microcontroller, making life-saving diagnostics accessible to those who need it
most.

Tiny ML’s potential extends to tackling global health issues like vector-borne
diseases1 that are spread by mosquitoes. Researchers have developed low-cost
devices that use machine learning to identify mosquito species by their wingbeat
frequencies (Altayeb, Zennaro, and Rovai 2022). This technology enables real-
time monitoring of malaria-carrying mosquitoes. It offers a scalable solution
for malaria control in high-risk regions.

In parallel, Cloud ML is advancing healthcare research and diagnostics on a
broader scale. Platforms like Google Genomics analyze vast datasets to identify
disease markers, accelerating breakthroughs in personalized medicine. These
examples show how AI technologies, ranging from the portability of Tiny

https://www.microsoft.com/en-us/research/project/farmbeats-iot-agriculture/
https://www.samayhealth.com/
https://health.google/health-research/genomics/

19.3. Key AI Applications 1042

ML to the computational power of Cloud ML, are converging to democratize
healthcare access and improve outcomes worldwide.

19.3.3 Disaster Response
In disaster zones, where every second counts, AI technologies are providing
tools to accelerate response efforts and enhance safety. Tiny, autonomous
drones equipped with Tiny ML algorithms are making their way into collapsed
buildings, navigating obstacles to detect signs of life. By analyzing thermal
imaging and acoustic signals locally, these drones can identify survivors and
hazards without relying on cloud connectivity (Duisterhof et al. 2021). Video 12
and Video 13 show how Tiny ML algorithms can be used to enable drones to
autonomously seek light and gas sources.

çĖ Important 12: Light Seeking

Watch on YouTube
Light Seeking

TV Watch on YouTube

çĖ Important 13: Gas SeekingGas Seeking

Scan with your phone
to watch the video

TV Watch on YouTube

At a broader level, platforms like Google’s AI for Disaster Response are
leveraging Cloud ML to process satellite imagery and predict flood zones. These
systems provide real-time insights to help governments allocate resources more
effectively and save lives during emergencies.

Mobile ML applications are also playing a critical role by delivering real-
time disaster alerts directly to smartphones. Tsunami warnings and wildfire
updates tailored to users’ locations enable faster evacuations and better pre-
paredness. Whether scaling globally with Cloud ML or enabling localized
insights with Edge and Mobile ML, these technologies are redefining disaster
response capabilities.

19.3.4 Environmental Conservation
Conservationists face immense challenges in monitoring and protecting biodi-
versity across vast and often remote landscapes. AI technologies are offering
scalable solutions to these problems, combining local autonomy with global
coordination.

çĖ Important 14: Elephant Edge
Watch on YouTube

Elephant Edge

Scan with your phone
to watch the video

TV Watch on YouTube

EdgeML-powered collars are being used to unobtrusively track animal behav-
ior, such as elephant movements and vocalizations (Video 14). By processing

https://www.youtube.com/watch?v=wmVKbX7MOnU
https://www.youtube.com/watch?v=wmVKbX7MOnU
https://www.youtube.com/watch?v=hj_SBSpK5qg
https://www.youtube.com/watch?v=hj_SBSpK5qg
https://crisisresponse.google/
https://youtu.be/ci95eyvTyXo?si=iD8TZiVAfuci4QeN
https://youtu.be/ci95eyvTyXo?si=iD8TZiVAfuci4QeN

Chapter 19. AI for Good 1043

2 World Health Organization
(WHO): A specialized agency of the
United Nations responsible for in-
ternational public health.

data on the collar itself, these devices minimize power consumption and re-
duce the need for frequent battery changes (Verma 2022). Meanwhile, Tiny ML
systems are enabling anti-poaching efforts by detecting threats like gunshots
or human activity and relaying alerts to rangers in real time (Bamoumen et al.
2022).

At a global scale, Cloud ML is being used to monitor illegal fishing activities.
Platforms like Global Fishing Watch analyze satellite data to detect anomalies,
helping governments enforce regulations and protect marine ecosystems. These
examples highlight how AI technologies are enabling real-time monitoring and
decision-making, advancing conservation efforts in profound ways.

19.3.5 AI’s Holistic Impact
The examples highlighted above demonstrate the transformative potential of AI
technologies in addressing critical societal challenges. However, these successes
also underscore the complexity of tackling such problems holistically. Each
example addresses specific needs, such as optimizing agricultural resources,
expanding healthcare access, or protecting ecosystems, but solving these issues
sustainably requires more than isolated innovations.

To maximize impact and ensure equitable progress, collective efforts are
essential. Large-scale challenges demand collaboration across sectors, geogra-
phies, and stakeholders. By fostering coordination between local initiatives,
research institutions, and global organizations, we can align AI’s transforma-
tive potential with the infrastructure and policies needed to scale solutions
effectively. Without such alignment, even the most promising innovations risk
operating in silos, limiting their reach and long-term sustainability.

To address this, we require frameworks that help harmonize efforts and
prioritize initiatives that deliver broad, lasting impact. These frameworks serve
as roadmaps to bridge the gap between technological potential and meaningful
global progress.

19.4 Global Development Perspective
The sheer scale and complexity of these problems demand a systematic ap-
proach to ensure that efforts are targeted, coordinated, and sustainable. This is
where global frameworks such as the United Nations Sustainable Development
Goals (SDGs) and guidance from institutions like the World Health Organiza-
tion (WHO)2 play a pivotal role. These frameworks provide a structured lens for
thinking about and addressing the world’s most pressing challenges. They offer
a roadmap to align efforts, set priorities, and foster international collaboration
to create impactful and lasting change (The Sustainable Development Goals Report
2018 2018).

The SDGs shown in Figure 19.3 are a global agenda adopted in 2015. These
17 interconnected goals form a blueprint for addressing the world’s most press-
ing challenges by 2030. They range from eliminating poverty and hunger to
ensuring quality education, from promoting gender equality to taking climate
action.

Machine learning systems can contribute to multiple SDGs simultaneously
through their transformative capabilities:

https://globalfishingwatch.org/

19.4. Global Development Perspective 1044

Figure 19.3: United Nations Sus-
tainable Development Goals (SDG).
Source: United Nations.

• Goal 1 (No Poverty) & Goal 10 (Reduced Inequalities): ML systems that
improve financial inclusion through mobile banking and risk assessment
for microloans.

• Goals 2, 12, & 15 (Zero Hunger, Responsible Consumption, Life on
Land): Systems that optimize resource distribution, reduce waste in food
supply chains, and monitor biodiversity.

• Goals 3 & 5 (Good Health and Gender Equality): ML applications that
improve maternal health outcomes and access to healthcare in under-
served communities.

• Goals 13 & 11 (Climate Action & Sustainable Cities): Predictive systems
for climate resilience and urban planning that help communities adapt to
environmental changes.

However, deploying these systems presents unique challenges. Many regions
that could benefit most from machine learning applications lack reliable elec-
tricity (Goal 7: Affordable and Clean Energy) or internet infrastructure (Goal 9:
Industry, Innovation and Infrastructure). This reality forces us to rethink how
we design machine learning systems for social impact.

Success in advancing the SDGs through machine learning requires a holistic
approach that goes beyond technical solutions. Systems must operate within
local resource constraints while respecting cultural contexts and existing infras-
tructure limitations. This reality pushes us to fundamentally rethink system
design, considering not just technological capabilities but also their sustainable
integration into communities that need them most.

The following sections explore how to navigate these technical, infrastruc-
tural, and societal factors to create ML systems that genuinely advance sus-
tainable development goals without creating new dependencies or deepening
existing inequalities.

https://sdgs.un.org/goals

Chapter 19. AI for Good 1045

3 NB-IoT (Narrowband Internet
of Things): NB-IoT is a low-power,
wide-area wireless communication
technology optimized for connect-
ing IoT devices with minimal energy
usage, often in resource-constrained
environments.

19.5 Engineering Challenges
Deploying machine learning systems in social impact contexts requires us to
navigate a series of interconnected challenges spanning computational, network-
ing, power, and data dimensions. These challenges are particularly pronounced
when transitioning from development to production environments or scaling
deployments in resource-constrained settings.

To provide an overview, Table 19.1 summarizes the key differences in re-
sources and requirements across development, rural, and urban contexts, while
also highlighting the unique constraints encountered during scaling. This
comparison provides a basis for understanding the paradoxes, dilemmas, and
constraints that will be explored in subsequent sections.

Table 19.1: Comparison of resource constraints and challenges across rural de-
ployments, urban deployments, and scaling in machine learning
systems for social impact contexts.

Aspect Rural Deployment Urban Deployment Scaling Challenges

Computational
Resources

Microcontroller (ESP32:
240 MHz, 520 KB RAM)

Server-grade systems
(100-200 W, 32-64 GB
RAM)

Aggressive model
quantization (e.g., 50 MB to
500 KB)

Power
Infrastructure

Solar and battery systems
(10-20 W, 2000-3000 mAh
battery)

Stable grid power Optimized power usage (for
deployment devices)

Network
Bandwidth

LoRa, NB-IoT (0.3-50 kbps,
60-250 kbps)

High-bandwidth options Protocol adjustments (LoRa,
NB-IoT, Sigfox: 100-600 bps)

Data Availability Sparse, heterogeneous
data sources (500 KB/day
from rural clinics)

Large volumes of
standardized data
(Gigabytes from urban
hospitals)

Specialized pipelines (For
privacy-sensitive data)

Model Footprint Highly quantized models
(≤ 1 MB)

Cloud/edge systems
(Supporting larger
models)

Model architecture redesign
(For size, power, and
bandwidth limits)

19.5.1 Resource Paradox
Deploying machine learning systems in social impact contexts reveals a funda-
mental resource paradox that shapes every aspect of system design. While areas
with the greatest needs could benefit most from machine learning capabilities,
they often lack the basic infrastructure required for traditional deployments.

This paradox becomes evident in the computational and power requirements
of machine learning systems, as shown in Table 19.1. A typical cloud deploy-
ment might utilize servers consuming 100-200 W of power with multiple CPU
cores and 32-64 GB of RAM. However, rural deployments must often operate
on single-board computers drawing 5 W or microcontrollers consuming mere
milliwatts, with RAM measured in kilobytes rather than gigabytes.

Network infrastructure limitations further constrain system design. Urban
environments offer high-bandwidth options like fiber (100+ Mbps) and 5G
networks (1-10 Gbps). Rural deployments must instead rely on low-power wide-
area network technologies such as LoRa or NB-IoT3, which achieve kilometer-
range coverage with minimal power consumption.

Power infrastructure presents additional challenges. While urban systems
can rely on stable grid power, rural deployments often depend on solar charging

19.5. Engineering Challenges 1046

4 LoRa (Long Range): LoRA is
a low-power wireless communica-
tion protocol designed for transmit-
ting small data packets over long
distances with minimal energy con-
sumption.

and battery systems. A typical solar-powered system might generate 10-20 W
during peak sunlight hours, requiring careful power budgeting across all system
components. Battery capacity limitations, often 2000-3000 mAh, mean systems
must optimize every aspect of operation, from sensor sampling rates to model
inference frequency.

19.5.2 Data Dilemma
Beyond just computational horserpower, machine learning systems in social
impact contexts face fundamental data challenges that differ significantly from
commercial deployments. Where commercial systems often work with stan-
dardized datasets containing millions of examples, social impact projects must
build robust systems with limited, heterogeneous data sources.

Healthcare deployments illustrate these data constraints clearly. A typical
rural clinic might generate 50-100 patient records per day, combining digital
entries with handwritten notes. These records often mix structured data like
vital signs with unstructured observations, requiring specialized preprocessing
pipelines. The total data volume might reach only 500 KB per day. This is
a stark contrast to urban hospitals generating gigabytes of standardized elec-
tronic health records. Even an X-ray or MRI scan is measured in megabytes or
more, underscoring the vast disparity in data scales between rural and urban
healthcare facilities.

Network limitations further constrain data collection and processing. Agri-
cultural sensor networks, operating on limited power budgets, might transmit
only 100-200 bytes per reading. With LoRa4 bandwidth constraints of 50 kbps,
these systems often limit transmission frequency to once per hour. A network
of 1000 sensors thus generates only 4-5 MB of data per day, requiring models to
learn from sparse temporal data. For perspective, streaming a single minute of
video on Netflix can consume several megabytes, highlighting the disparity in
data volumes between industrial IoT networks and everyday internet usage.

Privacy considerations add another layer of complexity. Protecting sensi-
tive information while operating within hardware constraints requires careful
system design. Implementing privacy-preserving techniques on devices with
512 KB RAM means partitioning models and data carefully. Local processing
must balance privacy requirements against hardware limitations, often restrict-
ing model sizes to under 1 MB. Supporting multiple regional variants of these
models can quickly consume the limited storage available on low-cost devices,
typically 2-4 MB total.

19.5.3 Scale Challenge
Scaling machine learning systems from prototype to production deployment
introduces fundamental resource constraints that necessitate architectural re-
design. Development environments provide computational resources that mask
many real-world limitations. A typical development platform, such as a Rasp-
berry Pi 4, offers substantial computing power with its 1.5 GHz processor and
4 GB RAM. These resources enable rapid prototyping and testing of machine
learning models without immediate concern for optimization.

Chapter 19. AI for Good 1047

5 Solar Irradiance: The power
per unit area received from the Sun
in the form of electromagnetic radi-
ation, typically measured in watts
per square meter (W/m²). It varies
with geographic location, time of
day, and atmospheric conditions.

Production deployments reveal stark resource limitations. When scaling
to thousands of devices, cost and power constraints often mandate the use
of microcontroller units like the ESP32, a widely used microcontroller unit
from Espressif Systems, with its 240 MHz processor and mere 520 KB of RAM.
This dramatic reduction in computational resources demands fundamental
changes in system architecture. Models must be redesigned, optimization
techniques such as quantization and pruning applied, and inference strategies
reconsidered.

Network infrastructure constraints fundamentally influence system architec-
ture at scale. Different deployment contexts necessitate different communica-
tion protocols, each with distinct operational parameters. This heterogeneity in
network infrastructure requires systems to maintain consistent performance
across varying bandwidth and latency conditions. As deployments scale across
regions, system architectures must accommodate seamless transitions between
network technologies while preserving functionality.

The transformation from development to scaled deployment presents consis-
tent patterns across application domains. Environmental monitoring systems
exemplify these scaling requirements. A typical forest monitoring system might
begin with a 50 MB computer vision model running on a development platform.
Scaling to widespread deployment necessitates reducing the model to approxi-
mately 500 KB through quantization and architectural optimization, enabling
operation on distributed sensor nodes. This reduction in model footprint must
preserve detection accuracy while operating within strict power constraints of
1-2 W. Similar architectural transformations occur in agricultural monitoring
systems and educational platforms, where models must be optimized for de-
ployment across thousands of resource-constrained devices while maintaining
system efÏcacy.

19.5.4 Sustainability Challenge
Maintaining machine learning systems in resource-constrained environments
presents distinct challenges that extend beyond initial deployment considera-
tions. These challenges encompass system longevity, environmental impact,
community capacity, and financial viability—factors that ultimately determine
the long-term success of social impact initiatives.

System longevity requires careful consideration of hardware durability and
maintainability. Environmental factors such as temperature variations (typically
-20°C to 50°C in rural deployments), humidity (often 80-95% in tropical regions),
and dust exposure significantly impact component lifetime. These conditions
necessitate robust hardware selection and protective measures that balance
durability against cost constraints. For instance, solar-powered agricultural
monitoring systems must maintain consistent operation despite seasonal varia-
tions in solar irradiance5, typically ranging from 3-7 kWh/m²/day depending
on geographical location and weather patterns.

Environmental sustainability introduces additional complexity in system
design. The environmental footprint of deployed systems includes not only op-
erational power consumption but also the impact of manufacturing, transporta-
tion, and end-of-life disposal, which we had discussed in previous chapters.

19.6. Design Patterns 1048

6 Reusable architectural ap-
proaches to address common chal-
lenges in system design and deploy-
ment.

7 Regional nodes: Intermediate
computing layers that consolidate
and preprocess data between edge
and cloud tiers.

A typical deployment of 1000 sensor nodes requires consideration of approxi-
mately 500 kg of electronic components, including sensors, processing units,
and power systems. Sustainable design principles must address both imme-
diate operational requirements and long-term environmental impact through
careful component selection and end-of-life planning.

Community capacity building represents another critical dimension of sus-
tainability. Systems must be maintainable by local technicians with varying
levels of expertise. This requirement influences architectural decisions, from
component selection to system modularity. Documentation must be compre-
hensive yet accessible, typically requiring materials in multiple languages and
formats. Training programs must bridge knowledge gaps while building local
technical capacity, ensuring that communities can independently maintain and
adapt systems as needs evolve.

Financial sustainability often determines system longevity. Operating costs,
including maintenance, replacement parts, and network connectivity, must
align with local economic conditions. A sustainable deployment might target
operational costs below 5% of local monthly income per beneficiary. This
constraint influences every aspect of system design, from hardware selection
to maintenance schedules, requiring careful optimization of both capital and
operational expenditures.

19.6 Design Patterns
The challenges of deploying machine learning systems in resource-constrained
environments reflect fundamental constraints that have shaped system archi-
tecture for decades. Computing systems across domains have developed ro-
bust solutions to operate within limited computational resources, unreliable
networks, and power restrictions. These solutions, formalized as “design pat-
terns6,” represent reusable architectural approaches to common deployment
challenges.

Traditional system design patterns from distributed systems, embedded
computing, and mobile applications provide valuable frameworks for machine
learning deployments. The Hierarchical Processing Pattern, for instance, struc-
tures operations across system tiers to optimize resource usage. Progressive
enhancement ensures graceful degradation under varying conditions, while
the Distributed Knowledge Pattern sharing enables consistency across multiple
data sources. These established patterns can be adapted to address the unique
requirements of machine learning systems, particularly regarding model de-
ployment, training procedures, and inference operations.

19.6.1 Hierarchical Processing
The Hierarchical Processing Pattern organizes systems into tiers that share re-
sponsibilities based on their available resources and capabilities. Like a business
with local branches, regional ofÏces, and headquarters, this pattern segments
workloads across edge, regional, and cloud tiers. Each tier is optimized for
specific tasks—edge devices handle data collection and local processing, re-
gional nodes7 manage aggregation and intermediate computations, and cloud

Chapter 19. AI for Good 1049

infrastructure supports advanced analytics and model training.
Figure 19.4 depicts the interaction flow across these tiers. Starting at the edge

tier with data collection, information flows through regional aggregation and
processing, culminating in cloud-based advanced analysis. Bidirectional feed-
back loops enable model updates to flow back through the hierarchy, ensuring
continuous system improvement.

Figure 19.4: Sequence diagram illus-
trating the Hierarchical Processing
Pattern.

Edge

(Sensor/Device)
Regional Tier Cloud Tier End User

Edge

(Sensor/Device)
Regional Tier Cloud Tier End User

Send Preprocessed Data

Transmit Aggregated Data

Send Updated Model

Push optimized Model

Perform Real-Time Inference

Collect Data

Aggregate Data

Train/Update Model

This architecture excels in environments with varying infrastructure quality,
such as applications spanning urban and rural regions. Edge devices maintain
critical functionalities during network or power disruptions by performing
essential computations locally while queuing operations that require higher-
tier resources. When connectivity returns, the system scales operations across
available infrastructure tiers.

In machine learning applications, this pattern requires careful consideration
of resource allocation and data flow. Edge devices must balance model inference
accuracy against computational constraints, while regional nodes facilitate data
aggregation and model personalization. Cloud infrastructure provides the
computational power needed for comprehensive analytics and model retraining.
This distribution demands thoughtful optimization of model architectures,
training procedures, and update mechanisms throughout the hierarchy.

19.6.1.1 Google’s Flood Forecasting

çĖ Important 15: AI for Flood Forecasting

Watch on YouTube
AI for Flood Forecasting

Scan with your phone
to watch the video

TV Watch on YouTube

Google’s Flood Forecasting Initiative demonstrates how the Hierarchical
Processing Pattern supports large-scale environmental monitoring. Edge de-
vices along river networks monitor water levels, performing basic anomaly

https://youtu.be/ET04pDj-RvM?si=l7P0nBv1h2rXOzIE
https://youtu.be/ET04pDj-RvM?si=l7P0nBv1h2rXOzIE
https://blog.google/technology/ai/google-ai-global-flood-forecasting/

19.6. Design Patterns 1050

8 Google’s Flood Forecasting
Initiative has been instrumental in
mitigating flood risks in vulnera-
ble regions, including parts of In-
dia and Bangladesh. By combin-
ing real-time sensor data with ma-
chine learning models, the initiative
generates precise flood predictions
and timely alerts, reducing disaster-
related losses and enhancing com-
munity preparedness.

detection even without cloud connectivity. Regional centers aggregate this data
and ensure localized decision-making, while the cloud tier integrates inputs
from multiple regions for advanced flood prediction and system-wide updates.
This tiered approach balances local autonomy with centralized intelligence,
ensuring functionality across diverse infrastructure conditions8.

At the edge tier, the system likely employs water-level sensors and local
processing units distributed along river networks. These devices perform two
critical functions: continuous monitoring of water levels at regular intervals
(e.g., every 15 minutes) and preliminary time-series analysis to detect significant
changes. Constrained by the tight power envelope (a few watts of power),
edge devices utilize quantized models for anomaly detection, enabling low-
power operation and minimizing the volume of data transmitted to higher
tiers. This localized processing ensures that key monitoring tasks can continue
independently of network connectivity.

The regional tier operates at district-level processing centers, each responsible
for managing data from hundreds of sensors across its jurisdiction. At this tier,
more sophisticated neural network models are employed to combine sensor
data with additional contextual information, such as local terrain features and
historical flood patterns. This tier reduces the data volume transmitted to the
cloud by aggregating and extracting meaningful features while maintaining
critical decision-making capabilities during network disruptions. By operating
independently when required, the regional tier enhances system resilience and
ensures localized monitoring and alerts remain functional.

At the cloud tier, the system integrates data from regional centers with exter-
nal sources such as satellite imagery and weather data to implement the full
machine learning pipeline. This includes training and running advanced flood
prediction models, generating inundation maps, and distributing predictions
to stakeholders. The cloud tier provides the computational resources needed
for large-scale analysis and system-wide updates. However, the hierarchical
structure ensures that essential monitoring and alerting functions can continue
autonomously at the edge and regional tiers, even when cloud connectivity is
unavailable.

This implementation reveals several key principles of successful Hierarchical
Processing Pattern deployments. First, the careful segmentation of ML tasks
across tiers enables graceful degradation. Each tier maintains critical function-
ality even when isolated. Secondly, the progressive enhancement of capabilities
as higher tiers become available demonstrates how systems can adapt to vary-
ing resource availability. Finally, the bidirectional flow of information, where
sensor data moves upward and model updates flow downward, creates a robust
feedback loop that improves system performance over time. These principles
extend beyond flood forecasting to inform hierarchical ML deployments across
various social impact domains.

19.6.1.2 Structure
The Hierarchical Processing Pattern implements specific architectural compo-
nents and relationships that enable its distributed operation. Understanding
these structural elements is crucial for effective implementation across different
deployment scenarios.

Chapter 19. AI for Good 1051

The edge tier’s architecture centers on resource-aware components that op-
timize local processing capabilities. At the hardware level, data acquisition
modules implement adaptive sampling rates, typically ranging from 1 Hz to
0.01 Hz, adjusting dynamically based on power availability. Local storage
buffers, usually 1-4 MB, manage data during network interruptions through
circular buffer implementations. The processing architecture incorporates light-
weight inference engines specifically optimized for quantized models, working
alongside state management systems that continuously track device health and
resource utilization. Communication modules implement store-and-forward
protocols designed for unreliable networks, ensuring data integrity during
intermittent connectivity.

The regional tier implements aggregation and coordination structures that
enable distributed decision-making. Data fusion engines are the core of this
tier, combining multiple edge data streams while accounting for temporal and
spatial relationships. Distributed databases, typically spanning 50-100 GB, sup-
port eventual consistency models to maintain data coherence across nodes. The
tier’s architecture includes load balancing systems that dynamically distribute
processing tasks based on available computational resources and network con-
ditions. Failover mechanisms ensure continuous operation during node failures,
while model serving infrastructure supports multiple model versions to ac-
commodate varying edge device capabilities. Inter-region synchronization
protocols manage data consistency across geographic boundaries.

The cloud tier provides the architectural foundation for system-wide op-
erations through sophisticated distributed systems. Training infrastructure
supports parallel model updates across multiple compute clusters, while ver-
sion control systems manage model lineage and deployment histories. High-
throughput data pipelines process incoming data streams from all regional
nodes, implementing automated quality control and validation mechanisms.
The architecture includes robust security frameworks that manage authen-
tication and authorization across all tiers while maintaining audit trails of
system access and modifications. Global state management systems track the
health and performance of the entire deployment, enabling proactive resource
allocation and system optimization.

The Hierarchical Processing Pattern’s structure enables sophisticated manage-
ment of resources and responsibilities across tiers. This architectural approach
ensures that systems can maintain critical operations under varying conditions
while efÏciently utilizing available resources at each level of the hierarchy.

19.6.1.3 Modern Adaptations
Advancements in computational efÏciency, model design, and distributed sys-
tems have transformed the traditional Hierarchical Processing Pattern. While
maintaining its core principles, the pattern has evolved to accommodate new
technologies and methodologies that enable more complex workloads and
dynamic resource allocation. These innovations have particularly impacted
how the different tiers interact and share responsibilities, creating more flexible
and capable deployments across diverse environments.

One of the most notable transformations has occurred at the edge tier. His-
torically constrained to basic operations such as data collection and simple

19.6. Design Patterns 1052

preprocessing, edge devices now perform sophisticated processing tasks that
were previously exclusive to the cloud. This shift has been driven by two
critical developments: efÏcient model architectures and hardware accelera-
tion. Techniques such as model compression, pruning, and quantization have
dramatically reduced the size and computational requirements of neural net-
works, allowing even resource-constrained devices to perform inference tasks
with reasonable accuracy. Advances in specialized hardware, such as edge AI
accelerators and low-power GPUs, have further enhanced the computational
capabilities of edge devices. As a result, tasks like image recognition or anomaly
detection that once required significant cloud resources can now be executed
locally on low-power microcontrollers.

The regional tier has also evolved beyond its traditional role of data aggrega-
tion. Modern regional nodes leverage techniques such as federated learning,
where multiple devices collaboratively improve a shared model without trans-
ferring raw data to a central location. This approach not only enhances data
privacy but also reduces bandwidth requirements. Regional tiers are increas-
ingly used to adapt global models to local conditions, enabling more accurate
and context-aware decision-making for specific deployment environments. This
adaptability makes the regional tier an indispensable component for systems
operating in diverse or resource-variable settings.

The relationship between the tiers has become more fluid and dynamic with
these advancements. As edge and regional capabilities have expanded, the
distribution of tasks across tiers is now determined by factors such as real-
time resource availability, network conditions, and application requirements.
For instance, during periods of low connectivity, edge and regional tiers can
temporarily take on additional responsibilities to ensure critical functionality,
while seamlessly ofÒoading tasks to the cloud when resources and connectivity
improve. This dynamic allocation preserves the hierarchical structure’s inherent
benefits, including scalability, resilience, and efÏciency, while enabling greater
adaptability to changing conditions.

These adaptations indicate future developments in Hierarchical Processing
Pattern systems. As edge computing capabilities continue to advance and
new distributed learning approaches emerge, the boundaries between tiers
will likely become increasingly dynamic. This evolution suggests a future
where hierarchical systems can automatically optimize their structure based on
deployment context, resource availability, and application requirements, while
maintaining the pattern’s fundamental benefits of scalability, resilience, and
efÏciency.

19.6.1.4 System Implications
While the Hierarchical Processing Pattern was originally designed for general-
purpose distributed systems, its application to machine learning introduces
unique considerations that significantly influence system design and operation.
Machine learning systems differ from traditional systems in their heavy reliance
on data flows, computationally intensive tasks, and the dynamic nature of
model updates and inference processes. These additional factors introduce
both challenges and opportunities in adapting the Hierarchical Processing
Pattern to meet the needs of machine learning deployments.

Chapter 19. AI for Good 1053

One of the most significant implications for machine learning is the need to
manage dynamic model behavior across tiers. Unlike static systems, ML models
require regular updates to adapt to new data distributions, prevent model
drift, and maintain accuracy. The hierarchical structure inherently supports
this requirement by allowing the cloud tier to handle centralized training and
model updates while propagating refined models to regional and edge tiers.
However, this introduces challenges in synchronization, as edge and regional
tiers must continue operating with older model versions when updates are
delayed due to connectivity issues. Designing robust versioning systems and
ensuring seamless transitions between model updates is critical to the success
of such systems.

Data flows are another area where machine learning systems impose unique
demands. Unlike traditional hierarchical systems, ML systems must handle
large volumes of data across tiers, ranging from raw inputs at the edge to
aggregated and preprocessed datasets at regional and cloud tiers. Each tier must
be optimized for the specific data-processing tasks it performs. For instance,
edge devices often filter or preprocess raw data to reduce transmission overhead
while retaining information critical for inference. Regional tiers aggregate these
inputs, performing intermediate-level analysis or feature extraction to support
downstream tasks. This multistage data pipeline not only reduces bandwidth
requirements but also ensures that each tier contributes meaningfully to the
overall ML workflow.

The Hierarchical Processing Pattern also enables adaptive inference, a key
consideration for deploying ML models across environments with varying
computational resources. By leveraging the computational capabilities of each
tier, systems can dynamically distribute inference tasks to balance latency,
energy consumption, and accuracy. For example, an edge device might handle
basic anomaly detection to ensure real-time responses, while more sophisticated
inference tasks are ofÒoaded to the cloud when resources and connectivity allow.
This dynamic distribution is essential for resource-constrained environments,
where energy efÏciency and responsiveness are paramount.

Hardware advancements have further shaped the application of the Hierar-
chical Processing Pattern to machine learning. The proliferation of specialized
edge hardware, such as AI accelerators and low-power GPUs, has enabled edge
devices to handle increasingly complex ML tasks, narrowing the performance
gap between tiers. Regional tiers have similarly benefited from innovations such
as federated learning, where models are collaboratively improved across devices
without requiring centralized data collection. These advancements enhance
the autonomy of lower tiers, reducing the dependency on cloud connectivity
and enabling systems to function effectively in decentralized environments.

Finally, machine learning introduces the challenge of balancing local auton-
omy with global coordination. Edge and regional tiers must be able to make
localized decisions based on the data available to them while remaining syn-
chronized with the global state maintained at the cloud tier. This requires
careful design of interfaces between tiers to manage not only data flows but
also model updates, inference results, and feedback loops. For instance, sys-
tems employing federated learning must coordinate the aggregation of locally

19.6. Design Patterns 1054

trained model updates without overwhelming the cloud tier or compromising
privacy and security.

By integrating machine learning into the Hierarchical Processing Pattern,
systems gain the ability to scale their capabilities across diverse environments,
adapt dynamically to changing resource conditions, and balance real-time
responsiveness with centralized intelligence. However, these benefits come with
added complexity, requiring careful attention to model lifecycle management,
data structuring, and resource allocation. The Hierarchical Processing Pattern
remains a powerful framework for ML systems, enabling them to overcome the
constraints of infrastructure variability while delivering high-impact solutions
across a wide range of applications.

19.6.1.5 Limitations

Despite its strengths, the Hierarchical Processing Pattern encounters several
fundamental constraints in real-world deployments, particularly when applied
to machine learning systems. These limitations arise from the distributed nature
of the architecture, the variability of resource availability across tiers, and the
inherent complexities of maintaining consistency and efÏciency at scale.

The distribution of processing capabilities introduces significant complexity
in resource allocation and cost management. Regional processing nodes must
navigate trade-offs between local computational needs, hardware costs, and
energy consumption. In battery-powered deployments, the energy efÏciency
of local computation versus data transmission becomes a critical factor. These
constraints directly affect the scalability and operational costs of the system, as
additional nodes or tiers may require significant investment in infrastructure
and hardware.

Time-critical operations present unique challenges in hierarchical systems.
While edge processing reduces latency for local decisions, operations requiring
cross-tier coordination introduce unavoidable delays. For instance, anomaly
detection systems that require consensus across multiple regional nodes face
inherent latency limitations. This coordination overhead can make hierarchical
architectures unsuitable for applications requiring sub-millisecond response
times or strict global consistency.

Training data imbalances across regions create additional complications.
Different deployment environments often generate varying quantities and types
of data, leading to model bias and performance disparities. For example, urban
areas typically generate more training samples than rural regions, potentially
causing models to underperform in less data-rich environments. This imbalance
can be particularly problematic in systems where model performance directly
impacts critical decision-making processes.

System maintenance and debugging introduce practical challenges that grow
with scale. Identifying the root cause of performance degradation becomes
increasingly complex when issues can arise from hardware failures, network
conditions, model drift, or interactions between tiers. Traditional debugging
approaches often prove inadequate, as problems may manifest only under spe-
cific combinations of conditions across multiple tiers. This complexity increases
operational costs and requires specialized expertise for system maintenance.

Chapter 19. AI for Good 1055

9 PlantVillage Nuru has sig-
nificantly impacted agricultural re-
silience, enabling farmers in over
60 countries to diagnose crop dis-
eases with 85-90 percent accuracy
using entry-level smartphones. The
initiative has directly contributed to
improved crop yields and reduced
losses in vulnerable farming com-
munities by integrating on-device
AI and cloud-based insights.

These limitations necessitate careful consideration of mitigation strategies
during system design. Approaches such as asynchronous processing protocols,
tiered security frameworks, and automated debugging tools can help address
specific challenges. Additionally, implementing robust monitoring systems
that track performance metrics across tiers enables early detection of poten-
tial issues. While these limitations don’t diminish the pattern’s overall utility,
they underscore the importance of thorough planning and risk assessment in
hierarchical system deployments.

19.6.2 Progressive Enhancement
The progressive enhancement pattern applies a layered approach to system
design, enabling functionality across environments with varying resource ca-
pacities. This pattern operates by establishing a baseline capability that remains
operational under minimal resource conditions, typically requiring merely kilo-
bytes of memory and milliwatts of power, and incrementally incorporating
advanced features as additional resources become available. While originat-
ing from web development, where applications adapted to diverse browser
capabilities and network conditions, the pattern has evolved to address the
complexities of distributed systems and machine learning deployments.

This approach fundamentally differs from the Hierarchical Processing Pat-
tern by focusing on vertical feature enhancement rather than horizontal dis-
tribution of tasks. Systems adopting this pattern are structured to maintain
operations even under severe resource constraints, such as 2G network connec-
tions (< 50 kbps) or microcontroller-class devices (< 1 MB RAM). Additional
capabilities are activated systematically as resources become available, with
each enhancement layer building upon the foundation established by previous
layers. This granular approach to resource utilization ensures system reliability
while maximizing performance potential.

In machine learning applications, the progressive enhancement pattern en-
ables sophisticated adaptation of models and workflows based on available
resources. For instance, a computer vision system might deploy a 100 KB
quantized model capable of basic object detection under minimal conditions,
progressively expanding to more sophisticated models (1-50 MB) with higher ac-
curacy and additional detection capabilities as computational resources permit.
This adaptability allows systems to scale their capabilities dynamically while
maintaining fundamental functionality across diverse operating environments.

19.6.2.1 PlantVillage Nuru

PlantVillage Nuru exemplifies the progressive enhancement pattern in its ap-
proach to providing AI-powered agricultural support for smallholder farmers
(Ferentinos 2018), particularly in low-resource settings. Developed to address
the challenges of crop diseases and pest management, Nuru combines machine
learning models with mobile technology to deliver actionable insights directly
to farmers, even in remote regions with limited connectivity or computational
resources.9

PlantVillage Nuru operates with a baseline model optimized for resource-
constrained environments. The system employs quantized convolutional neural

https://bigdata.cgiar.org/digital-intervention/plantvillage-nuru-pest-and-disease-monitoring-using-ai/

19.6. Design Patterns 1056

networks (typically 2-5 MB in size) running on entry-level smartphones, ca-
pable of processing images at 1-2 frames per second while consuming less
than 100mW of power. These on-device models achieve 85-90% accuracy in
identifying common crop diseases, providing essential diagnostic capabilities
without requiring network connectivity.

When network connectivity becomes available (even at 2G speeds of 50-
100 kbps), Nuru progressively enhances its capabilities. The system uploads
collected data to cloud infrastructure, where more sophisticated models (50-
100 MB) perform advanced analysis with 95-98% accuracy. These models
integrate multiple data sources: high-resolution satellite imagery (10-30 m
resolution), local weather data (updated hourly), and soil sensor readings. This
enhanced processing generates detailed mitigation strategies, including precise
pesticide dosage recommendations and optimal timing for interventions.

In regions lacking widespread smartphone access, Nuru implements an in-
termediate enhancement layer through community digital hubs. These hubs,
equipped with mid-range tablets (2 GB RAM, quad-core processors), cache di-
agnostic models and agricultural databases (10-20 GB) locally. This architecture
enables ofÒine access to enhanced capabilities while serving as data aggrega-
tion points when connectivity becomes available, typically synchronizing with
cloud services during off-peak hours to optimize bandwidth usage.

This implementation demonstrates how progressive enhancement can scale
from basic diagnostic capabilities to comprehensive agricultural support based
on available resources. The system maintains functionality even under severe
constraints (ofÒine operation, basic hardware) while leveraging additional
resources when available to provide increasingly sophisticated analysis and
recommendations.

19.6.2.2 Structure
The progressive enhancement pattern organizes systems into layered func-
tionalities, each designed to operate within specific resource conditions. This
structure begins with a set of capabilities that function under minimal com-
putational or connectivity constraints, progressively incorporating advanced
features as additional resources become available.

Table 19.2 outlines the resource specifications and capabilities across the
pattern’s three primary layers:

Table 19.2: Resource specifications and capabilities across progressive enhance-
ment pattern layers

Resource
Type Baseline Layer Intermediate Layer Advanced Layer

Computa-
tional

Microcontroller-class (100-200 MHz
CPU, < 1MB RAM)

Entry-level smartphones
(1-2 GB RAM)

Cloud/edge servers (8
GB+ RAM)

Network OfÒine or 2G/GPRS Intermittent 3G/4G (1-10
Mbps)

Reliable broadband (50
Mbps+)

Storage Essential models (1-5 MB) Local cache (10-50 MB) Distributed systems
(GB+ scale)

Power Battery-operated (50-150 mW) Daily charging cycles Continuous grid power
Processing Basic inference tasks Moderate ML workloads Full training capabilities
Data
Access

Pre-packaged datasets Periodic synchronization Real-time data
integration

Chapter 19. AI for Good 1057

Each layer in the progressive enhancement pattern operates independently,
so that systems remain functional regardless of the availability of higher tiers.
The pattern’s modular structure enables seamless transitions between layers,
minimizing disruptions as systems dynamically adjust to changing resource
conditions. By prioritizing adaptability, the progressive enhancement pattern
supports a wide range of deployment environments, from remote, resource-
constrained regions to well-connected urban centers.

Figure 19.5 illustrates these three layers, showing the functionalities at each
layer. The diagram visually demonstrates how each layer scales up based on
available resources and how the system can fallback to lower layers when
resource constraints occur.

Figure 19.5: Progressive enhance-
ment pattern with specific examples
of functionality at each layer.

Full Capabilities

(Cloud-Based Analysis)

High Resource Requirements

(Global Coordination)

Advanced Layer

Enhanced Features

(Data Aggregation)

Partial Resource Availability

(Edge-Cloud Integration)

Intermediate Layer

Core Operations

(Offline Diagnostics)

Minimal Resources Required

(Local Inference)

Baseline Layer

Fallback:
Decreased Resources

Increased
Resources

Fallback:
Decreased Resources

Increased
Resources

19.6.2.3 Modern Adaptations
Modern implementations of the progressive enhancement pattern incorporate
automated optimization techniques to create sophisticated resource-aware sys-
tems. These adaptations fundamentally reshape how systems manage varying
resource constraints across deployment environments.

Automated architecture optimization represents a significant advancement in
implementing progressive enhancement layers. Contemporary systems employ
Neural Architecture Search to generate model families optimized for specific
resource constraints. For example, a computer vision system might maintain
multiple model variants ranging from 500 KB to 50 MB in size, each preserving
maximum accuracy within its respective computational bounds. This auto-
mated approach ensures consistent performance scaling across enhancement
layers, while setting the foundation for more sophisticated adaptation mecha-
nisms.

Knowledge distillation and transfer mechanisms have evolved to support pro-
gressive capability enhancement. Modern systems implement bidirectional dis-
tillation processes where simplified models operating in resource-constrained
environments gradually incorporate insights from their more sophisticated
counterparts. This architectural approach enables baseline models to improve
their performance over time while operating within strict resource limitations,
creating a dynamic learning ecosystem across enhancement layers.

19.6. Design Patterns 1058

The evolution of distributed learning frameworks further extends these en-
hancement capabilities through federated optimization strategies. Base layer de-
vices participate in simple model averaging operations, while better-resourced
nodes implement more sophisticated federated optimization algorithms. This
tiered approach to distributed learning enables system-wide improvements
while respecting the computational constraints of individual devices, effectively
scaling learning capabilities across diverse deployment environments.

These distributed capabilities culminate in resource-aware neural architec-
tures that exemplify recent advances in dynamic adaptation. These systems
modulate their computational graphs based on available resources, automati-
cally adjusting model depth, width, and activation functions to match current
hardware capabilities. Such dynamic adaptation enables smooth transitions
between enhancement layers while maintaining optimal resource utilization,
representing the current state of the art in progressive enhancement implemen-
tations.

19.6.2.4 System Implications

The application of the progressive enhancement pattern to machine learning
systems introduces unique architectural considerations that extend beyond
traditional progressive enhancement approaches. These implications funda-
mentally affect model deployment strategies, inference pipelines, and system
optimization techniques.

Model architecture design requires careful consideration of computational-
accuracy trade-offs across enhancement layers. At the baseline layer, models
must operate within strict computational bounds (typically 100-500 KB model
size) while maintaining acceptable accuracy thresholds (usually 85-90% of full
model performance). Each enhancement layer then incrementally incorpo-
rates more sophisticated architectural components, such as additional model
layers, attention mechanisms, or ensemble techniques, scaling computational
requirements in tandem with available resources.

Training pipelines present distinct challenges in progressive enhancement im-
plementations. Systems must maintain consistent performance metrics across
different model variants while enabling smooth transitions between enhance-
ment layers. This necessitates specialized training approaches such as progres-
sive knowledge distillation, where simpler models learn to mimic the behavior
of their more complex counterparts within their computational constraints.
Training objectives must balance multiple factors: baseline model efÏciency,
enhancement layer accuracy, and cross-layer consistency.

Inference optimization becomes particularly critical in progressive enhance-
ment scenarios. Systems must dynamically adapt their inference strategies
based on available resources, implementing techniques such as adaptive batch-
ing, dynamic quantization, and selective layer activation. These optimizations
ensure efÏcient resource utilization while maintaining real-time performance
requirements across different enhancement layers.

Model synchronization and versioning introduce additional complexity in
progressively enhanced ML systems. As models operate across different re-
source tiers, systems must maintain version compatibility and manage model

Chapter 19. AI for Good 1059

updates without disrupting ongoing operations. This requires robust version-
ing protocols that track model lineage across enhancement layers while ensuring
backward compatibility for baseline operations.

19.6.2.5 Limitations

While the progressive enhancement pattern offers significant advantages for ML
system deployment, it introduces several technical challenges that impact im-
plementation feasibility and system performance. These challenges particularly
affect model management, resource optimization, and system reliability.

Model version proliferation presents a fundamental challenge. Each enhance-
ment layer typically requires multiple model variants (often 3-5 per layer) to
handle different resource scenarios, creating a combinatorial explosion in model
management overhead. For example, a computer vision system supporting
three enhancement layers might require up to 15 different model versions,
each needing individual maintenance, testing, and validation. This complexity
increases exponentially when supporting multiple tasks or domains.

Performance consistency across enhancement layers introduces significant
technical hurdles. Models operating at the baseline layer (typically limited
to 100-500 KB size) must maintain at least 85-90% of the accuracy achieved
by advanced models while using only 1-5% of the computational resources.
Achieving this efÏciency-accuracy trade-off becomes increasingly difÏcult as
task complexity increases. Systems often struggle to maintain consistent infer-
ence behavior when transitioning between layers, particularly when handling
edge cases or out-of-distribution inputs.

Resource allocation optimization presents another critical limitation. Systems
must continuously monitor and predict resource availability while managing
the overhead of these monitoring systems themselves. The decision-making pro-
cess for switching between enhancement layers introduces additional latency
(typically 50-200 ms), which can impact real-time applications. This overhead
becomes particularly problematic in environments with rapidly fluctuating
resource availability.

Infrastructure dependencies create fundamental constraints on system ca-
pabilities. While baseline functionality operates within minimal requirements
(50-150 mW power consumption, 2G network speeds), achieving full system
potential requires substantial infrastructure improvements. The gap between
baseline and enhanced capabilities often spans several orders of magnitude in
computational requirements, creating significant disparities in system perfor-
mance across deployment environments.

User experience continuity suffers from the inherent variability in system
behavior across enhancement layers. Output quality and response times can
vary significantly—from basic binary classifications at the baseline layer to
detailed probabilistic predictions with confidence intervals at advanced layers.
These variations can undermine user trust, particularly in critical applications
where consistency is essential.

These limitations necessitate careful consideration during system design
and deployment. Successful implementations require robust monitoring sys-
tems, graceful degradation mechanisms, and clear communication of system

19.6. Design Patterns 1060

10 Adaptive Duty Cycling: A
technique in power management
that dynamically adjusts the sys-
tem’s operation time to extend bat-
tery life.

capabilities at each enhancement layer. While these challenges don’t negate
the pattern’s utility, they emphasize the importance of thorough planning and
realistic expectation setting in progressive enhancement deployments.

19.6.3 Distributed Knowledge
The Distributed Knowledge Pattern addresses the challenges of collective learn-
ing and inference across decentralized nodes, each operating with local data
and computational constraints. Unlike hierarchical processing, where tiers
have distinct roles, this pattern emphasizes peer-to-peer knowledge sharing
and collaborative model improvement. Each node contributes to the network’s
collective intelligence while maintaining operational independence.

This pattern builds on established Mobile ML and Tiny ML techniques to en-
able autonomous local processing at each node. Devices implement quantized
models (typically 1-5 MB) for initial inference, while employing techniques like
federated learning for collaborative model improvement. Knowledge sharing
occurs through various mechanisms: model parameter updates, derived fea-
tures, or processed insights, depending on bandwidth and privacy constraints.
This distributed approach enables the network to leverage collective experiences
while respecting local resource limitations.

The pattern particularly excels in environments where traditional centralized
learning faces significant barriers. By distributing both data collection and
model training across nodes, systems can operate effectively even with intermit-
tent connectivity (as low as 1-2 hours of network availability per day) or severe
bandwidth constraints (50-100 KB/day per node). This resilience makes it espe-
cially valuable for social impact applications operating in infrastructure-limited
environments.

The distributed approach fundamentally differs from progressive enhance-
ment by focusing on horizontal knowledge sharing rather than vertical capa-
bility enhancement. Each node maintains similar baseline capabilities while
contributing to and benefiting from the network’s collective knowledge, creat-
ing a robust system that remains functional even when significant portions of
the network are temporarily inaccessible.

19.6.3.1 Wildlife Insights

Wildlife Insights demonstrates the Distributed Knowledge Pattern’s application
in conservation through distributed camera trap networks. The system exem-
plifies how decentralized nodes can collectively build and share knowledge
while operating under severe resource constraints in remote wilderness areas.

Each camera trap functions as an independent processing node, implement-
ing sophisticated edge computing capabilities within strict power and compu-
tational limitations. These devices employ lightweight convolutional neural
networks for species identification, alongside efÏcient activity detection models
for motion analysis. Operating within power constraints of 50-100 mW, the de-
vices utilize adaptive duty cycling10 to maximize battery life while maintaining
continuous monitoring capabilities. This local processing approach enables
each node to independently analyze and filter captured imagery, reducing raw

https://www.wildlifeinsights.org/

Chapter 19. AI for Good 1061

11 Mesh Network: A network
topology in which each node relays
data for the network. All nodes co-
operate in the distribution of data in
the network.

12 Camera traps have been
widely used for ecological monitor-
ing since the early 20th century. Ini-
tially reliant on physical film, they
transitioned to digital and, more re-
cently, AI-enabled systems, enhanc-
ing their ability to automate data
analysis and extend deployment du-
rations.

image data from several megabytes to compact insight vectors of just a few
kilobytes.

The system’s Distributed Knowledge Pattern sharing architecture enables
effective collaboration between nodes despite connectivity limitations. Camera
traps form local mesh networks11 using low-power radio protocols, sharing
processed insights rather than raw data. This peer-to-peer communication
allows the network to maintain collective awareness of wildlife movements and
potential threats across the monitored area. When one node detects significant
activity, including the presence of an endangered species or indications of poach-
ing, this information propagates through the network, enabling coordinated
responses even in areas with no direct connectivity to central infrastructure.

When periodic connectivity becomes available through satellite or cellular
links, nodes synchronize their accumulated knowledge with cloud infrastruc-
ture. This synchronization process carefully balances the need for data sharing
with bandwidth limitations, employing differential updates and compression
techniques. The cloud tier then applies more sophisticated analytical models
to understand population dynamics and movement patterns across the entire
monitored region.

The Wildlife Insights implementation demonstrates how Distributed Knowl-
edge Pattern sharing can maintain system effectiveness even in challenging
environments. By distributing both processing and decision-making capabili-
ties across the network, the system ensures continuous monitoring and rapid
response capabilities while operating within the severe constraints of remote
wilderness deployments. This approach has proven particularly valuable for
conservation efforts, enabling real-time wildlife monitoring and threat detec-
tion across vast areas that would be impractical to monitor through centralized
systems12.

19.6.3.2 Structure

The Distributed Knowledge Pattern comprises specific architectural components
designed to enable decentralized data collection, processing, and knowledge
sharing. The pattern defines three primary structural elements: autonomous
nodes, communication networks, and aggregation mechanisms.

Figure 19.6 illustrates the key components and their interactions within the
Distributed Knowledge Pattern. Individual nodes (rectangular shapes) operate
autonomously while sharing insights through defined communication channels.
The aggregation layer (diamond shape) combines distributed knowledge, which
feeds into the analysis layer (oval shape) for processing.

Autonomous nodes form the foundation of the pattern’s structure. Each node
implements three essential capabilities: data acquisition, local processing, and
knowledge sharing. The local processing pipeline typically includes feature
extraction, basic inference, and data filtering mechanisms. This architecture
enables nodes to operate independently while contributing to the network’s
collective intelligence.

The communication layer establishes pathways for knowledge exchange be-
tween nodes. This layer implements both peer-to-peer protocols for direct node
communication and hierarchical protocols for aggregation. The communication

19.6. Design Patterns 1062

Figure 19.6: Distributed Knowledge
Pattern with differentiated shapes
for nodes, central aggregation, and
analysis.

Node 1 Node 2 Node . . . Node N

Shares
Insights

Shares
Insights

Shares
Insights

Central

Aggregation

Central

Analysis

Aggregates
Knowledge

Shares Data Shares Data Shares Data Shares Data

architecture must balance bandwidth efÏciency with information complete-
ness, often employing techniques such as differential updates and compressed
knowledge sharing.

The aggregation and analysis layers provide mechanisms for combining
distributed insights into understanding. These layers implement more sophisti-
cated processing capabilities while maintaining feedback channels to individ-
ual nodes. Through these channels, refined models and updated processing
parameters flow back to the distributed components, creating a continuous
improvement cycle.

This structural organization ensures system resilience while enabling scalable
knowledge sharing across distributed environments. The pattern’s architecture
specifically addresses the challenges of unreliable infrastructure and limited
connectivity while maintaining system effectiveness through decentralized
operations.

19.6.3.3 Modern Adaptations
The Distributed Knowledge Pattern has seen significant advancements with
the rise of modern technologies like edge computing, the Internet of Things
(IoT), and decentralized data networks. These innovations have enhanced the
scalability, efÏciency, and flexibility of systems utilizing this pattern, enabling
them to handle increasingly complex data sets and to operate in more diverse
and challenging environments.

One key adaptation has been the use of edge computing. Traditionally, dis-
tributed systems rely on transmitting data to centralized servers for analysis.
However, with edge computing, nodes can perform more complex processing
locally, reducing the dependency on central systems and enabling real-time
data processing. This adaptation has been especially impactful in areas where
network connectivity is intermittent or unreliable. For example, in remote
wildlife conservation systems, camera traps can process images locally and
only transmit relevant insights, such as the detection of a poacher, to a central
hub when connectivity is restored. This reduces the amount of raw data sent
across the network and ensures that the system remains operational even in
areas with limited infrastructure.

Another important development is the integration of machine learning at
the edge. In traditional distributed systems, machine learning models are

Chapter 19. AI for Good 1063

often centralized, requiring large amounts of data to be sent to the cloud for
processing. With the advent of smaller, more efÏcient machine learning models
designed for edge devices, these models can now be deployed directly on the
nodes themselves. For example, low-power devices such as smartphones or IoT
sensors can run lightweight models for tasks like anomaly detection or image
classification. This enables more sophisticated data analysis at the source,
allowing for quicker decision-making and reducing reliance on central cloud
services.

In terms of network communication, modern mesh networks and 5G tech-
nology have significantly improved the efÏciency and speed of data sharing
between nodes. Mesh networks allow nodes to communicate with each other di-
rectly, forming a self-healing and scalable network. This decentralized approach
to communication ensures that even if a node or connection fails, the network
can still operate seamlessly. With the advent of 5G, the bandwidth and latency
issues traditionally associated with large-scale data transfer in distributed sys-
tems are mitigated, enabling faster and more reliable communication between
nodes in real-time applications.

19.6.3.4 System Implications

The Distributed Knowledge Pattern fundamentally reshapes how machine
learning systems handle data collection, model training, and inference across
decentralized nodes. These implications extend beyond traditional distributed
computing challenges to encompass ML-specific considerations in model archi-
tecture, training dynamics, and inference optimization.

Model architecture design requires specific adaptations for distributed de-
ployment. Models must be structured to operate effectively within node-level
resource constraints while maintaining sufÏcient complexity for accurate infer-
ence. This often necessitates specialized architectures that support incremental
learning and knowledge distillation. For instance, neural network architectures
might implement modular components that can be selectively activated based
on local computational resources, typically operating within 1-5MB memory
constraints while maintaining 85-90% of centralized model accuracy.

Training dynamics become particularly complex in Distributed Knowledge
Pattern systems. Unlike centralized training approaches, these systems must
implement collaborative learning mechanisms that function effectively across
unreliable networks. Federated averaging protocols must be adapted to handle
non-IID (Independent and Identically Distributed) data distributions across
nodes while maintaining convergence guarantees. Training procedures must
also account for varying data qualities and quantities across nodes, implement-
ing weighted aggregation schemes that reflect data reliability and relevance.

Inference optimization presents unique challenges in distributed environ-
ments. Models must adapt their inference strategies based on local resource
availability while maintaining consistent output quality across the network.
This often requires implementing dynamic batching strategies, adaptive quanti-
zation, and selective feature computation. Systems typically target sub-100 ms
inference latency at the node level while operating within strict power envelopes
(50-150 mW).

19.6. Design Patterns 1064

Model lifecycle management becomes significantly more complex in Dis-
tributed Knowledge Pattern systems. Version control must handle multiple
model variants operating across different nodes, managing both forward and
backward compatibility. Systems must implement robust update mechanisms
that can handle partial network connectivity while preventing model divergence
across the network.

19.6.3.5 Limitations

While the Distributed Knowledge Pattern offers many advantages, particularly
in decentralized, resource-constrained environments, it also presents several
challenges, especially when applied to machine learning systems. These chal-
lenges stem from the complexity of managing distributed nodes, ensuring data
consistency, and addressing the constraints of decentralized systems.

One of the primary challenges is model synchronization and consistency. In
distributed systems, each node may operate with its own version of a machine
learning model, which is trained using local data. As these models are up-
dated over time, ensuring consistency across all nodes becomes a difÏcult task.
Without careful synchronization, nodes may operate using outdated models,
leading to inconsistencies in the system’s overall performance. Furthermore,
when nodes are intermittently connected or have limited bandwidth, synchro-
nizing model updates across all nodes in real-time can be resource-intensive
and prone to delays.

The issue of data fragmentation is another significant challenge. In a dis-
tributed system, data is often scattered across different nodes, and each node
may have access to only a subset of the entire dataset. This fragmentation can
limit the effectiveness of machine learning models, as the models may not be
exposed to the full range of data needed for training. Aggregating data from
multiple sources and ensuring that the data from different nodes is compatible
for analysis is a complex and time-consuming process. Additionally, because
some nodes may operate in ofÒine modes or have intermittent connectivity,
data may be unavailable for periods, further complicating the process.

Scalability also poses a challenge in distributed systems. As the number of
nodes in the network increases, so does the volume of data generated and the
complexity of managing the system. The system must be designed to handle this
growth without overwhelming the infrastructure or degrading performance.
The addition of new nodes often requires rebalancing data, recalibrating models,
or introducing new coordination mechanisms, all of which can increase the
complexity of the system.

Latency is another issue that arises in distributed systems. While data is
processed locally on each node, real-time decision-making often requires the
aggregation of insights from multiple nodes. The time it takes to share data
and updates between nodes, and the time needed to process that data, can
introduce delays in system responsiveness. In applications like autonomous
systems or disaster response, these delays can undermine the effectiveness of
the system, as immediate action is often necessary.

Finally, security and privacy concerns are magnified in distributed systems.
Since data is often transmitted between nodes or stored across multiple devices,

Chapter 19. AI for Good 1065

ensuring the integrity and confidentiality of the data becomes a significant
challenge. The system must employ strong encryption and authentication
mechanisms to prevent unauthorized access or tampering of sensitive informa-
tion. This is especially important in applications involving private or protected
data, such as healthcare or financial systems. Additionally, decentralized sys-
tems may be more susceptible to certain types of attacks, such as Sybil attacks,
where an adversary can introduce fake nodes into the network.

Despite these challenges, there are several strategies that can help mitigate
the limitations of the Distributed Knowledge Pattern. For example, federated
learning techniques can help address model synchronization issues by enabling
nodes to update models locally and only share the updates, rather than raw data.
Decentralized data aggregation methods can help address data fragmentation
by allowing nodes to perform more localized aggregation before sending data
to higher tiers. Similarly, edge computing can reduce latency by processing
data closer to the source, reducing the time needed to transmit information to
central servers.

19.6.4 Adaptive Resource

The Adaptive Resource Pattern focuses on enabling systems to dynamically
adjust their operations in response to varying resource availability, ensuring
efÏciency, scalability, and resilience in real-time. This pattern allows systems
to allocate resources flexibly depending on factors like computational load,
network bandwidth, and storage capacity. The key idea is that systems should
be able to scale up or down based on the resources they have access to at any
given time.

Rather than being a standalone pattern, Adaptive Resource Pattern man-
agement is often integrated within other system design patterns. It enhances
systems by allowing them to perform efÏciently even under changing condi-
tions, ensuring that they continue to meet their objectives, regardless of resource
fluctuations.

Figure 19.7 below illustrates how systems using the Adaptive Resource Pat-
tern adapt to different levels of resource availability. The system adjusts its
operations based on the resources available at the time, optimizing its perfor-
mance accordingly.

Figure 19.7: The Adaptive Resource
Pattern.

High Resources Medium Resources Low Resources

Full Capabilities Optimized Functionality Basic Functionality

Adaptation Feedback

Adaptation
Feedback

Moderate
Operations

Simplified
Operations

Recalibration

Recalibration

19.6. Design Patterns 1066

In the diagram, when the system is operating under low resources, it switches
to simplified operations, ensuring basic functionality with minimal resource
use. As resources become more available, the system adjusts to medium re-
sources, enabling more moderate operations and optimized functionality. When
resources are abundant, the system can leverage high resources, enabling ad-
vanced operations and full capabilities, such as processing complex data or
running resource-intensive tasks.

The feedback loop is an essential part of this pattern, as it ensures continuous
adjustment based on the system’s resource conditions. This feedback allows
the system to recalibrate and adapt in real-time, scaling resources up or down
to maintain optimal performance.

19.6.4.1 Case Studies

Looking at the systems we discussed earlier, it is clear that these systems could
benefit from Adaptive Resource Pattern allocation in their operations. In the
case of Google’s flood forecasting system, the Hierarchical Processing Pattern
approach ensures that data is processed at the appropriate level, from edge
sensors to cloud-based analysis. However, Adaptive Resource Pattern manage-
ment would enable this system to adjust its operations dynamically depending
on the resources available. In areas with limited infrastructure, the system
could rely more heavily on edge processing to reduce the need for constant
connectivity, while in regions with better infrastructure, the system could scale
up and leverage more cloud-based processing power.

Similarly, PlantVillage Nuru could integrate Adaptive Resource Pattern al-
location into its progressive enhancement approach. The app is designed to
work in a variety of settings, from low-resource rural areas to more developed
regions. The Adaptive Resource Pattern management in this context would
help the system adjust the complexity of its processing based on the available
device and network resources, ensuring that it provides useful insights without
overwhelming the system or device.

In the case of Wildlife Insights, the Adaptive Resource Pattern management
would complement the Distributed Knowledge Pattern. The camera traps in
the field process data locally, but when network conditions improve, the system
could scale up to transmit more data to central systems for deeper analysis.
By using adaptive techniques, the system ensures that the camera traps can
continue to function even with limited power and network connectivity, while
still providing valuable insights when resources allow for greater computational
effort.

These systems could integrate the Adaptive Resource Pattern management
to dynamically adjust based on available resources, improving efÏciency and
ensuring continuous operation under varying conditions. By incorporating
the Adaptive Resource Pattern allocation into their design, these systems can
remain responsive and scalable, even as resource availability fluctuates. The
Adaptive Resource Pattern, in this context, acts as an enabler, supporting the
operations of these systems and helping them adapt to the demands of real-time
environments.

Chapter 19. AI for Good 1067

19.6.4.2 Structure

The Adaptive Resource Pattern revolves around dynamically allocating re-
sources in response to changing environmental conditions, such as network
bandwidth, computational power, or storage. This requires the system to moni-
tor available resources continuously and adjust its operations accordingly to
ensure optimal performance and efÏciency.

It is structured around several key components. First, the system needs a
monitoring mechanism to constantly evaluate the availability of resources. This
can involve checking network bandwidth, CPU utilization, memory usage, or
other relevant metrics. Once these metrics are gathered, the system can then
determine the appropriate course of action—whether it needs to scale up, down,
or adjust its operations to conserve resources.

Next, the system must include an adaptive decision-making process that
interprets these metrics and decides how to allocate resources dynamically.
In high-resource environments, the system might increase the complexity of
tasks, using more powerful computational models or increasing the number of
concurrent processes. Conversely, in low-resource environments, the system
may scale back operations, reduce the complexity of models, or shift some tasks
to local devices (such as edge processing) to minimize the load on the central
infrastructure.

An important part of this structure is the feedback loop, which allows the
system to adjust its resource allocation over time. After making an initial
decision based on available resources, the system monitors the outcome and
adapts accordingly. This process ensures that the system continues to operate
effectively even as resource conditions change. The feedback loop helps the
system fine-tune its resource usage, leading to more efÏcient operations as it
learns to optimize resource allocation.

The system can also be organized into different tiers or layers based on the
complexity and resource requirements of specific tasks. For instance, tasks
requiring high computational resources, such as training machine learning
models or processing large datasets, could be handled by a cloud layer, while
simpler tasks, such as data collection or pre-processing, could be delegated
to edge devices or local nodes. The system can then adapt the tiered struc-
ture based on available resources, allocating more tasks to the cloud or edge
depending on the current conditions.

19.6.4.3 Modern Adaptations

The Adaptive Resource Pattern has evolved significantly with advancements
in cloud computing, edge computing, and AI-driven resource management.
These innovations have enhanced the flexibility and scalability of the pattern,
allowing it to adapt more efÏciently in increasingly complex environments.

One of the most notable modern adaptations is the integration of cloud
computing. Cloud platforms like AWS, Microsoft Azure, and Google Cloud
offer the ability to dynamically allocate resources based on demand, making
it easier to scale applications in real-time. This integration allows systems to
ofÒoad intensive processing tasks to the cloud when resources are available
and return to more efÏcient, localized solutions when demand decreases or

19.6. Design Patterns 1068

resources are constrained. The elasticity provided by cloud computing enables
systems to perform heavy computational tasks, such as machine learning model
training or big data processing, without requiring on-premise infrastructure.

At the other end of the spectrum, edge computing has emerged as a criti-
cal adaptation for the Adaptive Resource Pattern. In edge computing, data
is processed locally on devices or at the edge of the network, reducing the
dependency on centralized servers and improving real-time responsiveness.
Edge devices, such as IoT sensors or smartphones, often operate in resource-
constrained environments, and the ability to process data locally allows for
more efÏcient use of limited resources. By ofÒoading certain tasks to the edge,
systems can maintain functionality even in low-resource areas while ensuring
that computationally intensive tasks are shifted to the cloud when available.

The rise of AI-driven resource management has also transformed how adap-
tive systems function. AI can now monitor resource usage patterns in real-time
and predict future resource needs, allowing systems to adjust resource allo-
cation proactively. For example, machine learning models can be trained to
identify patterns in network trafÏc, processing power, or storage utilization,
enabling the system to predict peak usage times and prepare resources accord-
ingly. This proactive adaptation ensures that the system can handle fluctuations
in demand smoothly and without interruption, reducing latency and improving
overall system performance.

These modern adaptations allow systems to perform complex tasks while
adapting to local conditions. For example, in disaster response systems, re-
sources such as rescue teams, medical supplies, and communication tools can
be dynamically allocated based on the evolving needs of the situation. Cloud
computing enables large-scale coordination, while edge computing ensures
that critical decisions can be made at the local level, even when the network is
down. By integrating AI-driven resource management, the system can predict
resource shortages or surpluses, ensuring that resources are allocated in the
most effective way.

These modern adaptations make the Adaptive Resource Pattern more pow-
erful and flexible than ever. By leveraging cloud, edge computing, and AI,
systems can dynamically allocate resources across distributed environments,
ensuring that they remain scalable, efÏcient, and resilient in the face of changing
conditions.

19.6.4.4 System Implications

Adaptive Resource Pattern has significant implications for machine learning
systems, especially when deployed in environments with fluctuating resources,
such as mobile devices, edge computing platforms, and distributed systems.
Machine learning workloads can be resource-intensive, requiring substantial
computational power, memory, and storage. By integrating the Adaptive Re-
source Pattern allocation, ML systems can optimize their performance, ensure
scalability, and maintain efÏciency under varying resource conditions.

In the context of distributed machine learning (e.g., federated learning), the
Adaptive Resource Pattern ensures that the system adapts to varying computa-
tional capacities across devices. For example, in federated learning, models are

Chapter 19. AI for Good 1069

trained collaboratively across many edge devices (such as smartphones or IoT
devices), where each device has limited resources. The Adaptive Resource Pat-
tern management can allocate the model training tasks based on the resources
available on each device. Devices with more computational power can handle
heavier workloads, while devices with limited resources can participate in
lighter tasks, such as local model updates or simple computations. This ensures
that all devices can contribute to the learning process without overloading
them.

Another implication of the Adaptive Resource Pattern in ML systems is
its ability to optimize real-time inference. In applications like autonomous
vehicles, healthcare diagnostics, and environmental monitoring, ML models
need to make real-time decisions based on available data. The system must
dynamically adjust its computational requirements based on the resources
available at the time. For instance, an autonomous vehicle running an image
recognition model may process simpler, less detailed frames when computing
resources are constrained or when the vehicle is in a resource-limited area
(e.g., an area with poor connectivity). When computational resources are more
plentiful, such as in a connected city with high-speed internet, the system can
process more detailed frames and apply more complex models.

The adaptive scaling of ML models also plays a significant role in cloud-
based ML systems. In cloud environments, the Adaptive Resource Pattern
allows the system to scale the number of resources used for tasks like model
training or batch inference. When large-scale data processing or model training
is required, cloud services can dynamically allocate resources to handle the
increased load. When demand decreases, resources are scaled back to reduce
operational costs. This dynamic scaling ensures that ML systems run efÏciently
and cost-effectively, without over-provisioning or underutilizing resources.

Additionally, AI-driven resource management is becoming an increasingly
important component of adaptive ML systems. AI techniques, such as rein-
forcement learning or predictive modeling, can be used to optimize resource
allocation in real-time. For example, reinforcement learning algorithms can
be applied to predict future resource needs based on historical usage patterns,
allowing systems to preemptively allocate resources before demand spikes.
This proactive approach ensures that ML models are trained and inference
tasks are executed with minimal latency, even as resources fluctuate.

Lastly, edge AI systems benefit greatly from the Adaptive Resource Pattern.
These systems often operate in environments with highly variable resources,
such as remote areas, rural regions, or environments with intermittent con-
nectivity. The pattern allows these systems to adapt their resource allocation
based on the available resources in real-time, ensuring that essential tasks, such
as model inference or local data processing, can continue even in challenging
conditions. For example, an environmental monitoring system deployed in a
remote area may adapt by running simpler models or processing less detailed
data when resources are low, while more complex analysis is ofÒoaded to the
cloud when the network is available.

19.7. Selection Framework 1070

19.6.4.5 Limitations
The Adaptive Resource Pattern faces several fundamental constraints in practical
implementations, particularly when applied to machine learning systems in
resource-variable environments. These limitations arise from the inherent
complexities of real-time adaptation and the technical challenges of maintaining
system performance across varying resource levels.

Performance predictability presents a primary challenge in adaptive systems.
While adaptation enables systems to continue functioning under varying con-
ditions, it can lead to inconsistent performance characteristics. For example,
when a system transitions from high to low resource availability (e.g., from
8 GB to 500 MB RAM), inference latency might increase from 50 ms to 200 ms.
Managing these performance variations while maintaining minimum quality-
of-service requirements becomes increasingly complex as the range of potential
resource states expands.

State synchronization introduces significant technical hurdles in adaptive
systems. As resources fluctuate, maintaining consistent system state across
components becomes challenging. For instance, when adapting to reduced
network bandwidth (from 50 Mbps to 50 Kbps), systems must manage par-
tial updates and ensure that critical state information remains synchronized.
This challenge is particularly acute in distributed ML systems, where model
states and inference results must remain consistent despite varying resource
conditions.

Resource transition overhead poses another fundamental limitation. Adapt-
ing to changing resource conditions incurs computational and time costs. For
example, switching between different model architectures (from a 50 MB full
model to a 5 MB quantized version) typically requires 100-200 ms of transition
time. During these transitions, system performance may temporarily degrade
or become unpredictable. This overhead becomes particularly problematic in
environments where resources fluctuate frequently.

Quality degradation management presents ongoing challenges, especially
in ML applications. As systems adapt to reduced resources, maintaining ac-
ceptable quality metrics becomes increasingly difÏcult. For instance, model
accuracy might drop from 95% to 85% when switching to lightweight architec-
tures, while energy consumption must stay within strict limits (typically 50-150
mW for edge devices). Finding acceptable trade-offs between resource usage
and output quality requires sophisticated optimization strategies.

These limitations necessitate careful system design and implementation
strategies. Successful deployments often implement robust monitoring systems,
graceful degradation mechanisms, and clear quality thresholds for different
resource states. While these challenges don’t negate the pattern’s utility, they
emphasize the importance of thorough planning and realistic performance
expectations in adaptive system deployments.

19.7 Selection Framework
The selection of an appropriate design pattern for machine learning systems
in social impact contexts requires careful consideration of both technical con-
straints and operational requirements. Rather than treating patterns as rigid

Chapter 19. AI for Good 1071

templates, system architects should view them as adaptable frameworks that
can be tailored to specific deployment scenarios.

The selection process begins with a systematic analysis of four critical di-
mensions: resource variability, operational scale, data distribution require-
ments, and adaptation needs. Resource variability encompasses both the range
and predictability of available computational resources, typically spanning
from severely constrained environments (50-150 mW power, < 1 MB RAM) to
resource-rich deployments (multi-core servers, GB+ RAM). Operational scale
considers both geographic distribution and user base size, ranging from lo-
calized deployments to systems spanning multiple regions. Data distribution
requirements address how information needs to flow through the system, from
centralized architectures to fully distributed networks. Adaptation needs exam-
ine how dynamically the system must respond to changing conditions, from
relatively stable environments to highly variable scenarios.

19.7.1 Selection Dimensions
These dimensions can be visualized through a quadrant analysis framework
that maps patterns based on their resource requirements and adaptability
needs. This approach simplifies understanding (at least from a pedagogical
perspective) by providing a structured view of how systems align with varying
constraints.

Figure 19.8 provides a structured approach for pattern selection based on
two key axes: resource availability and scalability/adaptability needs. The
horizontal axis corresponds to the level of computational, network, and power
resources available to the system. Systems designed for resource-constrained
environments, such as rural or remote areas, are positioned towards the left,
while those leveraging robust infrastructure, such as cloud-supported systems,
are placed towards the right. The vertical axis captures the system’s ability to
function across diverse settings or respond dynamically to changing conditions.

In low-resource environments with high adaptability needs, the progressive
enhancement pattern dominates. Projects like PlantVillage Nuru implement
Tiny ML and Mobile ML paradigms for ofÒine crop diagnostics on basic smart-
phones. Similarly, Medic Mobile leverages these paradigms to support commu-
nity health workers, enabling ofÒine data collection and basic diagnostics that
sync when connectivity permits.

For environments with higher resource availability and significant scalability
demands, the Hierarchical Processing Pattern prevails. Google’s Flood Forecast-
ing Initiative exemplifies this approach, combining Edge ML for local sensor
processing with Cloud ML for analytics. Global Fishing Watch similarly lever-
ages this pattern, processing satellite data through a hierarchy of computational
tiers to monitor fishing activities worldwide.

The Distributed Knowledge Pattern excels in low-resource environments
requiring decentralized operations. Wildlife Insights demonstrates this through
AI-enabled camera traps that employ Edge ML for local image processing
while sharing insights across peer networks. WildEyes AI follows a similar
approach, using distributed nodes for poaching detection with minimal central
coordination.

https://wildeyeconservation.org/

19.7. Selection Framework 1072

Figure 19.8: Quadrant mapping of
design patterns for AI for Social
Good projects based on resource
availability and scalability/adapt-
ability needs.

Progressive EnhancementHierarchical Processing

Adaptive ResourceDistributed Knowledge

High Resource AvailabilityLow Resource Availability

H
ig

h
S

c
a

la
b

ili
ty

/A
d

a
p

ta
b

ili
ty

L
o
w

S
c
a

la
b

ili
ty

/A
d

a
p

ta
b

ili
ty

AI for Social Good: Design Pattern Selection

Global Fishing
Watch

Google’s Flood Forecasting

Medic Mobile

PlantVillage Nuru

WildEyes AI

Wildlife Insights Famine Action
Mechanism

PlantVillage
Nuru

Systems requiring dynamic resource allocation in fluctuating environments
benefit from the Adaptive Resource Pattern. AI for Disaster Response exempli-
fies this approach, combining Edge ML for immediate local processing with
Cloud ML scalability during crises. The AI-powered Famine Action Mechanism
similarly adapts its resource allocation dynamically, scaling analysis capabilities
based on emerging conditions and available infrastructure.

19.7.2 Implementation Guidance
As outlined in Table 19.3, each pattern presents distinct strengths and challenges
that influence implementation decisions. The practical deployment of these
patterns requires careful consideration of both the operational context and the
specific requirements of machine learning systems.

Table 19.3: Comparisons of design patterns.

Design
Pattern Core Idea Strengths Challenges Best Use Case

Hierar-
chical
Process-
ing

Organizes
operations into
edge, regional, and
cloud tiers.

Scalability,
resilience, fault
tolerance

Synchronization
issues, model
versioning, and
latency in updates.

Distributed workloads
spanning diverse
infrastructures (e.g.,
Google’s Flood Forecasting).

Progres-
sive
En-
hance-
ment

Provides baseline
functionality and
scales up
dynamically.

Adaptability to
resource
variability,
inclusivity

Ensuring consistent
UX and increased
complexity in
layered design.

Applications serving both
resource-constrained and
resource-rich environments
(e.g., PlantVillage Nuru).

Dis-
tributed
Knowl-
edge

Decentralizes data
processing and
sharing across
nodes.

Resilient in
low-bandwidth
environments,
scalability

Data fragmentation
and challenges with
synchronizing
decentralized
models.

Systems requiring
collaborative, decentralized
insights (e.g., Wildlife
Insights for conservation).

Chapter 19. AI for Good 1073

Design
Pattern Core Idea Strengths Challenges Best Use Case

Adap-
tive
Resource

Dynamically adjusts
operations based on
resource availability.

Resource efÏciency
and real-time
adaptability

Predicting resource
demand and
managing
trade-offs between
performance and
simplicity.

Real-time systems operating
under fluctuating resource
conditions (e.g., disaster
response systems).

The implementation approach for each pattern should align with both its
position in the resource-adaptability space and its core characteristics. In low-
resource, high-adaptability environments, Progressive Enhancement imple-
mentations focus on establishing reliable baseline capabilities that can scale
smoothly as resources become available. This often involves careful coordi-
nation between local processing and cloud resources, ensuring that systems
maintain functionality even when operating at minimal resource levels.

Hierarchical Processing Pattern implementations, suited for environments
with more stable infrastructure, require careful attention to the interfaces be-
tween tiers. The key challenge lies in managing the flow of data and model
updates across the hierarchy while maintaining system responsiveness. This
becomes particularly critical in social impact applications where real-time re-
sponse capabilities often determine intervention effectiveness.

Distributed Knowledge Pattern implementations emphasize resilient peer-
to-peer operations, particularly important in environments where centralized
coordination isn’t feasible. Success depends on establishing efÏcient knowledge-
sharing protocols that maintain system effectiveness while operating within
strict resource constraints. This pattern’s implementation often requires careful
balance between local autonomy and network-wide consistency.

The Adaptive Resource Pattern implementations focus on dynamic resource
management, particularly crucial in environments with fluctuating resource
availability. These systems require sophisticated monitoring and control mech-
anisms that can adjust operations in real-time while maintaining essential
functionality. The implementation challenge lies in managing these transitions
smoothly without disrupting critical operations.

19.7.3 Comparison Analysis
Each design pattern offers unique advantages and trade-offs in ML system
implementations. Understanding these distinctions enables system architects
to make informed decisions based on deployment requirements and operational
constraints.

The Hierarchical Processing Pattern and progressive enhancement pattern
represent fundamentally different approaches to resource management. While
the Hierarchical Processing Pattern establishes fixed infrastructure tiers with
clear boundaries and responsibilities, progressive enhancement implements
a continuous spectrum of capabilities that can scale smoothly with available
resources. This distinction makes the Hierarchical Processing Pattern more
suitable for environments with well-defined infrastructure tiers, while progres-
sive enhancement better serves deployments where resource availability varies
unpredictably.

19.8. Conclusion 1074

The Distributed Knowledge Pattern and Adaptive Resource Pattern address
different aspects of system flexibility. The Distributed Knowledge Pattern fo-
cuses on spatial distribution and peer-to-peer collaboration, while the Adaptive
Resource Pattern management emphasizes temporal adaptation to changing
conditions. These patterns can be complementary. The Distributed Knowl-
edge Pattern handles geographic scale, while the Adaptive Resource Pattern
management handles temporal variations in resource availability.

Selection between patterns often depends on the primary constraint facing
the deployment. Systems primarily constrained by network reliability typically
benefit from the Distributed Knowledge Pattern or Hierarchical Processing Pat-
tern approaches. Those facing computational resource variability align better
with progressive enhancement or Adaptive Resource Pattern approaches. The
resource adaptability analysis presented earlier provides a structured frame-
work for navigating these decisions based on specific deployment contexts.

19.8 Conclusion
The potential of AI for addressing societal challenges is undeniable. However,
the path to successful deployment is anything but straightforward. ML sys-
tems for social good are not “plug-and-play” solutions, as they are complex
engineering endeavors.

These systems must be tailored to operate under severe constraints, such
as limited power, unreliable connectivity, and sparse data, all while meeting
the needs of underserved communities. Designing for these environments is
as rigorous and demanding as developing systems for urban deployments,
often requiring even more ingenuity to overcome unique challenges. Every
componen, from data collection to model deployment, must be reimagined to
suit these constraints and deliver meaningful outcomes.

Machine learning systems for social impact necessitate the systematic appli-
cation of design patterns to address these unique complexities. The patterns
examined in this chapter, including Hierarchical Processing, Progressive En-
hancement, Distributed Knowledge, and Adaptive Resource, establish frame-
works for addressing these challenges while ensuring systems remain effective
and sustainable across diverse deployment contexts.

The implementation of these patterns depends fundamentally on a com-
prehensive understanding of both the operational environment and system
requirements. Resource availability and adaptability requirements typically
determine initial pattern selection, while specific implementation decisions
must account for network reliability, computational constraints, and scalability
requirements. The efÏcacy of social impact applications depends not only on
pattern selection but on implementation strategies that address local constraints
while maintaining system performance.

These patterns will evolve as technological capabilities advance and deploy-
ment contexts transform. Developments in edge computing, federated learning,
and adaptive ML architectures will expand the potential applications of these
patterns, particularly in resource-constrained environments. However, the core
principles, such as accessibility, reliability, and scalability, remain fundamental
to developing ML systems that generate meaningful social impact.

Chapter 19. AI for Good 1075

The systematic application of these design patterns, informed by rigorous
analysis of deployment contexts and constraints, enables the development of
ML systems that function effectively across the computing spectrum while
delivering sustainable social impact.

19.9 Resources

�� Slides

• Coming soon.

çĖ Videos

• Coming soon.

¸Î Exercises

• Coming soon.

Chapter 20

Conclusion

Figure 20.1: DALL·E 3 Prompt: An
image depicting the last chapter of an
ML systems book, open to a two-page
spread. The pages summarize key con-
cepts such as neural networks, model ar-
chitectures, hardware acceleration, and
MLOps. One page features a dia-
gram of a neural network and different
model architectures, while the other page
shows illustrations of hardware compo-
nents for acceleration andMLOps work-
flows. The background includes sub-
tle elements like circuit patterns and
data points to reinforce the technolog-
ical theme. The colors are professional
and clean, with an emphasis on clarity
and understanding.

20.1 Overview

This book examines the rapidly evolving field of ML systems. We focused on
systems because while there are many resources on ML models and algorithms,
more needs to be understood about how to build the systems that run them.

To draw an analogy, consider the process of building a car. While many
resources are available on the various components of a car, such as the engine,
transmission, and suspension, there is often a need for more understanding
about how to assemble these components into a functional vehicle. Just as a car
requires a well-designed and properly integrated system to operate efÏciently
and reliably, ML models also require a robust and carefully constructed system
to deliver their full potential. Moreover, there is a lot of nuance in building ML
systems, given their specific use case. For example, a Formula 1 race car must
be assembled differently from an everyday Prius consumer car.

1077

20.2. ML Dataset Importance 1078

Our journey started by tracing ML’s historical trajectory, from its theoretical
foundations to its current state as a transformative force across industries. We
explored the building blocks of machine learning models and demonstrated
how their architectures, when examined through the lens of computer architec-
ture, reveal structural similarities.

Throughout this book, we have looked into the intricacies of ML systems,
examining the critical components and best practices necessary to create a
seamless and efÏcient pipeline. From data preprocessing and model training to
deployment and monitoring, we have provided insights and guidance to help
readers navigate the complex landscape of ML system development.

ML systems involve complex workflows, spanning various topics from data
engineering to model deployment on diverse systems. By providing an overview
of these ML system components, we have aimed to showcase the tremendous
depth and breadth of the field and expertise that is needed. Understanding the
intricacies of ML workflows is crucial for practitioners and researchers alike,
as it enables them to navigate the landscape effectively and develop robust,
efÏcient, and impactful ML solutions.

By focusing on the systems aspect of ML, we aim to bridge the gap between
theoretical knowledge and practical implementation. Just as a healthy human
body system allows the organs to function optimally, a well-designed ML system
enables the models to consistently deliver accurate and reliable results. This
book’s goal is to empower readers with the knowledge and tools necessary to
build ML systems that showcase the underlying models’ power and ensure
smooth integration and operation, much like a well-functioning human body.

20.2 ML Dataset Importance
One of the key principles we have emphasized is that data is the foundation
upon which ML systems are built. Data is the new code that programs deep
neural networks, making data engineering the first and most critical stage of any
ML pipeline. That is why we began our exploration by diving into the basics of
data engineering, recognizing that quality, diversity, and ethical sourcing are
key to building robust and reliable machine learning models.

The importance of high-quality data must be balanced. Lapses in data qual-
ity can lead to significant negative consequences, such as flawed predictions,
project terminations, and even potential harm to communities. These cascad-
ing effects, highlight the need for diligent data management and governance
practices. ML practitioners must prioritize data quality, ensure diversity and
representativeness, and adhere to ethical data collection and usage standards.
By doing so, we can mitigate the risks associated with poor data quality and
build ML systems that are trustworthy, reliable, and beneficial to society.

20.3 AI Framework Navigation
Throughout this book, we have seen how machine learning frameworks serve as
the backbone of modern ML systems. We dove into the evolution of different ML
frameworks, dissecting the inner workings of popular ones like TensorFlow and
PyTorch, and provided insights into the core components and advanced features

Chapter 20. Conclusion 1079

that define them. We also looked into the specialization of frameworks tailored
to specific needs, such as those designed for embedded AI. We discussed the
criteria for selecting the most suitable framework for a given project.

Our exploration also touched upon the future trends expected to shape the
landscape of ML frameworks in the coming years. As the field continues to
evolve, we can anticipate the emergence of more specialized and optimized
frameworks that cater to the unique requirements of different domains and
deployment scenarios, as we saw with TensorFlow Lite for Microcontrollers. By
staying abreast of these developments and understanding the tradeoffs involved
in framework selection, we can make informed decisions and leverage the most
appropriate tools to build efÏcient ML systems.

20.4 ML Training Basics
We saw how the AI training process is computationally intensive, making it
challenging to scale and optimize. We began by examining the fundamentals
of AI training, which involves feeding data into ML models and adjusting
their parameters to minimize the difference between predicted and actual out-
puts. This process requires careful consideration of various factors, such as the
choice of optimization algorithms, learning rate, batch size, and regularization
techniques.

However, training ML models at scale poses significant system challenges.
As datasets’ size and models’ complexity grow, the computational resources
required for training can become prohibitively expensive. This has led to
the development of distributed training techniques, such as data and model
parallelism, which allow multiple devices to collaborate in the training pro-
cess. Frameworks like TensorFlow and PyTorch have evolved to support these
distributed training paradigms, enabling practitioners to scale their training
workloads across clusters of GPUs or TPUs.

In addition to distributed training, we discussed techniques for optimizing
the training process, such as mixed-precision training and gradient compres-
sion. It’s important to note that while these techniques may seem algorithmic,
they significantly impact system performance. The choice of training algo-
rithms, precision, and communication strategies directly affects the ML sys-
tem’s resource utilization, scalability, and efÏciency. Therefore, adopting an
algorithm-hardware or algorithm-system co-design approach is crucial, where
the algorithmic choices are made in tandem with the system considerations.
By understanding the interplay between algorithms and hardware, we can
make informed decisions that optimize the model performance and the system
efÏciency, ultimately leading to more effective and scalable ML solutions.

20.5 AI System EfÏciency
Deploying trained ML models is more complex than simply running the net-
works; efÏciency is critical. In this chapter on AI efÏciency, we emphasized that
efÏciency is not merely a luxury but a necessity in artificial intelligence systems.
We dug into the key concepts underpinning AI systems’ efÏciency, recognizing
that the computational demands on neural networks can be daunting, even for

20.6. ML Architecture Optimization 1080

minimal systems. For AI to be seamlessly integrated into everyday devices and
essential systems, it must perform optimally within the constraints of limited
resources while maintaining its efÏcacy.

Throughout the book, we have highlighted the importance of pursuing ef-
ficiency to ensure that AI models are streamlined, rapid, and sustainable. By
optimizing models for efÏciency, we can widen their applicability across various
platforms and scenarios, enabling AI to be deployed in resource-constrained
environments such as embedded systems and edge devices. This pursuit of efÏ-
ciency is necessary for the widespread adoption and practical implementation
of AI technologies in real-world applications.

20.6 ML Architecture Optimization
We then explored various model architectures, from the foundational percep-
tron to the sophisticated transformer networks, each tailored to specific tasks
and data types. This exploration has showcased machine learning models’ re-
markable diversity and adaptability, enabling them to tackle various problems
across domains.

However, when deploying these models on systems, especially resource-
constrained embedded systems, model optimization becomes a necessity. The
evolution of model architectures, from the early MobileNets designed for mobile
devices to the more recent TinyML models optimized for microcontrollers, is a
testament to the continued innovation.

In the chapter on model optimization, we looked into the art and science of
optimizing machine learning models to ensure they are lightweight, efÏcient,
and effective when deployed in TinyML scenarios. We explored techniques
such as model compression, quantization, and architecture search, which allow
us to reduce the computational footprint of models while maintaining their
performance. By applying these optimization techniques, we can create models
tailored to the specific constraints of embedded systems, enabling the deploy-
ment of powerful AI capabilities on edge devices. This opens many possibilities
for intelligent, real-time processing and decision-making in IoT, robotics, and
mobile computing applications. As we continue pushing the boundaries of
AI efÏciency, we expect to see even more innovative solutions for deploying
machine learning models in resource-constrained environments.

20.7 AI Hardware Advancements
Over the years, we have witnessed remarkable strides in ML hardware, driven
by the insatiable demand for computational power and the need to address the
challenges of resource constraints in real-world deployments. These advance-
ments have been crucial in enabling the deployment of powerful AI capabilities
on devices with limited resources, opening up new possibilities across various
industries.

Specialized hardware acceleration is essential to overcome these constraints
and enable high-performance machine learning. Hardware accelerators, such
as GPUs, FPGAs, and ASICs, optimize compute-intensive operations, partic-
ularly inference, by leveraging custom silicon designed for efÏcient matrix

Chapter 20. Conclusion 1081

multiplications. These accelerators provide substantial speedups compared to
general-purpose CPUs, enabling real-time execution of advanced ML models
on devices with strict size, weight, and power limitations.

We have also explored the various techniques and approaches for hard-
ware acceleration in embedded machine-learning systems. We discussed the
tradeoffs in selecting the appropriate hardware for specific use cases and the
importance of software optimizations to harness these accelerators’ capabilities
fully. By understanding these concepts, ML practitioners can make informed
decisions when designing and deploying ML systems.

Given the plethora of ML hardware solutions available, benchmarking has be-
come essential to developing and deploying machine learning systems. Bench-
marking allows developers to measure and compare the performance of dif-
ferent hardware platforms, model architectures, training procedures, and de-
ployment strategies. By utilizing well-established benchmarks like MLPerf,
practitioners gain valuable insights into the most effective approaches for a
given problem, considering the unique constraints of the target deployment
environment.

Advancements in ML hardware, combined with insights gained from bench-
marking and optimization techniques, have paved the way for successfully
deploying machine learning capabilities on various devices, from powerful
edge servers to resource-constrained microcontrollers. As the field continues to
evolve, we expect to see even more innovative hardware solutions and bench-
marking approaches that will further push the boundaries of what is possible
with embedded machine learning systems.

20.8 On-Device Learning

In addition to the advancements in ML hardware, we also explored on-device
learning, where models can adapt and learn directly on the device. This ap-
proach has significant implications for data privacy and security, as sensitive
information can be processed locally without the need for transmission to
external servers.

On-device learning enhances privacy by keeping data within the confines
of the device, reducing the risk of unauthorized access or data breaches. It
also reduces reliance on cloud connectivity, enabling ML models to function
effectively even in scenarios with limited or intermittent internet access. We
have discussed techniques such as transfer learning and federated learning,
which have expanded the capabilities of on-device learning. Transfer learning
allows models to leverage knowledge gained from one task or domain to im-
prove performance on another, enabling more efÏcient and effective learning on
resource-constrained devices. On the other hand, Federated learning enables
collaborative model updates across distributed devices without centralized data
aggregation. This approach allows multiple devices to contribute to learning
while keeping their data locally, enhancing privacy and security.

These advancements in on-device learning have paved the way for more
secure, privacy-preserving, and decentralized machine learning applications.
As we prioritize data privacy and security in developing ML systems, we expect

20.9. ML Operation Streamlining 1082

to see more innovative solutions that enable powerful AI capabilities while
protecting sensitive information and ensuring user privacy.

20.9 ML Operation Streamlining
Even if we got the above pieces right, challenges and considerations must
be addressed to ensure ML models’ successful integration and operation in
production environments. In the MLOps chapter, we studied the practices and
architectures necessary to develop, deploy, and manage ML models throughout
their entire lifecycle. We looked at the phases of ML, from data collection and
model training to evaluation, deployment, and ongoing monitoring.

We learned about the importance of automation, collaboration, and continu-
ous improvement in MLOps. By automating key processes, teams can stream-
line their workflows, reduce manual errors, and accelerate the deployment
of ML models. Collaboration among diverse teams, including data scientists,
engineers, and domain experts, ensures ML systems’ successful development
and deployment.

The ultimate goal of this chapter was to provide readers with a comprehensive
understanding of ML model management, equipping them with the knowledge
and tools necessary to build and run ML applications that deliver sustained
value successfully. By adopting best practices in MLOps, organizations can
ensure their ML initiatives’ long-term success and impact, driving innovation
and delivering meaningful results.

20.10 Security and Privacy
No ML system is ever complete without thinking about security and privacy.
They are of major importance when developing real-world ML systems. As
machine learning finds increasing application in sensitive domains such as
healthcare, finance, and personal data, safeguarding confidentiality and pre-
venting the misuse of data and models becomes a critical imperative, and
these were the concepts we discussed previously. We examined security issues
from multiple perspectives, starting with threats to models themselves, such as
model theft and data poisoning. We also discussed the importance of hardware
security, exploring topics like hardware bugs, physical attacks, and the unique
security challenges faced by embedded devices.

In addition to security, we addressed the critical issue of data privacy. Tech-
niques such as differential privacy were highlighted as tools to protect sensitive
information. We also discussed the growing role of legislation in enforcing
privacy protections, ensuring that user data is handled responsibly and trans-
parently.

20.11 Ethical Considerations
As we embrace ML advancements in all facets of our lives, it is essential to
remain mindful of the ethical considerations that will shape the future of
AI. Fairness, transparency, accountability, and privacy in AI systems will be

Chapter 20. Conclusion 1083

paramount as they become more integrated into our lives and decision-making
processes.

As AI systems become more pervasive and influential, it is important to
ensure that they are designed and deployed in a manner that upholds ethical
principles. This means actively mitigating biases, promoting fairness, and
preventing discriminatory outcomes. Additionally, ethical AI design ensures
transparency in how AI systems make decisions, enabling users to understand
and trust their outputs.

Accountability is another critical ethical consideration. As AI systems take on
more responsibilities and make decisions that impact individuals and society,
there must be clear mechanisms for holding these systems and their creators
accountable. This includes establishing frameworks for auditing and monitor-
ing AI systems and defining liability and redress mechanisms in case of harm
or unintended consequences.

Ethical frameworks, regulations, and standards will be essential to address
these ethical challenges. These frameworks should guide the responsible de-
velopment and deployment of AI technologies, ensuring that they align with
societal values and promote the well-being of individuals and communities.

Moreover, ongoing discussions and collaborations among researchers, prac-
titioners, policymakers, and society will be important in navigating the ethical
landscape of AI. These conversations should be inclusive and diverse, bringing
together different perspectives and expertise to develop comprehensive and
equitable solutions. As we move forward, it is the collective responsibility of
all stakeholders to prioritize ethical considerations in the development and
deployment of AI systems.

20.12 Sustainability
The increasing computational demands of machine learning, particularly for
training large models, have raised concerns about their environmental impact
due to high energy consumption and carbon emissions. As the scale and com-
plexity of models continue to grow, addressing the sustainability challenges
associated with AI development becomes imperative. To mitigate the envi-
ronmental footprint of AI, the development of energy-efÏcient algorithms is
necessary. This involves optimizing models and training procedures to mini-
mize computational requirements while maintaining performance. Techniques
such as model compression, quantization, and efÏcient neural architecture
search can help reduce the energy consumption of AI systems.

Using renewable energy sources to power AI infrastructure is another im-
portant step towards sustainability. By transitioning to clean energy sources
such as solar, wind, and hydropower, the carbon emissions associated with
AI development can be significantly reduced. This requires a concerted effort
from the AI community and support from policymakers and industry leaders
to invest in and adopt renewable energy solutions. In addition, exploring alter-
native computing paradigms, such as neuromorphic and photonic computing,
holds promise for developing more energy-efÏcient AI systems. By developing
hardware and algorithms that emulate the brain’s processing mechanisms, we
can potentially create AI systems that are both powerful and sustainable.

20.13. Robustness and Resiliency 1084

The AI community must prioritize sustainability as a key consideration
in research and development. This involves investing in green computing
initiatives, such as developing energy-efÏcient hardware and optimizing data
centers for reduced energy consumption. It also requires collaboration across
disciplines, bringing together AI, energy, and sustainability experts to develop
holistic solutions.

Moreover, it is important to acknowledge that access to AI and machine learn-
ing compute resources may not be equally distributed across organizations and
regions. This disparity can lead to a widening gap between those who have
the means to leverage advanced AI technologies and those who do not. Orga-
nizations like the Organisation for Economic Cooperation and Development
(OECD) are actively exploring ways to address this issue and promote greater
equity in AI access and adoption. By fostering international cooperation, shar-
ing best practices, and supporting capacity-building initiatives, we can ensure
that AI’s benefits are more widely accessible and that no one is left behind in
the AI revolution.

20.13 Robustness and Resiliency
The chapter on Robust AI dives into the fundamental concepts, techniques, and
tools for building fault-tolerant and error-resilient ML systems. In this chapter,
we explored how, when developing machine learning systems, making them
robust means accounting for hardware faults through techniques like redundant
hardware, ensuring your model is resilient to issues like data poisoning and
distribution shifts, and addressing software faults such as bugs, design flaws,
and implementation errors.

By employing robust AI techniques, ML systems can maintain their reliability,
safety, and performance even in adverse conditions. These techniques enable
systems to detect and recover from faults, adapt to changing environments, and
make decisions under uncertainty.

The chapter empowers researchers and practitioners to develop AI solu-
tions that can withstand the complexities and uncertainties of real-world en-
vironments. It provides insights into the design principles, architectures, and
algorithms underpinning robust AI systems and practical guidance on imple-
menting and validating these systems.

20.14 Future of ML Systems
As we look to the future, the trajectory of ML systems points towards a paradigm
shift from a model-centric approach to a more data-centric one. This shift
recognizes that the quality and diversity of data are paramount to developing
robust, reliable, and fair AI models.

We anticipate a growing emphasis on data curation, labeling, and augmenta-
tion techniques in the coming years. These practices aim to ensure that models
are trained on high-quality, representative data that accurately reflects the com-
plexities and nuances of real-world scenarios. By focusing on data quality
and diversity, we can mitigate the risks of biased or skewed models that may
perpetuate unfair or discriminatory outcomes.

Chapter 20. Conclusion 1085

This data-centric approach will be vital in addressing the challenges of bias,
fairness, and generalizability in ML systems. By actively seeking out and incor-
porating diverse and inclusive datasets, we can develop more robust, equitable,
and applicable models for various contexts and populations. Moreover, the
emphasis on data will drive advancements in techniques such as data aug-
mentation, where existing datasets are expanded and diversified through data
synthesis, translation, and generation. These techniques can help overcome the
limitations of small or imbalanced datasets, enabling the development of more
accurate and generalizable models.

In recent years, generative AI has taken the field by storm, demonstrating
remarkable capabilities in creating realistic images, videos, and text. However,
the rise of generative AI also brings new challenges for ML systems. Unlike
traditional ML systems, generative models often demand more computational
resources and pose challenges in terms of scalability and efÏciency. Further-
more, evaluating and benchmarking generative models presents difÏculties, as
traditional metrics used for classification tasks may not be directly applicable.
Developing robust evaluation frameworks for generative models is an active
area of research, and something we hope to write about soon!

Understanding and addressing these system challenges and ethical consider-
ations will be important in shaping the future of generative AI and its impact on
society. As ML practitioners and researchers, we are responsible for advancing
the technical capabilities of generative models and developing robust systems
and frameworks that can mitigate potential risks and ensure the beneficial
application of this powerful technology.

20.15 AI for Good

The potential for AI to be used for social good is vast, provided that responsible
ML systems are developed and deployed at scale across various use cases. To
realize this potential, it is essential for researchers and practitioners to actively
engage in the process of learning, experimentation, and pushing the boundaries
of what is possible.

Throughout the development of ML systems, it is important to remember the
key themes and lessons explored in this book. These include the importance of
data quality and diversity, the pursuit of efÏciency and robustness, the potential
of TinyML and neuromorphic computing, and the imperative of security and
privacy. These insights inform the work and guide the decisions of those
involved in developing AI systems.

It is important to recognize that the development of AI is not solely a techni-
cal endeavor but also a deeply human one. It requires collaboration, empathy,
and a commitment to understanding the societal implications of the systems
being created. Engaging with experts from diverse fields, such as ethics, social
sciences, and policy, is essential to ensure that the AI systems developed are
technically sound, socially responsible, and beneficial. Embracing the opportu-
nity to be part of this transformative field and shaping its future is a privilege
and a responsibility. By working together, we can create a world where ML
systems serve as tools for positive change and improving the human condition.

20.16. Congratulations 1086

20.16 Congratulations
Congratulations on coming this far, and best of luck in your future endeavors!
The future of AI is bright and filled with endless possibilities. It will be exciting
to see the incredible contributions you will make to this field.

Feel free to reach out to me anytime at vj at eecs dot harvard dot edu.
– Prof. Vijay Janapa Reddi, Harvard University

LABS

1087

Overview

Welcome to the hands-on labs section, where you’ll explore deploying machine
learning (ML) models onto real embedded devices, offering a practical intro-
duction to ML systems. Unlike traditional approaches with large-scale models,
these labs focus on interacting directly with both hardware and software. They
help us showcase various sensor modalities across different application use
cases. This approach provides valuable insights into the challenges and oppor-
tunities of deploying AI on real physical systems.

Learning Objectives
By completing these labs, we hope learners will:

L� Tip

• Gain proficiency in setting up and deploying ML models on sup-
ported devices, enabling you to tackle real-world ML deployment
scenarios with confidence.

• Understand the steps involved in adapting and experimenting with
ML models for different applications, allowing you to optimize
performance and efÏciency.

• Learn troubleshooting techniques specific to embedded ML de-
ployments, equipping you with the skills to overcome common
pitfalls and challenges.

• Acquire practical experience in deploying TinyML models on em-
bedded devices, bridging the gap between theory and practice.

• Explore various sensor modalities and their applications, expand-
ing your understanding of how ML can be leveraged in diverse
domains.

• Foster an understanding of the real-world implications and chal-
lenges associated with ML system deployments, preparing you for
future projects.

Target Audience
These labs are designed for:

1089

Supported Devices 1090

• Beginners in the field of machine learning who have a keen interest in
exploring the intersection of ML and embedded systems.

• Developers and engineers looking to apply ML models to real-world
applications using low-power, resource-constrained devices.

• Enthusiasts and researchers who want to gain practical experience in
deploying AI on edge devices and understand the unique challenges
involved.

Supported Devices
We have included laboratory materials for three key devices that represent
different hardware profiles and capabilities.

• Nicla Vision: Optimized for vision-based applications like image classifi-
cation and object detection, ideal for compact, low-power use cases. It is
also suitable for keyword spotting and motion detection tasks.

• XIAO ESP32S3: A versatile, compact board suitable for vision, keyword
spotting, and motion detection tasks.

• Grove Vision AI V2: Equipped with a dedicated Neural Processing Unit
(NPU), this device enables more advanced machine learning tasks with en-
hanced on-device inference capabilities, making it ideal for sophisticated
computer vision and AI applications.

• Raspberry Pi: A flexible platform for more computationally intensive
tasks, including small language models and various classification and
detection applications.

Exercise Nicla Vision XIAO ESP32S3 Grove Vision AI V2 Raspberry Pi

Installation & Setup ✓ ✓ ✓ ✓
Keyword Spotting (KWS) ✓ ✓
Image Classification ✓ ✓ ✓ ✓
Object Detection ✓ ✓ ✓ ✓
Motion Detection ✓ ✓
Small Language Models (SLM) ✓
Vision Language Models (VLM) ✓

Lab Structure
Each lab follows a structured approach:

1. Introduction: Explore the application and its significance in real-world
scenarios.

2. Setup: Step-by-step instructions to configure the hardware and software
environment.

3. Deployment: Guidance on training and deploying the pre-trained ML
models on supported devices.

4. Exercises: Hands-on tasks to modify and experiment with model param-
eters.

5. Discussion: Analysis of results, potential improvements, and practical
insights.

https://store.arduino.cc/products/nicla-vision
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://www.seeedstudio.com/Grove-Vision-AI-V2-Kit-p-5852.html
https://www.raspberrypi.com/

Overview 1091

Recommended Lab Sequence
If you’re new to embedded ML, we suggest starting with setup and keyword
spotting before moving on to image classification and object detection. Rasp-
berry Pi users can explore more advanced tasks, like small language models,
after familiarizing themselves with the basics.

Troubleshooting and Support
If you encounter any issues during the labs, please consult the troubleshooting
comments or refer to the FAQs provided within each lab. For further assistance,
feel free to reach out to our support team or engage with the community forums.

Credits
Special credit and thanks to Prof. Marcelo Rovai for his valuable contributions
to the development and continuous refinement of these labs.

https://github.com/Mjrovai

Getting Started

Welcome to the exciting world of embedded machine learning and TinyML!
In this hands-on lab series, you’ll explore various projects demonstrating the
power of running machine learning models on resource-constrained devices.
Before diving into the projects, ensure you have the necessary hardware and
software.

Hardware Requirements
To follow along with the hands-on labs, you’ll need the following hardware:

1. Arduino Nicla Vision board
• The Arduino Nicla Vision is a powerful, compact board designed

for professional-grade computer vision and audio applications. It
features a high-quality camera module, a digital microphone, and an
IMU, making it suitable for demanding projects in industries such
as robotics, automation, and surveillance.

• Arduino Nicla Vision specifications
• Arduino Nicla Vision pinout diagram

2. XIAO ESP32S3 Sense board
• The Seeed Studio XIAO ESP32S3 Sense is a tiny, feature-packed board

designed for makers, hobbyists, and students interested in exploring
edge AI applications. It comes equipped with a camera, microphone,
and IMU, making it easy to get started with projects such as image
classification, keyword spotting, and motion detection.

• XIAO ESP32S3 Sense specifications
• XIAO ESP32S3 Sense pinout diagram

3. Grove Vision AI V2 board
• The Seeed Studio Grove Vision AI V2 is a compact, low-power, yet

powerful device. It is an MCU-based system powered by the Arm
Cortex-M55 and vision AI module Ethos-U55. It supports Tensor-
Flow and PyTorch frameworks and is compatible with the Arduino
IDE. With the SenseCraft AI algorithm platform, trained machine
learning (ML) models can be deployed to the sensor without the
need for coding. It features a standard CSI interface, an onboard

1093

https://docs.arduino.cc/hardware/nicla-vision
https://docs.arduino.cc/resources/pinouts/ABX00051-full-pinout.pdf
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/#specification
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/#hardware-overview

Software Requirements 1094

digital microphone, and an SD card slot, making it highly suitable
for various embedded AI vision projects.

• Grove Vision AI V2 features and hardware overview

4. Raspberry Pi Single Board Computer
• The Raspberry Pi is a powerful and versatile single-board computer

that has become an essential tool for engineers across various disci-
plines. Developed by the Raspberry Pi Foundation, these compact
devices offer a unique combination of affordability, computational
power, and extensive GPIO (General Purpose Input/Output) ca-
pabilities, making them ideal for prototyping, embedded systems
development, and advanced engineering projects.

• Raspberry Pi Hardware Documentation
• Camera Documentation

5. Additional accessories
• USB-C cable for programming and powering the XIAO and the Grove

Vision AI V2
• Micro-USB cable for programming and powering the Nicla
• Power Supply for the Raspberries
• Breadboard and jumper wires (optional, for connecting additional

sensors)

The Arduino Nicla Vision is tailored for professional-grade applications,
offering advanced features and performance suitable for demanding industrial
projects. On the other hand, the Seeed Studio XIAO ESP32S3 Sense is geared
toward makers, hobbyists, and students who want to explore edge AI applica-
tions in a more accessible and beginner-friendly format. Both boards have their
strengths and target audiences, allowing users to choose the best fit for their
needs and skill level. The Grove Vision AI V2 and the Raspberry Pi are aimed
at more advanced engineering and machine learning projects.

Software Requirements
To program the boards and develop embedded machine learning projects, you’ll
need the following software:

1. Arduino IDE
• Download and install

– Install Arduino IDE
– Follow the installation guide for your specific OS.
– Arduino CLI
– Configure the Arduino IDE for the Arduino Nicla Vision and

XIAO ESP32S3 Sense boards.

2. OpenMV IDE (optional)
• Download and install the OpenMV IDE for your operating system.

https://wiki.seeedstudio.com/grove_vision_ai_v2/
https://www.raspberrypi.org/
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.arduino.cc/en/software
https://docs.arduino.cc/software/ide-v1/tutorials/Windows
https://arduino.github.io/arduino-cli/1.0/
https://docs.arduino.cc/software/ide-v1/tutorials/getting-started/cores/arduino-mbed_nicla
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/#software-setup
https://openmv.io/pages/download

Getting Started 1095

• Configure the OpenMV IDE for the Arduino Nicla Vision.

3. Edge Impulse Studio
• Sign up for a free account on the Edge Impulse Studio.
• Install Edge Impulse CLI
• Follow the guides to connect your Arduino Nicla Vision and XIAO

ESP32S3 Sense boards to Edge Impulse Studio.

4. Raspberry Pi OS

• Download and install the Raspberry Pi Imager

Network Connectivity
Some projects may require internet connectivity for data collection or model de-
ployment. Ensure your development environment connection is stable through
Wi-Fi or Ethernet. For the Raspberry Pi, having a Wi-Fi or Ethernet connection
is necessary for remote operation without the necessity to plug in a monitor,
keyboard, and mouse.

• For the Arduino Nicla Vision, you can use the onboard Wi-Fi module to
connect to a wireless network.

• For the XIAO ESP32S3 Sense, you can use the onboard Wi-Fi module or
connect an external Wi-Fi or Ethernet module using the available pins.

• For the Grove Vision AI V2, you can use the onboard Wi-Fi module on the
Master Controller (for example the XIAO ESP32S3) or connect an external
Wi-Fi or Ethernet module using the available pins.

• For the Raspberry Pi, you can use the onboard Wi-Fi module to connect
an external Wi-Fi or Ethernet module using the available connector.

Conclusion
With your hardware and software set up, you’re ready to embark on your em-
bedded machine learning journey. The hands-on labs will guide you through
various projects, covering topics like image classification, object detection, key-
word spotting, and motion classification.

If you encounter any issues or have questions, don’t hesitate to consult the
troubleshooting guides or forums or seek support from the community.

Let’s dive in and unlock the potential of ML on real (tiny) systems!

https://docs.arduino.cc/tutorials/nicla-vision/getting-started/
https://studio.edgeimpulse.com/login
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-installation
https://docs.edgeimpulse.com/docs/edge-ai-hardware/mcu/arduino-nicla-vision
https://docs.edgeimpulse.com/docs/edge-ai-hardware/mcu/seeed-xiao-esp32s3-sense
https://docs.edgeimpulse.com/docs/edge-ai-hardware/mcu/seeed-xiao-esp32s3-sense
https://www.raspberrypi.com/software/

Nicla Vision

These labs provide a unique opportunity to gain practical experience with
machine learning (ML) systems. Unlike working with large models requiring
data center-scale resources, these exercises allow you to directly interact with
hardware and software using TinyML. This hands-on approach gives you a
tangible understanding of the challenges and opportunities in deploying AI,
albeit at a tiny scale. However, the principles are largely the same as what you
would encounter when working with larger systems.

Figure 20.2: Nicla Vision. Source:
Arduino

Pre-requisites
• Nicla Vision Board: Ensure you have the Nicla Vision board.
• USB Cable: For connecting the board to your computer.
• Network: With internet access for downloading necessary software.

Setup
• Setup Nicla Vision

1097

./setup/setup.qmd

Exercises 1098

Exercises

Modality Task Description Link

Vision Image Classification Learn to classify images Link
Vision Object Detection Implement object detection Link
Sound Keyword Spotting Explore voice recognition systems Link
IMU Motion Classification and Anomaly Detection Classify motion data and detect anomalies Link

./image_classification/image_classification.qmd
./object_detection/object_detection.qmd
./kws/kws.qmd
./motion_classification/motion_classification.qmd

Setup

Figure 20.3: DALL·E 3 Prompt: Illus-
tration reminiscent of a 1950s cartoon
where the Arduino NICLA VISION
board, equipped with various sensors in-
cluding a camera, is the focal point on an
old-fashioned desk. In the background,
a computer screen with rounded edges
displays the Arduino IDE. The code is
related to LED configurations and ma-
chine learning voice command detection.
Outputs on the Serial Monitor explic-
itly display the words ‘yes’ and ‘no’.

Overview
The Arduino Nicla Vision (sometimes called NiclaV) is a development board
that includes two processors that can run tasks in parallel. It is part of a family
of development boards with the same form factor but designed for specific
tasks, such as the Nicla Sense ME and the Nicla Voice. The Niclas can efÏciently

1099

https://docs.arduino.cc/hardware/nicla-vision
https://www.bosch-sensortec.com/software-tools/tools/arduino-nicla-sense-me/
https://store-usa.arduino.cc/products/nicla-voice?_gl=1*l3abc6*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY5NjM0Mzk1My4xMDIuMS4xNjk2MzQ0MjQ1LjAuMC4w

Hardware 1100

run processes created with TensorFlow Lite. For example, one of the cores
of the NiclaV runs a computer vision algorithm on the fly (inference). At the
same time, the other executes low-level operations like controlling a motor and
communicating or acting as a user interface. The onboard wireless module
allows the simultaneous management of WiFi and Bluetooth Low Energy (BLE)
connectivity.

Hardware

Two Parallel Cores
The central processor is the dual-core STM32H747, including a Cortex M7 at 480
MHz and a Cortex M4 at 240 MHz. The two cores communicate via a Remote
Procedure Call mechanism that seamlessly allows calling functions on the other
processor. Both processors share all the on-chip peripherals and can run:

• Arduino sketches on top of the Arm Mbed OS
• Native Mbed applications
• MicroPython / JavaScript via an interpreter
• TensorFlow Lite

Memory
Memory is crucial for embedded machine learning projects. The NiclaV board
can host up to 16 MB of QSPI Flash for storage. However, it is essential to

https://content.arduino.cc/assets/Arduino-Portenta-H7_Datasheet_stm32h747xi.pdf?_gl=1*6quciu*_ga*MTQ3NzE4Mjk4Mi4xNjQwMDIwOTk5*_ga_NEXN8H46L5*MTY0NzQ0NTg1My4xMS4xLjE2NDc0NDYzMzkuMA..

Setup 1101

consider that the MCU SRAM is the one to be used with machine learning
inferences; the STM32H747 is only 1 MB, shared by both processors. This MCU
also has incorporated 2 MB of FLASH, mainly for code storage.

Sensors
• Camera: A GC2145 2 MP Color CMOS Camera.
• Microphone: The MP34DT05 is an ultra-compact, low-power, omnidirec-

tional, digital MEMS microphone built with a capacitive sensing element
and the IC interface.

• 6-Axis IMU: 3D gyroscope and 3D accelerometer data from the LSM6DSOX
6-axis IMU.

• Time of Flight Sensor: The VL53L1CBV0FY Time-of-Flight sensor adds
accurate and low-power-ranging capabilities to Nicla Vision. The invisible
near-infrared VCSEL laser (including the analog driver) is encapsulated
with receiving optics in an all-in-one small module below the camera.

Arduino IDE Installation
Start connecting the board (micro USB) to your computer:

Install the Mbed OS core for Nicla boards in the Arduino IDE. Having the IDE
open, navigate to Tools > Board > Board Manager, look for Arduino Nicla
Vision on the search window, and install the board.

Next, go to Tools > Board > Arduino Mbed OS Nicla Boards and select
Arduino Nicla Vision. Having your board connected to the USB, you should
see the Nicla on Port and select it.

Arduino IDE Installation 1102

Open the Blink sketch on Examples/Basic and run it using the
IDE Upload button. You should see the Built-in LED (green RGB)
blinking, which means the Nicla board is correctly installed and
functional!

Testing the Microphone
On Arduino IDE, go to Examples > PDM > PDMSerialPlotter, open it, and
run the sketch. Open the Plotter and see the audio representation from the
microphone:

Vary the frequency of the sound you generate and confirm that the
mic is working correctly.

Testing the IMU
Before testing the IMU, it will be necessary to install the LSM6DSOX library.
To do so, go to Library Manager and look for LSM6DSOX. Install the library
provided by Arduino:

Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer and
run the accelerometer test (you can also run Gyro and board temperature):

Setup 1103

Testing the ToF (Time of Flight) Sensor
As we did with IMU, installing the VL53L1X ToF library is necessary. To do
that, go to Library Manager and look for VL53L1X. Install the library provided
by Pololu:

Next, run the sketch proximity_detection.ino:

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/proximity_detection/proximity_detection.ino

Arduino IDE Installation 1104

On the Serial Monitor, you will see the distance from the camera to an object
in front of it (max of 4 m).

Testing the Camera

We can also test the camera using, for example, the code provided on Examples
> Camera > CameraCaptureRawBytes. We cannot see the image directly, but
we can get the raw image data generated by the camera.

We can use the Web Serial Camera (API) to see the image generated by the
camera. This web application streams the camera image over Web Serial from
camera-equipped Arduino boards.

The Web Serial Camera example shows you how to send image data over
the wire from your Arduino board and how to unpack the data in JavaScript
for rendering. In addition, in the source code of the web application, we can
find some example image filters that show us how to manipulate pixel data to
achieve visual effects.

The Arduino sketch (CameraCaptureWebSerial) for sending the camera im-
age data can be found here and is also directly available from the “Examples→Camera”
menu in the Arduino IDE when selecting the Nicla board.

The web application for displaying the camera image can be accessed here.
We may also look at [this tutorial, which explains the setup in more detail.

https://labs.arduino.cc/en/labs/web-serial-camera
https://developer.mozilla.org/en-US/docs/Web/API/Web_Serial_API
https://github.com/arduino/ArduinoCore-mbed/tree/main/libraries/Camera/extras/WebSerialCamera
https://github.com/arduino/ArduinoCore-mbed/tree/main/libraries/Camera/examples/CameraCaptureWebSerial
https://arduino.github.io/labs-pages/web-serial-camera/

Setup 1105

Installing the OpenMV IDE

OpenMV IDE is the premier integrated development environment with OpenMV
cameras, similar to the Nicla Vision. It features a powerful text editor, debug
terminal, and frame buffer viewer with a histogram display. We will use Mi-
croPython to program the camera.

Go to the OpenMV IDE page, download the correct version for your Operat-
ing System, and follow the instructions for its installation on your computer.

The IDE should open, defaulting to the helloworld_1.py code on its Code Area.
If not, you can open it from Files > Examples > HelloWord > helloword.py

https://openmv.io/pages/download

Installing the OpenMV IDE 1106

Any messages sent through a serial connection (using print() or error mes-
sages) will be displayed on the Serial Terminal during run time. The image
captured by a camera will be displayed in the Camera Viewer Area (or Frame
Buffer) and in the Histogram area, immediately below the Camera Viewer.

Updating the Bootloader

Before connecting the Nicla to the OpenMV IDE, ensure you have the latest boot-
loader version. Go to your Arduino IDE, select the Nicla board, and open the
sketch on Examples > STM_32H747_System STM32H747_manageBootloader. Up-
load the code to your board. The Serial Monitor will guide you.

Installing the Firmware

After updating the bootloader, put the Nicla Vision in bootloader mode by
double-pressing the reset button on the board. The built-in green LED will start
fading in and out. Now return to the OpenMV IDE and click on the connect
icon (Left ToolBar):

A pop-up will tell you that a board in DFU mode was detected and ask
how you would like to proceed. First, select Install the latest release
firmware (vX.Y.Z). This action will install the latest OpenMV firmware on
the Nicla Vision.

Setup 1107

You can leave the option Erase internal file system unselected and click
[OK].

Nicla’s green LED will start flashing while the OpenMV firmware is uploaded
to the board, and a terminal window will then open, showing the flashing
progress.

Wait until the green LED stops flashing and fading. When the process ends,
you will see a message saying, “DFU firmware update complete!”. Press [OK].

Installing the OpenMV IDE 1108

A green play button appears when the Nicla Vison connects to the Tool Bar.

Also, note that a drive named “NO NAME” will appear on your computer.

Every time you press the [RESET] button on the board, the main.py script
stored on it automatically executes. You can load the main.py code on the IDE
(File > Open File...).

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/main.py

Setup 1109

This code is the “Blink” code, confirming that the HW is OK.

Testing the Camera

To test the camera, let’s run helloword_1.py. For that, select the script on File >
Examples > HelloWorld > helloword.py,

When clicking the green play button, the MicroPython script (hellowolrd.py)
on the Code Area will be uploaded and run on the Nicla Vision. On-Camera
Viewer, you will start to see the video streaming. The Serial Monitor will show
us the FPS (Frames per second), which should be around 27fps.

Here is the helloworld.py script:

import sensor, time

Connecting the Nicla Vision to Edge Impulse Studio 1110

sensor.reset() # Reset and initialize
the sensor.

sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565
(or GRAYSCALE)

sensor.set_framesize(sensor.QVGA) # Set frame size to
QVGA (320x240)

sensor.skip_frames(time = 2000) # Wait for settings take
effect.

clock = time.clock() # Create a clock object
to track the FPS.

while(True):
clock.tick() # Update the FPS clock.
img = sensor.snapshot() # Take a picture and return

the image.
print(clock.fps())

In GitHub, you can find the Python scripts used here.
The code can be split into two parts:
• Setup: Where the libraries are imported, initialized and the variables are

defined and initiated.
• Loop: (while loop) part of the code that runs continually. The image (img

variable) is captured (one frame). Each of those frames can be used for
inference in Machine Learning Applications.

To interrupt the program execution, press the red [X] button.

Note: OpenMV Cam runs about half as fast when connected to the
IDE. The FPS should increase once disconnected.

In the GitHub, You can find other Python scripts. Try to test the onboard
sensors.

Connecting the Nicla Vision to Edge Impulse Studio

We will need the Edge Impulse Studio later in other labs. Edge Impulse is a
leading development platform for machine learning on edge devices.

Edge Impulse ofÏcially supports the Nicla Vision. So, to start, please create a
new project on the Studio and connect the Nicla to it. For that, follow the steps:

• Download the Arduino CLI for your specific computer architecture (OS)
• Download the most updated EI Firmware.
• Unzip both files and place all the files in the same folder.
• Put the Nicla-Vision on Boot Mode, pressing the reset button twice.
• Run the uploader (EI FW) corresponding to your OS:

https://github.com/Mjrovai/Arduino_Nicla_Vision
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://www.edgeimpulse.com/
https://arduino.github.io/arduino-cli/1.2/installation/
https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip

Setup 1111

• Executing the specific batch code for your OS will upload the binary
arduino-nicla-vision.bin to your board.

Using Chrome, WebUSB can be used to connect the Nicla to the EI
Studio. The EI CLI is not needed.

Go to your project on the Studio, and on the Data Acquisition tab, select
WebUSB (1). A window will pop up; choose the option that shows that the Nicla
is paired (2) and press [Connect] (3).

You can choose which sensor data to pick in the Collect Data section on the
Data Acquisition tab.

Expanding the Nicla Vision Board (optional) 1112

For example. IMU data (inercial):

Or Image (Camera):

You can also test an external sensor connected to the ADC (Nicla pin 0)
and the other onboard sensors, such as the built-in microphone, the ToF
(Proximity) or a combination of sensors (fusion).

Expanding the Nicla Vision Board (optional)
A last item to explore is that sometimes, during prototyping, it is essential to
experiment with external sensors and devices. An excellent expansion to the
Nicla is the Arduino MKR Connector Carrier (Grove compatible).

The shield has 14 Grove connectors: five single analog inputs (A0-A5), one
double analog input (A5/A6), five single digital I/Os (D0-D4), one double
digital I/O (D5/D6), one I2C (TWI), and one UART (Serial). All connectors are
5V compatible.

Note that all 17 Nicla Vision pins will be connected to the Shield
Groves, but some Grove connections remain disconnected.

https://store-usa.arduino.cc/products/arduino-mkr-connector-carrier-grove-compatible

Setup 1113

This shield is MKR compatible and can be used with the Nicla Vision and
Portenta.

For example, suppose that on a TinyML project, you want to send inference
results using a LoRaWAN device and add information about local luminosity.
Often, with ofÒine operations, a local low-power display such as an OLED is
advised. This setup can be seen here:

Expanding the Nicla Vision Board (optional) 1114

The Grove Light Sensor would be connected to one of the single Analog
pins (A0/PC4), the LoRaWAN device to the UART, and the OLED to the I2C
connector.

The Nicla Pins 3 (Tx) and 4 (Rx) are connected with the Serial Shield connector.
The UART communication is used with the LoRaWan device. Here is a simple
code to use the UART:

UART Test - By: marcelo_rovai - Sat Sep 23 2023

import time
from pyb import UART
from pyb import LED

redLED = LED(1) # built-in red LED

Init UART object.
Nicla Vision's UART (TX/RX pins) is on "LP1"
uart = UART("LP1", 9600)

while(True):
uart.write("Hello World!\r\n")
redLED.toggle()
time.sleep_ms(1000)

To verify that the UART is working, you should, for example, connect another
device as the Arduino UNO, displaying “Hello Word” on the Serial Monitor.
Here is the code.

https://wiki.seeedstudio.com/Grove-Light_Sensor/
https://wiki.seeedstudio.com/Grove_LoRa_E5_New_Version/
https://wiki.seeedstudio.com/Grove-OLED-Display-0.96-SSD1315/
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Arduino-IDE/teste_uart_UNO/teste_uart_UNO.ino

Setup 1115

Below is the Hello World code to be used with the I2C OLED. The MicroPy-
thon SSD1306 OLED driver (ssd1306.py), created by Adafruit, should also be
uploaded to the Nicla (the ssd1306.py script can be found in GitHub).

Nicla_OLED_Hello_World - By: marcelo_rovai - Sat Sep 30 2023

#Save on device: MicroPython SSD1306 OLED driver,
I2C and SPI interfaces created by Adafruit
import ssd1306

from machine import I2C
i2c = I2C(1)

oled_width = 128
oled_height = 64
oled = ssd1306.SSD1306_I2C(oled_width, oled_height, i2c)

oled.text('Hello, World', 10, 10)
oled.show()

Finally, here is a simple script to read the ADC value on pin “PC4” (Nicla
pin A0):

Light Sensor (A0) - By: marcelo_rovai - Wed Oct 4 2023

import pyb
from time import sleep

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/ssd1306.py

Conclusion 1116

adc = pyb.ADC(pyb.Pin("PC4")) # create an analog object
from a pin

val = adc.read() # read an analog value

while (True):

val = adc.read()
print ("Light={}".format (val))
sleep (1)

The ADC can be used for other sensor variables, such as Temperature.

Note that the above scripts (downloaded from Github) introduce
only how to connect external devices with the Nicla Vision board
using MicroPython.

Conclusion
The Arduino Nicla Vision is an excellent tiny device for industrial and profes-
sional uses! However, it is powerful, trustworthy, low power, and has suitable
sensors for the most common embedded machine learning applications such
as vision, movement, sensor fusion, and sound.

On the GitHub repository, you will find the last version of all the
code used or commented on in this hands-on lab.

Resources
• Micropython codes
• Arduino Codes

https://wiki.seeedstudio.com/Grove-Temperature_Sensor_V1.2/
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Arduino-IDE

Image Classification

Figure 20.4: DALL·E 3 Prompt: Car-
toon in a 1950s style featuring a com-
pact electronic device with a camera
module placed on a wooden table. The
screen displays blue robots on one side
and green periquitos on the other. LED
lights on the device indicate classifica-
tions, while characters in retro clothing
observe with interest.

Overview

As we initiate our studies into embedded machine learning or TinyML, it’s
impossible to overlook the transformative impact of Computer Vision (CV) and
Artificial Intelligence (AI) in our lives. These two intertwined disciplines rede-

1117

Computer Vision 1118

fine what machines can perceive and accomplish, from autonomous vehicles
and robotics to healthcare and surveillance.

More and more, we are facing an artificial intelligence (AI) revolution where,
as stated by Gartner, Edge AI has a very high impact potential, and it is for
now!

In the “bullseye” of the Radar is the Edge Computer Vision, and when we talk
about Machine Learning (ML) applied to vision, the first thing that comes to
mind is Image Classification, a kind of ML “Hello World”!

This lab will explore a computer vision project utilizing Convolutional Neural
Networks (CNNs) for real-time image classification. Leveraging TensorFlow’s
robust ecosystem, we’ll implement a pre-trained MobileNet model and adapt it
for edge deployment. The focus will be optimizing the model to run efÏciently
on resource-constrained hardware without sacrificing accuracy.

We’ll employ techniques like quantization and pruning to reduce the compu-
tational load. By the end of this tutorial, you’ll have a working prototype capable
of classifying images in real-time, all running on a low-power embedded system
based on the Arduino Nicla Vision board.

Computer Vision
At its core, computer vision enables machines to interpret and make decisions
based on visual data from the world, essentially mimicking the capability of the
human optical system. Conversely, AI is a broader field encompassing machine
learning, natural language processing, and robotics, among other technologies.
When you bring AI algorithms into computer vision projects, you supercharge
the system’s ability to understand, interpret, and react to visual stimuli.

When discussing Computer Vision projects applied to embedded devices,
the most common applications that come to mind are Image Classification and
Object Detection.

Image Classification 1119

Both models can be implemented on tiny devices like the Arduino Nicla
Vision and used on real projects. In this chapter, we will cover Image Classifica-
tion.

Image Classification Project Goal
The first step in any ML project is to define the goal. In this case, the goal is to
detect and classify two specific objects present in one image. For this project, we
will use two small toys: a robot and a small Brazilian parrot (named Periquito).
We will also collect images of a background where those two objects are absent.

Data Collection
Once we have defined our Machine Learning project goal, the next and most
crucial step is collecting the dataset. For image capturing, we can use:

• Web Serial Camera tool,
• Edge Impulse Studio,
• OpenMV IDE,
• A smartphone.

Here, we will use the OpenMV IDE.

Collecting Dataset with OpenMV IDE
First, we should create a folder on our computer where the data will be saved,
for example, “data.” Next, on the OpenMV IDE, we go to Tools > Dataset
Editor and select New Dataset to start the dataset collection:

Data Collection 1120

The IDE will ask us to open the file where the data will be saved. Choose
the “data” folder that was created. Note that new icons will appear on the Left
panel.

Using the upper icon (1), enter with the first class name, for example, “periq-
uito”:

Running the dataset_capture_script.py and clicking on the camera icon
(2) will start capturing images:

Image Classification 1121

Repeat the same procedure with the other classes.

We suggest around 50 to 60 images from each category. Try to
capture different angles, backgrounds, and light conditions.

The stored images use a QVGA frame size of 320×240 and the RGB565 (color
pixel format).

After capturing the dataset, close the Dataset Editor Tool on the Tools >
Dataset Editor.

We will end up with a dataset on our computer that contains three classes:
periquito, robot, and background.

We should return to Edge Impulse Studio and upload the dataset to our created
project.

Training the model with Edge Impulse Studio

We will use the Edge Impulse Studio to train our model. Enter the account
credentials and create a new project:

Dataset 1122

Here, you can clone a similar project: NICLA-Vision_Image_Classi-
fication.

Dataset

Using the EI Studio (or Studio), we will go over four main steps to have our
model ready for use on the Nicla Vision board: Dataset, Impulse, Tests, and
Deploy (on the Edge Device, in this case, the NiclaV).

Regarding the Dataset, it is essential to point out that our Original Dataset,
captured with the OpenMV IDE, will be split into Training, Validation, and Test.
The Test Set will be spared from the beginning and reserved for use only in the
Test phase after training. The Validation Set will be used during training.

The EI Studio will take a percentage of training data to be used for
validation

https://studio.edgeimpulse.com/public/273858/latest
https://studio.edgeimpulse.com/public/273858/latest

Image Classification 1123

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA
section, upload the chosen categories files from your computer:

Leave to the Studio the splitting of the original dataset into train and test and
choose the label about that specific data:

Dataset 1124

Repeat the procedure for all three classes.

Selecting a folder and upload all the files at once is possible.

At the end, you should see your “raw data” in the Studio:

Note that when you start to upload the data, a pop-up window can appear,
asking if you are building an Object Detection project. Select [NO].

We can always change it in the Dashboard section: One label per data
item (Image Classification):

Image Classification 1125

Optionally, the Studio allows us to explore the data, showing a complete view
of all the data in the project. We can clear, inspect, or change labels by clicking
on individual data items. In our case, the data seems OK.

The Impulse Design

In this phase, we should define how to:

• Pre-process our data, which consists of resizing the individual images
and determining the color depth to use (be it RGB or Grayscale) and

• Specify a Model, in this case, it will be the Transfer Learning (Images)
to fine-tune a pre-trained MobileNet V2 image classification model on
our data. This method performs well even with relatively small image
datasets (around 150 images in our case).

The Impulse Design 1126

Transfer Learning with MobileNet offers a streamlined approach to model
training, which is especially beneficial for resource-constrained environments
and projects with limited labeled data. MobileNet, known for its lightweight
architecture, is a pre-trained model that has already learned valuable features
from a large dataset (ImageNet).

By leveraging these learned features, you can train a new model for your
specific task with fewer data and computational resources and yet achieve
competitive accuracy.

This approach significantly reduces training time and computational cost,
making it ideal for quick prototyping and deployment on embedded devices
where efÏciency is paramount.

Go to the Impulse Design Tab and create the impulse, defining an image size
of 96x96 and squashing them (squared form, without cropping). Select Image
and Transfer Learning blocks. Save the Impulse.

Image Classification 1127

Image Pre-Processing

All the input QVGA/RGB565 images will be converted to 27,640 features (96×96×3).

Press [Save parameters] and Generate all features:

The Impulse Design 1128

Model Design
In 2007, Google introduced MobileNetV1, a family of general-purpose com-
puter vision neural networks designed with mobile devices in mind to support
classification, detection, and more. MobileNets are small, low-latency, low-
power models parameterized to meet the resource constraints of various use
cases. in 2018, Google launched MobileNetV2: Inverted Residuals and Linear
Bottlenecks.

MobileNet V1 and MobileNet V2 aim at mobile efÏciency and embedded
vision applications but differ in architectural complexity and performance.
While both use depthwise separable convolutions to reduce the computational
cost, MobileNet V2 introduces Inverted Residual Blocks and Linear Bottle-
necks to improve performance. These new features allow V2 to capture more
complex features using fewer parameters, making it computationally more
efÏcient and generally more accurate than its predecessor. Additionally, V2
employs a non-linear activation in the intermediate expansion layer. It still uses
a linear activation for the bottleneck layer, a design choice found to preserve
important information through the network. MobileNet V2 offers an optimized
architecture for higher accuracy and efÏciency and will be used in this project.

Although the base MobileNet architecture is already tiny and has low latency,
many times, a specific use case or application may require the model to be
even smaller and faster. MobileNets introduces a straightforward parameter 𝛼
(alpha) called width multiplier to construct these smaller, less computationally
expensive models. The role of the width multiplier 𝛼 is that of thinning a
network uniformly at each layer.

Edge Impulse Studio can use both MobileNetV1 (96 × 96 images) and V2
(96×96 or 160×160 images), with several different 𝛼 values (from 0.05 to 1.0).
For example, you will get the highest accuracy with V2, 160×160 images, and𝛼 = 1.0. Of course, there is a trade-off. The higher the accuracy, the more
memory (around 1.3 MB RAM and 2.6 MB ROM) will be needed to run the
model, implying more latency. The smaller footprint will be obtained at the
other extreme with MobileNetV1 and 𝛼 = 0.10 (around 53.2 K RAM and 101 K
ROM).

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381

Image Classification 1129

We will use MobileNetV2 96x96 0.1 (or 0.05) for this project, with an esti-
mated memory cost of 265.3 KB in RAM. This model should be OK for the Nicla
Vision with 1MB of SRAM. On the Transfer Learning Tab, select this model:

Model Training
Another valuable technique to be used with Deep Learning is Data Augmen-
tation. Data augmentation is a method to improve the accuracy of machine
learning models by creating additional artificial data. A data augmentation
system makes small, random changes to your training data during the training
process (such as flipping, cropping, or rotating the images).

Looking under the hood, here you can see how Edge Impulse implements a
data Augmentation policy on your data:

Implements the data augmentation policy
def augment_image(image, label):

Flips the image randomly
image = tf.image.random_flip_left_right(image)

Model Testing 1130

Increase the image size, then randomly crop it down to
the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height,

new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your model
from taking shortcuts by “memorizing” superficial clues in your training data,
meaning it may better reflect the deep underlying patterns in your dataset.

The final layer of our model will have 12 neurons with a 15% dropout for
overfitting prevention. Here is the Training result:

The result is excellent, with 77 ms of latency (estimated), which should result
in around 13 fps (frames per second) during inference.

Model Testing

Image Classification 1131

Now, we should take the data set put aside at the start of the project and run
the trained model using it as input:

The result is, again, excellent.

Deploying the model 1132

Deploying the model
At this point, we can deploy the trained model as a firmware (FW) and use the
OpenMV IDE to run it using MicroPython, or we can deploy it as a C/C++ or
an Arduino library.

Arduino Library
First, Let’s deploy it as an Arduino Library:

We should install the library as.zip on the Arduino IDE and run the sketch
nicla_vision_camera.ino available in Examples under the library name.

Note that Arduino Nicla Vision has, by default, 512 KB of RAM
allocated for the M7 core and an additional 244 KB on the M4
address space. In the code, this allocation was changed to 288
kB to guarantee that the model will run on the device (malloc_-
addblock((void*)0x30000000, 288 * 1024);).

The result is good, with 86 ms of measured latency.

Image Classification 1133

Here is a short video showing the inference results: https://youtu.be/bZP
ZZJblU-o

OpenMV
It is possible to deploy the trained model to be used with OpenMV in two ways:
as a library and as a firmware (FW). Choosing FW, the Edge Impulse Studio
generates optimized models, libraries, and frameworks needed to make the
inference. Let’s explore this option.

Select OpenMV Firmware on the Deploy Tab and press [Build].

On the computer, we will find a ZIP file. Open it:

https://youtu.be/bZPZZJblU-o
https://youtu.be/bZPZZJblU-o

Deploying the model 1134

Use the Bootloader tool on the OpenMV IDE to load the FW on your board
(1):

Select the appropriate file (.bin for Nicla-Vision):

After the download is finished, press OK:

If a message says that the FW is outdated, DO NOT UPGRADE. Select [NO].

Image Classification 1135

Now, open the script ei_image_classification.py that was downloaded from
the Studio and the.bin file for the Nicla.

Run it. Pointing the camera to the objects we want to classify, the inference
result will be displayed on the Serial Terminal.

Deploying the model 1136

The classification result will appear at the Serial Terminal. If it is difÏcult to
read the result, include a new line in the code to add some delay:

import time
While True:
...

time.sleep_ms(200) # Delay for .2 second

Changing the Code to add labels

The code provided by Edge Impulse can be modified so that we can see, for test
reasons, the inference result directly on the image displayed on the OpenMV
IDE.

Upload the code from GitHub, or modify it as below:

Marcelo Rovai - NICLA Vision - Image Classification
Adapted from Edge Impulse - OpenMV Image Classification Example
@24March25

import sensor
import time
import ml

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.

model = ml.Model("trained")#mobilenet, load_to_fb=True)

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification.py

Image Classification 1137

clock = time.clock()

while True:
clock.tick()
img = sensor.snapshot()

fps = clock.fps()
lat = clock.avg()
print("**********\nPrediction:")
Combines labels & confidence into a list of tuples and then
sorts that list by the confidence values.
sorted_list = sorted(

zip(model.labels, model.predict([img])[0].flatten().tolist()),
key=lambda x: x[1], reverse=True

)

Print only the class with the highest probability
max_val = sorted_list[0][1]
max_lbl = sorted_list[0][0]

if max_val < 0.5:
max_lbl = 'uncertain'

print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))

Draw the label with the highest probability to the image viewer
img.draw_string(
10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=3
)

time.sleep_ms(500) # Delay for .5 second

Here you can see the result:

Deploying the model 1138

Note that the latency (136 ms) is almost double of what we got directly with
the Arduino IDE. This is because we are using the IDE as an interface and also
the time to wait for the camera to be ready. If we start the clock just before the
inference, the latency should drop to around 70 ms.

The NiclaV runs about half as fast when connected to the IDE. The
FPS should increase once disconnected.

Post-Processing with LEDs

When working with embedded machine learning, we are looking for devices
that can continually proceed with the inference and result, taking some action
directly on the physical world and not displaying the result on a connected
computer. To simulate this, we will light up a different LED for each possible
inference result.

To accomplish that, we should upload the code from GitHub or change the
last code to include the LEDs:

Marcelo Rovai - NICLA Vision - Image Classification with LEDs
Adapted from Edge Impulse - OpenMV Image Classification Example
@24Aug23

import sensor, time, ml
from machine import LED

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Micropython/nicla_image_classification_LED.py

Image Classification 1139

ledRed = LED("LED_RED")
ledGre = LED("LED_GREEN")
ledBlu = LED("LED_BLUE")

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.

model = ml.Model("trained")#mobilenet, load_to_fb=True)

ledRed.off()
ledGre.off()
ledBlu.off()

clock = time.clock()

def setLEDs(max_lbl):
if max_lbl == 'uncertain’:

ledRed.on()
ledGre.off()
ledBlu.off()

if max_lbl == 'periquito’:
ledRed.off()
ledGre.on()
ledBlu.off()

if max_lbl == 'robot’:
ledRed.off()
ledGre.off()
ledBlu.on()

if max_lbl == 'background’:
ledRed.off()
ledGre.off()
ledBlu.off()

while True:
img = sensor.snapshot()

clock.tick()
fps = clock.fps()
lat = clock.avg()
print("**********\nPrediction:")

Deploying the model 1140

sorted_list = sorted(
zip(model.labels, model.predict([img])[0].flatten().tolist()),

key=lambda x: x[1], reverse=True
)

Print only the class with the highest probability
max_val = sorted_list[0][1]
max_lbl = sorted_list[0][0]

if max_val < 0.5:
max_lbl = 'uncertain'

print("{} with a prob of {:.2f}".format(max_lbl, max_val))
print("FPS: {:.2f} fps ==> latency: {:.0f} ms".format(fps, lat))

Draw the label with the highest probability to the image viewer
img.draw_string(
10, 10,
max_lbl + "\n{:.2f}".format(max_val),
mono_space = False,
scale=3
)

setLEDs(max_lbl)
time.sleep_ms(200) # Delay for .2 second

Now, each time that a class scores a result greater than 0.8, the correspondent
LED will be lit:

• Led Red 0n: Uncertain (no class is over 0.8)
• Led Green 0n: Periquito > 0.8
• Led Blue 0n: Robot > 0.8
• All LEDs Off: Background > 0.8

Here is the result:

Image Classification 1141

In more detail

Image Classification (non-ofÏcial) Benchmark

Several development boards can be used for embedded machine learning
(TinyML), and the most common ones for Computer Vision applications (con-
suming low energy), are the ESP32 CAM, the Seeed XIAO ESP32S3 Sense, the
Arduino Nicla Vison, and the Arduino Portenta.

Catching the opportunity, the same trained model was deployed on the ESP-
CAM, the XIAO, and the Portenta (in this one, the model was trained again,
using grayscaled images to be compatible with its camera). Here is the result,
deploying the models as Arduino’s Library:

Conclusion 1142

Conclusion
Before we finish, consider that Computer Vision is more than just image classifi-
cation. For example, you can develop Edge Machine Learning projects around
vision in several areas, such as:

• AutonomousVehicles: Use sensor fusion, lidar data, and computer vision
algorithms to navigate and make decisions.

• Healthcare: Automated diagnosis of diseases through MRI, X-ray, and
CT scan image analysis

• Retail: Automated checkout systems that identify products as they pass
through a scanner.

• Security and Surveillance: Facial recognition, anomaly detection, and
object tracking in real-time video feeds.

• Augmented Reality: Object detection and classification to overlay digital
information in the real world.

• Industrial Automation: Visual inspection of products, predictive mainte-
nance, and robot and drone guidance.

• Agriculture: Drone-based crop monitoring and automated harvesting.
• Natural Language Processing: Image captioning and visual question

answering.
• Gesture Recognition: For gaming, sign language translation, and human-

machine interaction.
• Content Recommendation: Image-based recommendation systems in

e-commerce.

Resources
• Micropython codes
• Dataset
• Edge Impulse Project

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Micropython
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/data
https://studio.edgeimpulse.com/public/273858/latest

Object Detection

Figure 20.5: DALL·E 3 Prompt: Car-
toon in the style of the 1940s or 1950s
showcasing a spacious industrial ware-
house interior. A conveyor belt is promi-
nently featured, carrying a mixture of
toy wheels and boxes. The wheels are
distinguishable with their bright yel-
low centers and black tires. The boxes
are white cubes painted with alternat-
ing black and white patterns. At the
end of the moving conveyor stands a
retro-styled robot, equipped with tools
and sensors, diligently classifying and
counting the arriving wheels and boxes.
The overall aesthetic is reminiscent of
mid-century animation with bold lines
and a classic color palette.

Overview

This continuation of Image Classification on Nicla Vision is now exploring
Object Detection.

1143

Overview 1144

Object Detection versus Image Classification

The main task with Image Classification models is to produce a list of the most
probable object categories present on an image, for example, to identify a tabby
cat just after his dinner:

But what happens when the cat jumps near the wine glass? The model still
only recognizes the predominant category on the image, the tabby cat:

Object Detection 1145

And what happens if there is not a dominant category on the image?

The model identifies the above image utterly wrong as an “ashcan,” possibly
due to the color tonalities.

The model used in all previous examples is MobileNet, which was
trained with a large dataset, ImageNet.

To solve this issue, we need another type of model, where not only multiple
categories (or labels) can be found but also where the objects are located on a
given image.

As we can imagine, such models are much more complicated and bigger, for
example, the MobileNetV2 SSD FPN-Lite 320x320, trained with the COCO
dataset. This pre-trained object detection model is designed to locate up to 10
objects within an image, outputting a bounding box for each object detected.
The below image is the result of such a model running on a Raspberry Pi:

The Object Detection Project Goal 1146

Those models used for object detection (such as the MobileNet SSD or YOLO)
usually have several MB in size, which is OK for Raspberry Pi but unsuitable
for use with embedded devices, where the RAM is usually lower than 1 Mbyte.

An innovative solution for Object Detection: FOMO

Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects), a novel
solution for performing object detection on embedded devices, not only on
the Nicla Vision (Cortex M7) but also on Cortex M4F CPUs (Arduino Nano33
and OpenMV M4 series) and the Espressif ESP32 devices (ESP-CAM and XIAO
ESP32S3 Sense).

In this Hands-On lab, we will explore using FOMO with Object Detection,
not entering many details about the model itself. To understand more about
how the model works, you can go into the ofÏcial FOMO announcement by
Edge Impulse, where Louis Moreau and Mat Kelcey explain in detail how it
works.

The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let’s assume
we are in an industrial facility and must sort and count wheels and special
boxes.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects

Object Detection 1147

In other words, we should perform a multi-label classification, where each
image can have three classes:

• Background (No objects)
• Box
• Wheel

Here are some not labeled image samples that we should use to detect the
objects (wheels and boxes):

We are interested in which object is in the image, its location (centroid), and
how many we can find on it. The object’s size is not detected with FOMO, as
with MobileNet SSD or YOLO, where the Bounding Box is one of the model
outputs.

We will develop the project using the Nicla Vision for image capture and
model inference. The ML project will be developed using the Edge Impulse
Studio. But before starting the object detection project in the Studio, let’s create
a raw dataset (not labeled) with images that contain the objects to be detected.

Data Collection
For image capturing, we can use:

• Web Serial Camera tool,
• Edge Impulse Studio,
• OpenMV IDE,
• A smartphone.

Here, we will use the OpenMV IDE.

Data Collection 1148

Collecting Dataset with OpenMV IDE
First, we create a folder on the computer where the data will be saved, for
example, “data.” Next, on the OpenMV IDE, we go to Tools > Dataset Editor
and select New Dataset to start the dataset collection:

Edge impulse suggests that the objects should be similar in size and not
overlap for better performance. This is OK in an industrial facility, where
the camera should be fixed, keeping the same distance from the objects to be
detected. Despite that, we will also try using mixed sizes and positions to see
the result.

We will not create separate folders for our images because each
contains multiple labels.

Connect the Nicla Vision to the OpenMV IDE and run the dataset_capture_-
script.py. Clicking on the Capture Image button will start capturing images:

We suggest using around 50 images to mix the objects and vary the number
of each appearing on the scene. Try to capture different angles, backgrounds,
and light conditions.

The stored images use a QVGA frame size 320 ×240 and RGB565
(color pixel format).

Object Detection 1149

After capturing your dataset, close the Dataset Editor Tool on the Tools >
Dataset Editor.

Edge Impulse Studio

Setup the project

Go to Edge Impulse Studio, enter your credentials at Login (or create an ac-
count), and start a new project.

Here, you can clone the project developed for this hands-on: NICLA_-
Vision_Object_Detection.

On the Project Dashboard, go to Project info and select Bounding boxes
(object detection), and at the right-top of the page, select Target, Arduino
Nicla Vision (Cortex-M7).

Uploading the unlabeled data

On Studio, go to the Data acquisition tab, and on the UPLOAD DATA section,
upload from your computer files captured.

https://www.edgeimpulse.com/
https://studio.edgeimpulse.com/public/292737/latest
https://studio.edgeimpulse.com/public/292737/latest

Edge Impulse Studio 1150

You can leave for the Studio to split your data automatically between
Train and Test or do it manually.

All the unlabeled images (51) were uploaded, but they still need to be labeled
appropriately before being used as a dataset in the project. The Studio has a
tool for that purpose, which you can find in the link Labeling queue (51).

There are two ways you can use to perform AI-assisted labeling on the Edge
Impulse Studio (free version):

• Using yolov5

Object Detection 1151

• Tracking objects between frames

Edge Impulse launched an auto-labeling feature for Enterprise cus-
tomers, easing labeling tasks in object detection projects.

Ordinary objects can quickly be identified and labeled using an existing
library of pre-trained object detection models from YOLOv5 (trained with the
COCO dataset). But since, in our case, the objects are not part of COCO datasets,
we should select the option of tracking objects. With this option, once you
draw bounding boxes and label the images in one frame, the objects will be
tracked automatically from frame to frame, partially labeling the new ones (not
all are correctly labeled).

If you already have a labeled dataset containing bounding boxes,
import your data using the EI uploader.

Labeling the Dataset

Starting with the first image of your unlabeled data, use your mouse to drag a
box around an object to add a label. Then click Save labels to advance to the
next item.

Continue with this process until the queue is empty. At the end, all images
should have the objects labeled as those samples below:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler

The Impulse Design 1152

Next, review the labeled samples on the Data acquisition tab. If one of the
labels is wrong, it can be edited using the three dots menu after the sample
name:

We will be guided to replace the wrong label and correct the dataset.

The Impulse Design

In this phase, we should define how to:

• Pre-processing consists of resizing the individual images from 320 x
240 to 96 x 96 and squashing them (squared form, without cropping).
Afterward, the images are converted from RGB to Grayscale.

• Design a Model, in this case, “Object Detection.”

Object Detection 1153

Preprocessing all dataset

In this section, select Color depth as Grayscale, suitable for use with FOMO
models and Save parameters.

The Studio moves automatically to the next section, Generate features,
where all samples will be pre-processed, resulting in a dataset with individual96×96×1 images or 9,216 features.

Model Design, Training, and Test 1154

The feature explorer shows that all samples evidence a good separation after
the feature generation.

One of the samples (46) is apparently in the wrong space, but click-
ing on it confirms that the labeling is correct.

Model Design, Training, and Test
We will use FOMO, an object detection model based on MobileNetV2 (alpha
0.35) designed to coarsely segment an image into a grid of background vs
objects of interest (here, boxes and wheels).

FOMO is an innovative machine learning model for object detection, which
can use up to 30 times less energy and memory than traditional models like
Mobilenet SSD and YOLOv5. FOMO can operate on microcontrollers with less
than 200 KB of RAM. The main reason this is possible is that while other models
calculate the object’s size by drawing a square around it (bounding box), FOMO
ignores the size of the image, providing only the information about where the
object is located in the image, by means of its centroid coordinates.

How FOMO works?
FOMO takes the image in grayscale and divides it into blocks of pixels using a
factor of 8. For the input of 96x96, the grid would be 12×12 (96/8 = 12). Next,
FOMO will run a classifier through each pixel block to calculate the probability
that there is a box or a wheel in each of them and, subsequently, determine the
regions that have the highest probability of containing the object (If a pixel block
has no objects, it will be classified as background). From the overlap of the final
region, the FOMO provides the coordinates (related to the image dimensions)
of the centroid of this region.

Object Detection 1155

For training, we should select a pre-trained model. Let’s use the FOMO (Faster
Objects, More Objects) MobileNetV2 0.35. This model uses around 250
KB of RAM and 80 KB of ROM (Flash), which suits well with our board since it
has 1 MB of RAM and ROM.

Regarding the training hyper-parameters, the model will be trained with:
• Epochs: 60,
• Batch size: 32
• Learning Rate: 0.001.

Model Design, Training, and Test 1156

For validation during training, 20% of the dataset (validation_dataset) will be
spared. For the remaining 80% (train_dataset), we will apply Data Augmentation,
which will randomly flip, change the size and brightness of the image, and crop
them, artificially increasing the number of samples on the dataset for training.

As a result, the model ends with an F1 score of around 91% (validation) and
93% (test data).

Note that FOMO automatically added a 3rd label background to
the two previously defined (box and wheel).

In object detection tasks, accuracy is generally not the primary eval-
uation metric. Object detection involves classifying objects and
providing bounding boxes around them, making it a more complex
problem than simple classification. The issue is that we do not have
the bounding box, only the centroids. In short, using accuracy as a
metric could be misleading and may not provide a complete under-
standing of how well the model is performing. Because of that, we
will use the F1 score.

Test model with “Live Classification”

Since Edge Impulse ofÏcially supports the Nicla Vision, let’s connect it to the
Studio. For that, follow the steps:

• Download the last EI Firmware and unzip it.
• Open the zip file on your computer and select the uploader related to

your OS
• Put the Nicla-Vision on Boot Mode, pressing the reset button twice.
• Execute the specific batch code for your OS to upload the binary (arduino-

nicla-vision.bin) to your board.

Go to Live classification section at EI Studio, and using webUSB, connect
your Nicla Vision:

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip

Object Detection 1157

Once connected, you can use the Nicla to capture actual images to be tested
by the trained model on Edge Impulse Studio.

One thing to note is that the model can produce false positives and negatives.
This can be minimized by defining a proper Confidence Threshold (use the
three dots menu for the setup). Try with 0.8 or more.

Deploying the Model
Select OpenMV Firmware on the Deploy Tab and press [Build].

Deploying the Model 1158

When you try to connect the Nicla with the OpenMV IDE again, it will try to
update its FW. Choose the option Load a specific firmware instead. Or go
to ‘Tools > Runs Boatloader (Load Firmware).

You will find a ZIP file on your computer from the Studio. Open it:

Load the .bin file to your board:

After the download is finished, a pop-up message will be displayed. Press
OK, and open the script ei_object_detection.py downloaded from the Studio.

Note: If a Pop-up appears saying that the FW is out of date, press
[NO], to upgrade it.

Object Detection 1159

Before running the script, let’s change a few lines. Note that you can leave
the window definition as 240 × 240 and the camera capturing images as QV-
GA/RGB. The captured image will be pre-processed by the FW deployed from
Edge Impulse

import sensor
import time
import ml
from ml.utils import NMS
import math
import image

sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format (RGB565or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.skip_frames(time=2000) # Let the camera adjust.

Redefine the minimum confidence, for example, to 0.8 to minimize false
positives and negatives.

min_confidence = 0.8

Change if necessary, the color of the circles that will be used to display the
detected object’s centroid for a better contrast.

threshold_list = [(math.ceil(min_confidence * 255), 255)]

Load built-in model
model = ml.Model("trained")
print(model)

Alternatively, models can be loaded from the filesystem storage.
model = ml.Model('<object_detection_modelwork>.tflite', load_to_fb=True)
labels = [line.rstrip('\n') for line in open("labels.txt")]

colors = [# Add more colors if you are detecting more
than 7 types of classes at once.

(255, 255, 0), # background: yellow (not used)
(0, 255, 0), # cube: green
(255, 0, 0), # wheel: red
(0, 0, 255), # not used
(255, 0, 255), # not used
(0, 255, 255), # not used
(255, 255, 255), # not used

]

Keep the remaining code as it is

Deploying the Model 1160

FOMO outputs an image per class where each pixel in the image is the centroid of the trained
object. So, we will get those output images and then run find_blobs() on them to extract the
centroids. We will also run get_stats() on the detected blobs to determine their score.
The Non-Max-Supression (NMS) object then filters out overlapping detections and maps their
position in the output image back to the original input image. The function then returns a
list per class which each contain a list of (rect, score) tuples representing the detected
objects.

def fomo_post_process(model, inputs, outputs):
n, oh, ow, oc = model.output_shape[0]
nms = NMS(ow, oh, inputs[0].roi)
for i in range(oc):

img = image.Image(outputs[0][0, :, :, i] * 255)
blobs = img.find_blobs(

threshold_list, x_stride=1, area_threshold=1, pixels_threshold=1
)
for b in blobs:

rect = b.rect()
x, y, w, h = rect
score = (

img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0
)
nms.add_bounding_box(x, y, x + w, y + h, score, i)

return nms.get_bounding_boxes()

clock = time.clock()
while True:

clock.tick()

img = sensor.snapshot()

for i, detection_list in enumerate(model.predict([img], callback=fomo_post_process)):
if i == 0:

continue # background class
if len(detection_list) == 0:

continue # no detections for this class?

print("********** %s **********" % model.labels[i])
for (x, y, w, h), score in detection_list:

center_x = math.floor(x + (w / 2))
center_y = math.floor(y + (h / 2))
print(f"x {center_x}\ty {center_y}\tscore {score}")
img.draw_circle((center_x, center_y, 12), color=colors[i])

print(clock.fps(), "fps", end="\n")

Object Detection 1161

and press the green Play button to run the code:

From the camera’s view, we can see the objects with their centroids marked
with 12 pixel-fixed circles (each circle has a distinct color, depending on its
class). On the Serial Terminal, the model shows the labels detected and their
position on the image window (240×240).

Be aware that the coordinate origin is in the upper left corner.

Note that the frames per second rate is around 8 fps (similar to what we
got with the Image Classification project). This happens because FOMO is
cleverly built over a CNN model, not with an object detection model like the
SSD MobileNet or YOLO. For example, when running a MobileNetV2 SSD
FPN-Lite 320×320 model on a Raspberry Pi 4, the latency is around 5 times
higher (around 1.5 fps)

Here is a short video showing the inference results: https://youtu.be/Jbpoq
Rp3BbM

https://youtu.be/JbpoqRp3BbM
https://youtu.be/JbpoqRp3BbM

Conclusion 1162

Conclusion
FOMO is a significant leap in the image processing space, as Louis Moreau and
Mat Kelcey put it during its launch in 2022:

FOMO is a ground-breaking algorithm that brings real-time object
detection, tracking, and counting to microcontrollers for the first
time.

Multiple possibilities exist for exploring object detection (and, more precisely,
counting them) on embedded devices. This can be very useful on projects
counting bees, for example.

Resources
• Edge Impulse Project

https://studio.edgeimpulse.com/public/292737/latest

Keyword Spotting (KWS)

Figure 20.6: DALL·E 3 Prompt: 1950s
style cartoon scene set in a vintage au-
dio research room. Two Afro-American
female scientists are at the center. One
holds a magnifying glass, closely exam-
ining ancient circuitry, while the other
takes notes. On their wooden table,
there are multiple boards with sensors,
notably featuring a microphone. Behind
these boards, a computer with a large,
rounded back displays the Arduino IDE.
The IDE showcases code for LED pin
assignments and machine learning in-
ference for voice command detection. A
distinct window in the IDE, the Serial
Monitor, reveals outputs indicating the
spoken commands ‘yes’ and ‘no’. The
room ambiance is nostalgic with vintage
lamps, classic audio analysis tools, and
charts depicting FFT graphs and time-
domain curves.

Overview

Having already explored the Nicla Vision board in the Image Classification and
Object Detection applications, we are now shifting our focus to voice-activated
applications with a project on Keyword Spotting (KWS).

1163

How does a voice assistant work? 1164

As introduced in the Feature Engineering for Audio Classification Hands-On
tutorial, Keyword Spotting (KWS) is integrated into many voice recognition
systems, enabling devices to respond to specific words or phrases. While this
technology underpins popular devices like Google Assistant or Amazon Alexa,
it’s equally applicable and feasible on smaller, low-power devices. This tutorial
will guide you through implementing a KWS system using TinyML on the
Nicla Vision development board equipped with a digital microphone.

Our model will be designed to recognize keywords that can trigger device
wake-up or specific actions, bringing them to life with voice-activated com-
mands.

How does a voice assistant work?
As said, voice assistants on the market, like Google Home or Amazon Echo-Dot,
only react to humans when they are “waked up” by particular keywords such
as ” Hey Google” on the first one and “Alexa” on the second.

In other words, recognizing voice commands is based on a multi-stage model
or Cascade Detection.

Stage 1: A small microprocessor inside the Echo Dot or Google Home con-
tinuously listens, waiting for the keyword to be spotted, using a TinyML model
at the edge (KWS application).

Keyword Spotting (KWS) 1165

Stage 2: Only when triggered by the KWS application on Stage 1 is the data
sent to the cloud and processed on a larger model.

The video below shows an example of a Google Assistant being programmed
on a Raspberry Pi (Stage 2), with an Arduino Nano 33 BLE as the TinyML device
(Stage 1).

https://youtu.be/e_OPgcnsyvM

To explore the above Google Assistant project, please see the tutorial:
Building an Intelligent Voice Assistant From Scratch.

In this KWS project, we will focus on Stage 1 (KWS or Keyword Spotting),
where we will use the Nicla Vision, which has a digital microphone that will
be used to spot the keyword.

The KWS Hands-On Project

The diagram below gives an idea of how the final KWS application should work
(during inference):

Our KWS application will recognize four classes of sound:
• YES (Keyword 1)
• NO (Keyword 2)
• NOISE (no words spoken; only background noise is present)
• UNKNOWN (a mix of different words than YES and NO)

For real-world projects, it is always advisable to include other sounds
besides the keywords, such as “Noise” (or Background) and “Un-
known.”

The Machine Learning workflow

The main component of the KWS application is its model. So, we must train such
a model with our specific keywords, noise, and other words (the “unknown”):

https://youtu.be/e_OPgcnsyvM
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3

Dataset 1166

Dataset

The critical component of any Machine Learning Workflow is the dataset. Once
we have decided on specific keywords, in our case (YES and NO), we can
take advantage of the dataset developed by Pete Warden, “Speech Commands:
A Dataset for Limited-Vocabulary Speech Recognition.” This dataset has 35
keywords (with +1,000 samples each), such as yes, no, stop, and go. In words
such as yes and no, we can get 1,500 samples.

You can download a small portion of the dataset from Edge Studio (Keyword
spotting pre-built dataset), which includes samples from the four classes we
will use in this project: yes, no, noise, and background. For this, follow the
steps below:

• Download the keywords dataset.
• Unzip the file to a location of your choice.

Uploading the dataset to the Edge Impulse Studio

Initiate a new project at Edge Impulse Studio (EIS) and select the Upload
Existing Data tool in the Data Acquisition section. Choose the files to be
uploaded:

Define the Label, select Automatically split between train and test,
and Upload data to the EIS. Repeat for all classes.

https://arxiv.org/pdf/1804.03209.pdf
https://arxiv.org/pdf/1804.03209.pdf
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://cdn.edgeimpulse.com/datasets/keywords2.zip

Keyword Spotting (KWS) 1167

The dataset will now appear in the Data acquisition section. Note that the
approximately 6,000 samples (1,500 for each class) are split into Train (4,800)
and Test (1,200) sets.

Capturing additional Audio Data
Although we have a lot of data from Pete’s dataset, collecting some words
spoken by us is advised. When working with accelerometers, creating a dataset
with data captured by the same type of sensor is essential. In the case of sound,
this is optional because what we will classify is, in reality, audio data.

Dataset 1168

The key difference between sound and audio is the type of energy.
Sound is mechanical perturbation (longitudinal sound waves) that
propagate through a medium, causing variations of pressure in it.
Audio is an electrical (analog or digital) signal representing sound.

When we pronounce a keyword, the sound waves should be converted to
audio data. The conversion should be done by sampling the signal generated
by the microphone at a 16 KHz frequency with 16-bit per sample amplitude.

So, any device that can generate audio data with this basic specification (16
KHz/16 bits) will work fine. As a device, we can use the NiclaV, a computer, or
even your mobile phone.

Using the NiclaV and the Edge Impulse Studio

As we learned in the chapter Setup Nicla Vision, EIS ofÏcially supports the Nicla
Vision, which simplifies the capture of the data from its sensors, including the
microphone. So, please create a new project on EIS and connect the Nicla to it,
following these steps:

• Download the last updated EIS Firmware and unzip it.
• Open the zip file on your computer and select the uploader corresponding

to your OS:

• Put the NiclaV in Boot Mode by pressing the reset button twice.
• Upload the binary arduino-nicla-vision.bin to your board by running the

batch code corresponding to your OS.

Go to your project on EIS, and on the Data Acquisition tab, select WebUSB.
A window will pop up; choose the option that shows that the Nicla is paired
and press [Connect].

You can choose which sensor data to pick in the Collect Data section on
the Data Acquisition tab. Select: Built-in microphone, define your label
(for example, yes), the sampling Frequency[16000Hz], and the Sample length
(in milliseconds), for example [10s]. Start sampling.

https://cdn.edgeimpulse.com/firmware/arduino-nicla-vision.zip

Keyword Spotting (KWS) 1169

Data on Pete’s dataset have a length of 1s, but the recorded samples are 10s
long and must be split into 1s samples. Click on three dots after the sample
name and select Split sample.

A window will pop up with the Split tool.

Once inside the tool, split the data into 1-second (1000 ms) records. If neces-
sary, add or remove segments. This procedure should be repeated for all new
samples.

Using a smartphone and the EI Studio

You can also use your PC or smartphone to capture audio data, using a sampling
frequency of 16 KHz and a bit depth of 16.

Creating Impulse (Pre-Process / Model definition) 1170

Go to Devices, scan the QR Code using your phone, and click on the link.
A data Collection app will appear in your browser. Select Collecting Audio,
and define your Label, data capture Length, and Category.

Repeat the same procedure used with the NiclaV.

Note that any app, such as Audacity, can be used for audio recording,
provided you use 16 KHz/16-bit depth samples.

Creating Impulse (Pre-Process / Model definition)
An impulse takes raw data, uses signal processing to extract features, and then uses a
learning block to classify new data.

Impulse Design

https://www.audacityteam.org/

Keyword Spotting (KWS) 1171

First, we will take the data points with a 1-second window, augmenting the
data and sliding that window in 500 ms intervals. Note that the option zero-pad
data is set. It is essential to fill with ‘zeros’ samples smaller than 1 second (in
some cases, some samples can result smaller than the 1000 ms window on the
split tool to avoid noise and spikes).

Each 1-second audio sample should be pre-processed and converted to an
image (for example, 13×49×1). As discussed in the Feature Engineering for Au-
dio Classification Hands-On tutorial, we will use Audio (MFCC), which extracts
features from audio signals using Mel Frequency Cepstral CoefÏcients, which
are well suited for the human voice, our case here.

Next, we select the Classification block to build our model from scratch
using a Convolution Neural Network (CNN).

Alternatively, you can use the Transfer Learning (Keyword Spotting)
block, which fine-tunes a pre-trained keyword spotting model on
your data. This approach has good performance with relatively
small keyword datasets.

Pre-Processing (MFCC)
The following step is to create the features to be trained in the next phase:

We could keep the default parameter values, but we will use the DSP Autotune
parameters option.

We will take the Raw features (our 1-second, 16 KHz sampled audio data)
and use the MFCC processing block to calculate the Processed features. For
every 16,000 raw features (16,000 × 1 second), we will get 637 processed features(13×49).

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

Creating Impulse (Pre-Process / Model definition) 1172

The result shows that we only used a small amount of memory to pre-process
data (16 KB) and a latency of 34 ms, which is excellent. For example, on an
Arduino Nano (Cortex-M4f @ 64 MHz), the same pre-process will take around
480 ms. The parameters chosen, such as the FFT length [512], will significantly
impact the latency.

Now, let’s Save parameters and move to the Generated features tab, where
the actual features will be generated. Using UMAP, a dimension reduction
technique, the Feature explorer shows how the features are distributed on a
two-dimensional plot.

The result seems OK, with a visually clear separation between yes features
(in red) and no features (in blue). The unknown features seem nearer to the no
space than the yes. This suggests that the keyword no has more propensity to
false positives.

Going under the hood
To understand better how the raw sound is preprocessed, look at the Feature
Engineering for Audio Classification chapter. You can play with the MFCC features
generation by downloading this notebook from GitHub or [Opening it In Colab]

https://umap-learn.readthedocs.io/en/latest/
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb

Keyword Spotting (KWS) 1173

Model Design and Training
We will use a simple Convolution Neural Network (CNN) model, tested with
1D and 2D convolutions. The basic architecture has two blocks of Convolution
+ MaxPooling ([8] and [16] filters, respectively) and a Dropout of [0.25] for the
1D and [0.5] for the 2D. For the last layer, after Flattening, we have [4] neurons,
one for each class:

As hyper-parameters, we will have a Learning Rate of [0.005] and a model
trained by [100] epochs. We will also include a data augmentation method
based on SpecAugment. We trained the 1D and the 2D models with the same hy-
perparameters. The 1D architecture had a better overall result (90.5% accuracy
when compared with 88% of the 2D, so we will use the 1D.

Using 1D convolutions is more efÏcient because it requires fewer
parameters than 2D convolutions, making them more suitable for
resource-constrained environments.

https://arxiv.org/abs/1904.08779

Testing 1174

It is also interesting to pay attention to the 1D Confusion Matrix. The F1
Score for yes is 95%, and for no, 91%. That was expected by what we saw with
the Feature Explorer (no and unknown at close distance). In trying to improve
the result, you can inspect closely the results of the samples with an error.

Listen to the samples that went wrong. For example, for yes, most of the
mistakes were related to a yes pronounced as “yeh”. You can acquire additional
samples and then retrain your model.

Going under the hood
If you want to understand what is happening “under the hood,” you can down-
load the pre-processed dataset (MFCC training data) from the Dashboard tab
and run this Jupyter Notebook, playing with the code or [Opening it In Colab].
For example, you can analyze the accuracy by each epoch:

Testing
Testing the model with the data reserved for training (Test Data), we got an
accuracy of approximately 76%.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb

Keyword Spotting (KWS) 1175

Inspecting the F1 score, we can see that for YES, we got 0.90, an excellent
result since we expect to use this keyword as the primary “trigger” for our KWS
project. The worst result (0.70) is for UNKNOWN, which is OK.

For NO, we got 0.72, which was expected, but to improve this result, we can
move the samples that were not correctly classified to the training dataset and
then repeat the training process.

Live Classification
We can proceed to the project’s next step but also consider that it is possible to
perform Live Classification using the NiclaV or a smartphone to capture
live samples, testing the trained model before deployment on our device.

Deploy and Inference
The EIS will package all the needed libraries, preprocessing functions, and
trained models, downloading them to your computer. Go to the Deployment
section, select Arduino Library, and at the bottom, choose Quantized (Int8)
and press Build.

Post-processing 1176

When the Build button is selected, a zip file will be created and downloaded
to your computer. On your Arduino IDE, go to the Sketch tab, select the option
Add .ZIP Library, and Choose the .zip file downloaded by EIS:

Now, it is time for a real test. We will make inferences while completely
disconnected from the EIS. Let’s use the NiclaV code example created when
we deployed the Arduino Library.

In your Arduino IDE, go to the File/Examples tab, look for your project, and
select nicla-vision/nicla-vision_microphone (or nicla-vision_microphone_-
continuous)

Press the reset button twice to put the NiclaV in boot mode, upload the sketch
to your board, and test some real inferences:

Post-processing

Now that we know the model is working since it detects our keywords, let’s
modify the code to see the result with the NiclaV completely ofÒine (discon-

Keyword Spotting (KWS) 1177

nected from the PC and powered by a battery, a power bank, or an independent
5V power supply).

The idea is that whenever the keyword YES is detected, the Green LED will
light; if a NO is heard, the Red LED will light, if it is a UNKNOWN, the Blue
LED will light; and in the presence of noise (No Keyword), the LEDs will be
OFF.

We should modify one of the code examples. Let’s do it now with the nicla-
vision_microphone_continuous.

Start with initializing the LEDs:

...
void setup()
{

// Once you finish debugging your code, you can
// comment or delete the Serial part of the code

Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Nicla Vision KWS with LEDs");

// Pins for the built-in RGB LEDs on the Arduino NiclaV
pinMode(LEDR, OUTPUT);
pinMode(LEDG, OUTPUT);
pinMode(LEDB, OUTPUT);

// Ensure the LEDs are OFF by default.
// Note: The RGB LEDs on the Arduino Nicla Vision
// are ON when the pin is LOW, OFF when HIGH.
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

...
}

Create two functions, turn_off_leds() function , to turn off all RGB LEDs

/*
* @brief turn_off_leds function - turn-off all RGB LEDs
*/

void turn_off_leds(){
digitalWrite(LEDR, HIGH);
digitalWrite(LEDG, HIGH);
digitalWrite(LEDB, HIGH);

}

Another turn_on_led() function is used to turn on the RGB LEDs according
to the most probable result of the classifier.

Post-processing 1178

/*
* @brief turn_on_leds function used to turn on the RGB LEDs
* @param[in] pred_index
* no: [0] ==> Red ON
* noise: [1] ==> ALL OFF
* unknown: [2] ==> Blue ON
* Yes: [3] ==> Green ON
*/

void turn_on_leds(int pred_index) {
switch (pred_index)
{

case 0:
turn_off_leds();
digitalWrite(LEDR, LOW);
break;

case 1:
turn_off_leds();
break;

case 2:
turn_off_leds();
digitalWrite(LEDB, LOW);
break;

case 3:
turn_off_leds();
digitalWrite(LEDG, LOW);
break;

}
}

And change the // print the predictions portion of the code on loop():

...

if (++print_results >= (EI_CLASSIFIER_SLICES_PER_MODEL_WINDOW)) {
// print the predictions
ei_printf("Predictions ");
ei_printf("(DSP: %d ms., Classification: %d ms.,

Anomaly: %d ms.)",
result.timing.dsp, result.timing.classification,
result.timing.anomaly);

ei_printf(": \n");
int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {

Keyword Spotting (KWS) 1179

if (result.classification[ix].value > pred_value){
pred_index = ix;
pred_value = result.classification[ix].value;

}
// ei_printf(" %s: ",
// result.classification[ix].label);
// ei_printf_float(result.classification[ix].value);
// ei_printf("\n");

}
ei_printf(" PREDICTION: ==> %s with probability %.2f\n",

result.classification[pred_index].label,
pred_value);

turn_on_leds (pred_index);

#if EI_CLASSIFIER_HAS_ANOMALY == 1
ei_printf(" anomaly score: ");
ei_printf_float(result.anomaly);
ei_printf("\n");

#endif

print_results = 0;
}

}

...

You can find the complete code on the project’s GitHub.
Upload the sketch to your board and test some real inferences. The idea is

that the Green LED will be ON whenever the keyword YES is detected, the Red
will lit for a NO, and any other word will turn on the Blue LED. All the LEDs
should be off if silence or background noise is present. Remember that the
same procedure can “trigger” an external device to perform a desired action
instead of turning on an LED, as we saw in the introduction.

https://youtu.be/25Rd76OTXLY

Conclusion
You will find the notebooks and codeused in this hands-on tutorial
on the GitHub repository.

Before we finish, consider that Sound Classification is more than just voice.
For example, you can develop TinyML projects around sound in several areas,
such as:

• Security (Broken Glass detection, Gunshot)
• Industry (Anomaly Detection)
• Medical (Snore, Cough, Pulmonary diseases)

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS/nicla_vision_microphone_continuous_LED
https://youtu.be/25Rd76OTXLY
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS

Resources 1180

• Nature (Beehive control, insect sound, pouching mitigation)

Resources
• Subset of Google Speech Commands Dataset
• KWS MFCC Analysis Colab Notebook
• KWS_CNN_training Colab Notebook
• Arduino Post-processing Code
• Edge Impulse Project

https://cdn.edgeimpulse.com/datasets/keywords2.zip
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/KWS/nicla_vision_microphone_continuous_LED
https://studio.edgeimpulse.com/public/292418/latest

Motion Classification and Anomaly De-
tection

Figure 20.7: DALL·E 3 Prompt: 1950s
style cartoon illustration depicting a
movement research room. In the cen-
ter of the room, there’s a simulated
container used for transporting goods
on trucks, boats, and forklifts. The
container is detailed with rivets and
markings typical of industrial cargo
boxes. Around the container, the room
is filled with vintage equipment, includ-
ing an oscilloscope, various sensor ar-
rays, and large paper rolls of recorded
data. The walls are adorned with ed-
ucational posters about transportation
safety and logistics. The overall am-
biance of the room is nostalgic and sci-
entific, with a hint of industrial flair.

Overview
Transportation is the backbone of global commerce. Millions of containers
are transported daily via various means, such as ships, trucks, and trains, to

1181

IMU Installation and testing 1182

destinations worldwide. Ensuring these containers’ safe and efÏcient transit is
a monumental task that requires leveraging modern technology, and TinyML
is undoubtedly one of them.

In this hands-on tutorial, we will work to solve real-world problems related to
transportation. We will develop a Motion Classification and Anomaly Detection
system using the Arduino Nicla Vision board, the Arduino IDE, and the Edge
Impulse Studio. This project will help us understand how containers experience
different forces and motions during various phases of transportation, such as
terrestrial and maritime transit, vertical movement via forklifts, and stationary
periods in warehouses.

L� Learning Objectives

• Setting up the Arduino Nicla Vision Board
• Data Collection and Preprocessing
• Building the Motion Classification Model
• Implementing Anomaly Detection
• Real-world Testing and Analysis

By the end of this tutorial, you’ll have a working prototype that can classify
different types of motion and detect anomalies during the transportation of
containers. This knowledge can be a stepping stone to more advanced projects
in the burgeoning field of TinyML involving vibration.

IMU Installation and testing
For this project, we will use an accelerometer. As discussed in the Hands-
On Tutorial, Setup Nicla Vision, the Nicla Vision Board has an onboard 6-axis
IMU: 3D gyroscope and 3D accelerometer, the LSM6DSOX. Let’s verify if the
LSM6DSOX IMU library is installed. If not, install it.

https://www.st.com/en/mems-and-sensors/lsm6dsox.html
https://github.com/arduino-libraries/Arduino_LSM6DSOX

Motion Classification and Anomaly Detection 1183

Next, go to Examples > Arduino_LSM6DSOX > SimpleAccelerometer and
run the accelerometer test. You can check if it works by opening the IDE Serial
Monitor or Plotter. The values are in g (earth gravity), with a default range of
+/- 4g:

Defining the Sampling frequency:
Choosing an appropriate sampling frequency is crucial for capturing the motion
characteristics you’re interested in studying. The Nyquist-Shannon sampling
theorem states that the sampling rate should be at least twice the highest fre-
quency component in the signal to reconstruct it properly. In the context of
motion classification and anomaly detection for transportation, the choice of
sampling frequency would depend on several factors:

1. Nature of the Motion: Different types of transportation (terrestrial, mar-
itime, etc.) may involve different ranges of motion frequencies. Faster
movements may require higher sampling frequencies.

2. Hardware Limitations: The Arduino Nicla Vision board and any associ-
ated sensors may have limitations on how fast they can sample data.

3. Computational Resources: Higher sampling rates will generate more
data, which might be computationally intensive, especially critical in a
TinyML environment.

4. Battery Life: A higher sampling rate will consume more power. If the
system is battery-operated, this is an important consideration.

5. Data Storage: More frequent sampling will require more storage space,
another crucial consideration for embedded systems with limited memory.

In many human activity recognition tasks, sampling rates of around 50 Hz
to 100 Hz are commonly used. Given that we are simulating transportation
scenarios, which are generally not high-frequency events, a sampling rate in
that range (50-100 Hz) might be a reasonable starting point.

IMU Installation and testing 1184

Let’s define a sketch that will allow us to capture our data with a defined
sampling frequency (for example, 50 Hz):

/*
* Based on Edge Impulse Data Forwarder Example (Arduino)
- https://docs.edgeimpulse.com/docs/cli-data-forwarder
* Developed by M.Rovai @11May23
*/

/* Include --- */
#include <Arduino_LSM6DSOX.h>

/* Constant defines ---------------------------------- */
#define CONVERT_G_TO_MS2 9.80665f
#define FREQUENCY_HZ 50
#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))

static unsigned long last_interval_ms = 0;
float x, y, z;

void setup() {
Serial.begin(9600);
while (!Serial);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);

}
}

void loop() {
if (millis() > last_interval_ms + INTERVAL_MS) {

last_interval_ms = millis();

if (IMU.accelerationAvailable()) {
// Read raw acceleration measurements from the device
IMU.readAcceleration(x, y, z);

// converting to m/s2
float ax_m_s2 = x * CONVERT_G_TO_MS2;
float ay_m_s2 = y * CONVERT_G_TO_MS2;
float az_m_s2 = z * CONVERT_G_TO_MS2;

Serial.print(ax_m_s2);
Serial.print("\t");
Serial.print(ay_m_s2);
Serial.print("\t");

Motion Classification and Anomaly Detection 1185

Serial.println(az_m_s2);
}

}
}

Uploading the sketch and inspecting the Serial Monitor, we can see that we
are capturing 50 samples per second.

Note that with the Nicla board resting on a table (with the camera
facing down), the 𝑧-axis measures around 9.8 m/s2, the expected
earth acceleration.

The Case Study: Simulated Container Transportation

We will simulate container (or better package) transportation through different
scenarios to make this tutorial more relatable and practical. Using the built-in
accelerometer of the Arduino Nicla Vision board, we’ll capture motion data by
manually simulating the conditions of:

1. Terrestrial Transportation (by road or train)
2. Maritime-associated Transportation
3. Vertical Movement via Fork-Lift
4. Stationary (Idle) period in a Warehouse

Data Collection 1186

From the above images, we can define for our simulation that primarily
horizontal movements (𝑥 or 𝑦 axis) should be associated with the “Terrestrial
class,” Vertical movements (𝑧-axis) with the “Lift Class,” no activity with the
“Idle class,” and movement on all three axes to Maritime class.

Data Collection
For data collection, we can have several options. In a real case, we can have our
device, for example, connected directly to one container, and the data collected
on a file (for example .CSV) and stored on an SD card (Via SPI connection) or
an ofÒine repo in your computer. Data can also be sent remotely to a nearby
repository, such as a mobile phone, using Bluetooth (as done in this project:
Sensor DataLogger). Once your dataset is collected and stored as a .CSV file, it
can be uploaded to the Studio using the CSV Wizard tool.

In this video, you can learn alternative ways to send data to the
Edge Impulse Studio.

Connecting the device to Edge Impulse
We will connect the Nicla directly to the Edge Impulse Studio, which will also
be used for data pre-processing, model training, testing, and deployment. For
that, you have two options:

1. Download the latest firmware and connect it directly to the Data Collection
section.

2. Use the CLI Data Forwarder tool to capture sensor data from the sensor
and send it to the Studio.

Option 1 is more straightforward, as we saw in the Setup Nicla Vision hands-
on, but option 2 will give you more flexibility regarding capturing your data,
such as sampling frequency definition. Let’s do it with the last one.

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm
https://www.hackster.io/mjrobot/sensor-datalogger-50e44d
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/csv-wizard
https://youtu.be/2KBPq_826WM
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

Motion Classification and Anomaly Detection 1187

Please create a new project on the Edge Impulse Studio (EIS) and connect
the Nicla to it, following these steps:

1. Install the Edge Impulse CLI and the Node.js into your computer.
2. Upload a sketch for data capture (the one discussed previously in this

tutorial).
3. Use the CLI Data Forwarder to capture data from the Nicla’s accelerometer

and send it to the Studio, as shown in this diagram:

Start the CLI Data Forwarder on your terminal, entering (if it is the first time)
the following command:

$ edge-impulse-data-forwarder --clean

Next, enter your EI credentials and choose your project, variables (for exam-
ple, accX, accY, and accZ), and device name (for example, NiclaV:

https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

Data Collection 1188

Go to the Devices section on your EI Project and verify if the device is con-
nected (the dot should be green):

You can clone the project developed for this hands-on: NICLA
Vision Movement Classification.

Data Collection
On the Data Acquisition section, you should see that your board [NiclaV]
is connected. The sensor is available: [sensor with 3 axes (accX, accY,
accZ)] with a sampling frequency of [50 Hz]. The Studio suggests a sample
length of [10000] ms (10 s). The last thing left is defining the sample label.
Let’s start with[terrestrial]:

Terrestrial (palettes in a Truck or Train), moving horizontally. Press [Start
Sample]and move your device horizontally, keeping one direction over your

https://studio.edgeimpulse.com/public/302078/latest
https://studio.edgeimpulse.com/public/302078/latest

Motion Classification and Anomaly Detection 1189

table. After 10 s, your data will be uploaded to the studio. Here is how the
sample was collected:

As expected, the movement was captured mainly in the 𝑌-axis (green). In the
blue, we see the 𝑍 axis, around -10 m/s2 (the Nicla has the camera facing up).

As discussed before, we should capture data from all four Transportation
Classes. So, imagine that you have a container with a built-in accelerometer
facing the following situations:

Maritime (pallets in boats into an angry ocean). The movement is captured
on all three axes:

Lift (Palettes being handled vertically by a Forklift). Movement captured
only in the 𝑍-axis:

Idle (Paletts in a warehouse). No movement detected by the accelerometer:

Data Collection 1190

You can capture, for example, 2 minutes (twelve samples of 10 seconds) for
each of the four classes (a total of 8 minutes of data). Using the three dots
menu after each one of the samples, select 2 of them, reserving them for the
Test set. Alternatively, you can use the automatic Train/Test Split tool on
the Danger Zone of Dashboard tab. Below, you can see the resulting dataset:

Once you have captured your dataset, you can explore it in more detail using
the Data Explorer, a visual tool to find outliers or mislabeled data (helping to
correct them). The data explorer first tries to extract meaningful features from
your data (by applying signal processing and neural network embeddings)
and then uses a dimensionality reduction algorithm such as PCA or t-SNE to
map these features to a 2D space. This gives you a one-look overview of your
complete dataset.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/data-explorer
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding

Motion Classification and Anomaly Detection 1191

In our case, the dataset seems OK (good separation). But the PCA shows we
can have issues between maritime (green) and lift (orange). This is expected,
once on a boat, sometimes the movement can be only “vertical”.

Impulse Design
The next step is the definition of our Impulse, which takes the raw data and
uses signal processing to extract features, passing them as the input tensor of a
learning block to classify new data. Go to Impulse Design and Create Impulse.
The Studio will suggest the basic design. Let’s also add a second Learning Block
for Anomaly Detection.

Impulse Design 1192

This second model uses a K-means model. If we imagine that we could have
our known classes as clusters, any sample that could not fit on that could be
an outlier, an anomaly such as a container rolling out of a ship on the ocean or
falling from a Forklift.

The sampling frequency should be automatically captured, if not, enter it:
[50]Hz. The Studio suggests a Window Size of 2 seconds ([2000] ms) with a
sliding window of [20]ms. What we are defining in this step is that we will
pre-process the captured data (Time-Seres data), creating a tabular dataset
features) that will be the input for a Neural Networks Classifier (DNN) and an
Anomaly Detection model (K-Means), as shown below:

Let’s dig into those steps and parameters to understand better what we are
doing here.

Data Pre-Processing Overview
Data pre-processing is extracting features from the dataset captured with the
accelerometer, which involves processing and analyzing the raw data. Ac-

Motion Classification and Anomaly Detection 1193

celerometers measure the acceleration of an object along one or more axes
(typically three, denoted as 𝑋, 𝑌, and 𝑍). These measurements can be used to
understand various aspects of the object’s motion, such as movement patterns
and vibrations.

Raw accelerometer data can be noisy and contain errors or irrelevant infor-
mation. Preprocessing steps, such as filtering and normalization, can clean
and standardize the data, making it more suitable for feature extraction. In our
case, we should divide the data into smaller segments or windows. This can
help focus on specific events or activities within the dataset, making feature
extraction more manageable and meaningful. The window size and overlap
(window increase) choice depend on the application and the frequency of the
events of interest. As a thumb rule, we should try to capture a couple of “cycles
of data”.

With a sampling rate (SR) of 50 Hz and a window size of 2 seconds,
we will get 100 samples per axis, or 300 in total (3 axis × 2 seconds× 50 samples). We will slide this window every 200 ms, creating a
larger dataset where each instance has 300 raw features.

Once the data is preprocessed and segmented, you can extract features that
describe the motion’s characteristics. Some typical features extracted from
accelerometer data include:

• Time-domain features describe the data’s statistical properties within
each segment, such as mean, median, standard deviation, skewness, kur-
tosis, and zero-crossing rate.

• Frequency-domain features are obtained by transforming the data into the
frequency domain using techniques like the Fast Fourier Transform (FFT).
Some typical frequency-domain features include the power spectrum,
spectral energy, dominant frequencies (amplitude and frequency), and
spectral entropy.

• Time-frequency domain features combine the time and frequency do-
main information, such as the Short-Time Fourier Transform (STFT) or
the Discrete Wavelet Transform (DWT). They can provide a more detailed
understanding of how the signal’s frequency content changes over time.

Impulse Design 1194

In many cases, the number of extracted features can be large, which may lead
to overfitting or increased computational complexity. Feature selection tech-
niques, such as mutual information, correlation-based methods, or principal
component analysis (PCA), can help identify the most relevant features for a
given application and reduce the dimensionality of the dataset. The Studio can
help with such feature importance calculations.

EI Studio Spectral Features

Data preprocessing is a challenging area for embedded machine learning, still,
Edge Impulse helps overcome this with its digital signal processing (DSP)
preprocessing step and, more specifically, the Spectral Features Block.

On the Studio, the collected raw dataset will be the input of a Spectral Analysis
block, which is excellent for analyzing repetitive motion, such as data from
accelerometers. This block will perform a DSP (Digital Signal Processing),
extracting features such as FFT or Wavelets.

For our project, once the time signal is continuous, we should use FFT with,
for example, a length of [32].

The per axis/channel Time Domain Statistical features are:

• RMS: 1 feature
• Skewness: 1 feature
• Kurtosis: 1 feature

The per axis/channel Frequency Domain Spectral features are:

• Spectral Power: 16 features (FFT Length/2)
• Skewness: 1 feature
• Kurtosis: 1 feature

So, for an FFT length of 32 points, the resulting output of the Spectral Analysis
Block will be 21 features per axis (a total of 63 features).

You can learn more about how each feature is calculated by down-
loading the notebook Edge Impulse - Spectral Features Block Analy-
sis TinyML under the hood: Spectral Analysis or opening it directly
on Google CoLab.

Generating features

Once we understand what the pre-processing does, it is time to finish the job.
So, let’s take the raw data (time-series type) and convert it to tabular data. For
that, go to the Spectral Features section on the Parameters tab, define the
main parameters as discussed in the previous section ([FFT] with [32] points),
and select[Save Parameters]:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing#Wavelet
https://en.wikipedia.org/wiki/Root_mean_square
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSkewness
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKurtosis
https://en.wikipedia.org/wiki/Spectral_density
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://www.hackster.io/mjrobot/tinyml-under-the-hood-spectral-analysis-94676c
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb

Motion Classification and Anomaly Detection 1195

At the top menu, select the Generate Features option and the Generate
Features button. Each 2-second window data will be converted into one data
point of 63 features.

The Feature Explorer will show those data in 2D using UMAP. Uni-
form Manifold Approximation and Projection (UMAP) is a dimen-
sion reduction technique that can be used for visualization similarly
to t-SNE but is also applicable for general non-linear dimension
reduction.

The visualization makes it possible to verify that after the feature generation,
the classes present keep their excellent separation, which indicates that the
classifier should work well. Optionally, you can analyze how important each
one of the features is for one class compared with others.

https://umap-learn.readthedocs.io/en/latest/

Models Training 1196

Models Training
Our classifier will be a Dense Neural Network (DNN) that will have 63 neurons
on its input layer, two hidden layers with 20 and 10 neurons, and an output
layer with four neurons (one per each class), as shown here:

As hyperparameters, we will use a Learning Rate of [0.005], a Batch size of
[32], and [20]% of data for validation for [30] epochs. After training, we can
see that the accuracy is 98.5%. The cost of memory and latency is meager.

For Anomaly Detection, we will choose the suggested features that are pre-
cisely the most important ones in the Feature Extraction, plus the accZ RMS.
The number of clusters will be [32], as suggested by the Studio:

Motion Classification and Anomaly Detection 1197

Testing

We can verify how our model will behave with unknown data using 20% of
the data left behind during the data capture phase. The result was almost 95%,
which is good. You can always work to improve the results, for example, to
understand what went wrong with one of the wrong results. If it is a unique
situation, you can add it to the training dataset and then repeat it.

The default minimum threshold for a considered uncertain result is [0.6] for
classification and [0.3] for anomaly. Once we have four classes (their output
sum should be 1.0), you can also set up a lower threshold for a class to be
considered valid (for example, 0.4). You can Set confidence thresholds on
the three dots menu, besides the Classify all button.

You can also perform Live Classification with your device (which should still
be connected to the Studio).

Be aware that here, you will capture real data with your device and
upload it to the Studio, where an inference will be taken using the
trained model (But the model is NOT in your device).

Deploy

It is time to deploy the preprocessing block and the trained model to the Nicla.
The Studio will package all the needed libraries, preprocessing functions, and
trained models, downloading them to your computer. You should select the op-
tion Arduino Library, and at the bottom, you can choose Quantized (Int8)
or Unoptimized (float32) and [Build]. A Zip file will be created and down-
loaded to your computer.

Deploy 1198

On your Arduino IDE, go to the Sketch tab, select Add.ZIP Library, and
Choose the.zip file downloaded by the Studio. A message will appear in the
IDE Terminal: Library installed.

Inference
Now, it is time for a real test. We will make inferences wholly disconnected
from the Studio. Let’s change one of the code examples created when you
deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your project,
and on examples, select Nicla_vision_fusion:

Note that the code created by Edge Impulse considers a sensor fusion approach
where the IMU (Accelerometer and Gyroscope) and the ToF are used. At the
beginning of the code, you have the libraries related to our project, IMU and
ToF:

/* Includes -- */
#include <NICLA_Vision_Movement_Classification_inferencing.h>
#include <Arduino_LSM6DSOX.h> //IMU
#include "VL53L1X.h" // ToF

You can keep the code this way for testing because the trained model
will use only features pre-processed from the accelerometer. But

Motion Classification and Anomaly Detection 1199

consider that you will write your code only with the needed libraries
for a real project.

And that is it!
You can now upload the code to your device and proceed with the inferences.

Press the Nicla [RESET] button twice to put it on boot mode (disconnect from
the Studio if it is still connected), and upload the sketch to your board.

Now you should try different movements with your board (similar to those
done during data capture), observing the inference result of each class on the
Serial Monitor:

• Idle and lift classes:

• Maritime and terrestrial:

Note that in all situations above, the value of the anomaly score was smaller
than 0.0. Try a new movement that was not part of the original dataset, for
example, “rolling” the Nicla, facing the camera upside-down, as a container
falling from a boat or even a boat accident:

Conclusion 1200

• Anomaly detection:

In this case, the anomaly is much bigger, over 1.00

Post-processing

Now that we know the model is working since it detects the movements, we
suggest that you modify the code to see the result with the NiclaV completely
ofÒine (disconnected from the PC and powered by a battery, a power bank, or
an independent 5 V power supply).

The idea is to do the same as with the KWS project: if one specific movement
is detected, a specific LED could be lit. For example, if terrestrial is detected, the
Green LED will light; if maritime, the Red LED will light, if it is a lift, the Blue
LED will light; and if no movement is detected (idle), the LEDs will be OFF. You
can also add a condition when an anomaly is detected, in this case, for example,
a white color can be used (all e LEDs light simultaneously).

Conclusion

The notebooks and codeused in this hands-on tutorial will be found
on the GitHub repository.

Before we finish, consider that Movement Classification and Object Detection
can be utilized in many applications across various domains. Here are some of
the potential applications:

Case Applications

Industrial and Manufacturing

• Predictive Maintenance: Detecting anomalies in machinery motion to
predict failures before they occur.

• Quality Control: Monitoring the motion of assembly lines or robotic
arms for precision assessment and deviation detection from the standard
motion pattern.

• Warehouse Logistics: Managing and tracking the movement of goods
with automated systems that classify different types of motion and detect
anomalies in handling.

https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Motion_Classification

Motion Classification and Anomaly Detection 1201

Healthcare
• PatientMonitoring: Detecting falls or abnormal movements in the elderly

or those with mobility issues.
• Rehabilitation: Monitoring the progress of patients recovering from

injuries by classifying motion patterns during physical therapy sessions.
• Activity Recognition: Classifying types of physical activity for fitness

applications or patient monitoring.

Consumer Electronics
• Gesture Control: Interpreting specific motions to control devices, such

as turning on lights with a hand wave.
• Gaming: Enhancing gaming experiences with motion-controlled inputs.

Transportation and Logistics
• Vehicle Telematics: Monitoring vehicle motion for unusual behavior

such as hard braking, sharp turns, or accidents.
• Cargo Monitoring: Ensuring the integrity of goods during transport by

detecting unusual movements that could indicate tampering or mishan-
dling.

Smart Cities and Infrastructure
• StructuralHealthMonitoring: Detecting vibrations or movements within

structures that could indicate potential failures or maintenance needs.
• TrafÏc Management: Analyzing the flow of pedestrians or vehicles to

improve urban mobility and safety.

Security and Surveillance
• Intruder Detection: Detecting motion patterns typical of unauthorized

access or other security breaches.
• WildlifeMonitoring: Detecting poachers or abnormal animal movements

in protected areas.

Agriculture
• Equipment Monitoring: Tracking the performance and usage of agricul-

tural machinery.
• Animal Behavior Analysis: Monitoring livestock movements to detect

behaviors indicating health issues or stress.

Environmental Monitoring
• Seismic Activity: Detecting irregular motion patterns that precede earth-

quakes or other geologically relevant events.
• Oceanography: Studying wave patterns or marine movements for re-

search and safety purposes.

Resources 1202

Nicla 3D case
For real applications, as some described before, we can add a case to our device,
and Eoin Jordan, from Edge Impulse, developed a great wearable and machine
health case for the Nicla range of boards. It works with a 10mm magnet, 2M
screws, and a 16mm strap for human and machine health use case scenarios.
Here is the link: Arduino Nicla Voice and Vision Wearable Case.

The applications for motion classification and anomaly detection are exten-
sive, and the Arduino Nicla Vision is well-suited for scenarios where low power
consumption and edge processing are advantageous. Its small form factor and
efÏciency in processing make it an ideal choice for deploying portable and
remote applications where real-time processing is crucial and connectivity may
be limited.

Resources
• Arduino Code
• Edge Impulse Spectral Features Block Colab Notebook
• Edge Impulse Project

https://www.thingiverse.com/thing:5923305
https://github.com/Mjrovai/Arduino_Nicla_Vision/tree/main/Motion_Classification/Niclav_Acc_Data_Capture
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://studio.edgeimpulse.com/public/302078/latest

XIAO ESP32S3

These labs provide a unique opportunity to gain practical experience with
machine learning (ML) systems. Unlike working with large models requiring
data center-scale resources, these exercises allow you to directly interact with
hardware and software using TinyML. This hands-on approach gives you a
tangible understanding of the challenges and opportunities in deploying AI,
albeit at a tiny scale. However, the principles are largely the same as what you
would encounter when working with larger systems.

Figure 20.8: XIAO ESP32S3 Sense.
Source: SEEED Studio

Pre-requisites
• XIAO ESP32S3 Sense Board: Ensure you have the XIAO ESP32S3 Sense

Board.
• USB-C Cable: This is for connecting the board to your computer.
• Network: With internet access for downloading necessary software.
• SDCard and an SD cardAdapter: This saves audio and images (optional).

1203

Setup 1204

Setup
• Setup XIAO ESP32S3

Exercises

Modality Task Description Link

Vision Image Classification Learn to classify images Link
Vision Object Detection Implement object detection Link
Sound Keyword Spotting Explore voice recognition systems Link
IMU Motion Classification and Anomaly Detection Classify motion data and detect anomalies Link

./setup/setup.qmd
./image_classification/image_classification.qmd
./object_detection/object_detection.qmd
./kws/kws.qmd
./motion_classification/motion_classification.qmd

Setup

Figure 20.9: DALL·E prompt - 1950s
cartoon-style drawing of a XIAO
ESP32S3 board with a distinctive cam-
era module, as shown in the image pro-
vided. The board is placed on a classic
lab table with various sensors, includ-
ing a microphone. Behind the board, a
vintage computer screen displays the Ar-
duino IDE in muted colors, with code
focusing on LED pin setups and ma-
chine learning inference for voice com-
mands. The Serial Monitor on the IDE
showcases outputs detecting voice com-
mands like ‘yes’ and ‘no’. The scene
merges the retro charm of mid-century
labs with modern electronics.

Overview

The XIAO ESP32S3 Sense is Seeed Studio’s affordable development board,
which integrates a camera sensor, digital microphone, and SD card support.
Combining embedded ML computing power and photography capability, this

1205

https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html

Overview 1206

development board is a great tool to start with TinyML (intelligent voice and
vision AI).

XIAO ESP32S3 Sense Main Features
• Powerful MCU Board: Incorporate the ESP32S3 32-bit, dual-core, Xtensa

processor chip operating up to 240 MHz, mounted multiple development
ports, Arduino / MicroPython supported

• Advanced Functionality: Detachable OV2640 camera sensor for 1600 *
1200 resolution, compatible with OV5640 camera sensor, integrating an
additional digital microphone

• Elaborate Power Design: Lithium battery charge management capability
offers four power consumption models, which allows for deep sleep mode
with power consumption as low as 14 μA

• Great Memory for more Possibilities: Offer 8 MB PSRAM and 8 MB
FLASH, supporting SD card slot for external 32 GB FAT memory

• Outstanding RF performance: Support 2.4 GHz Wi-Fi and BLE dual
wireless communication, support 100m+ remote communication when
connected with U.FL antenna

• Thumb-sized Compact Design: 21×17.5 mm, adopting the classic form
factor of XIAO, suitable for space-limited projects like wearable devices

Setup 1207

Below is the general board pinout:

For more details, please refer to the Seeed Studio WiKi page: https:
//wiki.seeedstudio.com/xiao_esp32s3_getting_started/

Installing the XIAO ESP32S3 Sense on Arduino IDE
On Arduino IDE, navigate to File > Preferences, and fill in the URL:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_-
dev_index.json

on the field ==> Additional Boards Manager URLs

Next, open boards manager. Go to Tools > Board > Boards Manager… and
enter with esp32. Select and install the most updated and stable package (avoid
alpha versions):

https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

Testing the board with BLINK 1208

� Attention

Alpha versions (for example, 3.x-alpha) do not work correctly with
the XIAO and Edge Impulse. Use the last stable version (for example,
2.0.11) instead.

On Tools, select the Board (XIAO ESP32S3):

Last but not least, choose the Port where the ESP32S3 is connected.
That is it! The device should be OK. Let’s do some tests.

Testing the board with BLINK

The XIAO ESP32S3 Sense has a built-in LED that is connected to GPIO21. So,
you can run the blink sketch as it is (using the LED_BUILTIN Arduino constant)
or by changing the Blink sketch accordingly:

#define LED_BUILT_IN 21

void setup() {
pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output

}

// Remember that the pin work with inverted logic
// LOW to Turn on and HIGH to turn off
void loop() {
digitalWrite(LED_BUILT_IN, LOW); //Turn on
delay (1000); //Wait 1 sec
digitalWrite(LED_BUILT_IN, HIGH); //Turn off
delay (1000); //Wait 1 sec

}

Note that the pins work with inverted logic: LOW to Turn on and
HIGH to turn off.

Setup 1209

Connecting Sense module (Expansion Board)
When purchased, the expansion board is separated from the main board, but
installing the expansion board is very simple. You need to align the connector
on the expansion board with the B2B connector on the XIAO ESP32S3, press it
hard, and when you hear a “click,” the installation is complete.

As commented in the introduction, the expansion board, or the “sense” part
of the device, has a 1600×1200 OV2640 camera, an SD card slot, and a digital
microphone.

Microphone Test
Let’s start with sound detection. Go to the GitHub project and download the
sketch: XIAOEsp2s3_Mic_Test and run it on the Arduino IDE:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test

Microphone Test 1210

When producing sound, you can verify it on the Serial Plotter.
Save recorded sound (.wav audio files) to a microSD card.
Now, the onboard SD Card reader can save .wav audio files. To do that, we

need to habilitate the XIAO PSRAM.

ESP32-S3 has only a few hundred kilobytes of internal RAM on the
MCU chip. This can be insufÏcient for some purposes, so up to
16 MB of external PSRAM (pseudo-static RAM) can be connected
with the SPI flash chip. The external memory is incorporated in the
memory map and, with certain restrictions, is usable in the same
way as internal data RAM.

For a start, Insert the SD Card on the XIAO as shown in the photo below (the
SD Card should be formatted to FAT32).

• Download the sketch Wav_Record, which you can find on GitHub.
• To execute the code (Wav Record), it is necessary to use the PSRAM

function of the ESP-32 chip, so turn it on before uploading: Tools>PSRAM:
“OPI PSRAM”>OPI PSRAM

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/Wav_Record

Setup 1211

• Run the code Wav_Record.ino
• This program is executed only once after the user turns on the serial

monitor. It records for 20 seconds and saves the recording file to a microSD
card as “arduino_rec.wav.”

• When the “.” is output every 1 second in the serial monitor, the program
execution is finished, and you can play the recorded sound file with the
help of a card reader.

The sound quality is excellent!

The explanation of how the code works is beyond the scope of this
tutorial, but you can find an excellent description on the wiki page.

https://wiki.seeedstudio.com/xiao_esp32s3_sense_mic#save-recorded-sound-to-microsd-card

Testing the Camera 1212

Testing the Camera
To test the camera, you should download the folder take_photos_command
from GitHub. The folder contains the sketch (.ino) and two .h files with camera
details.

• Run the code: take_photos_command.ino. Open the Serial Monitor and
send the command capture to capture and save the image on the SD
Card:

Verify that [Both NL & CR] are selected on Serial Monitor.

Here is an example of a taken photo:

Testing WiFi
One of the XIAO ESP32S3’s differentiators is its WiFi capability. So, let’s test its
radio by scanning the Wi-Fi networks around it. You can do this by running
one of the code examples on the board.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/take_photos_command

Setup 1213

Go to Arduino IDE Examples and look for WiFI ==> WiFIScan
You should see the Wi-Fi networks (SSIDs and RSSIs) within your device’s

range on the serial monitor. Here is what I got in the lab:

Simple WiFi Server (Turning LED ON/OFF)
Let’s test the device’s capability to behave as a WiFi Server. We will host a

simple page on the device that sends commands to turn the XIAO built-in LED
ON and OFF.

Like before, go to GitHub to download the folder using the sketch Sim-
pleWiFiServer.

Before running the sketch, you should enter your network credentials:

const char* ssid = "Your credentials here";
const char* password = "Your credentials here";

You can monitor how your server is working with the Serial Monitor.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/SimpleWiFiServer
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/SimpleWiFiServer

Testing WiFi 1214

Take the IP address and enter it on your browser:

You will see a page with links that can turn the built-in LED of your XIAO
ON and OFF.

Streaming video to Web
Now that you know that you can send commands from the webpage to your

device, let’s do the reverse. Let’s take the image captured by the camera and
stream it to a webpage:

Download from GitHub the folder that contains the code: XIAO-ESP32S3-
Streeming_Video.ino.

Remember that the folder contains the.ino file and a couple of .h
files necessary to handle the camera.

Enter your credentials and run the sketch. On the Serial monitor, you can
find the page address to enter in your browser:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Streeming_Video

Setup 1215

Open the page on your browser (wait a few seconds to start the streaming).
That’s it.

Streamlining what your camera is “seen” can be important when you position
it to capture a dataset for an ML project (for example, using the code “take_-
phots_commands.ino”.

Of course, we can do both things simultaneously: show what the camera
sees on the page and send a command to capture and save the image on the SD
card. For that, you can use the code Camera_HTTP_Server_STA, which can be
downloaded from GitHub.

Testing WiFi 1216

The program will do the following tasks:
• Set the camera to JPEG output mode.
• Create a web page (for example ==> http://192.168.4.119//). The correct

address will be displayed on the Serial Monitor.
• If server.on (“/capture”, HTTP_GET, serverCapture), the program takes

a photo and sends it to the Web.
• It is possible to rotate the image on webPage using the button [ROTATE]
• The command [CAPTURE] only will preview the image on the webpage,

showing its size on the Serial Monitor
• The [SAVE] command will save an image on the SD Card and show the

image on the browser.
• Saved images will follow a sequential naming (image1.jpg, image2.jpg.

This program can capture an image dataset with an image classifi-
cation project.

Inspect the code; it will be easier to understand how the camera works. This
code was developed based on the great Rui Santos Tutorial ESP32-CAM Take
Photo and Display in Web Server, which I invite all of you to visit.

Using the CameraWebServer
In the Arduino IDE, go to File > Examples > ESP32 > Camera, and select

CameraWebServer
You also should comment on all cameras’ models, except the XIAO model

pins:
#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM
Do not forget the Tools to enable the PSRAM.
Enter your wifi credentials and upload the code to the device:

http://192.168.4.119//
https://randomnerdtutorials.com/esp32-cam-take-photo-display-web-server/
https://randomnerdtutorials.com/esp32-cam-take-photo-display-web-server/

Setup 1217

If the code is executed correctly, you should see the address on the Serial
Monitor:

Copy the address on your browser and wait for the page to be uploaded.
Select the camera resolution (for example, QVGA) and select [START STREAM].
Wait for a few seconds/minutes, depending on your connection. Using the
[Save] button, you can save an image to your computer download area.

Conclusion 1218

That’s it! You can save the images directly on your computer for use on
projects.

Conclusion
The XIAO ESP32S3 Sense is flexible, inexpensive, and easy to program. With
8 MB of RAM, memory is not an issue, and the device can handle many post-
processing tasks, including communication.

You will find the last version of the codeon the GitHub repository: XIAO-
ESP32S3-Sense.

Resources
• XIAO ESP32S3 Code

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense

Image Classification

Figure 20.10: Image by Marcelo Rovai

Overview
More and more, we are facing an artificial intelligence (AI) revolution where, as
stated by Gartner, Edge AI has a very high impact potential, and it is for now!

1219

A TinyML Image Classification Project – Fruits versus Veggies 1220

At the forefront of the Emerging Technologies Radar is the universal language
of Edge Computer Vision. When we look into Machine Learning (ML) applied
to vision, the first concept that greets us is Image Classification, a kind of ML’
Hello World ’ that is both simple and profound!

The Seeed Studio XIAO ESP32S3 Sense is a powerful tool that combines
camera and SD card support. With its embedded ML computing power and
photography capability, it is an excellent starting point for exploring TinyML
vision AI.

A TinyML Image Classification Project – Fruits versus Veggies

The whole idea of our project will be to train a model and proceed with
inference on the XIAO ESP32S3 Sense. For training, we should find some data
(in fact, tons of data!).

But first of all, we need a goal! What do we want to classify?

Image Classification 1221

With TinyML, a set of techniques associated with machine learning inference
on embedded devices, we should limit the classification to three or four cate-
gories due to limitations (mainly memory). We will differentiate apples from
bananas and potatoes (you can try other categories).

So, let’s find a specific dataset that includes images from those categories.
Kaggle is a good start:

https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognitio
n

This dataset contains images of the following food items:

• Fruits –banana, apple, pear, grapes, orange, kiwi, watermelon, pomegranate,
pineapple, mango.

• Vegetables – cucumber, carrot, capsicum, onion, potato, lemon, tomato,
radish, beetroot, cabbage, lettuce, spinach, soybean, cauliflower, bell pep-
per, chili pepper, turnip, corn, sweetcorn, sweet potato, paprika, jalepeño,
ginger, garlic, peas, eggplant.

Each category is split into the train (100 images), test (10 images), and vali-
dation (10 images).

• Download the dataset from the Kaggle website and put it on your com-
puter.

Optionally, you can add some fresh photos of bananas, apples, and
potatoes from your home kitchen, using, for example, the code
discussed in the next setup lab.

Training the model with Edge Impulse Studio

We will use the Edge Impulse Studio to train our model. As you may know,
Edge Impulse is a leading development platform for machine learning on edge
devices.

Enter your account credentials (or create a free account) at Edge Impulse.
Next, create a new project:

https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition
https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition
https://www.edgeimpulse.com/

Training the model with Edge Impulse Studio 1222

Data Acquisition

Next, on the UPLOAD DATA section, upload from your computer the files from
chosen categories:

It would be best if you now had your training dataset split into three classes
of data:

Image Classification 1223

You can upload extra data for further model testing or split the
training data. I will leave it as it is to use the most data possible.

Impulse Design

An impulse takes raw data (in this case, images), extracts features
(resize pictures), and then uses a learning block to classify new data.

Classifying images is the most common use of deep learning, but a lot of
data should be used to accomplish this task. We have around 90 images for
each category. Is this number enough? Not at all! We will need thousands of
images to “teach or model” to differentiate an apple from a banana. But, we
can solve this issue by re-training a previously trained model with thousands
of images. We call this technique “Transfer Learning” (TL).

Training the model with Edge Impulse Studio 1224

With TL, we can fine-tune a pre-trained image classification model on our
data, performing well even with relatively small image datasets (our case).

So, starting from the raw images, we will resize them (96 × 96) pixels and
feed them to our Transfer Learning block:

Pre-processing (Feature Generation)

Besides resizing the images, we can change them to Grayscale or keep the actual
RGB color depth. Let’s start selecting Grayscale. Doing that, each one of our
data samples will have dimension 9,216 features (96×96×1). Keeping RGB,
this dimension would be three times bigger. Working with Grayscale helps to
reduce the amount of final memory needed for inference.

Image Classification 1225

Remember to [Save parameters]. This will generate the features to be used
in training.

Model Design

Transfer Learning
In 2007, Google introduced MobileNetV1, a family of general-purpose com-

puter vision neural networks designed with mobile devices in mind to support
classification, detection, and more. MobileNets are small, low-latency, low-
power models parameterized to meet the resource constraints of various use
cases.

Although the base MobileNet architecture is already tiny and has low latency,
many times, a specific use case or application may require the model to be
smaller and faster. MobileNet introduces a straightforward parameter 𝛼 (alpha)
called width multiplier to construct these smaller, less computationally expen-
sive models. The role of the width multiplier 𝛼 is to thin a network uniformly
at each layer.

Edge Impulse Studio has MobileNet V1 (96x96 images) and V2 (96x96 and
16x160 images) available, with several different 𝛼 values (from 0.05 to 1.0). For
example, you will get the highest accuracy with V2, 160 × 160 images, and𝛼 = 1.0. Of course, there is a trade-off. The higher the accuracy, the more
memory (around 1.3 M RAM and 2.6 M ROM) will be needed to run the model,
implying more latency.

The smaller footprint will be obtained at another extreme with MobileNet
V1 and 𝛼 = 0.10 (around 53.2 K RAM and 101 K ROM).

For this first pass, we will use MobileNet V1 and 𝛼 = 0.10.

Training
Data Augmentation

Another necessary technique to use with deep learning is data augmentation.
Data augmentation is a method that can help improve the accuracy of machine
learning models, creating additional artificial data. A data augmentation system

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html

Training the model with Edge Impulse Studio 1226

makes small, random changes to your training data during the training process
(such as flipping, cropping, or rotating the images).

Under the rood, here you can see how Edge Impulse implements a data
Augmentation policy on your data:

Implements the data augmentation policy
def augment_image(image, label):

Flips the image randomly
image = tf.image.random_flip_left_right(image)

Increase the image size, then randomly crop it down to
the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height,

new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your model
from taking shortcuts by “memorizing” superficial clues in your training data,
meaning it may better reflect the deep underlying patterns in your dataset.

The final layer of our model will have 16 neurons with a 10% dropout for
overfitting prevention. Here is the Training output:

The result could be better. The model reached around 77% accuracy, but
the amount of RAM expected to be used during the inference is relatively tiny
(about 60 KBytes), which is very good.

Image Classification 1227

Deployment

The trained model will be deployed as a .zip Arduino library:

Open your Arduino IDE, and under Sketch, go to Include Library and
add.ZIP Library. Please select the file you download from Edge Impulse Studio,
and that’s it!

Under the Examples tab on Arduino IDE, you should find a sketch code
under your project name.

Training the model with Edge Impulse Studio 1228

Open the Static Buffer example:

You can see that the first line of code is exactly the calling of a library with
all the necessary stuff for running inference on your device.

Image Classification 1229

#include <XIAO-ESP32S3-CAM-Fruits-vs-Veggies_inferencing.h>

Of course, this is a generic code (a “template”) that only gets one sample of
raw data (stored on the variable: features = {} and runs the classifier, doing the
inference. The result is shown on the Serial Monitor.

We should get the sample (image) from the camera and pre-process it (resizing
to 96×96, converting to grayscale, and flatting it). This will be the input tensor
of our model. The output tensor will be a vector with three values (labels),
showing the probabilities of each one of the classes.

Returning to your project (Tab Image), copy one of the Raw Data Sample:

9,216 features will be copied to the clipboard. This is the input tensor (a
flattened image of 96 × 96 × 1), in this case, bananas. Past this Input tensor
onfeatures[] = {0xb2d77b, 0xb5d687, 0xd8e8c0, 0xeaecba, 0xc2cf67,
...}

Training the model with Edge Impulse Studio 1230

Edge Impulse included the library ESP NN in its SDK, which contains opti-
mized NN (Neural Network) functions for various Espressif chips, including
the ESP32S3 (running at Arduino IDE).

When running the inference, you should get the highest score for “banana.”

Great news! Our device handles an inference, discovering that the input
image is a banana. Also, note that the inference time was around 317 ms,
resulting in a maximum of 3 fps if you tried to classify images from a video.

Now, we should incorporate the camera and classify images in real time.

Go to the Arduino IDE Examples and download from your project the sketch
esp32_camera:

https://github.com/espressif/esp-nn

Image Classification 1231

You should change lines 32 to 75, which define the camera model and pins,
using the data related to our model. Copy and paste the below lines, replacing
the lines 32-75:

#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 10
#define SIOD_GPIO_NUM 40
#define SIOC_GPIO_NUM 39
#define Y9_GPIO_NUM 48
#define Y8_GPIO_NUM 11
#define Y7_GPIO_NUM 12
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 16
#define Y4_GPIO_NUM 18
#define Y3_GPIO_NUM 17
#define Y2_GPIO_NUM 15
#define VSYNC_GPIO_NUM 38
#define HREF_GPIO_NUM 47
#define PCLK_GPIO_NUM 13

Here you can see the resulting code:

Testing the Model (Inference) 1232

The modified sketch can be downloaded from GitHub: xiao_esp32s3_camera.

Note that you can optionally keep the pins as a .h file as we did in
the Setup Lab.

Upload the code to your XIAO ESP32S3 Sense, and you should be OK to
start classifying your fruits and vegetables! You can check the result on Serial
Monitor.

Testing the Model (Inference)

Getting a photo with the camera, the classification result will appear on the
Serial Monitor:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_camera

Image Classification 1233

Other tests:

Testing with a Bigger Model
Now, let’s go to the other side of the model size. Let’s select a MobilinetV296×96 0.35, having as input RGB images.

Even with a bigger model, the accuracy could be better, and the amount of
memory necessary to run the model increases five times, with latency increasing
seven times.

Note that the performance here is estimated with a smaller device,
the ESP-EYE. The actual inference with the ESP32S3 should be better.

Testing with a Bigger Model 1234

To improve our model, we will need to train more images.
Even though our model did not improve accuracy, let’s test whether the XIAO

can handle such a bigger model. We will do a simple inference test with the
Static Buffer sketch.

Let’s redeploy the model. If the EON Compiler is enabled when you generate
the library, the total memory needed for inference should be reduced, but it
does not influence accuracy.

� Attention - The Xiao ESP32S3 with PSRAM enable has enough
memory to run the inference, even in such bigger model. Keep the
EON Compiler NOT ENABLED.

Doing an inference with MobilinetV2 96 × 96 0.35, having as input RGB
images, the latency was 219 ms, which is great for such a bigger model.

For the test, we can train the model again, using the smallest version of
MobileNet V2, with an alpha of 0.05. Interesting that the result in accuracy was
higher.

Image Classification 1235

Note that the estimated latency for an Arduino Portenta (or Nicla),
running with a clock of 480 MHz is 45 ms.

Deploying the model, we got an inference of only 135 ms, remembering that
the XIAO runs with half of the clock used by the Portenta/Nicla (240 MHz):

Running inference on the SenseCraft-Web-Toolkit
One significant limitation of viewing inference on Arduino IDE is that we can
not see what the camera focuses on. A good alternative is the SenseCraft-Web-
Toolkit, a visual model deployment tool provided by SSCMA(Seeed SenseCraft
Model Assistant). This tool allows you to deploy models to various platforms
easily through simple operations. The tool offers a user-friendly interface and
does not require any coding.

Follow the following steps to start the SenseCraft-Web-Toolkit:
1. Open the SenseCraft-Web-Toolkit website.

https://sensecraftma.seeed.cc/
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process

Running inference on the SenseCraft-Web-Toolkit 1236

2. Connect the XIAO to your computer:

• Having the XIAO connected, select it as below:

• Select the device/Port and press [Connect]:

You can try several Computer Vision models previously uploaded
by Seeed Studio. Try them and have fun!

In our case, we will use the blue button at the bottom of the page: [Upload
Custom AI Model].

Image Classification 1237

But first, we must download from Edge Impulse Studio our quantized.tflite
model.

3. Go to your project at Edge Impulse Studio, or clone this one:

• XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN

4. On the Dashboard, download the model (“block output”): Transfer
learning model - TensorFlow Lite (int8 quantized).

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom of the page:
[Upload Custom AI Model]. A window will pop up. Enter the Model
file that you downloaded to your computer from Edge Impulse Studio,
choose a Model Name, and enter with labels (ID: Object):

Note that you should use the labels trained on EI Studio, entering
them in alphabetic order (in our case: apple, banana, potato).

https://studio.edgeimpulse.com/public/228516/live

Running inference on the SenseCraft-Web-Toolkit 1238

After a few seconds (or minutes), the model will be uploaded to your device,
and the camera image will appear in real-time on the Preview Sector:

The Classification result will be at the top of the image. You can also select
the Confidence of your inference cursor Confidence.

Clicking on the top button (Device Log), you can open a Serial Monitor to
follow the inference, the same that we have done with the Arduino IDE:

Image Classification 1239

On Device Log, you will get information as:

• Preprocess time (image capture and Crop): 4 ms,
• Inference time (model latency): 106 ms,
• Postprocess time (display of the image and inclusion of data): 0 ms,
• Output tensor (classes), for example: [[89,0]]; where 0 is Apple (and 1is

banana and 2 is potato).

Here are other screenshots:

Conclusion
The XIAO ESP32S3 Sense is very flexible, inexpensive, and easy to program.
The project proves the potential of TinyML. Memory is not an issue; the device
can handle many post-processing tasks, including communication.

You will find the last version of the codeon the GitHub repository: XIAO-
ESP32S3-Sense.

Resources
• XIAO ESP32S3 Codes
• Dataset
• Edge Impulse Project

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition
https://studio.edgeimpulse.com/public/228516/live

Object Detection

Figure 20.11: DALL·E prompt - Car-
toon styled after 1950s animations,
showing a detailed board with sensors,
particularly a camera, on a table with
patterned cloth. Behind the board, a
computer with a large back showcases
the Arduino IDE. The IDE’s content
hints at LED pin assignments and ma-
chine learning inference for detecting
spoken commands. The Serial Monitor,
in a distinct window, reveals outputs
for the commands ‘yes’ and ‘no’.

Overview

In the last section regarding Computer Vision (CV) and the XIAO ESP32S3,
Image Classification, we learned how to set up and classify images with this
remarkable development board. Continuing our CV journey, we will explore
Object Detection on microcontrollers.

Object Detection versus Image Classification

The main task with Image Classification models is to identify the most probable
object category present on an image, for example, to classify between a cat or a
dog, dominant “objects” in an image:

1241

Overview 1242

But what happens if there is no dominant category in the image?

An image classification model identifies the above image utterly wrong as an
“ashcan,” possibly due to the color tonalities.

The model used in the previous images is MobileNet, which is
trained with a large dataset, ImageNet, running on a Raspberry Pi.

To solve this issue, we need another type of model, where not only multiple
categories (or labels) can be found but also where the objects are located on a
given image.

Object Detection 1243

As we can imagine, such models are much more complicated and bigger, for
example, the MobileNetV2 SSD FPN-Lite 320x320, trained with the COCO
dataset. This pre-trained object detection model is designed to locate up to 10
objects within an image, outputting a bounding box for each object detected.
The below image is the result of such a model running on a Raspberry Pi:

Those models used for object detection (such as the MobileNet SSD or YOLO)
usually have several MB in size, which is OK for use with Raspberry Pi but
unsuitable for use with embedded devices, where the RAM usually has, at
most, a few MB as in the case of the XIAO ESP32S3.

An Innovative Solution for Object Detection: FOMO

Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects), a novel
solution to perform object detection on embedded devices, such as the Nicla
Vision and Portenta (Cortex M7), on Cortex M4F CPUs (Arduino Nano33 and
OpenMV M4 series) as well the Espressif ESP32 devices (ESP-CAM, ESP-EYE
and XIAO ESP32S3 Sense).

In this Hands-On project, we will explore Object Detection using FOMO.

To understand more about FOMO, you can go into the ofÏcial FOMO
announcement by Edge Impulse, where Louis Moreau and Mat
Kelcey explain in detail how it works.

The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let’s assume
we are in an industrial or rural facility and must sort and count oranges (fruits)
and particular frogs (bugs).

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects

The Object Detection Project Goal 1244

In other words, we should perform a multi-label classification, where each
image can have three classes:

• Background (No objects)
• Fruit
• Bug

Here are some not labeled image samples that we should use to detect the
objects (fruits and bugs):

We are interested in which object is in the image, its location (centroid), and
how many we can find on it. The object’s size is not detected with FOMO, as
with MobileNet SSD or YOLO, where the Bounding Box is one of the model
outputs.

Object Detection 1245

We will develop the project using the XIAO ESP32S3 for image capture and
model inference. The ML project will be developed using the Edge Impulse
Studio. But before starting the object detection project in the Studio, let’s create
a raw dataset (not labeled) with images that contain the objects to be detected.

Data Collection
You can capture images using the XIAO, your phone, or other devices. Here,
we will use the XIAO with code from the Arduino IDE ESP32 library.

Collecting Dataset with the XIAO ESP32S3
Open the Arduino IDE and select the XIAO_ESP32S3 board (and the port where
it is connected). On File > Examples > ESP32 > Camera, select CameraWebServer.

On the BOARDS MANAGER panel, confirm that you have installed the latest
“stable” package.

� Attention

Alpha versions (for example, 3.x-alpha) do not work correctly with
the XIAO and Edge Impulse. Use the last stable version (for example,
2.0.11) instead.

You also should comment on all cameras’ models, except the XIAO model
pins:
#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM
And on Tools, enable the PSRAM. Enter your wifi credentials and upload

the code to the device:

Data Collection 1246

If the code is executed correctly, you should see the address on the Serial
Monitor:

Copy the address on your browser and wait for the page to be uploaded.
Select the camera resolution (for example, QVGA) and select [START STREAM].
Wait for a few seconds/minutes, depending on your connection. You can save
an image on your computer download area using the [Save] button.

Edge impulse suggests that the objects should be similar in size and not
overlapping for better performance. This is OK in an industrial facility, where
the camera should be fixed, keeping the same distance from the objects to be
detected. Despite that, we will also try using mixed sizes and positions to see
the result.

We do not need to create separate folders for our images because
each contains multiple labels.

We suggest using around 50 images to mix the objects and vary the number
of each appearing on the scene. Try to capture different angles, backgrounds,
and light conditions.

The stored images use a QVGA frame size of 320×240 and RGB565
(color pixel format).

After capturing your dataset, [Stop Stream] and move your images to a
folder.

Object Detection 1247

Edge Impulse Studio
Setup the project
Go to Edge Impulse Studio, enter your credentials at Login (or create an ac-
count), and start a new project.

Here, you can clone the project developed for this hands-on: XIAO-
ESP32S3-Sense-Object_Detection

On your Project Dashboard, go down and on Project info and select Bound-
ing boxes (object detection) and Espressif ESP-EYE (most similar to our board)
as your Target Device:

https://www.edgeimpulse.com/
https://studio.edgeimpulse.com/public/315759/latest
https://studio.edgeimpulse.com/public/315759/latest

Edge Impulse Studio 1248

Uploading the unlabeled data
On Studio, go to the Data acquisition tab, and on the UPLOAD DATA section,
upload files captured as a folder from your computer.

You can leave for the Studio to split your data automatically between
Train and Test or do it manually. We will upload all of them as
training.

All the not-labeled images (47) were uploaded but must be labeled appro-
priately before being used as a project dataset. The Studio has a tool for that
purpose, which you can find in the link Labeling queue (47).

There are two ways you can use to perform AI-assisted labeling on the Edge
Impulse Studio (free version):

• Using yolov5
• Tracking objects between frames

Object Detection 1249

Edge Impulse launched an auto-labeling feature for Enterprise cus-
tomers, easing labeling tasks in object detection projects.

Ordinary objects can quickly be identified and labeled using an existing
library of pre-trained object detection models from YOLOv5 (trained with the
COCO dataset). But since, in our case, the objects are not part of COCO datasets,
we should select the option of tracking objects. With this option, once you draw
bounding boxes and label the images in one frame, the objects will be tracked
automatically from frame to frame, partially labeling the new ones (not all are
correctly labeled).

You can use the EI uploader to import your data if you already have
a labeled dataset containing bounding boxes.

Labeling the Dataset
Starting with the first image of your unlabeled data, use your mouse to drag a
box around an object to add a label. Then click Save labels to advance to the
next item.

Continue with this process until the queue is empty. At the end, all images
should have the objects labeled as those samples below:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-uploader#bounding-boxes

Edge Impulse Studio 1250

Next, review the labeled samples on the Data acquisition tab. If one of the
labels is wrong, you can edit it using the three dots menu after the sample name:

You will be guided to replace the wrong label and correct the dataset.

Balancing the dataset and split Train/Test

After labeling all data, it was realized that the class fruit had many more samples
than the bug. So, 11 new and additional bug images were collected (ending

Object Detection 1251

with 58 images). After labeling them, it is time to select some images and move
them to the test dataset. You can do it using the three-dot menu after the image
name. I selected six images, representing 13% of the total dataset.

The Impulse Design
In this phase, you should define how to:

• Pre-processing consists of resizing the individual images from 320 ×240 to 96 × 96 and squashing them (squared form, without cropping).
Afterward, the images are converted from RGB to Grayscale.

• Design a Model, in this case, “Object Detection.”

The Impulse Design 1252

Preprocessing all dataset
In this section, select Color depth as Grayscale, suitable for use with FOMO
models and Save parameters.

The Studio moves automatically to the next section, Generate features, where
all samples will be pre-processed, resulting in a dataset with individual 96×96×1 images or 9,216 features.

The feature explorer shows that all samples evidence a good separation after
the feature generation.

Some samples seem to be in the wrong space, but clicking on them
confirms the correct labeling.

Object Detection 1253

Model Design, Training, and Test

We will use FOMO, an object detection model based on MobileNetV2 (alpha
0.35) designed to coarsely segment an image into a grid of background vs
objects of interest (here, boxes and wheels).

FOMO is an innovative machine learning model for object detection, which
can use up to 30 times less energy and memory than traditional models like
Mobilenet SSD and YOLOv5. FOMO can operate on microcontrollers with less
than 200 KB of RAM. The main reason this is possible is that while other models
calculate the object’s size by drawing a square around it (bounding box), FOMO
ignores the size of the image, providing only the information about where the
object is located in the image through its centroid coordinates.

How FOMO works?

FOMO takes the image in grayscale and divides it into blocks of pixels using a
factor of 8. For the input of 96×96, the grid would be 12×12 (96/8 = 12). Next,
FOMO will run a classifier through each pixel block to calculate the probability
that there is a box or a wheel in each of them and, subsequently, determine the
regions that have the highest probability of containing the object (If a pixel block
has no objects, it will be classified as background). From the overlap of the final
region, the FOMO provides the coordinates (related to the image dimensions)
of the centroid of this region.

For training, we should select a pre-trained model. Let’s use the FOMO
(Faster Objects, More Objects) MobileNetV2 0.35. This model uses around
250 KB of RAM and 80 KB of ROM (Flash), which suits well with our board.

Model Design, Training, and Test 1254

Regarding the training hyper-parameters, the model will be trained with:
• Epochs: 60
• Batch size: 32
• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset) will be
spared. For the remaining 80% (train_dataset), we will apply Data Augmentation,
which will randomly flip, change the size and brightness of the image, and crop
them, artificially increasing the number of samples on the dataset for training.

As a result, the model ends with an overall F1 score of 85%, similar to the
result when using the test data (83%).

Note that FOMO automatically added a 3rd label background to
the two previously defined (box and wheel).

Object Detection 1255

In object detection tasks, accuracy is generally not the primary eval-
uation metric. Object detection involves classifying objects and
providing bounding boxes around them, making it a more complex
problem than simple classification. The issue is that we do not have
the bounding box, only the centroids. In short, using accuracy as a
metric could be misleading and may not provide a complete under-
standing of how well the model is performing. Because of that, we
will use the F1 score.

Test model with “Live Classification”
Once our model is trained, we can test it using the Live Classification tool. On
the correspondent section, click on Connect a development board icon (a small
MCU) and scan the QR code with your phone.

Once connected, you can use the smartphone to capture actual images to be
tested by the trained model on Edge Impulse Studio.

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/

Deploying the Model (Arduino IDE) 1256

One thing to be noted is that the model can produce false positives and
negatives. This can be minimized by defining a proper Confidence Threshold
(use the Three dots menu for the setup). Try with 0.8 or more.

Deploying the Model (Arduino IDE)
Select the Arduino Library and Quantized (int8) model, enable the EON Com-
piler on the Deploy Tab, and press [Build].

Open your Arduino IDE, and under Sketch, go to Include Library and add.ZIP
Library. Select the file you download from Edge Impulse Studio, and that’s it!

Under the Examples tab on Arduino IDE, you should find a sketch code
(esp32 > esp32_camera) under your project name.

Object Detection 1257

You should change lines 32 to 75, which define the camera model and pins,
using the data related to our model. Copy and paste the below lines, replacing
the lines 32-75:

#define PWDN_GPIO_NUM -1
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 10
#define SIOD_GPIO_NUM 40
#define SIOC_GPIO_NUM 39
#define Y9_GPIO_NUM 48
#define Y8_GPIO_NUM 11
#define Y7_GPIO_NUM 12
#define Y6_GPIO_NUM 14
#define Y5_GPIO_NUM 16
#define Y4_GPIO_NUM 18
#define Y3_GPIO_NUM 17
#define Y2_GPIO_NUM 15
#define VSYNC_GPIO_NUM 38
#define HREF_GPIO_NUM 47
#define PCLK_GPIO_NUM 13

Here you can see the resulting code:

Upload the code to your XIAO ESP32S3 Sense, and you should be OK to start
detecting fruits and bugs. You can check the result on Serial Monitor.

Deploying the Model (Arduino IDE) 1258

Background

Fruits

Bugs

Object Detection 1259

Note that the model latency is 143 ms, and the frame rate per second is
around 7 fps (similar to what we got with the Image Classification project).
This happens because FOMO is cleverly built over a CNN model, not with an
object detection model like the SSD MobileNet. For example, when running a
MobileNetV2 SSD FPN-Lite 320×320 model on a Raspberry Pi 4, the latency
is around five times higher (around 1.5 fps).

Deploying the Model (SenseCraft-Web-Toolkit)
As discussed in the Image Classification chapter, verifying inference with Image
models on Arduino IDE is very challenging because we can not see what the
camera focuses on. Again, let’s use the SenseCraft-Web Toolkit.

Follow the following steps to start the SenseCraft-Web-Toolkit:
1. Open the SenseCraft-Web-Toolkit website.
2. Connect the XIAO to your computer:

• Having the XIAO connected, select it as below:

• Select the device/Port and press [Connect]:

You can try several Computer Vision models previously uploaded
by Seeed Studio. Try them and have fun!

https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process

Deploying the Model (SenseCraft-Web-Toolkit) 1260

In our case, we will use the blue button at the bottom of the page: [Upload
Custom AI Model].

But first, we must download from Edge Impulse Studio our quantized .tflite
model.

3. Go to your project at Edge Impulse Studio, or clone this one:

• XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN

4. On Dashboard, download the model (“block output”): Object Detection
model - TensorFlow Lite (int8 quantized)

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom of the page:
[Upload Custom AI Model]. A window will pop up. Enter the Model
file that you downloaded to your computer from Edge Impulse Studio,
choose a Model Name, and enter with labels (ID: Object):

Note that you should use the labels trained on EI Studio and enter
them in alphabetic order (in our case, background, bug, fruit).

https://studio.edgeimpulse.com/public/228516/live

Object Detection 1261

After a few seconds (or minutes), the model will be uploaded to your device,
and the camera image will appear in real-time on the Preview Sector:

The detected objects will be marked (the centroid). You can select the Con-
fidence of your inference cursor Confidence and IoU, which is used to assess
the accuracy of predicted bounding boxes compared to truth bounding boxes.

Clicking on the top button (Device Log), you can open a Serial Monitor to
follow the inference, as we did with the Arduino IDE.

On Device Log, you will get information as:
• Preprocess time (image capture and Crop): 3 ms,
• Inference time (model latency): 115 ms,
• Postprocess time (display of the image and marking objects): 1 ms.
• Output tensor (boxes), for example, one of the boxes: [[30,150, 20, 20,97, 2]];

where 30,150, 20, 20 are the coordinates of the box (around the centroid);
97 is the inference result, and 2 is the class (in this case 2: fruit).

Note that in the above example, we got 5 boxes because none of the
fruits got 3 centroids. One solution will be post-processing, where
we can aggregate close centroids in one.

Here are other screenshots:

Conclusion 1262

Conclusion
FOMO is a significant leap in the image processing space, as Louis Moreau and
Mat Kelcey put it during its launch in 2022:

FOMO is a ground-breaking algorithm that brings real-time object
detection, tracking, and counting to microcontrollers for the first
time.

Multiple possibilities exist for exploring object detection (and, more precisely,
counting them) on embedded devices.

Resources
• Edge Impulse Project

https://studio.edgeimpulse.com/public/315759/latest

Keyword Spotting (KWS)

Figure 20.12: Image by Marcelo Rovai

Overview

Keyword Spotting (KWS) is integral to many voice recognition systems, en-
abling devices to respond to specific words or phrases. While this technology
underpins popular devices like Google Assistant or Amazon Alexa, it’s equally
applicable and achievable on smaller, low-power devices. This lab will guide
you through implementing a KWS system using TinyML on the XIAO ESP32S3
microcontroller board.

The XIAO ESP32S3, equipped with Espressif’s ESP32-S3 chip, is a compact
and potent microcontroller offering a dual-core Xtensa LX7 processor, inte-
grated Wi-Fi, and Bluetooth. Its balance of computational power, energy ef-
ficiency, and versatile connectivity make it a fantastic platform for TinyML
applications. Also, with its expansion board, we will have access to the “sense”
part of the device, which has a 1600 × 1200 OV2640 camera, an SD card slot,
and a digital microphone. The integrated microphone and the SD card will be
essential in this project.

We will use the Edge Impulse Studio, a powerful, user-friendly platform that
simplifies creating and deploying machine learning models onto edge devices.

1263

https://www.edgeimpulse.com/

Overview 1264

We’ll train a KWS model step-by-step, optimizing and deploying it onto the
XIAO ESP32S3 Sense.

Our model will be designed to recognize keywords that can trigger device
wake-up or specific actions (in the case of “YES”), bringing your projects to life
with voice-activated commands.

Leveraging our experience with TensorFlow Lite for Microcontrollers (the
engine “under the hood” on the EI Studio), we’ll create a KWS system capable
of real-time machine learning on the device.

As we progress through the lab, we’ll break down each process stage –
from data collection and preparation to model training and deployment – to
provide a comprehensive understanding of implementing a KWS system on a
microcontroller.

How does a voice assistant work?

Keyword Spotting (KWS) is critical to many voice assistants, enabling devices
to respond to specific words or phrases. To start, it is essential to realize that
Voice Assistants on the market, like Google Home or Amazon Echo-Dot, only
react to humans when they are “waked up” by particular keywords such as “
Hey Google” on the first one and “Alexa” on the second.

In other words, recognizing voice commands is based on a multi-stage model
or Cascade Detection.

Keyword Spotting (KWS) 1265

Stage 1: A smaller microprocessor inside the Echo Dot or Google Home
continuously listens to the sound, waiting for the keyword to be spotted. For
such detection, a TinyML model at the edge is used (KWS application).

Stage 2: Only when triggered by the KWS application on Stage 1 is the data
sent to the cloud and processed on a larger model.

The video below shows an example where I emulate a Google Assistant on a
Raspberry Pi (Stage 2), having an Arduino Nano 33 BLE as the tinyML device
(Stage 1).

If you want to go deeper on the full project, please see my tutorial:
Building an Intelligent Voice Assistant From Scratch.

In this lab, we will focus on Stage 1 (KWS or Keyword Spotting), where we
will use the XIAO ESP2S3 Sense, which has a digital microphone for spotting
the keyword.

The KWS Project
The below diagram will give an idea of how the final KWS application should
work (during inference):

Our KWS application will recognize four classes of sound:
• YES (Keyword 1)

https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3

Dataset 1266

• NO (Keyword 2)
• NOISE (no keywords spoken, only background noise is present)
• UNKNOWN (a mix of different words than YES and NO)

Optionally for real-world projects, it is always advised to include
different words than keywords, such as “Noise” (or Background)
and “Unknown.”

The Machine Learning workflow
The main component of the KWS application is its model. So, we must train such
a model with our specific keywords, noise, and other words (the “unknown”):

Dataset
The critical component of Machine Learning Workflow is the dataset. Once
we have decided on specific keywords (YES and NO), we can take advantage
of the dataset developed by Pete Warden, “Speech Commands: A Dataset for
Limited-Vocabulary Speech Recognition.” This dataset has 35 keywords (with
+1,000 samples each), such as yes, no, stop, and go. In other words, we can get
1,500 samples of yes and no.

You can download a small portion of the dataset from Edge Studio (Keyword
spotting pre-built dataset), which includes samples from the four classes we
will use in this project: yes, no, noise, and background. For this, follow the
steps below:

• Download the keywords dataset.
• Unzip the file in a location of your choice.

Although we have a lot of data from Pete’s dataset, collecting some words
spoken by us is advised. When working with accelerometers, creating a dataset
with data captured by the same type of sensor was essential. In the case of
sound, it is different because what we will classify is, in reality, audio data.

The key difference between sound and audio is their form of energy.
Sound is mechanical wave energy (longitudinal sound waves) that
propagate through a medium causing variations in pressure within
the medium. Audio is made of electrical energy (analog or digital
signals) that represent sound electrically.

https://arxiv.org/pdf/1804.03209.pdf
https://arxiv.org/pdf/1804.03209.pdf
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://docs.edgeimpulse.com/docs/pre-built-datasets/keyword-spotting
https://cdn.edgeimpulse.com/datasets/keywords2.zip

Keyword Spotting (KWS) 1267

The sound waves should be converted to audio data when we speak a key-
word. The conversion should be done by sampling the signal generated by the
microphone in 16 kHz with a 16-bit depth.

So, any device that can generate audio data with this basic specification (16
kHz/16 bits) will work fine. As a device, we can use the proper XIAO ESP32S3
Sense, a computer, or even your mobile phone.

Capturing online Audio Data with Edge Impulse and a smartphone
In the lab Motion Classification and Anomaly Detection, we connect our

device directly to Edge Impulse Studio for data capturing (having a sampling
frequency of 50 Hz to 100 Hz). For such low frequency, we could use the EI CLI
function Data Forwarder, but according to Jan Jongboom, Edge Impulse CTO,
audio (16 kHz) goes too fast for the data forwarder to be captured. So, once we have
the digital data captured by the microphone, we can turn it into a WAV file to be
sent to the Studio via Data Uploader (same as we will do with Pete’s dataset).

If we want to collect audio data directly on the Studio, we can use
any smartphone connected online with it. We will not explore this
option here, but you can easily follow EI documentation.

Capturing (ofÒine) Audio Data with the XIAO ESP32S3 Sense
The built-in microphone is the MSM261D3526H1CPM, a PDM digital output
MEMS microphone with Multi-modes. Internally, it is connected to the ESP32S3
via an I2S bus using pins IO41 (Clock) and IO41 (Data).

What is I2S?
I2S, or Inter-IC Sound, is a standard protocol for transmitting digital audio

from one device to another. It was initially developed by Philips Semicon-
ductor (now NXP Semiconductors). It is commonly used in audio devices
such as digital signal processors, digital audio processors, and, more recently,
microcontrollers with digital audio capabilities (our case here).

https://docs.edgeimpulse.com/docs/development-platforms/using-your-mobile-phone
https://files.seeedstudio.com/wiki/XIAO-BLE/mic-MSM261D3526H1CPM-ENG.pdf

Dataset 1268

The I2S protocol consists of at least three lines:

1. Bit (or Serial) clock line (BCLK or CLK): This line toggles to indicate the
start of a new bit of data (pin IO42).

2. Word select line (WS): This line toggles to indicate the start of a new word
(left channel or right channel). The Word select clock (WS) frequency defines
the sample rate. In our case, L/R on the microphone is set to ground, meaning
that we will use only the left channel (mono).

3. Data line (SD): This line carries the audio data (pin IO41)
In an I2S data stream, the data is sent as a sequence of frames, each containing

a left-channel word and a right-channel word. This makes I2S particularly suited
for transmitting stereo audio data. However, it can also be used for mono or
multichannel audio with additional data lines.

Let’s start understanding how to capture raw data using the microphone. Go
to the GitHub projectand download the sketch: XIAOEsp2s3_Mic_Test:

/*
XIAO ESP32S3 Simple Mic Test

*/

#include <I2S.h>

void setup() {
Serial.begin(115200);
while (!Serial) {
}

// start I2S at 16 kHz with 16-bits per sample
I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, 16000, 16)) {
Serial.println("Failed to initialize I2S!");
while (1); // do nothing

}
}

void loop() {
// read a sample
int sample = I2S.read();

if (sample && sample != -1 && sample != 1) {
Serial.println(sample);

}
}

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test

Keyword Spotting (KWS) 1269

This code is a simple microphone test for the XIAO ESP32S3 using the I2S
(Inter-IC Sound) interface. It sets up the I2S interface to capture audio data at
a sample rate of 16 kHz with 16 bits per sample and then continuously reads
samples from the microphone and prints them to the serial monitor.

Let’s dig into the code’s main parts:
• Include the I2S library: This library provides functions to configure and

use the I2S interface, which is a standard for connecting digital audio
devices.

• I2S.setAllPins(–1, 42, 41, –1, –1): This sets up the I2S pins. The parameters
are (–1, 42, 41, –1, –1), where the second parameter (42) is the PIN for the
I2S clock (CLK), and the third parameter (41) is the PIN for the I2S data
(DATA) line. The other parameters are set to –1, meaning those pins are
not used.

• I2S.begin(PDM_MONO_MODE, 16000, 16): This initializes the I2S in-
terface in Pulse Density Modulation (PDM) mono mode, with a sample
rate of 16 kHz and 16 bits per sample. If the initialization fails, an error
message is printed, and the program halts.

• int sample = I2S.read(): This reads an audio sample from the I2S interface.

If the sample is valid, it is printed on the Serial Monitor and Plotter.
Below is a test “whispering” in two different tones.

Save recorded sound samples (dataset) as .wav audio files to a
microSD card
Let’s use the onboard SD Card reader to save .wav audio files; we must habilitate
the XIAO PSRAM first.

ESP32-S3 has only a few hundred kilobytes of internal RAM on the
MCU chip. It can be insufÏcient for some purposes so that ESP32-
S3 can use up to 16 MB of external PSRAM (Psuedostatic RAM)
connected in parallel with the SPI flash chip. The external memory
is incorporated in the memory map and, with certain restrictions,
is usable in the same way as internal data RAM.

https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/api/i2s.html

Dataset 1270

For a start, Insert the SD Card on the XIAO as shown in the photo below (the
SD Card should be formatted to FAT32).

Turn the PSRAM function of the ESP-32 chip on (Arduino IDE): Tools>PSRAM:
“OPI PSRAM”>OPI PSRAM

Keyword Spotting (KWS) 1271

• Download the sketch Wav_Record_dataset, which you can find on the
project’s GitHub.

This code records audio using the I2S interface of the Seeed XIAO ESP32S3
Sense board, saves the recording as a.wav file on an SD card, and allows for
control of the recording process through commands sent from the serial monitor.
The name of the audio file is customizable (it should be the class labels to be
used with the training), and multiple recordings can be made, each saved in
a new file. The code also includes functionality to increase the volume of the
recordings.

Let’s break down the most essential parts of it:

#include <I2S.h>
#include "FS.h"
#include "SD.h"
#include "SPI.h"

Those are the necessary libraries for the program. I2S.h allows for audio
input, FS.h provides file system handling capabilities, SD.h enables the program
to interact with an SD card, and SPI.h handles the SPI communication with the
SD card.

#define RECORD_TIME 10
#define SAMPLE_RATE 16000U
#define SAMPLE_BITS 16
#define WAV_HEADER_SIZE 44
#define VOLUME_GAIN 2

Here, various constants are defined for the program.
• RECORD_TIME specifies the length of the audio recording in seconds.
• SAMPLE_RATE and SAMPLE_BITS define the audio quality of the

recording.
• WAV_HEADER_SIZE specifies the size of the .wav file header.
• VOLUME_GAIN is used to increase the volume of the recording.

int fileNumber = 1;
String baseFileName;
bool isRecording = false;

These variables keep track of the current file number (to create unique file
names), the base file name, and whether the system is currently recording.

void setup() {
Serial.begin(115200);
while (!Serial);

I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, SAMPLE_RATE, SAMPLE_BITS)) {
Serial.println("Failed to initialize I2S!");

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Wav_Record_dataset

Dataset 1272

while (1);
}

if(!SD.begin(21)){
Serial.println("Failed to mount SD Card!");
while (1);

}
Serial.printf("Enter with the label name\n");

}

The setup function initializes the serial communication, I2S interface for
audio input, and SD card interface. If the I2S did not initialize or the SD card
fails to mount, it will print an error message and halt execution.

void loop() {
if (Serial.available() > 0) {
String command = Serial.readStringUntil('\n');
command.trim();
if (command == "rec") {

isRecording = true;
} else {

baseFileName = command;
fileNumber = 1; //reset file number each time a new

basefile name is set
Serial.printf("Send rec for starting recording label \n");

}
}
if (isRecording && baseFileName != "") {
String fileName = "/" + baseFileName + "."

+ String(fileNumber) + ".wav";
fileNumber++;
record_wav(fileName);
delay(1000); // delay to avoid recording multiple files

at once
isRecording = false;

}
}

In the main loop, the program waits for a command from the serial monitor.
If the command is rec, the program starts recording. Otherwise, the command
is assumed to be the base name for the .wav files. If it’s currently recording and
a base file name is set, it records the audio and saves it as a.wav file. The file
names are generated by appending the file number to the base file name.

void record_wav(String fileName)
{
...

File file = SD.open(fileName.c_str(), FILE_WRITE);

Keyword Spotting (KWS) 1273

...
rec_buffer = (uint8_t *)ps_malloc(record_size);
...

esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,
rec_buffer,
record_size,
&sample_size,
portMAX_DELAY);

...
}

This function records audio and saves it as a.wav file with the given name. It
starts by initializing the sample_size and record_size variables. record_size is
calculated based on the sample rate, size, and desired recording time. Let’s dig
into the essential sections;

File file = SD.open(fileName.c_str(), FILE_WRITE);
// Write the header to the WAV file
uint8_t wav_header[WAV_HEADER_SIZE];
generate_wav_header(wav_header, record_size, SAMPLE_RATE);
file.write(wav_header, WAV_HEADER_SIZE);

This section of the code opens the file on the SD card for writing and then
generates the .wav file header using the generate_wav_header function. It then
writes the header to the file.

// PSRAM malloc for recording
rec_buffer = (uint8_t *)ps_malloc(record_size);
if (rec_buffer == NULL) {
Serial.printf("malloc failed!\n");
while(1) ;

}
Serial.printf("Buffer: %d bytes\n", ESP.getPsramSize()

- ESP.getFreePsram());

The ps_malloc function allocates memory in the PSRAM for the recording.
If the allocation fails (i.e., rec_buffer is NULL), it prints an error message and
halts execution.

// Start recording
esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,

rec_buffer,
record_size,
&sample_size,
portMAX_DELAY);

if (sample_size == 0) {
Serial.printf("Record Failed!\n");

} else {
Serial.printf("Record %d bytes\n", sample_size);

}

Dataset 1274

The i2s_read function reads audio data from the microphone into rec_buffer.
It prints an error message if no data is read (sample_size is 0).

// Increase volume
for (uint32_t i = 0; i < sample_size; i += SAMPLE_BITS/8) {
(*(uint16_t *)(rec_buffer+i)) <<= VOLUME_GAIN;

}

This section of the code increases the recording volume by shifting the sample
values by VOLUME_GAIN.

// Write data to the WAV file
Serial.printf("Writing to the file ...\n");
if (file.write(rec_buffer, record_size) != record_size)
Serial.printf("Write file Failed!\n");

free(rec_buffer);
file.close();
Serial.printf("Recording complete: \n");
Serial.printf("Send rec for a new sample or enter

a new label\n\n");

Finally, the audio data is written to the .wav file. If the write operation fails,
it prints an error message. After writing, the memory allocated for rec_buffer
is freed, and the file is closed. The function finishes by printing a completion
message and prompting the user to send a new command.

void generate_wav_header(uint8_t *wav_header,
uint32_t wav_size,
uint32_t sample_rate)

{
...
memcpy(wav_header, set_wav_header, sizeof(set_wav_header));

}

The generate_wav_header function creates a.wav file header based on the
parameters (wav_size and sample_rate). It generates an array of bytes according
to the .wav file format, which includes fields for the file size, audio format,
number of channels, sample rate, byte rate, block alignment, bits per sample,
and data size. The generated header is then copied into the wav_header array
passed to the function.

Now, upload the code to the XIAO and get samples from the keywords (yes
and no). You can also capture noise and other words.

The Serial monitor will prompt you to receive the label to be recorded.

Keyword Spotting (KWS) 1275

Send the label (for example, yes). The program will wait for another com-
mand: rec

And the program will start recording new samples every time a command
rec is sent. The files will be saved as yes.1.wav, yes.2.wav, yes.3.wav, etc., until a
new label (for example, no) is sent. In this case, you should send the command
rec for each new sample, which will be saved as no.1.wav, no.2.wav, no.3.wav,
etc.

Ultimately, we will get the saved files on the SD card.

Training model with Edge Impulse Studio 1276

The files are ready to be uploaded to Edge Impulse Studio

Capturing (ofÒine) Audio Data Apps
Alternatively, you can also use your PC or smartphone to capture audio data
with a sampling frequency 16 kHz and a bit depth of 16 Bits. A good app for
that is Voice Recorder Pro (IOS). You should save your records as .wav files and
send them to your computer.

Note that any app, such as Audacity, can be used for audio recording
or even your computer.

Training model with Edge Impulse Studio

Uploading the Data
When the raw dataset is defined and collected (Pete’s dataset + recorded key-
words), we should initiate a new project at Edge Impulse Studio:

https://www.bejbej.ca/app/voicerecordpro
https://www.bejbej.ca/app/voicerecordpro
https://www.audacityteam.org/
https://www.audacityteam.org/

Keyword Spotting (KWS) 1277

Once the project is created, select the Upload Existing Data tool in the Data
Acquisition section. Choose the files to be uploaded:

And upload them to the Studio (You can automatically split data in train/test).
Repeat to all classes and all raw data.

The samples will now appear in the Data acquisition section.

Training model with Edge Impulse Studio 1278

All data on Pete’s dataset have a 1 s length, but the samples recorded in the
previous section have 10 s and must be split into 1s samples to be compatible.

Click on three dots after the sample name and select Split sample.

Once inside the tool, split the data into 1-second records. If necessary, add or
remove segments:

This procedure should be repeated for all samples.
Note: For longer audio files (minutes), first, split into 10-second
segments and after that, use the tool again to get the final 1-second
splits.

Keyword Spotting (KWS) 1279

Suppose we do not split data automatically in train/test during upload. In
that case, we can do it manually (using the three dots menu, moving samples
individually) or using Perform Train / Test Split on Dashboard – Danger Zone.

We can optionally check all datasets using the tab Data Explorer.

Creating Impulse (Pre-Process / Model definition)
An impulse takes raw data, uses signal processing to extract features, and then uses a
learning block to classify new data.

First, we will take the data points with a 1-second window, augmenting the
data, sliding that window each 500 ms. Note that the option zero-pad data is
set. It is essential to fill with zeros samples smaller than 1 second (in some cases,
I reduced the 1000 ms window on the split tool to avoid noises and spikes).

Each 1-second audio sample should be pre-processed and converted to an
image (for example, 13×49×1). We will use MFCC, which extracts features
from audio signals using Mel Frequency Cepstral CoefÏcients, which are great
for the human voice.

Next, we select KERAS for classification and build our model from scratch
by doing Image Classification using Convolution Neural Network).

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

Training model with Edge Impulse Studio 1280

Pre-Processing (MFCC)
The next step is to create the images to be trained in the next phase:

We can keep the default parameter values or take advantage of the DSP
Autotuneparameters option, which we will do.

The result will not spend much memory to pre-process data (only 16KB). Still,
the estimated processing time is high, 675 ms for an Espressif ESP-EYE (the
closest reference available), with a 240 kHz clock (same as our device), but with
a smaller CPU (XTensa LX6, versus the LX7 on the ESP32S). The real inference
time should be smaller.

Suppose we need to reduce the inference time later. In that case, we should
return to the pre-processing stage and, for example, reduce the FFT length to
256, change the Number of coefÏcients, or another parameter.

For now, let’s keep the parameters defined by the Autotuning tool. Save
parameters and generate the features.

If you want to go further with converting temporal serial data into
images using FFT, Spectrogram, etc., you can play with this CoLab:
Audio Raw Data Analysis.

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_24/IESTI01_Audio_Raw_Data_Analisys.ipynb

Keyword Spotting (KWS) 1281

Model Design and Training

We will use a Convolution Neural Network (CNN) model. The basic architecture
is defined with two blocks of Conv1D + MaxPooling (with 8 and 16 neurons,
respectively) and a 0.25 Dropout. And on the last layer, after Flattening four
neurons, one for each class:

As hyper-parameters, we will have a Learning Rate of 0.005 and a model that
will be trained by 100 epochs. We will also include data augmentation, as some
noise. The result seems OK:

If you want to understand what is happening “under the hood,” you can
download the dataset and run a Jupyter Notebook playing with the code. For
example, you can analyze the accuracy by each epoch:

Testing 1282

This CoLab Notebook can explain how you can go further: KWS Classifier
Project - Looking “Under the hood Training/xiao_esp32s3_keyword_spotting_-
project_nn_classifier.ipynb).”

Testing
Testing the model with the data put apart before training (Test Data), we got an
accuracy of approximately 87%.

Inspecting the F1 score, we can see that for YES, we got 0.95, an excellent
result once we used this keyword to “trigger” our postprocessing stage (turn on

https://colab.research.google.com/github/Mjrovai/XIAO-ESP32S3-Sense/blob/main/KWS
https://colab.research.google.com/github/Mjrovai/XIAO-ESP32S3-Sense/blob/main/KWS

Keyword Spotting (KWS) 1283

the built-in LED). Even for NO, we got 0.90. The worst result is for unknown,
what is OK.

We can proceed with the project, but it is possible to perform Live Classifi-
cation using a smartphone before deployment on our device. Go to the Live
Classification section and click on Connect a Development board:

Point your phone to the barcode and select the link.

Your phone will be connected to the Studio. Select the option Classification
on the app, and when it is running, start testing your keywords, confirming
that the model is working with live and real data:

Deploy and Inference 1284

Deploy and Inference
The Studio will package all the needed libraries, preprocessing functions, and
trained models, downloading them to your computer. You should select the
option Arduino Library, and at the bottom, choose Quantized (Int8) and press
the button Build.

Now it is time for a real test. We will make inferences wholly disconnected
from the Studio. Let’s change one of the ESP32 code examples created when
you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab look for your project, and
select esp32/esp32_microphone:

Keyword Spotting (KWS) 1285

This code was created for the ESP-EYE built-in microphone, which should
be adapted for our device.

Start changing the libraries to handle the I2S bus:

By:

#include <I2S.h>
#define SAMPLE_RATE 16000U
#define SAMPLE_BITS 16

Initialize the IS2 microphone at setup(), including the lines:

void setup()
{
...

I2S.setAllPins(-1, 42, 41, -1, -1);
if (!I2S.begin(PDM_MONO_MODE, SAMPLE_RATE, SAMPLE_BITS)) {

Serial.println("Failed to initialize I2S!");
while (1) ;

...
}

On the static void capture_samples(void* arg) function, replace the line 153
that reads data from I2S mic:

By:

/* read data at once from i2s */
esp_i2s::i2s_read(esp_i2s::I2S_NUM_0,

(void*)sampleBuffer,
i2s_bytes_to_read,
&bytes_read, 100);

On function static bool microphone_inference_start(uint32_t n_samples), we
should comment or delete lines 198 to 200, where the microphone initialization
function is called. This is unnecessary because the I2S microphone was already
initialized during the setup().

Deploy and Inference 1286

Finally, on static void microphone_inference_end(void) function, replace line
243:

By:

static void microphone_inference_end(void)
{

free(sampleBuffer);
ei_free(inference.buffer);

}

You can find the complete code on the project’s GitHub. Upload the sketch
to your board and test some real inferences:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone

Keyword Spotting (KWS) 1287

Postprocessing
Now that we know the model is working by detecting our keywords, let’s
modify the code to see the internal LED going on every time a YES is detected.

You should initialize the LED:

#define LED_BUILT_IN 21
...
void setup()
{
...
pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output
digitalWrite(LED_BUILT_IN, HIGH); //Turn off

...
}

And change the // print the predictions portion of the previous code (on
loop():

int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value

// print the predictions
ei_printf("Predictions ");
ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",

result.timing.dsp, result.timing.classification,
result.timing.anomaly);

ei_printf(": \n");
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {

ei_printf(" %s: ", result.classification[ix].label);
ei_printf_float(result.classification[ix].value);
ei_printf("\n");

if (result.classification[ix].value > pred_value){
pred_index = ix;
pred_value = result.classification[ix].value;

}
}

// show the inference result on LED
if (pred_index == 3){

digitalWrite(LED_BUILT_IN, LOW); //Turn on
}
else{

digitalWrite(LED_BUILT_IN, HIGH); //Turn off
}

You can find the complete code on the project’s GitHub. Upload the sketch
to your board and test some real inferences:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone_led

Conclusion 1288

The idea is that the LED will be ON whenever the keyword YES is detected.
In the same way, instead of turning on an LED, this could be a “trigger” for an
external device, as we saw in the introduction.

Conclusion
The Seeed XIAO ESP32S3 Sense is a giant tiny device! However, it is powerful,
trustworthy, not expensive, low power, and has suitable sensors to be used on
the most common embedded machine learning applications such as vision and
sound. Even though Edge Impulse does not ofÏcially support XIAO ESP32S3
Sense (yet!), we realized that using the Studio for training and deployment is
straightforward.

On my GitHub repository, you will find the last version all the
codeused on this project and the previous ones of the XIAO ESP32S3
series.

Before we finish, consider that Sound Classification is more than just voice.
For example, you can develop TinyML projects around sound in several areas,
such as:

• Security (Broken Glass detection)
• Industry (Anomaly Detection)
• Medical (Snore, Toss, Pulmonary diseases)
• Nature (Beehive control, insect sound)

Resources
• XIAO ESP32S3 Codes
• Subset of Google Speech Commands Dataset

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://cdn.edgeimpulse.com/datasets/keywords2.zip

Keyword Spotting (KWS) 1289

• KWS MFCC Analysis Colab Notebook
• KWS CNN training Colab Notebook
• XIAO ESP32S3 Post-processing Code
• Edge Impulse Project

https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_CNN_training.ipynb
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_microphone_led
https://studio.edgeimpulse.com/public/230109/live

Motion Classification and Anomaly De-
tection

Figure 20.13: DALL·E prompt - 1950s
style cartoon illustration set in a vintage
audio lab. Scientists, dressed in classic
attire with white lab coats, are intently
analyzing audio data on large chalk-
boards. The boards display intricate
FFT (Fast Fourier Transform) graphs
and time-domain curves. Antique au-
dio equipment is scattered around, but
the data representations are clear and
detailed, indicating their focus on audio
analysis.

Overview
The XIAO ESP32S3 Sense, with its built-in camera and mic, is a versatile device.
But what if you need to add another type of sensor, such as an IMU? No problem!

1291

Installing the IMU 1292

One of the standout features of the XIAO ESP32S3 is its multiple pins that can
be used as an I2C bus (SDA/SCL pins), making it a suitable platform for sensor
integration.

Installing the IMU
When selecting your IMU, the market offers a wide range of devices, each
with unique features and capabilities. You could choose, for example, the
ADXL362 (3-axis), MAX21100 (6-axis), MPU6050 (6-axis), LIS3DHTR (3-axis),
or the LCM20600Seeed Grove— (6-axis), which is part of the IMU 9DOF
(lcm20600+AK09918). This variety allows you to tailor your choice to your
project’s specific needs.

For this project, we will use an IMU, the MPU6050 (or 6500), a low-cost (less
than 2.00 USD) 6-axis Accelerometer/Gyroscope unit.

At the end of the lab, we will also comment on using the LCM20600.

The MPU-6500 is a 6-axis Motion Tracking device that combines a 3-axis
gyroscope, 3-axis accelerometer, and a Digital Motion ProcessorTM (DMP) in a
small 3x3x0.9mm package. It also features a 4096-byte FIFO that can lower the
trafÏc on the serial bus interface and reduce power consumption by allowing
the system processor to burst read sensor data and then go into a low-power
mode.

With its dedicated I2C sensor bus, the MPU-6500 directly accepts inputs from
external I2C devices. MPU-6500, with its 6-axis integration, on-chip DMP, and
run-time calibration firmware, enables manufacturers to eliminate the costly
and complex selection, qualification, and system-level integration of discrete
devices, guaranteeing optimal motion performance for consumers. MPU-6500
is also designed to interface with multiple non-inertial digital sensors, such as
pressure sensors, on its auxiliary I2C port.

https://invensense.tdk.com/download-pdf/mpu-6500-datasheet/

Motion Classification and Anomaly Detection 1293

Usually, the libraries available are for MPU6050, but they work for
both devices.

Connecting the HW
Connect the IMU to the XIAO according to the below diagram:
• MPU6050 SCL –> XIAO D5
• MPU6050 SDA –> XIAO D4
• MPU6050 VCC –> XIAO 3.3V
• MPU6050 GND –> XIAO GND

Install the Library
Go to Arduino Library Manager and type MPU6050. Install the latest version.

Download the sketch MPU6050_Acc_Data_Acquisition.in:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/MPU6050_Acc_Data_Acquisition

Installing the IMU 1294

/*
* Based on I2C device class (I2Cdev) Arduino sketch for MPU6050 class
by Jeff Rowberg <jeff@rowberg.net>

* and Edge Impulse Data Forwarder Exampe (Arduino)
- https://docs.edgeimpulse.com/docs/cli-data-forwarder

*
* Developed by M.Rovai @11May23
*/

#include "I2Cdev.h"
#include "MPU6050.h"
#include "Wire.h"

#define FREQUENCY_HZ 50
#define INTERVAL_MS (1000 / (FREQUENCY_HZ + 1))
#define ACC_RANGE 1 // 0: -/+2G; 1: +/-4G

// convert factor g to m/s^2^ ==> [-32768, +32767] ==> [-2g, +2g]
#define CONVERT_G_TO_MS2 (9.81/(16384.0/(1.+ACC_RANGE)))

static unsigned long last_interval_ms = 0;

MPU6050 imu;
int16_t ax, ay, az;

void setup() {

Serial.begin(115200);

// initialize device
Serial.println("Initializing I2C devices...");
Wire.begin();
imu.initialize();
delay(10);

// // verify connection
// if (imu.testConnection()) {
// Serial.println("IMU connected");
// }
// else {
// Serial.println("IMU Error");
// }

delay(300);

//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);

Motion Classification and Anomaly Detection 1295

imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);
imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);

/* Set full-scale accelerometer range.
* 0 = +/- 2g
* 1 = +/- 4g
* 2 = +/- 8g
* 3 = +/- 16g
*/

imu.setFullScaleAccelRange(ACC_RANGE);
}

void loop() {

if (millis() > last_interval_ms + INTERVAL_MS) {
last_interval_ms = millis();

// read raw accel/gyro measurements from device
imu.getAcceleration(&ax, &ay, &az);

// converting to m/s^2^
float ax_m_s^2^ = ax * CONVERT_G_TO_MS2;
float ay_m_s^2^ = ay * CONVERT_G_TO_MS2;
float az_m_s^2^ = az * CONVERT_G_TO_MS2;

Serial.print(ax_m_s^2^);
Serial.print("\t");
Serial.print(ay_m_s^2^);
Serial.print("\t");
Serial.println(az_m_s^2^);

}
}

Some comments about the code:
Note that the values generated by the accelerometer and gyroscope have a

range: [-32768, +32767], so for example, if the default accelerometer range is
used, the range in Gs should be: [-2g, +2g]. So, “1G” means 16384.

For conversion to m/s2, for example, you can define the following:

#define CONVERT_G_TO_MS2 (9.81/16384.0)

In the code, I left an option (ACC_RANGE) to be set to 0 (+/-2G) or 1 (+/-
4G). We will use +/-4G; that should be enough for us. In this case.

We will capture the accelerometer data on a frequency of 50Hz, and the
acceleration data will be sent to the Serial Port as meters per squared second
(m/s2).

Installing the IMU 1296

When you ran the code with the IMU resting over your table, the accelerom-
eter data shown on the Serial Monitor should be around 0.00, 0.00, and 9.81. If
the values are a lot different, you should calibrate the IMU.
The MCU6050 can be calibrated using the sketch: mcu6050-calibration.ino.

Run the code. The following will be displayed on the Serial Monitor:

Send any character (in the above example, “x”), and the calibration should
start.

Note that a message MPU6050 connection failed. Ignore this mes-
sage. For some reason, imu.testConnection() is not returning a
correct result.

In the end, you will receive the offset values to be used on all your sketches:

Take the values and use them on the setup:

//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);
imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);
imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);

Now, run the sketch MPU6050_Acc_Data_Acquisition.in:
Once you run the above sketch, open the Serial Monitor:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/mcu6050-calibration
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/MPU6050_Acc_Data_Acquisition

Motion Classification and Anomaly Detection 1297

Or check the Plotter:

Move your device in the three axes. You should see the variation on Plotter:

The TinyML Motion Classification Project 1298

The TinyML Motion Classification Project

For our lab, we will simulate mechanical stresses in transport. Our problem
will be to classify four classes of movement:

• Maritime (pallets in boats)
• Terrestrial (palettes in a Truck or Train)
• Lift (Palettes being handled by Fork-Lift)
• Idle (Palettes in Storage houses)

So, to start, we should collect data. Then, accelerometers will provide the
data on the palette (or container).

From the above images, we can see that primarily horizontal movements
should be associated with the “Terrestrial class,” Vertical movements with the
“Lift Class,” no activity with the “Idle class,” and movement on all three axes
to Maritime class.

Connecting the device to Edge Impulse

For data collection, we should first connect our device to the Edge Impulse
Studio, which will also be used for data pre-processing, model training, testing,
and deployment.

Follow the instructions hereto install the Node.jsand Edge Impulse
CLI on your computer.

Once the XIAO ESP32S3 is not a fully supported development board by Edge
Impulse, we should, for example, use the CLI Data Forwarder to capture data
from our sensor and send it to the Studio, as shown in this diagram:

https://www.containerhandbuch.de/chb_e/stra/index.html?/chb_e/stra/stra_02_03_03.htm
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

Motion Classification and Anomaly Detection 1299

You can alternately capture your data “ofÒine,” store them on an
SD card or send them to your computer via Bluetooth or Wi-Fi. In
this video, you can learn alternative ways to send data to the Edge
Impulse Studio.

Connect your device to the serial port and run the previous code to capture
IMU (Accelerometer) data, “printing them” on the serial. This will allow the
Edge Impulse Studio to “capture” them.

Go to the Edge Impulse page and create a project.

The maximum length for an Arduino library name is 63 characters.
Note that the Studio will name the final library using your project
name and include “_inference” to it. The name I chose initially
did not work when I tried to deploy the Arduino library because it
resulted in 64 characters. So, I need to change it by taking out the
“anomaly detection” part.

https://youtu.be/2KBPq_826WM

Data Collection 1300

Start the CLI Data Forwarderon your terminal, entering (if it is the first time)
the following command:

edge-impulse-data-forwarder --clean

Next, enter your EI credentials and choose your project, variables, and device
names:

Go to your EI Project and verify if the device is connected (the dot should be
green):

Data Collection
As discussed before, we should capture data from all four Transportation
Classes. Imagine that you have a container with a built-in accelerometer:

https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder

Motion Classification and Anomaly Detection 1301

Now imagine your container is on a boat, facing an angry ocean, on a truck,
etc.:

• Maritime (pallets in boats)
– Move the XIAO in all directions, simulating an undulatory boat

movement.

• Terrestrial (palettes in a Truck or Train)
– Move the XIAO over a horizontal line.

• Lift (Palettes being handled by Fork-Lift)
– Move the XIAO over a vertical line.

• Idle (Palettes in Storage houses)
– Leave the XIAO over the table.

Data Pre-Processing 1302

Below is one sample (raw data) of 10 seconds:

You can capture, for example, 2 minutes (twelve samples of 10 seconds each)
for the four classes. Using the “3 dots” after each one of the samples, select 2,
moving them for the Test set (or use the automatic Train/Test Split tool on the
Danger Zone of Dashboard tab). Below, you can see the result datasets:

Data Pre-Processing

The raw data type captured by the accelerometer is a “time series” and should
be converted to “tabular data”. We can do this conversion using a sliding
window over the sample data. For example, in the below figure,

Motion Classification and Anomaly Detection 1303

We can see 10 seconds of accelerometer data captured with a sample rate (SR)
of 50 Hz. A 2-second window will capture 300 data points (3 axis × 2 seconds× 50 samples). We will slide this window each 200ms, creating a larger dataset
where each instance has 300 raw features.

You should use the best SR for your case, considering Nyquist’s
theorem, which states that a periodic signal must be sampled at
more than twice the signal’s highest frequency component.

Data preprocessing is a challenging area for embedded machine learning.
Still, Edge Impulse helps overcome this with its digital signal processing (DSP)
preprocessing step and, more specifically, the Spectral Features.

On the Studio, this dataset will be the input of a Spectral Analysis block, which
is excellent for analyzing repetitive motion, such as data from accelerometers.
This block will perform a DSP (Digital Signal Processing), extracting features
such as “FFT” or “Wavelets”. In the most common case, FFT, the Time Domain
Statistical features per axis/channel are:

• RMS
• Skewness
• Kurtosis

And the Frequency Domain Spectral features per axis/channel are:
• Spectral Power
• Skewness
• Kurtosis

For example, for an FFT length of 32 points, the Spectral Analysis Block’s
resulting output will be 21 features per axis (a total of 63 features).

Those 63 features will be the Input Tensor of a Neural Network Classifier and
the Anomaly Detection model (K-Means).

You can learn more by digging into the lab DSP Spectral Features

Model Design
Our classifier will be a Dense Neural Network (DNN) that will have 63 neurons
on its input layer, two hidden layers with 20 and 10 neurons, and an output
layer with four neurons (one per each class), as shown here:

../../../shared/dsp_spectral_features_block/dsp_spectral_features_block.qmd

Impulse Design 1304

Impulse Design
An impulse takes raw data, uses signal processing to extract features, and then
uses a learning block to classify new data.

We also take advantage of a second model, the K-means, that can be used for
Anomaly Detection. If we imagine that we could have our known classes as
clusters, any sample that could not fit on that could be an outlier, an anomaly
(for example, a container rolling out of a ship on the ocean).

Imagine our XIAO rolling or moving upside-down, on a movement
complement different from the one trained

Motion Classification and Anomaly Detection 1305

Below is our final Impulse design:

Generating features
At this point in our project, we have defined the pre-processing method and
the model designed. Now, it is time to have the job done. First, let’s take the
raw data (time-series type) and convert it to tabular data. Go to the Spectral
Features tab and select Save Parameters:

At the top menu, select the Generate Features option and the Generate Fea-
tures button. Each 2-second window data will be converted into one data point
of 63 features.

The Feature Explorer will show those data in 2D using UMAP. Uni-
form Manifold Approximation and Projection (UMAP) is a dimen-
sion reduction technique that can be used for visualization similarly
to t-SNE but also for general non-linear dimension reduction.

The visualization allows one to verify that the classes present an excellent
separation, which indicates that the classifier should work well.

https://umap-learn.readthedocs.io/en/latest/

Training 1306

Optionally, you can analyze the relative importance of each feature for one
class compared with other classes.

Training
Our model has four layers, as shown below:

As hyperparameters, we will use a Learning Rate of 0.005 and 20% of data
for validation for 30 epochs. After training, we can see that the accuracy is 97%.

For anomaly detection, we should choose the suggested features that are
precisely the most important in feature extraction. The number of clusters will
be 32, as suggested by the Studio:

Motion Classification and Anomaly Detection 1307

Testing
Using 20% of the data left behind during the data capture phase, we can verify
how our model will behave with unknown data; if not 100% (what is expected),
the result was not that good (8%), mainly due to the terrestrial class. Once
we have four classes (which output should add 1.0), we can set up a lower
threshold for a class to be considered valid (for example, 0.4):

Now, the Test accuracy will go up to 97%.

You should also use your device (which is still connected to the Studio) and
perform some Live Classification.

Deploy 1308

Be aware that here you will capture real data with your device and
upload it to the Studio, where an inference will be taken using the
trained model (But the model is NOT in your device).

Deploy
Now it is time for magic! The Studio will package all the needed libraries,
preprocessing functions, and trained models, downloading them to your com-
puter. You should select the option Arduino Library, and at the bottom, choose
Quantized (Int8) and Build. A Zip file will be created and downloaded to your
computer.

On your Arduino IDE, go to the Sketch tab, select the option Add.ZIP Library,
and Choose the.zip file downloaded by the Studio:

Inference
Now, it is time for a real test. We will make inferences that are wholly discon-
nected from the Studio. Let’s change one of the code examples created when
you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your project,
and on examples, select nano_ble_sense_accelerometer:

Motion Classification and Anomaly Detection 1309

Of course, this is not your board, but we can have the code working with
only a few changes.

For example, at the beginning of the code, you have the library related to
Arduino Sense IMU:

/* Includes -- */
#include <XIAO-ESP32S3-Motion-Classification_inferencing.h>
#include <Arduino_LSM9DS1.h>

Change the “includes” portion with the code related to the IMU:

#include <XIAO-ESP32S3-Motion-Classification_inferencing.h>
#include "I2Cdev.h"
#include "MPU6050.h"
#include "Wire.h"

Change the Constant Defines

/* Constant defines ---------------------------------- */
MPU6050 imu;
int16_t ax, ay, az;

#define ACC_RANGE 1 // 0: -/+2G; 1: +/-4G
#define CONVERT_G_TO_MS2 (9.81/(16384/(1.+ACC_RANGE)))
#define MAX_ACCEPTED_RANGE (2*9.81)+(2*9.81)*ACC_RANGE

On the setup function, initiate the IMU set the off-set values and range:

// initialize device
Serial.println("Initializing I2C devices...");
Wire.begin();
imu.initialize();
delay(10);

//Set MCU 6050 OffSet Calibration
imu.setXAccelOffset(-4732);
imu.setYAccelOffset(4703);
imu.setZAccelOffset(8867);
imu.setXGyroOffset(61);
imu.setYGyroOffset(-73);
imu.setZGyroOffset(35);

imu.setFullScaleAccelRange(ACC_RANGE);

Inference 1310

At the loop function, the buffers buffer[ix], buffer[ix + 1], and buffer[ix + 2]
will receive the 3-axis data captured by the accelerometer. On the original code,
you have the line:

IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);

Change it with this block of code:

imu.getAcceleration(&ax, &ay, &az);
buffer[ix + 0] = ax;
buffer[ix + 1] = ay;
buffer[ix + 2] = az;

You should change the order of the following two blocks of code. First, you
make the conversion to raw data to “Meters per squared second (ms2)”, followed
by the test regarding the maximum acceptance range (that here is in ms2, but
on Arduino, was in Gs):

buffer[ix + 0] *= CONVERT_G_TO_MS2;
buffer[ix + 1] *= CONVERT_G_TO_MS2;
buffer[ix + 2] *= CONVERT_G_TO_MS2;

for (int i = 0; i < 3; i++) {
if (fabs(buffer[ix + i]) > MAX_ACCEPTED_RANGE) {

buffer[ix + i] = ei_get_sign(buffer[ix + i])
* MAX_ACCEPTED_RANGE;

}
}

And that is it! You can now upload the code to your device and proceed with
the inferences. The complete code is available on the project’s GitHub.

Now you should try your movements, seeing the result of the inference of
each class on the images:

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU

Motion Classification and Anomaly Detection 1311

And, of course, some “anomaly”, for example, putting the XIAO upside-
down. The anomaly score will be over 1:

Conclusion 1312

Conclusion
Regarding the IMU, this project used the low-cost MPU6050 but could also use
other IMUs, for example, the LCM20600 (6-axis), which is part of the Seeed
Grove - IMU 9DOF (lcm20600+AK09918). You can take advantage of this sensor,
which has integrated a Grove connector, which can be helpful in the case you
use the XIAO with an extension board, as shown below:

You can follow the instructions here to connect the IMU with the MCU. Only
note that for using the Grove ICM20600 Accelerometer, it is essential to update
the files I2Cdev.cpp and I2Cdev.h that you will download from the library
provided by Seeed Studio. For that, replace both files from this link. You can
find a sketch for testing the IMU on the GitHub project: accelerometer_test.ino.

On the projet’s GitHub repository, you will find the last version of
all codeand other docs: XIAO-ESP32S3 - IMU.

https://wiki.seeedstudio.com/Grove-IMU_9DOF-lcm20600+AK09918/
https://wiki.seeedstudio.com/Grove-IMU_9DOF-lcm20600+AK09918/
https://wiki.seeedstudio.com/Seeeduino-XIAO-Expansion-Board/
https://wiki.seeedstudio.com/Grove-IMU_9DOF-lcm20600+AK09918/#specification
https://github.com/Seeed-Studio/Seeed_ICM20600_AK09918
https://github.com/Seeed-Studio/Seeed_ICM20600_AK09918
https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/I2Cdev
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU/accelerometer_test
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/IMU

Motion Classification and Anomaly Detection 1313

Resources
• XIAO ESP32S3 Codes
• Edge Impulse Spectral Features Block Colab Notebook
• Edge Impulse Project

https://github.com/Mjrovai/XIAO-ESP32S3-Sense
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://studio.edgeimpulse.com/public/226398/live

Grove Vision AI V2

These labs offer an opportunity to gain practical experience with machine
learning (ML) systems on a high-end, yet compact, embedded device, the Seeed
Studio Grove Vision AI V2. Unlike working with large models requiring data
center-scale resources, these labs allow you to interact with hardware and
software using TinyML directly. This hands-on approach provides a tangible
understanding of the challenges and opportunities in deploying AI, albeit on
a small scale. However, the principles are essentially the same as what you
would encounter when working with larger or even smaller systems.

The Grove Vision AI V2 occupies a unique position in the embedded AI
landscape, bridging the gap between basic microcontroller solutions, such as
the Seeed XIAO ESP32S3 Sense or Arduino Nicla Vision, and more powerful
single-board computers, like the Raspberry Pi. At its heart lies the Himax
WiseEye2 HX6538 processor, featuring a dual-core Arm Cortex-M55 and an
integrated ARM Ethos-U55 neural network unit.

The Arm Ethos-U55 represents a specialized machine learning processor
class, specifically designed as a microNPU to accelerate ML inference in area-
constrained embedded and IoT devices. This powerful combination of the Ethos-
U55 with the AI-capable Cortex-M55 processor delivers a remarkable 480x uplift
in ML performance over existing Cortex-M-based systems. Operating at 400
MHz with configurable internal system memory (SRAM) up to 2.4 MB, the
Grove Vision AI V2 offers professional-grade computer vision capabilities while
maintaining the power efÏciency and compact form factor essential for edge
applications.

This positioning makes it an ideal platform for learning advanced TinyML
concepts, offering the simplicity and reduced power requirements of smaller sys-
tems while providing capabilities that far exceed those of traditional microcontroller-
based solutions.

1315

Pre-requisites 1316

Figure 20.14: Grove - Vision AI Mod-
ule V2. Source: SEEED Studio

Pre-requisites
• Grove Vision AI V2 Board: Ensure you have the Grove Vision AI V2

Board.
• Raspberry Pi OV5647 Camera Module: The camera should be connected

to the Grove Vision AI V2 Board for image capture.
• Master Controller: Can be a Seeed XIAO ESP32S3, a XIAO ESP32C6, or

other devices.
• USB-C Cable: This is for connecting the board to your computer.
• Network: With internet access for downloading the necessary software.
• XIAO Expansion Board Base: This helps connect the Master Device to

the Physical World (optional).

Setup and No-Code Applications
• Setup and No-Code Apps

Exercises

Modality Task Description Link

Vision Image Classification Learn to classify images Link
Vision Object Detection Implement object detection Link

./setup_and_no_code_apps/setup_and_no_code_apps.qmd
./image_classification/image_classification.qmd
./object_detection/object_detection.qmd

Setup and No-Code Applications

In this Lab, we will explore computer vision (CV) applications using the Seeed
Studio Grove Vision AI Module V2, a powerful yet compact device specifically
designed for embedded machine learning applications. Based on the Himax
WiseEye2 chip, this module is designed to enable AI capabilities on edge
devices, making it an ideal tool for Edge Machine Learning (ML) applications.

Introduction

1317

https://wiki.seeedstudio.com/grove_vision_ai_v2/

Introduction 1318

Grove Vision AI Module (V2) Overview

The Grove Vision AI (V2) is an MCU-based vision AI module that utilizes a
Himax WiseEye2 HX6538 processor featuring a dual-core ArmCortex-M55 and
an integrated ARM Ethos-U55 neural network unit. The Arm Ethos-U55 is a
machine learning (ML) processor class, specifically designed as a microNPU,
to accelerate ML inference in area-constrained embedded and IoT devices. The
Ethos-U55, combined with the AI-capable Cortex-M55 processor, provides a
480x uplift in ML performance over existing Cortex-M-based systems. Its clock
frequency is 400 MHz, and its internal system memory (SRAM) is configurable,
with a maximum capacity of 2.4 MB.

Note: Based on Seeed Studio documentation, besides the Himax
internal memory of 2.5MB (2.4MB SRAM + 64KB ROM), the Grove
Vision AI (V2) is also equipped with a 16MB/133 MHz external
flash.

https://www.himax.com.tw/products/intelligent-sensing/always-on-smart-sensing/wiseeye2-ai-processor/
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55

Setup and No-Code Applications 1319

Below is a block Diagram of the Grove Vision AI (V2) system, including a
camera and a master controller.

With interfaces like IIC, UART, SPI, and Type-C, the Grove Vision AI (V2)
can be easily connected to devices such as XIAO, Raspberry Pi, BeagleBoard,
and ESP-based products for further development. For instance, integrating
Grove Vision AI V2 with one of the devices from the XIAO family makes it easy
to access the data resulting from inference on the device through the Arduino
IDE or MicroPython, and conveniently connect to the cloud or dedicated servers,
such as Home Assistance.

Using the I2C Grove connector, the Grove Vision AI V2 can be
easily connected with any Master Device.

Introduction 1320

Besides performance, another area to comment on is Power Consumption.
For example, in a comparative test against the XIAO ESP32S3 Sense, running
Swift-YOLO Tiny 96x96, despite achieving higher performance (30 FPS vs. 5.5
FPS), the Grove Vision AI V2 exhibited lower power consumption (0.35 W
vs. 0.45 W) when compared with the XIAO ESP32S3 Sense.

The above comparison (and with other devices) can be found in
the article 2024 MCU AI Vision Boards: Performance Comparison,
which confirms the power of Grove Vision AI (V2).

Camera Installation

Having the Grove Vision AI (V2) and camera ready, you can connect, for exam-
ple, a Raspberry Pi OV5647 Camera Module via the CSI cable.

When connecting, please pay attention to the direction of the row
of pins and ensure they are plugged in correctly, not in the opposite
direction.

https://www.hackster.io/limengdu0117/2024-mcu-ai-vision-boards-performance-comparison-998505

Setup and No-Code Applications 1321

The SenseCraft AI Studio

The SenseCraft AI Studio is a robust platform that offers a wide range of AI
models compatible with various devices, including the XIAO ESP32S3 Sense
and the Grove Vision AI V2. In this lab, we will walk through the process
of using an AI model with the Grove Vision AI V2 and preview the model’s
output. We will also explore some key concepts, settings, and how to optimize
the model’s performance.

Models can also be deployed using the SenseCraft Web Toolkit, a simplified
version of the SenseCraft AI Studio.

We can start using the SenseCraft Web Toolkit for simplicity, or go
directly to the SenseCraft AI Studio, which has more resources.

The SenseCraft Web-Toolkit

The SenseCraft Web Toolkit is a visual model deployment tool included in the
SSCMA(Seeed SenseCraft Model Assistant). This tool enables us to deploy
models to various platforms with ease through simple operations. The tool
offers a user-friendly interface and does not require any coding.

The SenseCraft Web Toolkit is based on the Himax AI Web Toolkit, which
can (optionally) be downloaded from here. Once downloaded and unzipped
to the local PC, double-click index.html to run it locally.

https://sensecraft.seeed.cc/ai/home
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process
https://sensecraft.seeed.cc/ai/model
https://sensecraftma.seeed.cc/
https://github.com/HimaxWiseEyePlus/Seeed_Grove_Vision_AI_Module_V2/releases/download/v1.1/Himax_AI_web_toolkit.zip

The SenseCraft AI Studio 1322

But in our case, let’s follow the steps below to start the SenseCraft-Web-
Toolkit:

• Open the SenseCraft-Web-Toolkit website on a web browser as Chrome.
• Connect Grove Vision AI (V2) to your computer using a Type-C cable.
• Having the XIAO connected, select it as below:

• Select the device/Port and press [Connect]:

https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process

Setup and No-Code Applications 1323

Note: The WebUSB tool may not function correctly in certain
browsers, such as Safari. Use Chrome instead.

We can try several Basic Computer Vision models previously uploaded by
Seeed Studio. Passing the cursor over the AI models, we can have some infor-
mation about them, such as name, description, category (Image Classification,
Object Detection, or Pose/Keypoint Detection), the algorithm (like YOLO V5
or V8, FOMO, MobileNet V2, etc.) and metrics (Accuracy or mAP).

We can choose one of those ready-to-use AI models by clicking on it and
pressing the [Send] button, or upload our model.

For the SenseCraft AI platform, follow the instructions here.

Exploring CV AI models
Object Detection
Object detection is a pivotal technology in computer vision that focuses on
identifying and locating objects within digital images or video frames. Unlike
image classification, which categorizes an entire image into a single label, object
detection recognizes multiple objects within the image and determines their
precise locations, typically represented by bounding boxes. This capability
is crucial for a wide range of applications, including autonomous vehicles,
security, surveillance systems, and augmented reality, where understanding
the context and content of the visual environment is essential.

Common architectures that have set the benchmark in object detection include
the YOLO (You Only Look Once), SSD (Single Shot MultiBox Detector), FOMO
(Faster Objects, More Objects), and Faster R-CNN (Region-based Convolutional
Neural Networks) models.

Let’s choose one of the ready-to-use AI models, such as Person Detection,
which was trained using the Swift-YOLO algorithm.

https://wiki.seeedstudio.com/sensecraft_ai_pretrained_models_for_grove_visionai_v2/

Exploring CV AI models 1324

Once the model is uploaded successfully, you can see the live feed from
the Grove Vision AI (V2) camera in the Preview area on the right. Also, the
inference details can be shown on the Serial Monitor by clicking on the [Device
Log] button at the top.

In the SenseCraft AI Studio, the Device Logger is always on the
screen.

Pointing the camera at me, only one person was detected, so that the model
output will be a single “box”. Looking in detail, the module sends continuously
two lines of information:

perf (Performance), displays latency in milliseconds.
• Preprocess time (image capture and Crop): 7ms;
• Inference time (model latency): 76ms (13 fps)
• Postprocess time (display of the image and inclusion of data): less than

0ms.

boxes: Show the objects detected in the image. In this case, only one.
• The box has the x, y, w, and h coordinates of (245, 292,449,392), and the

object (person, label 0) was captured with a value of .89.

Setup and No-Code Applications 1325

If we point the camera at an image with several people, we will get one box
for each person (object):

On the SenseCraft AI Studio, the inference latency (48ms) is lower
than on the SenseCraft ToolKit (76ms), due to a distinct deployment
implementation.

Power Consumption
The peak power consumption running this Swift-YOLO model was 410 milli-

watts.
Preview Settings
We can see that in the Settings, two settings options can be adjusted to

optimize the model’s recognition accuracy.
• Confidence: Refers to the level of certainty or probability assigned to its

predictions by a model. This value determines the minimum confidence

Exploring CV AI models 1326

level required for the model to consider a detection as valid. A higher con-
fidence threshold will result in fewer detections but with higher certainty,
while a lower threshold will allow more detections but may include some
false positives.

• IoU: Used to assess the accuracy of predicted bounding boxes compared to
truth bounding boxes. IoU is a metric that measures the overlap between
the predicted bounding box and the ground truth bounding box. It is
used to determine the accuracy of the object detection. The IoU threshold
sets the minimum IoU value required for a detection to be considered a
true positive. Adjusting this threshold can help in fine-tuning the model’s
precision and recall.

Experiment with different values for the Confidence Threshold and
IoU Threshold to find the optimal balance between detecting per-
sons accurately and minimizing false positives. The best settings
may vary depending on our specific application and the character-
istics of the images or video feed.

Pose/Keypoint Detection
Pose or keypoint detection is a sophisticated area within computer vision that
focuses on identifying specific points of interest within an image or video
frame, often related to human bodies, faces, or other objects of interest. This
technology can detect and map out the various keypoints of a subject, such as
the joints on a human body or the features of a face, enabling the analysis of
postures, movements, and gestures. This has profound implications for various
applications, including augmented reality, human-computer interaction, sports
analytics, and healthcare monitoring, where understanding human motion and
activity is crucial.

Unlike general object detection, which identifies and locates objects, pose
detection drills down to a finer level of detail, capturing the nuanced positions
and orientations of specific parts. Leading architectures in this field include
OpenPose, AlphaPose, and PoseNet, each designed to tackle the challenges of
pose estimation with varying degrees of complexity and precision. Through
advancements in deep learning and neural networks, pose detection has become

Setup and No-Code Applications 1327

increasingly accurate and efÏcient, offering real-time insights into the intricate
dynamics of subjects captured in visual data.

So, let’s explore this popular CV application, Pose/Keypoint Detection.

Stop the current model inference by pressing [Stop] in the Preview area.
Select the model and press [Send]. Once the model is uploaded successfully,
you can view the live feed from the Grove Vision AI (V2) camera in the Preview
area on the right, along with the inference details displayed in the Serial Monitor
(accessible by clicking the [Device Log] button at the top).

The YOLOV8 Pose model was trained using the COCO-Pose Dataset, which
contains 200K images labeled with 17 keypoints for pose estimation tasks.

Let’s look at a single screenshot of the inference (to simplify, let’s analyse an
image with a single person in it). We can note that we have two lines, one with
the inference performance in milliseconds (121 ms) and a second line with the
keypoints as below:

• 1 box of info, the same as we got with the object detection example (box
coordinates (113, 119, 67, 208), inference result (90), label (0).

• 17 groups of 4 numbers represent the 17 “joints” of the body, where ‘0’ is
the nose, ‘1’ and ‘2’ are the eyes, ‘15’ and’ 16’ are the feet, and so on.

https://docs.ultralytics.com/datasets/pose/coco/

Exploring CV AI models 1328

To understand a pose estimation project more deeply, please refer
to the tutorial: Exploring AI at the Edge! - Pose Estimation.

Image Classification
Image classification is a foundational task within computer vision aimed at
categorizing entire images into one of several predefined classes. This process
involves analyzing the visual content of an image and assigning it a label from
a fixed set of categories based on the predominant object or scene it contains.

Image classification is crucial in various applications, ranging from organiz-
ing and searching through large databases of images in digital libraries and
social media platforms to enabling autonomous systems to comprehend their
surroundings. Common architectures that have significantly advanced the field
of image classification include Convolutional Neural Networks (CNNs), such as
AlexNet, VGGNet, and ResNet. These models have demonstrated remarkable
accuracy on challenging datasets, such as ImageNet, by learning hierarchical
representations of visual data.

As the cornerstone of many computer vision systems, image classification
drives innovation, laying the groundwork for more complex tasks like object
detection and image segmentation, and facilitating a deeper understanding of
visual data across various industries. So, let’s also explore this computer vision
application.

https://www.hackster.io/mjrobot/exploring-ai-at-the-edge-97588d#toc-pose-estimation-10

Setup and No-Code Applications 1329

This example is available on the SenseCraft ToolKit, but not in the
SenseCraft AI Studio. In the last one, it is possible to find other
examples of Image Classification.

After the model is uploaded successfully, we can view the live feed from the
Grove Vision AI (V2) camera in the Preview area on the right, along with the
inference details displayed in the Serial Monitor (by clicking the [Device Log]
button at the top).

As a result, we will receive a score and the class as output.

For example, [99, 1] means class: 1 (Person) with a score of 0.99. Once this
model is a binary classification, class 0 will be “No Person” (or Background).
The Inference latency is 15ms or around 70fps.

Power Consumption

To run the Mobilenet V2 0.35, the Grove Vision AI V2 had a peak current of
80mA at 5.24V, resulting in a power consumption of 420mW.

Running the same model on XIAO ESP32S3 Sense, the power consumption
was 523mW with a latency of 291ms.

An Image Classification Project 1330

Exploring Other Models on SenseCraft AI Studio

Several public AI models can also be downloaded from the SenseCraft AI
WebPage. For example, you can run a Swift-YOLO model, detecting trafÏc
lights as shown here:

The latency of this model is approximately 86 ms, with an average power
consumption of 420 mW.

An Image Classification Project

Let’s create a complete Image Classification project, using the SenseCraft AI
Studio.

https://sensecraft.seeed.cc/ai/model
https://sensecraft.seeed.cc/ai/model
https://sensecraft.seeed.cc/ai/view-model/60281-traffic-light-detection?tab=public
https://sensecraft.seeed.cc/ai/view-model/60281-traffic-light-detection?tab=public

Setup and No-Code Applications 1331

On SenseCraft AI Studio: Let’s open the tab Training:

The default is to train a Classification model with a WebCam if it is avail-
able. Let’s select the Grove Vision AI V2 instead. Pressing the green but-
ton[Connect], a Pop-Up window will appear. Select the corresponding Port
and press the blue button [Connect].

https://sensecraft.seeed.cc/ai/training

An Image Classification Project 1332

The image streamed from the Grove Vision AI V2 will be displayed.

The Goal

The first step is always to define a goal. Let’s classify, for example, two simple
objects—for instance, a toy box and a toy wheel. We should also include a 3rd
class of images, background, where no object is in the scene.

Data Collection

Let’s create the classes, following, for example, an alphabetical order:

• Class1: background
• Class 2: box
• Class 3: wheel

Setup and No-Code Applications 1333

Select one of the classes and keep pressing the green button under the preview
area. The collected images will appear on the Image Samples Screen.

After collecting the images, review them and delete any incorrect ones.

Collect around 50 images from each class and go to Training Step:

An Image Classification Project 1334

Training

Confirm if the correct device is selected (Grove Vision AI V2) and press [Start
Training]

Test

After training, the inference result can be previewed.

Note that the model is not running on the device. We are, in fact,
only capturing the images with the device and performing a live
preview using the training model, which is running in the Studio.

Now is time to really deploy the model in the device:

Setup and No-Code Applications 1335

Deployment

Select the trained model on [Deploy to device], select the Grove Vision AI
V2:

The Studio will redirect us to the Vision Workplace tab. Confirm the de-
ployment, select the appropriate Port, and connect it:

The model will be flashed into the device. After an automatic reset, the model
will start running on the device. On the Device Logger, we can see that the
inference has a latency of approximately 8 ms, corresponding to a frame rate
of 125 frames per second (FPS).

Also, note that it is possible to adjust the model’s confidence.

Conclusion 1336

To run the Image Classification Model, the Grove Vision AI V2 had
a peak current of 80mA at 5.24V, resulting in a power consumption
of 420mW.

Saving the Model
It is possible to save the model in the SenseCraft AI Studio. The Studio will keep
all our models, which can be deployed later. For that, return to the Training
tab and select the button [Save to SenseCraft]:

Conclusion
In this lab, we explored several computer vision (CV) applications using the
Seeed Studio Grove Vision AI Module V2, demonstrating its exceptional capa-
bilities as a powerful yet compact device specifically designed for embedded
machine learning applications.

Performance Excellence: The Grove Vision AI V2 demonstrated remarkable
performance across multiple computer vision tasks. With its Himax WiseEye2
chip featuring a dual-core Arm Cortex-M55 and integrated ARM Ethos-U55
neural network unit, the device delivered:

• Image Classification: 15 ms inference time (67 FPS)

https://wiki.seeedstudio.com/grove_vision_ai_v2/

Setup and No-Code Applications 1337

• Object Detection (Person): 48 ms to 76 ms inference time (21 FPS to 13
FPS)

• PoseDetection: 121ms real-time keypoint detection with 17-joint tracking
(8 FPS)

Power EfÏciency Leadership: One of the most compelling advantages of
the Grove Vision AI V2 is its superior power efÏciency. Comparative testing
revealed significant improvements over traditional embedded platforms:

• Grove Vision AI V2: 80 mA (410 mW) peak consumption (60+ FPS)
• XIAO ESP32S3: Performing similar CV tasks (Image Classification) 523

mW (3+ FPS)

Practical Implementation: The device’s versatility was demonstrated through
a comprehensive end-to-end project, encompassing dataset creation, model
training, deployment, and ofÒine inference.

Developer-Friendly Ecosystem: The SenseCraft AI Studio, with its no-code
deployment and integration capabilities for custom applications, makes the
Grove Vision AI V2 accessible to both beginners and advanced developers.
The extensive library of pre-trained models and support for custom model
deployment provide flexibility for diverse applications.

The Grove Vision AI V2 represents a significant advancement in edge AI
hardware, offering professional-grade computer vision capabilities in a com-
pact, energy-efÏcient package that democratizes AI deployment for embedded
applications across industrial, IoT, and educational domains.

Key Takeaways
This Lab demonstrates that sophisticated computer vision applications are not

limited to cloud-based solutions or power-hungry hardware, as the Raspberry
Pi or Jetson Nanos – they can now be deployed effectively at the edge with
remarkable efÏciency and performance.

Optionally, we can have the XIAO Vision AI Camera. This innovative vision
solution seamlessly combines the Grove Vision AI V2 module, XIAO ESP32-C3
controller, and an OV5647 camera, all housed in a custom 3D-printed enclosure:

Resources
SenseCraft AI Studio Instructions.

SenseCraft-Web-Toolkit website.

https://www.seeedstudio.com/XIAO-Vision-AI-Camera-p-6450.html
https://wiki.seeedstudio.com/sensecraft_ai_pretrained_models_for_grove_visionai_v2/
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process

Resources 1338

SenseCraft AI Studio
Himax AI Web Toolkit
Himax examples

https://sensecraft.seeed.cc/ai/model
https://github.com/HimaxWiseEyePlus/Seeed_Grove_Vision_AI_Module_V2/releases/download/v1.1/Himax_AI_web_toolkit.zip
https://github.com/Seeed-Studio/wiki-documents/blob/docusaurus-version/docs/Sensor/Grove/Grove_Sensors/AI-powered/Grove-vision-ai-v2/Development/grove-vision-ai-v2-himax-sdk.md

Image Classification

Using Seeed Studio Grove Vision AI Module V2 (Himax WiseEye2)

In this Lab, we will explore Image Classification using the Seeed Studio Grove
Vision AI Module V2, a powerful yet compact device specifically designed for
embedded machine learning applications. Based on the Himax WiseEye2 chip,
this module is designed to enable AI capabilities on edge devices, making it an
ideal tool for Edge Machine Learning (ML) applications.

1339

https://wiki.seeedstudio.com/grove_vision_ai_v2/
https://wiki.seeedstudio.com/grove_vision_ai_v2/

Introduction 1340

Introduction
So far, we have explored several computer vision models previously uploaded
by Seeed Studio or used the SenseCraft AI Studio for Image Classification,
without choosing a specific model. Let’s now develop our Image Classification
project from scratch, where we will select our data and model.

Below, we can see the project’s main steps and where we will work with
them:

Project Goal
The first step in any machine learning (ML) project is defining the goal. In this
case, the goal is to detect and classify two specific objects present in a single
image. For this project, we will use two small toys: a robot and a small Brazilian
parrot (named Periquito). Also, we will collect images of a background where
those two objects are absent.

Data Collection
With the Machine Learning project goal defined, dataset collection is the next
and most crucial step. Suppose your project utilizes images that are publicly
available on datasets, for example, to be used on a Person Detection project. In
that case, you can download the Wake Vision dataset for use in the project.

https://edgeai.modelnova.ai/datasets/details/wake-vision

Image Classification 1341

But, in our case, we define a project where the images do not exist publicly,
so we need to generate them. We can use a phone, computer camera, or other
devices to capture the photos, ofÒine or connected to the Edge Impulse Studio.

If you want to use the Grove Vision AI V2 to capture your dataset, you can
use the SenseCraft AI Studio as we did in the previous Lab, or the camera_-
web_server sketch as we will describe later in the Postprocessing / Getting the
Video Stream section of this Lab.

In this Lab, we will use the SenseCraft AI Studio to collect the dataset.

Collecting Data with the SenseCraft AI Studio

On SenseCraft AI Studio: Let’s open the tab Training.
The default is to train a Classification model with a WebCam if it is avail-

able. Let’s select the Grove Vision AI V2 instead. Pressing the green but-
ton[Connect] (1), a Pop-Up window will appear. Select the corresponding Port
(2) and press the blue button [Connect] (3).

The image streamed from the Grove Vision AI V2 will be displayed.

https://sensecraft.seeed.cc/ai/training

Introduction 1342

Image Collection

Let’s create the classes, following, for example, an alphabetical order:
• Class1: background
• Class 2: periquito
• Class 3: robot

Select one of the classes (note that a green line will be around the window)
and keep pressing the green button under the preview area. The collected
images will appear on the Image Samples Screen.

Image Classification 1343

After collecting the images, review them and, if necessary, delete any incorrect
ones.

Collect around 50 images from each class. After you collect the three classes,
open the menu on each of them and select Export Data.

In the Download area of the Computer, we will get three zip files, each one
with its corresponding class name. Each Zip file contains a folder with the
images.

Uploading the dataset to the Edge Impulse Studio

We will use the Edge Impulse Studio to train our model. Edge Impulseis a
leading development platform for machine learning on edge devices.

• Enter your account credentials (or create a free account) at Edge Impulse.
• Next, create a new project:

https://www.edgeimpulse.com/

Introduction 1344

The dataset comprises approximately 50 images per label, with 40
for training and 10 for testing.

Impulse Design and Pre-Processing

Impulse Design
An impulse takes raw data (in this case, images), extracts features (resizes

pictures), and then uses a learning block to classify new data.
Classifying images is the most common application of deep learning, but

a substantial amount of data is required to accomplish this task. We have
around 50 images for each category. Is this number enough? Not at all! We
will need thousands of images to “teach” or “model” each class, allowing us to
differentiate them. However, we can resolve this issue by retraining a previously
trained model using thousands of images. We refer to this technique as “Transfer
Learning” (TL). With TL, we can fine-tune a pre-trained image classification
model on our data, achieving good performance even with relatively small
image datasets, as in our case.

So, starting from the raw images, we will resize them (96x96) pixels and feed
them to our Transfer Learning block:

Image Classification 1345

For comparison, we will keep the image size as 96 x 96. However,
keep in mind that with the Grove Vision AI Module V2 and its
internal SRAM of 2.4 MB, larger images can be utilized (for example,
160 x 160).

Also select the Target device (Himax WiseEye2 (M55 400 MHz + U55)) on
the up-right corner.

Pre-processing (Feature generation)
Besides resizing the images, we can convert them to grayscale or retain their
original RGB color depth. Let’s select [RGB] in the Image section. Doing that,
each data sample will have a dimension of 27,648 features (96x96x3). Pressing
[Save Parameters]will open a new tab, Generate Features. Press the button
[Generate Features]to generate the features.

Model Design, Training, and Test
In 2007, Google introduced MobileNetV1. In 2018, MobileNetV2: Inverted
Residuals and Linear Bottlenecks, was launched, and, in 2019, the V3. The Mo-
bilinet is a family of general-purpose computer vision neural networks explicitly
designed for mobile devices to support classification, detection, and other appli-
cations. MobileNets are small, low-latency, low-power models parameterized
to meet the resource constraints of various use cases.

Although the base MobileNet architecture is already compact and has low
latency, a specific use case or application may often require the model to be even
smaller and faster. MobileNets introduce a straightforward parameter, α (alpha),
called the width multiplier to construct these smaller, less computationally
expensive models. The role of the width multiplier α is to thin a network
uniformly at each layer.

Edge Impulse Studio has available MobileNet V1 (96x96 images) and V2
(96x96 and 160x160 images), with several different α values (from 0.05 to 1.0).

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381

Introduction 1346

For example, you will get the highest accuracy with V2, 160x160 images, and
α=1.0. Of course, there is a trade-off. The higher the accuracy, the more memory
(around 1.3M RAM and 2.6M ROM) will be needed to run the model, implying
more latency. The smaller footprint will be obtained at another extreme with
MobileNet V1 and α=0.10 (around 53.2K RAM and 101K ROM).

For comparison, we will use the MobileNet V2 0.1 as our base
model (but a model with a greater alpha can be used here). The
final layer of our model, preceding the output layer, will have 8
neurons with a 10% dropout rate for preventing overfitting.

Another necessary technique to use with deep learning is data augmentation.
Data augmentation is a method that can help improve the accuracy of machine
learning models by creating additional artificial data. A data augmentation
system makes small, random changes to your training data during the training
process (such as flipping, cropping, or rotating the images).

Set the Hyperparameters:
• Epochs: 20,
• Bach Size: 32
• Learning Rate: 0.0005
• Validation size: 20%

Training result:

The model profile predicts 146 KB of RAM and 187 KB of Flash, indicating
no problem with the Grove AI Vision (V2), which has almost 2.5 MB of internal
SRAM. Additionally, the Studio indicates a latency of around 4 ms.

Despite this, with a 100% accuracy on the Validation set when using
the spare data for testing, we confirmed an Accuracy of 81%, using
the Quantized (Int8) trained model. However, it is sufÏcient for our
purposes in this lab.

Model Deployment
On the Deployment tab, we should select: Seeed Grove Vision AI Module
V2 (Himax WiseEye2) and press [Build]. A ZIP file will be downloaded to
our computer.

Image Classification 1347

The Zip file contains the model_vela.tflite, which is a TensorFlow Lite
(TFLite) model optimized for neural processing units (NPUs) using the Vela
compiler, a tool developed by Arm to adapt TFLite models for Ethos-U NPUs.

We can flash the model following the instructions in the README.txt or use
the SenseCraft AI Studio. We will use the latter.

Deploy the model on the SenseCraft AI Studio

On SenseCraft AI Studio, go to the Vision Workspace tab, and connect the
device:

You should see the last model that was uploaded to the device. Select the
green button [Upload Model]. A pop-up window will ask for the model name,
the model file, and to enter the class names (objects). We should use labels
following alphabetical order: 0: background, 1: periquito, and 2: robot,
and then press [Send].

Introduction 1348

After a few seconds, the model will be uploaded (“flashed”) to our device,
and the camera image will appear in real-time on the Preview Sector. The
Classification result will be displayed under the image preview. It is also
possible to select the Confidence Threshold of your inference using the cursor
on Settings.

On the Device Logger, we can view the Serial Monitor, where we can observe
the latency, which is approximately 1 to 2 ms for pre-processing and 4 to 5 ms
for inference, aligning with the estimates made in Edge Impulse Studio.

Image Classification 1349

Here are other screenshots:

The power consumption of this model is approximately 70 mA, equivalent to
0.4 W.

Image Classification (non-ofÏcial) Benchmark
Several development boards can be used for embedded machine learning
(tinyML), and the most common ones (so far) for Computer Vision applications
(with low energy) are the ESP32 CAM, the Seeed XIAO ESP32S3 Sense, and
the Arduino Nicla Vision.

Taking advantage of this opportunity, a similarly trained model, MobilenetV2
96x96, with an alpha of 0.1, was also deployed on the ESP-CAM, the XIAO, and
a Raspberry Pi Zero W2. Here is the result:

Introduction 1350

The Grove Vision AI V2 with an ARMEthus-U55was approximately
14 times faster than devices with an ARM-M7, and more than 100
times faster than an Xtensa LX6 (ESP-CAM). Even when compared to
a Raspberry Pi, with a much more powerful CPU, the U55 reduces
latency by almost half. Additionally, the power consumption is
lower than that of other devices (see the full article here for power
consumption comparison).

Postprocessing

Now that we have the model uploaded to the board and working correctly,
classifying our images, let’s connect a Master Device to export the inference
result to it and see the result completely ofÒine (disconnected from the PC and,
for example, powered by a battery).

Note that we can use any microcontroller as a Master Controller,
such as the XIAO, Arduino, or Raspberry Pi.

Getting the Video Stream

The image processing and model inference are processed locally in Grove Vision
AI (V2), and we want the result to be output to the XIAO (Master Controller)
via IIC. For that, we will use the Arduino SSMA library. This library’s primary
purpose is to process Grove Vision AI’s data stream, which does not involve
model inference.

The Grove Vision AI (V2) communicates (Inference result) with the
XIAO via the IIC; the device’s IIC address is 0x62. Image information
transfer is via the USB serial port.

Step 1: Download the Arduino SSMA library as a zip file from its GitHub:

https://www.hackster.io/limengdu0117/2024-mcu-ai-vision-boards-performance-comparison-998505
https://github.com/Seeed-Studio/Seeed_Arduino_SSCMA/

Image Classification 1351

Step 2: Install it in the Arduino IDE (sketch > Include Library > Add
.Zip Library).

Step 3: Install the ArduinoJSON library.

Step 4: Install the Eigen Library

Introduction 1352

Step 3: Now, connect the XIAO and Grove Vision AI (V2) via the socket (a
row of pins) located at the back of the device.

CAUTION: Please note the direction of the connection, Grove Vision
AI’s Type-C connector should be in the same direction as XIAO’s
Type-C connector.

Step 5: Connect the XIAO USB-C port to your computer

Image Classification 1353

Step 6: In the Arduino IDE, select the Xiao board and the corresponding USB
port.

Once we want to stream the video to a webpage, we will use the XIAO
ESP32S3, which has wifi and enough memory to handle images. Select XIAO_-
ESP32S3 and the appropriate USB Port:

By default, the PSRAM is disabled. Open the Tools menu and on PSRAM:
"OPI PSRAM"select OPI PSRAM.

Introduction 1354

Step 7: Open the example in Arduino IDE:
File -> Examples -> Seeed_Arduino_SSCMA -> camera_web_server.
And edit the ssid and password in the camera_web_server.ino sketch to

match the Wi-Fi network.
Step 8: Upload the sketch to the board and open the Serial Monitor. When

connected to the Wi-Fi network, the board’s IP address will be displayed.

Image Classification 1355

Open the address using a web browser. A Video App will be available. To
see only the video stream from the Grove Vision AI V2, press [Sample Only]
and [Start Stream].

If you want to create an image dataset, you can use this app, saving frames
of the video generated by the device. Pressing [Save Frame], the image will
be saved in the download area of our desktop.

Opening the App without selecting [Sample Only], the inference result
should appear on the video screen, but this does not happen for Image Classifi-
cation. For Object Detection or Pose Estimation, the result is embedded with
the video stream.

For example, if the model is a Person Detection using YoloV8:

Introduction 1356

Getting the Inference Result

• Go to File -> Examples -> Seeed_Arduino_SSCMA -> inference_class.
• Upload the sketch to the board, and open the Serial Monitor.
• Pointing the camera at one of our objects, we can see the inference result

on the Serial Terminal.

The inference running on the Arduino IDE had an average con-
sumption of 160 mA or 800 mW and a peak of 330 mA 1.65 W when
transmitting the image to the App.

Postprocessing with LED

The idea behind our postprocessing is that whenever a specific image is detected
(for example, the Periquito - Label:1), the User LED is turned on. If the Robot
or a background is detected, the LED will be off.

Copy the below code and past it to your IDE:

#include <Seeed_Arduino_SSCMA.h>
SSCMA AI;

Image Classification 1357

void setup()
{

AI.begin();

Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Grove AI V2 / XIAO ESP32S3");

// Pins for the built-in LED
pinMode(LED_BUILTIN, OUTPUT);
// Ensure the LED is OFF by default.
// Note: The LED is ON when the pin is LOW, OFF when HIGH.
digitalWrite(LED_BUILTIN, HIGH);

}

void loop()
{

if (!AI.invoke()){
Serial.println("\nInvoke Success");
Serial.print("Latency [ms]: prepocess=");
Serial.print(AI.perf().prepocess);
Serial.print(", inference=");
Serial.print(AI.perf().inference);
Serial.print(", postpocess=");
Serial.println(AI.perf().postprocess);
int pred_index = AI.classes()[0].target;
Serial.print("Result= Label: ");
Serial.print(pred_index);
Serial.print(", score=");
Serial.println(AI.classes()[0].score);
turn_on_led(pred_index);

}
}

/**
* @brief turn_off_led function - turn-off the User LED
*/
void turn_off_led(){

digitalWrite(LED_BUILTIN, HIGH);
}

/**
* @brief turn_on_led function used to turn on the User LED
* @param[in] pred_index
* label 0: [0] ==> ALL OFF
* label 1: [1] ==> LED ON
* label 2: [2] ==> ALL OFF

Introduction 1358

* label 3: [3] ==> ALL OFF
*/
void turn_on_led(int pred_index) {

switch (pred_index)
{

case 0:
turn_off_led();
break;

case 1:
turn_off_led();
digitalWrite(LED_BUILTIN, LOW);
break;

case 2:
turn_off_led();
break;

case 3:
turn_off_led();
break;

}
}

This sketch uses the Seeed_Arduino_SSCMA.h library to interface with the
Grove Vision AI Module V2. The AI module and the LED are initialized in the
setup() function, and serial communication is started.

The loop() function repeatedly calls the invoke() method to perform infer-
ence using the built-in algorithms of the Grove Vision AI Module V2. Upon
a successful inference, the sketch prints out performance metrics to the serial
monitor, including preprocessing, inference, and postprocessing times.

The sketch processes and prints out detailed information about the results of
the inference:

• (AI.classes()[0]) that identifies the class of image (.target) and its
confidence score (.score).

• The inference result (class) is stored in the integer variable pred_index,
which will be used as an input to the function turn_on_led(). As a result,
the LED will turn ON, depending on the classification result.

Here is the result:

If the Periquito is detected (Label:1), the LED is ON:

Image Classification 1359

If the Robot is detected (Label:2) the LED is OFF (Same for Background
(Label:0):

Therefore, we can now power the Grove Viaon AI V2 + Xiao ESP32S3 with
an external battery, and the inference result will be displayed by the LED
completely ofÒine. The consumption is approximately 165 mA or 825 mW.

It is also possible to send the result using Wifi, BLE, or other com-
munication protocols available on the used Master Device.

Optional: Post-processing on external devices

Of course, one of the significant advantages of working with EdgeAI is that
devices can run entirely disconnected from the cloud, allowing for seamless
interactions with the real world. We did it in the last section, but using the
internal Xiao LED. Now, we will connect external LEDs (which could be any
actuator).

Introduction 1360

The LEDS should be connected to the XIAO ground via a 220-ohm
resistor.

The idea is to modify the previous sketch to handle the three external LEDs.
GOAL: Whenever the image of a Periquito is detected, the LED Green will

be ON; if it is a Robot, the LED Yellow will be ON; if it is a Background, the
LED Red will be ON.

The image processing and model inference are processed locally in Grove
Vision AI (V2), and we want the result to be output to the XIAO via IIC. For
that, we will use the Arduino SSMA library again.

Here the sketch to be used:

#include <Seeed_Arduino_SSCMA.h>
SSCMA AI;

// Define the LED pin according to the pin diagram
// The LEDS negative lead should be connected to the XIAO ground
// via a 220-ohm resistor.
int LEDR = D1; # XIAO ESP32S3 Pin 1
int LEDY = D2; # XIAO ESP32S3 Pin 2
int LEDG = D3; # XIAO ESP32S3 Pin 3

void setup()
{

AI.begin();

Image Classification 1361

Serial.begin(115200);
while (!Serial);
Serial.println("Inferencing - Grove AI V2 / XIAO ESP32S3");

// Initialize the external LEDs
pinMode(LEDR, OUTPUT);
pinMode(LEDY, OUTPUT);
pinMode(LEDG, OUTPUT);
// Ensure the LEDs are OFF by default.
// Note: The LEDs are ON when the pin is HIGH, OFF when LOW.
digitalWrite(LEDR, LOW);
digitalWrite(LEDY, LOW);
digitalWrite(LEDG, LOW);

}

void loop()
{

if (!AI.invoke()){
Serial.println("\nInvoke Success");
Serial.print("Latency [ms]: prepocess=");
Serial.print(AI.perf().prepocess);
Serial.print(", inference=");
Serial.print(AI.perf().inference);
Serial.print(", postpocess=");
Serial.println(AI.perf().postprocess);
int pred_index = AI.classes()[0].target;
Serial.print("Result= Label: ");
Serial.print(pred_index);
Serial.print(", score=");
Serial.println(AI.classes()[0].score);
turn_on_leds(pred_index);

}
}

/**
* @brief turn_off_leds function - turn-off all LEDs
*/
void turn_off_leds(){

digitalWrite(LEDR, LOW);
digitalWrite(LEDY, LOW);
digitalWrite(LEDG, LOW);

}

/**
* @brief turn_on_leds function used to turn on a specific LED
* @param[in] pred_index

Introduction 1362

* label 0: [0] ==> Red ON
* label 1: [1] ==> Green ON
* label 2: [2] ==> Yellow ON
*/
void turn_on_leds(int pred_index) {

switch (pred_index)
{

case 0:
turn_off_leds();
digitalWrite(LEDR, HIGH);
break;

case 1:
turn_off_leds();
digitalWrite(LEDG, HIGH);
break;

case 2:
turn_off_leds();
digitalWrite(LEDY, HIGH);
break;

case 3:
turn_off_leds();
break;

}
}

We should connect the Grove Vision AI V2 with the XIAO using its I2C
Grove connector. For the XIAO, we will use an Expansion Board for the facility
(although it is possible to connect the I2C directly to the XIAO’s pins). We will
power the boards using the USB-C connector, but a battery can also be used.

https://wiki.seeedstudio.com/Seeeduino-XIAO-Expansion-Board/

Image Classification 1363

Here is the result:

The power consumption reached a peak of 240 mA (Green LED),
equivalent to 1.2 W. Driving the Yellow and Red LEDs consumes 14
mA, equivalent to 0.7 W. Sending information to the terminal via
serial has no impact on power consumption.

Conclusion
In this lab, we’ve explored the complete process of developing an image classi-
fication system using the Seeed Studio Grove Vision AI Module V2 powered by
the Himax WiseEye2 chip. We’ve walked through every stage of the machine
learning workflow, from defining our project goals to deploying a working
model with real-world interactions.

The Grove Vision AI V2 has demonstrated impressive performance, with in-
ference times of just 4-5ms, dramatically outperforming other common tinyML
platforms. Our benchmark comparison showed it to be approximately 14 times
faster than ARM-M7 devices and over 100 times faster than an Xtensa LX6
(ESP-CAM). Even when compared to a Raspberry Pi Zero W2, the Edge TPU
architecture delivered nearly twice the speed while consuming less power.

Through this project, we’ve seen how transfer learning enables us to achieve
good classification results with a relatively small dataset of custom images.
The MobileNetV2 model with an alpha of 0.1 provided an excellent balance of
accuracy and efÏciency for our three-class problem, requiring only 146 KB of
RAM and 187 KB of Flash memory, well within the capabilities of the Grove
Vision AI Module V2’s 2.4 MB internal SRAM.

We also explored several deployment options, from viewing inference results
through the SenseCraft AI Studio to creating a standalone system with visual
feedback using LEDs. The ability to stream video to a web browser and process
inference results locally demonstrates the versatility of edge AI systems for
real-world applications.

The power consumption of our final system remained impressively low,
ranging from approximately 70mA (0.4W) for basic inference to 240mA (1.2W)
when driving external components. This efÏciency makes the Grove Vision AI
Module V2 an excellent choice for battery-powered applications where power
consumption is critical.

This lab has demonstrated that sophisticated computer vision tasks can
now be performed entirely at the edge, without reliance on cloud services or

Resources 1364

powerful computers. With tools like Edge Impulse Studio and SenseCraft AI
Studio, the development process has become accessible even to those without
extensive machine learning expertise.

As edge AI technology continues to evolve, we can expect even more powerful
capabilities from compact, energy-efÏcient devices like the Grove Vision AI
Module V2, opening up new possibilities for smart sensors, IoT applications,
and embedded intelligence in everyday objects.

Resources
Collecting Images with SenseCraft AI Studio.

Edge Impulse Studio Project
SenseCraft AI Studio - Vision Workplace (Deploy Models)
Other Himax examples
Arduino Sketches

https://sensecraft.seeed.cc/ai/training
https://studio.edgeimpulse.com/public/712491/live
https://sensecraft.seeed.cc/ai/device/local/36
https://github.com/Seeed-Studio/wiki-documents/blob/docusaurus-version/docs/Sensor/Grove/Grove_Sensors/AI-powered/Grove-vision-ai-v2/Development/grove-vision-ai-v2-himax-sdk.md
https://github.com/Mjrovai/Seeed-Grove-Vision-AI-V2/tree/main/Arduino_Sketches

Object Detection

This Lab is under Development

1365

Raspberry Pi

These labs offer invaluable hands-on experience with machine learning systems,
leveraging the versatility and accessibility of the Raspberry Pi platform. Unlike
working with large-scale models that demand extensive cloud resources, these
exercises allow you to directly interact with hardware and software in a com-
pact yet powerful edge computing environment. You’ll gain practical insights
into deploying AI at the edge by utilizing Raspberry Pi’s capabilities, from the
efÏcient Pi Zero to the more robust Pi 4 or Pi 5 models. This approach provides
a tangible understanding of the challenges and opportunities in implement-
ing machine learning solutions in resource-constrained settings. While we’re
working at a smaller scale, the principles and techniques you’ll learn are funda-
mentally similar to those used in larger systems. The Raspberry Pi’s ability to
run a whole operating system and its extensive GPIO capabilities allow for a
rich learning experience that bridges the gap between theoretical knowledge
and real-world application. Through these labs, you’ll grasp the intricacies
of EdgeML and develop skills applicable to a wide range of AI deployment
scenarios.

Figure 20.15: Raspberry Pi Zero 2-W
and Raspberry Pi 5 with Camera

Pre-requisites

• Raspberry Pi: Ensure you have at least one of the boards: the Raspberry
Pi Zero 2 W, Raspberry Pi 4 or 5 for the Vision Labs, and the Raspberry 5
for the GenAi labs.

1367

Setup 1368

• Power Adapter: To Power on the boards.
– Raspberry Pi Zero 2-W: 2.5 W with a Micro-USB adapter
– Raspberry Pi 4 or 5: 3.5 W with a USB-C adapter

• Network: With internet access for downloading the necessary software
and controlling the boards remotely.

• SD Card (32 GB minimum) and an SD card Adapter: For the Raspberry
Pi OS.

Setup
• Setup Raspberry Pi

Exercises

Modality Task Description Link

Vision Image Classification Learn to classify images Link
Vision Object Detection Implement object detection Link
GenAI Small Language Models Deploy SLMs at the Edge Link
GenAI Visual-Language Models Deploy VLMs at the Edge Link

./setup/setup.qmd
./image_classification/image_classification.qmd
./object_detection/object_detection.qmd
./llm/llm.qmd
./vlm/vlm.qmd

Setup

Figure 20.16: DALL·E prompt - An
electronics laboratory environment in-
spired by the 1950s, with a cartoon style.
The lab should have vintage equipment,
large oscilloscopes, old-fashioned tube
radios, and large, boxy computers. The
Raspberry Pi 5 board is prominently
displayed, accurately shown in its real
size, similar to a credit card, on a work-
bench. The Pi board is surrounded by
classic lab tools like a soldering iron, re-
sistors, and wires. The overall scene
should be vibrant, with exaggerated col-
ors and playful details characteristic of
a cartoon. No logos or text should be
included.

This chapter will guide you through setting up Raspberry Pi Zero 2 W (Raspi-
Zero) and Raspberry Pi 5 (Raspi-5) models. We’ll cover hardware setup, operat-
ing system installation, initial configuration, and tests.

The general instructions for the Raspi-5 also apply to the older Rasp-
berry Pi versions, such as the Raspi-3 and Raspi-4.

1369

Overview 1370

Overview
The Raspberry Pi is a powerful and versatile single-board computer that has
become an essential tool for engineers across various disciplines. Developed by
the Raspberry Pi Foundation, these compact devices offer a unique combination
of affordability, computational power, and extensive GPIO (General Purpose
Input/Output) capabilities, making them ideal for prototyping, embedded
systems development, and advanced engineering projects.

Key Features
1. Computational Power: Despite their small size, Raspberry Pis offers

significant processing capabilities, with the latest models featuring multi-
core ARM processors and up to 8 GB of RAM.

2. GPIO Interface: The 40-pin GPIO header allows direct interaction with
sensors, actuators, and other electronic components, facilitating hardware-
software integration projects.

3. Extensive Connectivity: Built-in Wi-Fi, Bluetooth, Ethernet, and multiple
USB ports enable diverse communication and networking projects.

4. Low-Level Hardware Access: Raspberry Pis provides access to interfaces
like I2C, SPI, and UART, allowing for detailed control and communication
with external devices.

5. Real-Time Capabilities: With proper configuration, Raspberry Pis can
be used for soft real-time applications, making them suitable for control
systems and signal processing tasks.

6. Power EfÏciency: Low power consumption enables battery-powered and
energy-efÏcient designs, especially in models like the Pi Zero.

Raspberry Pi Models (covered in this book)
1. Raspberry Pi Zero 2 W (Raspi-Zero):

• Ideal for: Compact embedded systems
• Key specs: 1 GHz single-core CPU (ARM Cortex-A53), 512 MB RAM,

minimal power consumption

2. Raspberry Pi 5 (Raspi-5):
• Ideal for: More demanding applications such as edge computing,

computer vision, and edgeAI applications, including LLMs.
• Key specs: 2.4 GHz quad-core CPU (ARM Cortex A-76), up to 8 GB

RAM, PCIe interface for expansions

Engineering Applications
1. Embedded Systems Design: Develop and prototype embedded systems

for real-world applications.
2. IoT and Networked Devices: Create interconnected devices and explore

protocols like MQTT, CoAP, and HTTP/HTTPS.

https://www.raspberrypi.org/

Setup 1371

3. Control Systems: Implement feedback control loops, PID controllers, and
interface with actuators.

4. Computer Vision and AI: Utilize libraries like OpenCV and TensorFlow
Lite for image processing and machine learning at the edge.

5. Data Acquisition and Analysis: Collect sensor data, perform real-time
analysis, and create data logging systems.

6. Robotics: Build robot controllers, implement motion planning algorithms,
and interface with motor drivers.

7. Signal Processing: Perform real-time signal analysis, filtering, and DSP
applications.

8. Network Security: Set up VPNs, firewalls, and explore network penetra-
tion testing.

This tutorial will guide you through setting up the most common Raspberry
Pi models, enabling you to start on your machine learning project quickly. We’ll
cover hardware setup, operating system installation, and initial configuration,
focusing on preparing your Pi for Machine Learning applications.

Hardware Overview

Raspberry Pi Zero 2W

• Processor: 1 GHz quad-core 64-bit Arm Cortex-A53 CPU
• RAM: 512 MB SDRAM
• Wireless: 2.4 GHz 802.11 b/g/n wireless LAN, Bluetooth 4.2, BLE
• Ports: Mini HDMI, micro USB OTG, CSI-2 camera connector
• Power: 5 V via micro USB port

Installing the Operating System 1372

Raspberry Pi 5

• Processor:
– Pi 5: Quad-core 64-bit Arm Cortex-A76 CPU @ 2.4 GHz
– Pi 4: Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz

• RAM: 2 GB, 4 GB, or 8 GB options (8 GB recommended for AI tasks)
• Wireless: Dual-band 802.11ac wireless, Bluetooth 5.0
• Ports: 2 × micro HDMI ports, 2 × USB 3.0 ports, 2 × USB 2.0 ports, CSI

camera port, DSI display port
• Power: 5 V DC via USB-C connector (3A)

In the labs, we will use different names to address the Raspberry:
Raspi, Raspi-5, Raspi-Zero, etc. Usually, Raspi is used when the
instructions or comments apply to every model.

Installing the Operating System

The Operating System (OS)
An operating system (OS) is fundamental software that manages computer
hardware and software resources, providing standard services for computer
programs. It is the core software that runs on a computer, acting as an inter-
mediary between hardware and application software. The OS manages the
computer’s memory, processes, device drivers, files, and security protocols.

1. Key functions:
• Process management: Allocating CPU time to different programs
• Memory management: Allocating and freeing up memory as needed
• File system management: Organizing and keeping track of files and

directories

Setup 1373

• Device management: Communicating with connected hardware
devices

• User interface: Providing a way for users to interact with the com-
puter

2. Components:
• Kernel: The core of the OS that manages hardware resources
• Shell: The user interface for interacting with the OS
• File system: Organizes and manages data storage
• Device drivers: Software that allows the OS to communicate with

hardware

The Raspberry Pi runs a specialized version of Linux designed for embedded
systems. This operating system, typically a variant of Debian called Raspberry
Pi OS (formerly Raspbian), is optimized for the Pi’s ARM-based architecture
and limited resources.

The latest version of Raspberry Pi OS is based on Debian Bookworm.

Key features:
1. Lightweight: Tailored to run efÏciently on the Pi’s hardware.
2. Versatile: Supports a wide range of applications and programming lan-

guages.
3. Open-source: Allows for customization and community-driven improve-

ments.
4. GPIO support: Enables interaction with sensors and other hardware

through the Pi’s pins.
5. Regular updates: Continuously improved for performance and security.

Embedded Linux on the Raspberry Pi provides a full-featured operating
system in a compact package, making it ideal for projects ranging from simple
IoT devices to more complex edge machine-learning applications. Its compati-
bility with standard Linux tools and libraries makes it a powerful platform for
development and experimentation.

Installation
To use the Raspberry Pi, we will need an operating system. By default, Rasp-
berry Pi checks for an operating system on any SD card inserted in the slot, so
we should install an operating system using Raspberry Pi Imager.

Raspberry Pi Imager is a tool for downloading and writing images on macOS,
Windows, and Linux. It includes many popular operating system images for
Raspberry Pi. We will also use the Imager to preconfigure credentials and
remote access settings.

Follow the steps to install the OS in your Raspi.
1. Download and install the Raspberry Pi Imager on your computer.
2. Insert a microSD card into your computer (a 32GB SD card is recom-

mended) .

https://www.raspberrypi.com/news/bookworm-the-new-version-of-raspberry-pi-os/
https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/

Installing the Operating System 1374

3. Open Raspberry Pi Imager and select your Raspberry Pi model.
4. Choose the appropriate operating system:

• For Raspi-Zero: For example, you can select: Raspberry Pi OS
Lite (64-bit).

Due to its reduced SDRAM (512 MB), the recommended OS for the
Raspi-Zero is the 32-bit version. However, to run some machine
learning models, such as the YOLOv8 from Ultralitics, we should use
the 64-bit version. Although Raspi-Zero can run a desktop, we will
choose the LITE version (no Desktop) to reduce the RAM needed
for regular operation.

• ForRaspi-5: We can select the full 64-bit version, which includes a desktop:
Raspberry Pi OS (64-bit)

5. Select your microSD card as the storage device.

Setup 1375

6. Click on Next and then the gear icon to access advanced options.
7. Set the hostname, the Raspi username and password, configure WiFi and

enable SSH (Very important!)

8. Write the image to the microSD card.

In the examples here, we will use different hostnames depending
on the device used: raspi, raspi-5, raspi-Zero, etc. It would help if
you replaced it with the one you are using.

Initial Configuration

1. Insert the microSD card into your Raspberry Pi.
2. Connect power to boot up the Raspberry Pi.
3. Please wait for the initial boot process to complete (it may take a few

minutes).

You can find the most common Linux commands to be used with
the Raspi here or here.

Remote Access

SSH Access

The easiest way to interact with the Raspi-Zero is via SSH (“Headless”). You
can use a Terminal (MAC/Linux), PuTTy (Windows), or any other.

1. Find your Raspberry Pi’s IP address (for example, check your router).
2. On your computer, open a terminal and connect via SSH:

ssh username@[raspberry_pi_ip_address]

https://www.jwdittrich.people.ysu.edu/raspberrypi/UsefulRaspberryPiCommands.pdf
https://www.codecademy.com/learn/learn-raspberry-pi/modules/raspberry-pi-command-line-module/cheatsheet
https://www.putty.org/

Remote Access 1376

Alternatively, if you do not have the IP address, you can try the following:
bash ssh username@hostname.local for example, ssh mjrovai@rpi-
5.local , ssh mjrovai@raspi.local , etc.

Figure 20.17: img

When you see the prompt:

mjrovai@rpi-5:~ $

It means that you are interacting remotely with your Raspi. It is a good
practice to update/upgrade the system regularly. For that, you should
run:
sudo apt-get update
sudo apt upgrade

You should confirm the Raspi IP address. On the terminal, you can use:
hostname -I

To shut down the Raspi via terminal:
When you want to turn off your Raspberry Pi, there are better ideas than just
pulling the power cord. This is because the Raspi may still be writing data to
the SD card, in which case merely powering down may result in data loss or,
even worse, a corrupted SD card.

For safety shut down, use the command line:

Setup 1377

sudo shutdown -h now

To avoid possible data loss and SD card corruption, before removing
the power, you should wait a few seconds after shutdown for the
Raspberry Pi’s LED to stop blinking and go dark. Once the LED
goes out, it’s safe to power down.

Transfer Files between the Raspi and a computer
Transferring files between the Raspi and our main computer can be done using
a pen drive, directly on the terminal (with scp), or an FTP program over the
network.

Using Secure Copy Protocol (scp):
Copy files to your Raspberry Pi. Let’s create a text file on our computer, for
example, test.txt.

You can use any text editor. In the same terminal, an option is the
nano.

To copy the file named test.txt from your personal computer to a user’s
home folder on your Raspberry Pi, run the following command from the di-
rectory containing test.txt, replacing the <username> placeholder with the
username you use to log in to your Raspberry Pi and the <pi_ip_address>
placeholder with your Raspberry Pi’s IP address:

$ scp test.txt <username>@<pi_ip_address>:~/

Note that ~/ means that we will move the file to the ROOT of our
Raspi. You can choose any folder in your Raspi. But you should
create the folder before you run scp, since scp won’t create folders
automatically.

Remote Access 1378

For example, let’s transfer the file test.txt to the ROOT of my Raspi-zero,
which has an IP of 192.168.4.210:

scp test.txt mjrovai@192.168.4.210:~/

I use a different profile to differentiate the terminals. The above action hap-
pens on your computer. Now, let’s go to our Raspi (using the SSH) and check
if the file is there:

Copy files from your Raspberry Pi. To copy a file named test.txt from a
user’s home directory on a Raspberry Pi to the current directory on another
computer, run the following command on your Host Computer:

$ scp <username>@<pi_ip_address>:myfile.txt .

For example:
On the Raspi, let’s create a copy of the file with another name:

cp test.txt test_2.txt

And on the Host Computer (in my case, a Mac)

scp mjrovai@192.168.4.210:test_2.txt .

Setup 1379

Transferring files using FTP

Transferring files using FTP, such as FileZilla FTP Client, is also possible. Follow
the instructions, install the program for your Desktop OS, and use the Raspi IP
address as the Host. For example:

sftp://192.168.4.210

and enter your Raspi username and password. Pressing Quickconnect will
open two windows, one for your host computer desktop (right) and another
for the Raspi (left).

Increasing SWAP Memory

Using htop, a cross-platform interactive process viewer, you can easily monitor
the resources running on your Raspi, such as the list of processes, the running
CPUs, and the memory used in real-time. To lunch hop, enter with the command
on the terminal:

htop

https://filezilla-project.org/download.php?type=client

Increasing SWAP Memory 1380

Regarding memory, among the devices in the Raspberry Pi family, the Raspi-
Zero has the smallest amount of SRAM (500 MB), compared to a selection of 2 GB
to 8 GB on the Raspis 4 or 5. For any Raspi, it is possible to increase the memory
available to the system with “Swap.” Swap memory, also known as swap space,
is a technique used in computer operating systems to temporarily store data
from RAM (Random Access Memory) on the SD card when the physical RAM
is fully utilized. This allows the operating system (OS) to continue running
even when RAM is full, which can prevent system crashes or slowdowns.

Swap memory benefits devices with limited RAM, such as the Raspi-Zero.
Increasing swap can help run more demanding applications or processes, but
it’s essential to balance this with the potential performance impact of frequent
disk access.

By default, the Rapi-Zero’s SWAP (Swp) memory is only 100 MB, which is
very small for running some more complex and demanding Machine Learning
applications (for example, YOLO). Let’s increase it to 2 MB:

First, turn off swap-file:

sudo dphys-swapfile swapoff

Next, you should open and change the file /etc/dphys-swapfile. For that,
we will use the nano:

sudo nano /etc/dphys-swapfile

Search for the CONF_SWAPSIZE variable (default is 200) and update it to
2000:

CONF_SWAPSIZE=2000

And save the file.
Next, turn on the swapfile again and reboot the Raspi-zero:

Setup 1381

sudo dphys-swapfile setup
sudo dphys-swapfile swapon
sudo reboot

When your device is rebooted (you should enter with the SSH again), you will
realize that the maximum swap memory value shown on top is now something
near 2 GB (in my case, 1.95 GB).

To keep the htop running, you should open another terminal window
to interact continuously with your Raspi.

Installing a Camera

The Raspi is an excellent device for computer vision applications; a camera
is needed for it. We can install a standard USB webcam on the micro-USB
port using a USB OTG adapter (Raspi-Zero and Raspi-5) or a camera module
connected to the Raspi CSI (Camera Serial Interface) port.

USB Webcams generally have inferior quality to the camera modules
that connect to the CSI port. They can also not be controlled using
the raspistill and raspivid commands in the terminal or the
picamera recording package in Python. Nevertheless, there may be
reasons why you want to connect a USB camera to your Raspberry
Pi, such as because of the benefit that it is much easier to set up
multiple cameras with a single Raspberry Pi, long cables, or simply
because you have such a camera on hand.

Installing a USB WebCam

1. Power off the Raspi:

sudo shutdown -h no

2. Connect the USB Webcam (USB Camera Module 30 fps, 1280 × 720) to
your Raspi (In this example, I am using the Raspi-Zero, but the instruc-
tions work for all Raspis).

Installing a Camera 1382

3. Power on again and run the SSH
4. To check if your USB camera is recognized, run:

lsusb

You should see your camera listed in the output.

5. To take a test picture with your USB camera, use:

fswebcam test_image.jpg

This will save an image named “test_image.jpg” in your current directory.

Setup 1383

6. Since we are using SSH to connect to our Rapsi, we must transfer the
image to our main computer so we can view it. We can use FileZilla or
SCP for this:

Open a terminal on your host computer and run:

scp mjrovai@raspi-zero.local:~/test_image.jpg .

Replace “mjrovai” with your username and “raspi-zero” with Pi’s
hostname.

7. If the image quality isn’t satisfactory, you can adjust various settings; for
example, define a resolution that is suitable for YOLO (640𝑥640):

fswebcam -r 640x640 --no-banner test_image_yolo.jpg

This captures a higher-resolution image without the default banner.

Installing a Camera 1384

An ordinary USB Webcam can also be used:

And verified using lsusb

Video Streaming

For stream video (which is more resource-intensive), we can install and use
mjpg-streamer:

First, install Git:

sudo apt install git

Now, we should install the necessary dependencies for mjpg-streamer, clone
the repository, and proceed with the installation:

sudo apt install cmake libjpeg62-turbo-dev
git clone https://github.com/jacksonliam/mjpg-streamer.git
cd mjpg-streamer/mjpg-streamer-experimental
make
sudo make install

Then start the stream with:

Setup 1385

mjpg_streamer -i "input_uvc.so" -o "output_http.so -w ./www"

We can then access the stream by opening a web browser and navigating to:
http://<your_pi_ip_address>:8080. In my case: http://192.168.4.210:8080
We should see a webpage with options to view the stream. Click on the link

that says “Stream” or try accessing:

http://<raspberry_pi_ip_address>:8080/?action=stream

Installing a Camera Module on the CSI port

There are now several Raspberry Pi camera modules. The original 5-megapixel
model was released in 2013, followed by an 8-megapixel Camera Module 2 that
was later released in 2016. The latest camera model is the 12-megapixel Camera
Module 3, released in 2023.

The original 5 MP camera (Arducam OV5647) is no longer available from
Raspberry Pi but can be found from several alternative suppliers. Below is an
example of such a camera on a Raspi-Zero.

https://www.raspberrypi.com/news/camera-board-available-for-sale/
https://www.raspberrypi.com/products/camera-module-v2/
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/documentation/accessories/camera.html

Installing a Camera 1386

Here is another example of a v2 Camera Module, which has a Sony IMX219
8-megapixel sensor:

Any camera module will work on the Raspberry Pis, but for that, the configuration.txt
file must be updated:

sudo nano /boot/firmware/config.txt

At the bottom of the file, for example, to use the 5 MP Arducam OV5647
camera, add the line:

dtoverlay=ov5647,cam0

Or for the v2 module, which has the 8MP Sony IMX219 camera:

Setup 1387

dtoverlay=imx219,cam0

Save the file (CTRL+O [ENTER] CRTL+X) and reboot the Raspi:

Sudo reboot

After the boot, you can see if the camera is listed:

libcamera-hello --list-cameras

libcamera is an open-source software library that supports camera
systems directly from the Linux operating system on Arm proces-
sors. It minimizes proprietary code running on the Broadcom GPU.

Let’s capture a jpeg image with a resolution of 640×480 for testing and save
it to a file named test_cli_camera.jpg

rpicam-jpeg --output test_cli_camera.jpg --width 640 --height 480

if we want to see the file saved, we should use ls -f, which lists all current
directory content in long format. As before, we can use scp to view the image:

https://www.raspberrypi.com/documentation/computers/camera_software.html#libcamera

Running the Raspi Desktop remotely 1388

Running the Raspi Desktop remotely

While we’ve primarily interacted with the Raspberry Pi using terminal com-
mands via SSH, we can access the whole graphical desktop environment
remotely if we have installed the complete Raspberry Pi OS (for example,
Raspberry Pi OS (64-bit). This can be particularly useful for tasks that ben-
efit from a visual interface. To enable this functionality, we must set up a VNC
(Virtual Network Computing) server on the Raspberry Pi. Here’s how to do it:

1. Enable the VNC Server:
• Connect to your Raspberry Pi via SSH.
• Run the Raspberry Pi configuration tool by entering:

sudo raspi-config

• Navigate to Interface Options using the arrow keys.

• Select VNC and Yes to enable the VNC server.

Setup 1389

• Exit the configuration tool, saving changes when prompted.

2. Install a VNC Viewer on Your Computer:

• Download and install a VNC viewer application on your main com-
puter. Popular options include RealVNC Viewer, TightVNC, or VNC
Viewer by RealVNC. We will install VNC Viewer by RealVNC.

3. Once installed, you should confirm the Raspi IP address. For example,
on the terminal, you can use:
hostname -I

https://www.realvnc.com/en/connect/download/viewer

Running the Raspi Desktop remotely 1390

4. Connect to Your Raspberry Pi:
• Open your VNC viewer application.

• Enter your Raspberry Pi’s IP address and hostname.
• When prompted, enter your Raspberry Pi’s username and password.

Setup 1391

5. The Raspberry Pi 5 Desktop should appear on your computer monitor.

6. Adjust Display Settings (if needed):
• Once connected, adjust the display resolution for optimal viewing.

This can be done through the Raspberry Pi’s desktop settings or by
modifying the config.txt file.

• Let’s do it using the desktop settings. Reach the menu (the Raspberry
Icon at the left upper corner) and select the best screen definition for
your monitor:

Updating and Installing Software
1. Update your system:

sudo apt update && sudo apt upgrade -y

2. Install essential software:

Model-Specific Considerations 1392

sudo apt install python3-pip -y

3. Enable pip for Python projects:

sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED

Model-Specific Considerations

Raspberry Pi Zero (Raspi-Zero)
• Limited processing power, best for lightweight projects
• It is better to use a headless setup (SSH) to conserve resources.
• Consider increasing swap space for memory-intensive tasks.
• It can be used for Image Classification and Object Detection Labs but not

for the LLM (SLM).

Raspberry Pi 4 or 5 (Raspi-4 or Raspi-5)
• Suitable for more demanding projects, including AI and machine learning.
• It can run the whole desktop environment smoothly.
• Raspi-4 can be used for Image Classification and Object Detection Labs

but will not work well with LLMs (SLM).
• For Raspi-5, consider using an active cooler for temperature management

during intensive tasks, as in the LLMs (SLMs) lab.

Remember to adjust your project requirements based on the specific Rasp-
berry Pi model you’re using. The Raspi-Zero is great for low-power, space-
constrained projects, while the Raspi-4 or 5 models are better suited for more
computationally intensive tasks.

Image Classification

Figure 20.18: DALL·E prompt - A
cover image for an ‘Image Classifica-
tion’ chapter in a Raspberry Pi tuto-
rial, designed in the same vintage 1950s
electronics lab style as previous covers.
The scene should feature a Raspberry Pi
connected to a camera module, with the
camera capturing a photo of the small
blue robot provided by the user. The
robot should be placed on a workbench,
surrounded by classic lab tools like sol-
dering irons, resistors, and wires. The
lab background should include vintage
equipment like oscilloscopes and tube ra-
dios, maintaining the detailed and nos-
talgic feel of the era. No text or logos
should be included.

Overview
Image classification is a fundamental task in computer vision that involves
categorizing an image into one of several predefined classes. It’s a cornerstone
of artificial intelligence, enabling machines to interpret and understand visual
information in a way that mimics human perception.

1393

Overview 1394

Image classification refers to assigning a label or category to an entire im-
age based on its visual content. This task is crucial in computer vision and
has numerous applications across various industries. Image classification’s
importance lies in its ability to automate visual understanding tasks that would
otherwise require human intervention.

Applications in Real-World Scenarios
Image classification has found its way into numerous real-world applications,
revolutionizing various sectors:

• Healthcare: Assisting in medical image analysis, such as identifying
abnormalities in X-rays or MRIs.

• Agriculture: Monitoring crop health and detecting plant diseases through
aerial imagery.

• Automotive: Enabling advanced driver assistance systems and autonomous
vehicles to recognize road signs, pedestrians, and other vehicles.

• Retail: Powering visual search capabilities and automated inventory man-
agement systems.

• Security and Surveillance: Enhancing threat detection and facial recogni-
tion systems.

• Environmental Monitoring: Analyzing satellite imagery for deforestation,
urban planning, and climate change studies.

Advantages of Running Classification on Edge Devices like
Raspberry Pi
Implementing image classification on edge devices such as the Raspberry Pi
offers several compelling advantages:

1. Low Latency: Processing images locally eliminates the need to send data
to cloud servers, significantly reducing response times.

2. OfÒine Functionality: Classification can be performed without an inter-
net connection, making it suitable for remote or connectivity-challenged
environments.

3. Privacy and Security: Sensitive image data remains on the local device,
addressing data privacy concerns and compliance requirements.

4. Cost-Effectiveness: Eliminates the need for expensive cloud computing
resources, especially for continuous or high-volume classification tasks.

5. Scalability: Enables distributed computing architectures where multiple
devices can work independently or in a network.

6. Energy EfÏciency: Optimized models on dedicated hardware can be
more energy-efÏcient than cloud-based solutions, which is crucial for
battery-powered or remote applications.

7. Customization: Deploying specialized or frequently updated models
tailored to specific use cases is more manageable.

We can create more responsive, secure, and efÏcient computer vision so-
lutions by leveraging the power of edge devices like Raspberry Pi for image

Image Classification 1395

classification. This approach opens up new possibilities for integrating intelli-
gent visual processing into various applications and environments.

In the following sections, we’ll explore how to implement and optimize
image classification on the Raspberry Pi, harnessing these advantages to create
powerful and efÏcient computer vision systems.

Setting Up the Environment

Updating the Raspberry Pi
First, ensure your Raspberry Pi is up to date:

sudo apt update
sudo apt upgrade -y

Installing Required Libraries
Install the necessary libraries for image processing and machine learning:

sudo apt install python3-pip
sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED
pip3 install --upgrade pip

Setting up a Virtual Environment (Optional but Recommended)
Create a virtual environment to manage dependencies:

python3 -m venv ~/tflite
source ~/tflite/bin/activate

Installing TensorFlow Lite
We are interested in performing inference, which refers to executing a Ten-
sorFlow Lite model on a device to make predictions based on input data. To
perform an inference with a TensorFlow Lite model, we must run it through an
interpreter. The TensorFlow Lite interpreter is designed to be lean and fast. The
interpreter uses a static graph ordering and a custom (less-dynamic) memory
allocator to ensure minimal load, initialization, and execution latency.

We’ll use the TensorFlow Lite runtime for Raspberry Pi, a simplified library
for running machine learning models on mobile and embedded devices, with-
out including all TensorFlow packages.

pip install tflite_runtime --no-deps

The wheel installed: tflite_runtime-2.14.0-cp311-cp311-manylinux_-
2_34_aarch64.whl

https://pypi.org/project/tflite-runtime/

Setting Up the Environment 1396

Installing Additional Python Libraries
Install required Python libraries for use with Image Classification:

If you have another version of Numpy installed, first uninstall it.

pip3 uninstall numpy

Install version 1.23.2, which is compatible with the tflite_runtime.

pip3 install numpy==1.23.2

pip3 install Pillow matplotlib

Creating a working directory:
If you are working on the Raspi-Zero with the minimum OS (No Desktop), you
may not have a user-pre-defined directory tree (you can check it with ls. So,
let’s create one:

mkdir Documents
cd Documents/
mkdir TFLITE
cd TFLITE/
mkdir IMG_CLASS
cd IMG_CLASS
mkdir models
cd models

On the Raspi-5, the /Documents should be there.

Get a pre-trained Image Classification model:
An appropriate pre-trained model is crucial for successful image classification

on resource-constrained devices like the Raspberry Pi. MobileNet is designed
for mobile and embedded vision applications with a good balance between
accuracy and speed. Versions: MobileNetV1, MobileNetV2, MobileNetV3. Let’s
download the V2:

One long line, split with backslash \
wget https://storage.googleapis.com/download.tensorflow.org/\
models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz

tar xzf mobilenet_v2_1.0_224_quant.tgz

Get its labels:

One long line, split with backslash \
wget https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/\
main/IMG_CLASS/models/labels.txt

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/models/labels.txt

Image Classification 1397

In the end, you should have the models in its directory:

We will only need the mobilenet_v2_1.0_224_quant.tflitemodel
and the labels.txt. You can delete the other files.

Setting up Jupyter Notebook (Optional)
If you prefer using Jupyter Notebook for development:

pip3 install jupyter
jupyter notebook --generate-config

To run Jupyter Notebook, run the command (change the IP address for yours):

jupyter notebook --ip=192.168.4.210 --no-browser

On the terminal, you can see the local URL address to open the notebook:

You can access it from another device by entering the Raspberry Pi’s IP
address and the provided token in a web browser (you can copy the token from
the terminal).

Setting Up the Environment 1398

Define your working directory in the Raspi and create a new Python 3 note-
book.

Verifying the Setup
Test your setup by running a simple Python script:

import tflite_runtime.interpreter as tflite
import numpy as np
from PIL import Image

print("NumPy:", np.__version__)
print("Pillow:", Image.__version__)

Try to create a TFLite Interpreter
model_path = "./models/mobilenet_v2_1.0_224_quant.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
print("TFLite Interpreter created successfully!")

You can create the Python script using nano on the terminal, saving it with
CTRL+0 + ENTER + CTRL+X

Image Classification 1399

And run it with the command:

Or you can run it directly on the Notebook:

Making inferences with Mobilenet V2
In the last section, we set up the environment, including downloading a popular
pre-trained model, Mobilenet V2, trained on ImageNet’s 224×224 images (1.2
million) for 1,001 classes (1,000 object categories plus 1 background). The model
was converted to a compact 3.5 MB TensorFlow Lite format, making it suitable
for the limited storage and memory of a Raspberry Pi.

Let’s start a new notebook to follow all the steps to classify one image:

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/setup_test.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/10_Image_Classification.ipynb

Making inferences with Mobilenet V2 1400

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Load the TFLite model and allocate tensors:

model_path = "./models/mobilenet_v2_1.0_224_quant.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors.

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Input details will give us information about how the model should be fed
with an image. The shape of (1, 224, 224, 3) informs us that an image with
dimensions (224×224×3) should be input one by one (Batch Dimension: 1).

The output details show that the inference will result in an array of 1,001
integer values. Those values result from the image classification, where each
value is the probability of that specific label being related to the image.

Let’s also inspect the dtype of input details of the model

Image Classification 1401

input_dtype = input_details[0]['dtype']
input_dtype

dtype('uint8')

This shows that the input image should be raw pixels (0 - 255).
Let’s get a test image. You can transfer it from your computer or download

one for testing. Let’s first create a folder under our working directory:

mkdir images
cd images
wget https://upload.wikimedia.org/wikipedia/commons/3/3a/Cat03.jpg

Let’s load and display the image:

Load he image
img_path = "./images/Cat03.jpg"
img = Image.open(img_path)

Display the image
plt.figure(figsize=(8, 8))
plt.imshow(img)
plt.title("Original Image")
plt.show()

Making inferences with Mobilenet V2 1402

We can see the image size running the command:

width, height = img.size

That shows us that the image is an RGB image with a width of 1600 and a
height of 1600 pixels. So, to use our model, we should reshape it to (224, 224, 3)
and add a batch dimension of 1, as defined in input details: (1, 224, 224, 3). The
inference result, as shown in output details, will be an array with a 1001 size,
as shown below:

So, let’s reshape the image, add the batch dimension, and see the result:

img = img.resize((input_details[0]['shape'][1],
input_details[0]['shape'][2]))

input_data = np.expand_dims(img, axis=0)
input_data.shape

The input_data shape is as expected: (1, 224, 224, 3)
Let’s confirm the dtype of the input data:

input_data.dtype

dtype('uint8')

The input data dtype is ‘uint8’, which is compatible with the dtype expected
for the model.

Using the input_data, let’s run the interpreter and get the predictions (out-
put):

interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
predictions = interpreter.get_tensor(output_details[0]

['index'])[0]

The prediction is an array with 1001 elements. Let’s get the Top-5 indices
where their elements have high values:

Image Classification 1403

top_k_results = 5
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]
top_k_indices

The top_k_indices is an array with 5 elements: array([283, 286, 282])
So, 283, 286, 282, 288, and 479 are the image’s most probable classes. Having

the index, we must find to what class it appoints (such as car, cat, or dog). The
text file downloaded with the model has a label associated with each index
from 0 to 1,000. Let’s use a function to load the .txt file as a list:

def load_labels(filename):
with open(filename, 'r') as f:

return [line.strip() for line in f.readlines()]

And get the list, printing the labels associated with the indexes:

labels_path = "./models/labels.txt"
labels = load_labels(labels_path)

print(labels[286])
print(labels[283])
print(labels[282])
print(labels[288])
print(labels[479])

As a result, we have:

Egyptian cat
tiger cat
tabby
lynx
carton

At least the four top indices are related to felines. The prediction content is the
probability associated with each one of the labels. As we saw on output details,
those values are quantized and should be dequantized and apply softmax.

scale, zero_point = output_details[0]['quantization']
dequantized_output = (predictions.astype(np.float32) -

zero_point) * scale
exp_output = np.exp(dequantized_output -

np.max(dequantized_output))
probabilities = exp_output / np.sum(exp_output)

Let’s print the top-5 probabilities:

Making inferences with Mobilenet V2 1404

print (probabilities[286])
print (probabilities[283])
print (probabilities[282])
print (probabilities[288])
print (probabilities[479])

0.27741462
0.3732285
0.16919471
0.10319158
0.023410844

For clarity, let’s create a function to relate the labels with the probabilities:

for i in range(top_k_results):
print("\t{:20}: {}%".format(

labels[top_k_indices[i]],
(int(probabilities[top_k_indices[i]]*100))))

tiger cat : 37%
Egyptian cat : 27%
tabby : 16%
lynx : 10%
carton : 2%

Define a general Image Classification function
Let’s create a general function to give an image as input, and we get the Top-5
possible classes:

def image_classification(img_path, model_path, labels,
top_k_results=5):

load the image
img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis('off')

Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Image Classification 1405

Preprocess
img = img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))
input_data = np.expand_dims(img, axis=0)

Inference on Raspi-Zero
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

Obtain results and map them to the classes
predictions = interpreter.get_tensor(output_details[0]

['index'])[0]

Get indices of the top k results
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

Get quantization parameters
scale, zero_point = output_details[0]['quantization']

Dequantize the output and apply softmax
dequantized_output = (predictions.astype(np.float32) -

zero_point) * scale
exp_output = np.exp(dequantized_output -

np.max(dequantized_output))
probabilities = exp_output / np.sum(exp_output)

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print("\t{:20}: {}%".format(
labels[top_k_indices[i]],
(int(probabilities[top_k_indices[i]]*100))))

And loading some images for testing, we have:

Making inferences with Mobilenet V2 1406

Testing with a model trained from scratch

Let’s get a TFLite model trained from scratch. For that, you can follow the
Notebook:

CNN to classify Cifar-10 dataset

In the notebook, we trained a model using the CIFAR10 dataset, which
contains 60,000 images from 10 classes of CIFAR (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck). CIFAR has 32 × 32 color images (3 color
channels) where the objects are not centered and can have the object with a
background, such as airplanes that might have a cloudy sky behind them! In
short, small but real images.

The CNN trained model (cifar10_model.keras) had a size of 2.0MB. Using the
TFLite Converter, the model cifar10.tflite became with 674MB (around 1/3 of the
original size).

On the notebook Cifar 10 - Image Classification on a Raspi with TFLite
(which can be run over the Raspi), we can follow the same steps we did with the
mobilenet_v2_1.0_224_quant.tflite. Below are examples of images using
the General Function for Image Classification on a Raspi-Zero, as shown in the last
section.

https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/cifar_10/CNN_Cifar_10_TFLite.ipynb#scrollTo=iiVBUpuHXEtw
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/20_Cifar_10_Image_Classification.ipynb

Image Classification 1407

Installing Picamera2
Picamera2, a Python library for interacting with Raspberry Pi’s camera, is based
on the libcamera camera stack, and the Raspberry Pi foundation maintains it.
The Picamera2 library is supported on all Raspberry Pi models, from the Pi
Zero to the RPi 5. It is already installed system-wide on the Raspi, but we
should make it accessible within the virtual environment.

1. First, activate the virtual environment if it’s not already activated:

source ~/tflite/bin/activate

2. Now, let’s create a .pth file in your virtual environment to add the system
site-packages path:

echo "/usr/lib/python3/dist-packages" > \
$VIRTUAL_ENV/lib/python3.11/

site-packages/system_site_packages.pth

Note: If your Python version differs, replace python3.11 with
the appropriate version.

3. After creating this file, try importing picamera2 in Python:

python3
>>> import picamera2
>>> print(picamera2.__file__)

The above code will show the file location of the picamera2 module itself,
proving that the library can be accessed from the environment.

/home/mjrovai/tflite/lib/python3.11/site-packages/\
picamera2/__init__.py

You can also list the available cameras in the system:

>>> print(Picamera2.global_camera_info())

In my case, with a USB installed, I got:

https://github.com/raspberrypi/picamera2

Making inferences with Mobilenet V2 1408

Now that we’ve confirmed picamera2 is working in the environment with an
index 0, let’s try a simple Python script to capture an image from your USB
camera:

from picamera2 import Picamera2
import time

Initialize the camera
picam2 = Picamera2() # default is index 0

Configure the camera
config = picam2.create_still_configuration(

main={"size": (640, 480)})
picam2.configure(config)

Start the camera
picam2.start()

Wait for the camera to warm up
time.sleep(2)

Capture an image
picam2.capture_file("usb_camera_image.jpg")
print("Image captured and saved as 'usb_camera_image.jpg'")

Stop the camera
picam2.stop()

Use the Nano text editor, the Jupyter Notebook, or any other editor. Save this
as a Python script (e.g., capture_image.py) and run it. This should capture an
image from your camera and save it as “usb_camera_image.jpg” in the same
directory as your script.

Image Classification 1409

If the Jupyter is open, you can see the captured image on your computer.
Otherwise, transfer the file from the Raspi to your computer.

If you are working with a Raspi-5 with a whole desktop, you can
open the file directly on the device.

Image Classification Project
Now, we will develop a complete Image Classification project using the Edge
Impulse Studio. As we did with the Movilinet V2, the trained and converted
TFLite model will be used for inference.

The Goal
The first step in any ML project is to define its goal. In this case, it is to detect
and classify two specific objects present in one image. For this project, we will
use two small toys: a robot and a small Brazilian parrot (named Periquito). We
will also collect images of a background where those two objects are absent.

Image Classification Project 1410

Data Collection
Once we have defined our Machine Learning project goal, the next and most
crucial step is collecting the dataset. We can use a phone for the image capture,
but we will use the Raspi here. Let’s set up a simple web server on our Raspberry
Pi to view the QVGA (320 x 240) captured images in a browser.

1. First, let’s install Flask, a lightweight web framework for Python:

pip3 install flask

2. Let’s create a new Python script combining image capture with a web
server. We’ll call it get_img_data.py:

from flask import Flask, Response, render_template_string,
request, redirect, url_for

from picamera2 import Picamera2
import io
import threading
import time
import os
import signal

app = Flask(__name__)

Global variables
base_dir = "dataset"
picam2 = None
frame = None
frame_lock = threading.Lock()
capture_counts = {}
current_label = None
shutdown_event = threading.Event()

def initialize_camera():
global picam2
picam2 = Picamera2()
config = picam2.create_preview_configuration(

main={"size": (320, 240)}
)
picam2.configure(config)
picam2.start()
time.sleep(2) # Wait for camera to warm up

def get_frame():
global frame
while not shutdown_event.is_set():

stream = io.BytesIO()
picam2.capture_file(stream, format='jpeg')

Image Classification 1411

with frame_lock:
frame = stream.getvalue()

time.sleep(0.1) # Adjust as needed for smooth preview

def generate_frames():
while not shutdown_event.is_set():

with frame_lock:
if frame is not None:

yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' +

frame + b'\r\n')
time.sleep(0.1) # Adjust as needed for smooth streaming

def shutdown_server():
shutdown_event.set()
if picam2:

picam2.stop()
Give some time for other threads to finish
time.sleep(2)
Send SIGINT to the main process
os.kill(os.getpid(), signal.SIGINT)

@app.route('/', methods=['GET', 'POST'])
def index():

global current_label
if request.method == 'POST':

current_label = request.form['label']
if current_label not in capture_counts:

capture_counts[current_label] = 0
os.makedirs(os.path.join(base_dir, current_label),

exist_ok=True)
return redirect(url_for('capture_page'))

return render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture - Label Entry</title>
</head>
<body>

<h1>Enter Label for Dataset</h1>
<form method="post">

<input type="text" name="label" required>
<input type="submit" value="Start Capture">

</form>
</body>
</html>

''')

Image Classification Project 1412

@app.route('/capture')
def capture_page():

return render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture</title>
<script>

var shutdownInitiated = false;
function checkShutdown() {

if (!shutdownInitiated) {
fetch('/check_shutdown')

.then(response => response.json())

.then(data => {
if (data.shutdown) {

shutdownInitiated = true;
document.getElementById(

'video-feed').src = '';
document.getElementById(

'shutdown-message')
.style.display = 'block';

}
});

}
}
setInterval(checkShutdown, 1000); // Check

every second
</script>

</head>
<body>

<h1>Dataset Capture</h1>
<p>Current Label: {{ label }}</p>
<p>Images captured for this label: {{ capture_count

}}</p>
<img id="video-feed" src="{{ url_for('video_feed')

}}" width="640"
height="480" />
<div id="shutdown-message" style="display: none;

color: red;">
Capture process has been stopped.
You can close this window.

</div>
<form action="/capture_image" method="post">

<input type="submit" value="Capture Image">
</form>
<form action="/stop" method="post">

Image Classification 1413

<input type="submit" value="Stop Capture"
style="background-color: #ff6666;">

</form>
<form action="/" method="get">

<input type="submit" value="Change Label"
style="background-color: #ffff66;">

</form>
</body>
</html>

''', label=current_label, capture_count=capture_counts.get(
current_label, 0))

@app.route('/video_feed')
def video_feed():

return Response(generate_frames(),
mimetype='multipart/x-mixed-replace;
boundary=frame')

@app.route('/capture_image', methods=['POST'])
def capture_image():

global capture_counts
if current_label and not shutdown_event.is_set():

capture_counts[current_label] += 1
timestamp = time.strftime("%Y%m%d-%H%M%S")
filename = f"image_{timestamp}.jpg"
full_path = os.path.join(base_dir, current_label,

filename)

picam2.capture_file(full_path)

return redirect(url_for('capture_page'))

@app.route('/stop', methods=['POST'])
def stop():

summary = render_template_string('''
<!DOCTYPE html>
<html>
<head>

<title>Dataset Capture - Stopped</title>
</head>
<body>

<h1>Dataset Capture Stopped</h1>
<p>The capture process has been stopped.

You can close this window.</p>
<p>Summary of captures:</p>

{% for label, count in capture_counts.items() %}

Image Classification Project 1414

{{ label }}: {{ count }} images
{% endfor %}

</body>
</html>

''', capture_counts=capture_counts)

Start a new thread to shutdown the server
threading.Thread(target=shutdown_server).start()

return summary

@app.route('/check_shutdown')
def check_shutdown():

return {'shutdown': shutdown_event.is_set()}

if __name__ == '__main__':
initialize_camera()
threading.Thread(target=get_frame, daemon=True).start()
app.run(host='0.0.0.0', port=5000, threaded=True)

3. Run this script:

python3 get_img_data.py

4. Access the web interface:
• On the Raspberry Pi itself (if you have a GUI): Open a web browser

and go to http://localhost:5000
• From another device on the same network: Open a web browser and

go to http://<raspberry_pi_ip>:5000 (Replace <raspberry_pi_-
ip>with your Raspberry Pi’s IP address). For example: http://192.168.4.210:5000/

This Python script creates a web-based interface for capturing and organizing
image datasets using a Raspberry Pi and its camera. It’s handy for machine
learning projects that require labeled image data.

Key Features:

1. Web Interface: Accessible from any device on the same network as the
Raspberry Pi.

2. Live Camera Preview: This shows a real-time feed from the camera.
3. Labeling System: Allows users to input labels for different categories of

images.
4. Organized Storage: Automatically saves images in label-specific subdi-

rectories.

Image Classification 1415

5. Per-Label Counters: Keeps track of how many images are captured for
each label.

6. Summary Statistics: Provides a summary of captured images when
stopping the capture process.

Main Components:

1. Flask Web Application: Handles routing and serves the web interface.
2. Picamera2 Integration: Controls the Raspberry Pi camera.
3. Threaded Frame Capture: Ensures smooth live preview.
4. File Management: Organizes captured images into labeled directories.

Key Functions:

• initialize_camera(): Sets up the Picamera2 instance.
• get_frame(): Continuously captures frames for the live preview.
• generate_frames(): Yields frames for the live video feed.
• shutdown_server(): Sets the shutdown event, stops the camera, and

shuts down the Flask server
• index(): Handles the label input page.
• capture_page(): Displays the main capture interface.
• video_feed(): Shows a live preview to position the camera
• capture_image(): Saves an image with the current label.
• stop(): Stops the capture process and displays a summary.

Usage Flow:

1. Start the script on your Raspberry Pi.
2. Access the web interface from a browser.
3. Enter a label for the images you want to capture and press Start Capture.

4. Use the live preview to position the camera.
5. Click Capture Image to save images under the current label.

Image Classification Project 1416

6. Change labels as needed for different categories, selecting Change Label.
7. Click Stop Capture when finished to see a summary.

Technical Notes:

• The script uses threading to handle concurrent frame capture and web
serving.

• Images are saved with timestamps in their filenames for uniqueness.
• The web interface is responsive and can be accessed from mobile devices.

Customization Possibilities:

• Adjust image resolution in the initialize_camera() function. Here we
used QVGA (320×240).

• Modify the HTML templates for a different look and feel.
• Add additional image processing or analysis steps in the capture_-

image() function.

Image Classification 1417

Number of samples on Dataset:

Get around 60 images from each category (periquito, robot and background).
Try to capture different angles, backgrounds, and light conditions. On the
Raspi, we will end with a folder named dataset, witch contains 3 sub-folders
periquito, robot, and background. one for each class of images.

You can use Filezilla to transfer the created dataset to your main computer.

Training the model with Edge Impulse Studio
We will use the Edge Impulse Studio to train our model. Go to the Edge Impulse
Page, enter your account credentials, and create a new project:

Here, you can clone a similar project: Raspi - Img Class.

Dataset
We will walk through four main steps using the EI Studio (or Studio). These
steps are crucial in preparing our model for use on the Raspi: Dataset, Impulse,
Tests, and Deploy (on the Edge Device, in this case, the Raspi).

Regarding the Dataset, it is essential to point out that our Original
Dataset, captured with the Raspi, will be split into Training, Valida-
tion, and Test. The Test Set will be separated from the beginning and
reserved for use only in the Test phase after training. The Validation
Set will be used during training.

On Studio, follow the steps to upload the captured data:
1. Go to the Data acquisition tab, and in the UPLOAD DATA section, upload

the files from your computer in the chosen categories.
2. Leave to the Studio the splitting of the original dataset into train and test

and choose the label about
3. Repeat the procedure for all three classes. At the end, you should see

your “raw data” in the Studio:

https://edgeimpulse.com/
https://edgeimpulse.com/
https://studio.edgeimpulse.com/public/510251/live

The Impulse Design 1418

The Studio allows you to explore your data, showing a complete view of all
the data in your project. You can clear, inspect, or change labels by clicking on
individual data items. In our case, a straightforward project, the data seems
OK.

The Impulse Design
In this phase, we should define how to:

• Pre-process our data, which consists of resizing the individual images
and determining the color depth to use (be it RGB or Grayscale) and

• Specify a Model. In this case, it will be the Transfer Learning (Images)
to fine-tune a pre-trained MobileNet V2 image classification model on
our data. This method performs well even with relatively small image
datasets (around 180 images in our case).

Transfer Learning with MobileNet offers a streamlined approach to model
training, which is especially beneficial for resource-constrained environments
and projects with limited labeled data. MobileNet, known for its lightweight
architecture, is a pre-trained model that has already learned valuable features
from a large dataset (ImageNet).

Image Classification 1419

By leveraging these learned features, we can train a new model for your spe-
cific task with fewer data and computational resources and achieve competitive
accuracy.

This approach significantly reduces training time and computational cost,
making it ideal for quick prototyping and deployment on embedded devices
where efÏciency is paramount.

Go to the Impulse Design Tab and create the impulse, defining an image size
of 160 × 160 and squashing them (squared form, without cropping). Select
Image and Transfer Learning blocks. Save the Impulse.

The Impulse Design 1420

Image Pre-Processing
All the input QVGA/RGB565 images will be converted to 76,800 features (160×160×3).

Press Save parameters and select Generate features in the next tab.

Model Design
MobileNet is a family of efÏcient convolutional neural networks designed for
mobile and embedded vision applications. The key features of MobileNet are:

1. Lightweight: Optimized for mobile devices and embedded systems with
limited computational resources.

2. Speed: Fast inference times, suitable for real-time applications.
3. Accuracy: Maintains good accuracy despite its compact size.

MobileNetV2, introduced in 2018, improves the original MobileNet architec-
ture. Key features include:

1. Inverted Residuals: Inverted residual structures are used where shortcut
connections are made between thin bottleneck layers.

2. Linear Bottlenecks: Removes non-linearities in the narrow layers to pre-
vent the destruction of information.

https://arxiv.org/abs/1801.04381

Image Classification 1421

3. Depth-wise Separable Convolutions: Continues to use this efÏcient oper-
ation from MobileNetV1.

In our project, we will do a Transfer Learningwith the MobileNetV2 160x160
1.0, which means that the images used for training (and future inference)
should have an input Size of 160×160 pixels and a Width Multiplier of 1.0 (full
width, not reduced). This configuration balances between model size, speed,
and accuracy.

Model Training

Another valuable deep learning technique is Data Augmentation. Data aug-
mentation improves the accuracy of machine learning models by creating addi-
tional artificial data. A data augmentation system makes small, random changes
to the training data during the training process (such as flipping, cropping, or
rotating the images).

Looking under the hood, here you can see how Edge Impulse implements a
data Augmentation policy on your data:

Implements the data augmentation policy
def augment_image(image, label):

Flips the image randomly
image = tf.image.random_flip_left_right(image)

Increase the image size, then randomly crop it down to
the original dimensions
resize_factor = random.uniform(1, 1.2)
new_height = math.floor(resize_factor * INPUT_SHAPE[0])
new_width = math.floor(resize_factor * INPUT_SHAPE[1])
image = tf.image.resize_with_crop_or_pad(image, new_height,

new_width)
image = tf.image.random_crop(image, size=INPUT_SHAPE)

Vary the brightness of the image
image = tf.image.random_brightness(image, max_delta=0.2)

return image, label

Exposure to these variations during training can help prevent your model
from taking shortcuts by “memorizing” superficial clues in your training data,
meaning it may better reflect the deep underlying patterns in your dataset.

The final dense layer of our model will have 0 neurons with a 10% dropout
for overfitting prevention. Here is the Training result:

The Impulse Design 1422

The result is excellent, with a reasonable 35 ms of latency (for a Raspi-4),
which should result in around 30 fps (frames per second) during inference. A
Raspi-Zero should be slower, and the Raspi-5, faster.

Trading off: Accuracy versus speed
If faster inference is needed, we should train the model using smaller alphas
(0.35, 0.5, and 0.75) or even reduce the image input size, trading with accu-
racy. However, reducing the input image size and decreasing the alpha (width
multiplier) can speed up inference for MobileNet V2, but they have different
trade-offs. Let’s compare:

1. Reducing Image Input Size:

Pros:
• Significantly reduces the computational cost across all layers.
• Decreases memory usage.
• It often provides a substantial speed boost.

Cons:
• It may reduce the model’s ability to detect small features or fine details.
• It can significantly impact accuracy, especially for tasks requiring fine-

grained recognition.

2. Reducing Alpha (Width Multiplier):

Pros:
• Reduces the number of parameters and computations in the model.
• Maintains the original input resolution, potentially preserving more de-

tail.
• It can provide a good balance between speed and accuracy.

Cons:
• It may not speed up inference as dramatically as reducing input size.

Image Classification 1423

• It can reduce the model’s capacity to learn complex features.
Comparison:
1. Speed Impact:

• Reducing input size often provides a more substantial speed boost
because it reduces computations quadratically (halving both width
and height reduces computations by about 75%).

• Reducing alpha provides a more linear reduction in computations.

2. Accuracy Impact:
• Reducing input size can severely impact accuracy, especially when

detecting small objects or fine details.
• Reducing alpha tends to have a more gradual impact on accuracy.

3. Model Architecture:
• Changing input size doesn’t alter the model’s architecture.
• Changing alpha modifies the model’s structure by reducing the

number of channels in each layer.

Recommendation:
1. If our application doesn’t require detecting tiny details and can tolerate

some loss in accuracy, reducing the input size is often the most effective
way to speed up inference.

2. Reducing alpha might be preferable if maintaining the ability to detect
fine details is crucial or if you need a more balanced trade-off between
speed and accuracy.

3. For best results, you might want to experiment with both:
• Try MobileNet V2 with input sizes like 160×160 or 92×92
• Experiment with alpha values like 1.0, 0.75, 0.5 or 0.35.

4. Always benchmark the different configurations on your specific hardware
and with your particular dataset to find the optimal balance for your use
case.

Remember, the best choice depends on your specific requirements
for accuracy, speed, and the nature of the images you’re working
with. It’s often worth experimenting with combinations to find the
optimal configuration for your particular use case.

Model Testing
Now, you should take the data set aside at the start of the project and run the
trained model using it as input. Again, the result is excellent (92.22%).

Deploying the model
As we did in the previous section, we can deploy the trained model as .tflite
and use Raspi to run it using Python.

On the Dashboard tab, go to Transfer learning model (int8 quantized) and
click on the download icon:

The Impulse Design 1424

Let’s also download the float32 version for comparison

Transfer the model from your computer to the Raspi (./models), for example,
using FileZilla. Also, capture some images for inference (./images).

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Define the paths and labels:

img_path = "./images/robot.jpg"
model_path = "./models/ei-raspi-img-class-int8-quantized-\

model.tflite"
labels = ['background', 'periquito', 'robot']

Note that the models trained on the Edge Impulse Studio will output
values with index 0, 1, 2, etc., where the actual labels will follow an
alphabetic order.

Load the model, allocate the tensors, and get the input and output tensor
details:

Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Image Classification 1425

Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

One important difference to note is that the dtype of the input details of the
model is now int8, which means that the input values go from –128 to +127,
while each pixel of our image goes from 0 to 255. This means that we should
pre-process the image to match it. We can check here:

input_dtype = input_details[0]['dtype']
input_dtype

numpy.int8

So, let’s open the image and show it:

img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis('off')
plt.show()

And perform the pre-processing:

scale, zero_point = input_details[0]['quantization']
img = img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (

(img_array / scale + zero_point)
.clip(-128, 127)
.astype(np.int8)

)
input_data = np.expand_dims(img_array, axis=0)

The Impulse Design 1426

Checking the input data, we can verify that the input tensor is compatible
with what is expected by the model:

input_data.shape, input_data.dtype

((1, 160, 160, 3), dtype('int8'))

Now, it is time to perform the inference. Let’s also calculate the latency of
the model:

Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (end_time - start_time) * 1000 # Convert

to milliseconds
print ("Inference time: {:.1f}ms".format(inference_time))

The model will take around 125ms to perform the inference in the Raspi-Zero,
which is 3 to 4 times longer than a Raspi-5.

Now, we can get the output labels and probabilities. It is also important
to note that the model trained on the Edge Impulse Studio has a softmax in
its output (different from the original Movilenet V2), and we should use the
model’s raw output as the “probabilities.”

Obtain results and map them to the classes
predictions = interpreter.get_tensor(output_details[0]

['index'])[0]

Get indices of the top k results
top_k_results=3
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

Get quantization parameters
scale, zero_point = output_details[0]['quantization']

Dequantize the output
dequantized_output = (predictions.astype(np.float32) -

zero_point) * scale
probabilities = dequantized_output

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print("\t{:20}: {:.2f}%".format(
labels[top_k_indices[i]],
probabilities[top_k_indices[i]] * 100))

Image Classification 1427

Let’s modify the function created before so that we can handle different type
of models:

def image_classification(img_path, model_path, labels,
top_k_results=3, apply_softmax=False):

Load the image
img = Image.open(img_path)
plt.figure(figsize=(4, 4))
plt.imshow(img)
plt.axis('off')

Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Preprocess
img = img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))

input_dtype = input_details[0]['dtype']

if input_dtype == np.uint8:
input_data = np.expand_dims(np.array(img), axis=0)

elif input_dtype == np.int8:
scale, zero_point = input_details[0]['quantization']
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (

img_array / scale
+ zero_point

).clip(-128, 127).astype(np.int8)
input_data = np.expand_dims(img_array, axis=0)

else: # float32
input_data = np.expand_dims(

np.array(img, dtype=np.float32),
axis=0

) / 255.0

The Impulse Design 1428

Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (end_time -

start_time
) * 1000 # Convert to milliseconds

Obtain results
predictions = interpreter.get_tensor(output_details[0]

['index'])[0]

Get indices of the top k results
top_k_indices = np.argsort(predictions)[::-1][:top_k_results]

Handle output based on type
output_dtype = output_details[0]['dtype']
if output_dtype in [np.int8, np.uint8]:

Dequantize the output
scale, zero_point = output_details[0]['quantization']
predictions = (predictions.astype(np.float32) -

zero_point) * scale

if apply_softmax:
Apply softmax
exp_preds = np.exp(predictions - np.max(predictions))
probabilities = exp_preds / np.sum(exp_preds)

else:
probabilities = predictions

print("\n\t[PREDICTION] [Prob]\n")
for i in range(top_k_results):

print("\t{:20}: {:.1f}%".format(
labels[top_k_indices[i]],
probabilities[top_k_indices[i]] * 100))

print ("\n\tInference time: {:.1f}ms".format(inference_time))

And test it with different images and the int8 quantized model (160x160
alpha =1.0).

Image Classification 1429

Let’s download a smaller model, such as the one trained for the Nicla Vision
Lab (int8 quantized model, 96x96, alpha = 0.1), as a test. We can use the same
function:

The model lost some accuracy, but it is still OK once our model does not look
for many details. Regarding latency, we are around ten times faster on the
Raspi-Zero.

Live Image Classification
Let’s develop an app to capture images with the USB camera in real time,
showing its classification.

Using the nano on the terminal, save the code below, such as img_class_-
live_infer.py.

from flask import Flask, Response, render_template_string,
request, jsonify

from picamera2 import Picamera2
import io
import threading
import time
import numpy as np
from PIL import Image
import tflite_runtime.interpreter as tflite
from queue import Queue

https://studio.edgeimpulse.com/public/353482/live
https://studio.edgeimpulse.com/public/353482/live

Live Image Classification 1430

app = Flask(__name__)

Global variables
picam2 = None
frame = None
frame_lock = threading.Lock()
is_classifying = False
confidence_threshold = 0.8
model_path = "./models/ei-raspi-img-class-int8-quantized-\

model.tflite"
labels = ['background', 'periquito', 'robot']
interpreter = None
classification_queue = Queue(maxsize=1)

def initialize_camera():
global picam2
picam2 = Picamera2()
config = picam2.create_preview_configuration(

main={"size": (320, 240)}
)
picam2.configure(config)
picam2.start()
time.sleep(2) # Wait for camera to warm up

def get_frame():
global frame
while True:

stream = io.BytesIO()
picam2.capture_file(stream, format='jpeg')
with frame_lock:

frame = stream.getvalue()
time.sleep(0.1) # Capture frames more frequently

def generate_frames():
while True:

with frame_lock:
if frame is not None:

yield (
b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n'
+ frame + b'\r\n'

)
time.sleep(0.1)

def load_model():
global interpreter
if interpreter is None:

Image Classification 1431

interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

return interpreter

def classify_image(img, interpreter):
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

img = img.resize((input_details[0]['shape'][1],
input_details[0]['shape'][2]))

input_data = np.expand_dims(np.array(img), axis=0)\
.astype(input_details[0]['dtype'])

interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

predictions = interpreter.get_tensor(output_details[0]
['index'])[0]

Handle output based on type
output_dtype = output_details[0]['dtype']
if output_dtype in [np.int8, np.uint8]:

Dequantize the output
scale, zero_point = output_details[0]['quantization']
predictions = (predictions.astype(np.float32) -

zero_point) * scale
return predictions

def classification_worker():
interpreter = load_model()
while True:

if is_classifying:
with frame_lock:

if frame is not None:
img = Image.open(io.BytesIO(frame))

predictions = classify_image(img, interpreter)
max_prob = np.max(predictions)
if max_prob >= confidence_threshold:

label = labels[np.argmax(predictions)]
else:

label = 'Uncertain'
classification_queue.put({

'label': label,
'probability': float(max_prob)

})
time.sleep(0.1) # Adjust based on your needs

@app.route('/')

Live Image Classification 1432

def index():
return render_template_string('''

<!DOCTYPE html>
<html>
<head>

<title>Image Classification</title>
<script
src="https://code.jquery.com/jquery-3.6.0.min.js">

</script>
<script>

function startClassification() {
$.post('/start');
$('#startBtn').prop('disabled', true);
$('#stopBtn').prop('disabled', false);

}
function stopClassification() {

$.post('/stop');
$('#startBtn').prop('disabled', false);
$('#stopBtn').prop('disabled', true);

}
function updateConfidence() {

var confidence = $('#confidence').val();
$.post('/update_confidence',

{confidence: confidence}
);

}
function updateClassification() {

$.get('/get_classification', function(data) {
$('#classification').text(data.label + ': '
+ data.probability.toFixed(2));

});
}
$(document).ready(function() {

setInterval(updateClassification, 100);
// Update every 100ms

});
</script>

</head>
<body>

<h1>Image Classification</h1>
<img src="{{ url_for('video_feed') }}"

width="640"
height="480" />

<button id="startBtn"

onclick="startClassification()">

Image Classification 1433

Start Classification
</button>

<button id="stopBtn"
onclick="stopClassification()"
disabled>

Stop Classification
</button>

<label for="confidence">Confidence Threshold:</label>
<input type="number"

id="confidence"
name="confidence"
min="0" max="1"
step="0.1"
value="0.8"
onchange="updateConfidence()" />

<div id="classification">

Waiting for classification...
</div>

</body>
</html>

''')

@app.route('/video_feed')
def video_feed():

return Response(
generate_frames(),
mimetype='multipart/x-mixed-replace; boundary=frame'

)

@app.route('/start', methods=['POST'])
def start_classification():

global is_classifying
is_classifying = True
return '', 204

@app.route('/stop', methods=['POST'])
def stop_classification():

global is_classifying
is_classifying = False
return '', 204

Live Image Classification 1434

@app.route('/update_confidence', methods=['POST'])
def update_confidence():

global confidence_threshold
confidence_threshold = float(request.form['confidence'])
return '', 204

@app.route('/get_classification')
def get_classification():

if not is_classifying:
return jsonify({'label': 'Not classifying',

'probability': 0})
try:

result = classification_queue.get_nowait()
except Queue.Empty:

result = {'label': 'Processing', 'probability': 0}
return jsonify(result)

if __name__ == '__main__':
initialize_camera()
threading.Thread(target=get_frame, daemon=True).start()
threading.Thread(target=classification_worker,

daemon=True).start()
app.run(host='0.0.0.0', port=5000, threaded=True)

On the terminal, run:

python3 img_class_live_infer.py

And access the web interface:
• On the Raspberry Pi itself (if you have a GUI): Open a web browser and

go to http://localhost:5000
• From another device on the same network: Open a web browser and go

to http://<raspberry_pi_ip>:5000 (Replace <raspberry_pi_ip> with
your Raspberry Pi’s IP address). For example: http://192.168.4.210:5000/

Here are some screenshots of the app running on an external desktop

Image Classification 1435

Here, you can see the app running on the YouTube:
https://www.youtube.com/watch?v=o1QsQrpCMw4
The code creates a web application for real-time image classification using a

Raspberry Pi, its camera module, and a TensorFlow Lite model. The application
uses Flask to serve a web interface where is possible to view the camera feed
and see live classification results.

Key Components:

1. Flask Web Application: Serves the user interface and handles requests.
2. PiCamera2: Captures images from the Raspberry Pi camera module.
3. TensorFlow Lite: Runs the image classification model.
4. Threading: Manages concurrent operations for smooth performance.

Main Features:

• Live camera feed display
• Real-time image classification
• Adjustable confidence threshold
• Start/Stop classification on demand

Code Structure:

1. Imports and Setup:
• Flask for web application
• PiCamera2 for camera control
• TensorFlow Lite for inference
• Threading and Queue for concurrent operations

2. Global Variables:
• Camera and frame management
• Classification control
• Model and label information

3. Camera Functions:
• initialize_camera(): Sets up the PiCamera2
• get_frame(): Continuously captures frames
• generate_frames(): Yields frames for the web feed

4. Model Functions:
• load_model(): Loads the TFLite model
• classify_image(): Performs inference on a single image

5. Classification Worker:
• Runs in a separate thread
• Continuously classifies frames when active

https://www.youtube.com/watch?v=o1QsQrpCMw4

Conclusion: 1436

• Updates a queue with the latest results

6. Flask Routes:
• /: Serves the main HTML page
• /video_feed: Streams the camera feed
• /start and /stop: Controls classification
• /update_confidence: Adjusts the confidence threshold
• /get_classification: Returns the latest classification result

7. HTML Template:
• Displays camera feed and classification results
• Provides controls for starting/stopping and adjusting settings

8. Main Execution:
• Initializes camera and starts necessary threads
• Runs the Flask application

Key Concepts:

1. Concurrent Operations: Using threads to handle camera capture and
classification separately from the web server.

2. Real-time Updates: Frequent updates to the classification results without
page reloads.

3. Model Reuse: Loading the TFLite model once and reusing it for efÏciency.
4. FlexibleConfiguration: Allowing users to adjust the confidence threshold

on the fly.

Usage:

1. Ensure all dependencies are installed.
2. Run the script on a Raspberry Pi with a camera module.
3. Access the web interface from a browser using the Raspberry Pi’s IP

address.
4. Start classification and adjust settings as needed.

Conclusion:
Image classification has emerged as a powerful and versatile application of ma-
chine learning, with significant implications for various fields, from healthcare
to environmental monitoring. This chapter has demonstrated how to imple-
ment a robust image classification system on edge devices like the Raspi-Zero
and Raspi-5, showcasing the potential for real-time, on-device intelligence.

We’ve explored the entire pipeline of an image classification project, from
data collection and model training using Edge Impulse Studio to deploying
and running inferences on a Raspi. The process highlighted several key points:

Image Classification 1437

1. The importance of proper data collection and preprocessing for training
effective models.

2. The power of transfer learning, allowing us to leverage pre-trained models
like MobileNet V2 for efÏcient training with limited data.

3. The trade-offs between model accuracy and inference speed, especially
crucial for edge devices.

4. The implementation of real-time classification using a web-based interface,
demonstrating practical applications.

The ability to run these models on edge devices like the Raspi opens up
numerous possibilities for IoT applications, autonomous systems, and real-time
monitoring solutions. It allows for reduced latency, improved privacy, and
operation in environments with limited connectivity.

As we’ve seen, even with the computational constraints of edge devices, it’s
possible to achieve impressive results in terms of both accuracy and speed.
The flexibility to adjust model parameters, such as input size and alpha values,
allows for fine-tuning to meet specific project requirements.

Looking forward, the field of edge AI and image classification continues to
evolve rapidly. Advances in model compression techniques, hardware accelera-
tion, and more efÏcient neural network architectures promise to further expand
the capabilities of edge devices in computer vision tasks.

This project serves as a foundation for more complex computer vision appli-
cations and encourages further exploration into the exciting world of edge AI
and IoT. Whether it’s for industrial automation, smart home applications, or
environmental monitoring, the skills and concepts covered here provide a solid
starting point for a wide range of innovative projects.

Resources
• Dataset Example
• Setup Test Notebook on a Raspi
• Image Classification Notebook on a Raspi
• CNN to classify Cifar-10 dataset at CoLab
• Cifar 10 - Image Classification on a Raspi
• Python Scripts
• Edge Impulse Project

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/IMG_CLASS/dataset
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/setup_test.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/10_Image_Classification.ipynb
https://colab.research.google.com/github/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1/blob/main/00_Curse_Folder/2_Applications_Deploy/Class_16/cifar_10/CNN_Cifar_10_TFLite.ipynb#scrollTo=iiVBUpuHXEtw
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/notebooks/20_Cifar_10_Image_Classification.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/IMG_CLASS/python_scripts
https://studio.edgeimpulse.com/public/510251/live

Object Detection

Figure 20.19: DALL·E prompt - A
cover image for an ‘Object Detection’
chapter in a Raspberry Pi tutorial, de-
signed in the same vintage 1950s elec-
tronics lab style as previous covers.
The scene should prominently feature
wheels and cubes, similar to those pro-
vided by the user, placed on a workbench
in the foreground. A Raspberry Pi with
a connected camera module should be
capturing an image of these objects. Sur-
round the scene with classic lab tools
like soldering irons, resistors, and wires.
The lab background should include vin-
tage equipment like oscilloscopes and
tube radios, maintaining the detailed
and nostalgic feel of the era. No text or
logos should be included.

Overview
Building upon our exploration of image classification, we now turn our atten-
tion to a more advanced computer vision task: object detection. While image
classification assigns a single label to an entire image, object detection goes
further by identifying and locating multiple objects within a single image. This

1439

Overview 1440

capability opens up many new applications and challenges, particularly in edge
computing and IoT devices like the Raspberry Pi.

Object detection combines the tasks of classification and localization. It not
only determines what objects are present in an image but also pinpoints their
locations by, for example, drawing bounding boxes around them. This added
complexity makes object detection a more powerful tool for understanding
visual scenes, but it also requires more sophisticated models and training
techniques.

In edge AI, where we work with constrained computational resources, im-
plementing efÏcient object detection models becomes crucial. The challenges
we faced with image classification—balancing model size, inference speed, and
accuracy—are amplified in object detection. However, the rewards are also
more significant, as object detection enables more nuanced and detailed visual
data analysis.

Some applications of object detection on edge devices include:
1. Surveillance and security systems
2. Autonomous vehicles and drones
3. Industrial quality control
4. Wildlife monitoring
5. Augmented reality applications

As we put our hands into object detection, we’ll build upon the concepts and
techniques we explored in image classification. We’ll examine popular object
detection architectures designed for efÏciency, such as:

• Single Stage Detectors, such as MobileNet and EfÏcientDet,
• FOMO (Faster Objects, More Objects), and
• YOLO (You Only Look Once).

To learn more about object detection models, follow the tutorial A
Gentle Introduction to Object Recognition With Deep Learning.

We will explore those object detection models using
• TensorFlow Lite Runtime (now changed to LiteRT),
• Edge Impulse Linux Python SDK and
• Ultralitics

https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://ai.google.dev/edge/litert

Object Detection 1441

Throughout this lab, we’ll cover the fundamentals of object detection and
how it differs from image classification. We’ll also learn how to train, fine-tune,
test, optimize, and deploy popular object detection architectures using a dataset
created from scratch.

Object Detection Fundamentals
Object detection builds upon the foundations of image classification but extends
its capabilities significantly. To understand object detection, it’s crucial first to
recognize its key differences from image classification:

Image Classification vs. Object Detection

Image Classification:
• Assigns a single label to an entire image
• Answers the question: “What is this image’s primary object or scene?”
• Outputs a single class prediction for the whole image

Object Detection:
• Identifies and locates multiple objects within an image
• Answers the questions: “What objects are in this image, and where are

they located?”
• Outputs multiple predictions, each consisting of a class label and a bound-

ing box

To visualize this difference, let’s consider an example:

This diagram illustrates the critical difference: image classification provides
a single label for the entire image, while object detection identifies multiple
objects, their classes, and their locations within the image.

Key Components of Object Detection

Object detection systems typically consist of two main components:
1. Object Localization: This component identifies where objects are located

in the image. It typically outputs bounding boxes, rectangular regions
encompassing each detected object.

Pre-Trained Object Detection Models Overview 1442

2. Object Classification: This component determines the class or category of
each detected object, similar to image classification but applied to each
localized region.

Challenges in Object Detection

Object detection presents several challenges beyond those of image classifica-
tion:

• Multiple objects: An image may contain multiple objects of various classes,
sizes, and positions.

• Varying scales: Objects can appear at different sizes within the image.
• Occlusion: Objects may be partially hidden or overlapping.
• Background clutter: Distinguishing objects from complex backgrounds

can be challenging.
• Real-time performance: Many applications require fast inference times,

especially on edge devices.

Approaches to Object Detection

There are two main approaches to object detection:
1. Two-stage detectors: These first propose regions of interest and then

classify each region. Examples include R-CNN and its variants (Fast
R-CNN, Faster R-CNN).

2. Single-stage detectors: These predict bounding boxes (or centroids) and
class probabilities in one forward pass of the network. Examples include
YOLO (You Only Look Once), EfÏcientDet, SSD (Single Shot Detector),
and FOMO (Faster Objects, More Objects). These are often faster and
more suitable for edge devices like Raspberry Pi.

Evaluation Metrics

Object detection uses different metrics compared to image classification:
• Intersection over Union (IoU): Measures the overlap between predicted

and ground truth bounding boxes.
• Mean Average Precision (mAP): Combines precision and recall across

all classes and IoU thresholds.
• Frames Per Second (FPS): Measures detection speed, crucial for real-time

applications on edge devices.

Pre-Trained Object Detection Models Overview
As we saw in the introduction, given an image or a video stream, an object
detection model can identify which of a known set of objects might be present
and provide information about their positions within the image.

You can test some common models online by visiting Object Detec-
tion - MediaPipe Studio

https://mediapipe-studio.webapps.google.com/studio/demo/object_detector
https://mediapipe-studio.webapps.google.com/studio/demo/object_detector

Object Detection 1443

On Kaggle, we can find the most common pre-trained tflite models to use
with the Raspi, ssd_mobilenet_v1, and EfÏcientDet. Those models were trained
on the COCO (Common Objects in Context) dataset, with over 200,000 labeled
images in 91 categories. Go, download the models, and upload them to the
./models folder in the Raspi.

Alternatively, you can find the models and the COCO labels on
GitHub.

For the first part of this lab, we will focus on a pre-trained 300 × 300 SSD-
Mobilenet V1 model and compare it with the 320×320 EfÏcientDet-lite0, also
trained using the COCO 2017 dataset. Both models were converted to a Tensor-
Flow Lite format (4.2 MB for the SSD Mobilenet and 4.6 MB for the EfÏcientDet).

SSD-Mobilenet V2 or V3 is recommended for transfer learning
projects, but once the V1 TFLite model is publicly available, we
will use it for this overview.

Setting Up the TFLite Environment

We should confirm the steps done on the last Hands-On Lab, Image Classifica-
tion, as follows:

• Updating the Raspberry Pi
• Installing Required Libraries
• Setting up a Virtual Environment (Optional but Recommended)

source ~/tflite/bin/activate

• Installing TensorFlow Lite Runtime
• Installing Additional Python Libraries (inside the environment)

Creating a Working Directory:

Considering that we have created the Documents/TFLITE folder in the last Lab,
let’s now create the specific folders for this object detection lab:

https://www.kaggle.com/models?id=298,130,299
https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v1/tfLite
https://www.kaggle.com/models/tensorflow/efficientdet/tfLite
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/models
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/models

Pre-Trained Object Detection Models Overview 1444

cd Documents/TFLITE/
mkdir OBJ_DETECT
cd OBJ_DETECT
mkdir images
mkdir models
cd models

Inference and Post-Processing

Let’s start a new notebook to follow all the steps to detect objects on an image:
Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tflite_runtime.interpreter as tflite

Load the TFLite model and allocate tensors:

model_path = "./models/ssd-mobilenet-v1-tflite-default-v1.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors.

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

Input details will inform us how the model should be fed with an image.
The shape of (1, 300, 300, 3) with a dtype of uint8 tells us that a non-
normalized (pixel value range from 0 to 255) image with dimensions (300 ×300×3) should be input one by one (Batch Dimension: 1).

The output details include not only the labels (“classes”) and probabilities
(“scores”) but also the relative window position of the bounding boxes (“boxes”)
about where the object is located on the image and the number of detected
objects (“num_detections”). The output details also tell us that the model can
detect a maximum of 10 objects in the image.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_MobileNetV1.ipynb

Object Detection 1445

So, for the above example, using the same cat image used with the Image
Classification Lab looking for the output, we have a 76% probability of having
found an object with a class ID of 16 on an area delimited by a bounding box
of [0.028011084, 0.020121813, 0.9886069, 0.802299]. Those four numbers are
related to ymin, xmin, ymax and xmax, the box coordinates.

Taking into consideration that y goes from the top (ymin) to the bottom (ymax)
and x goes from left (xmin) to the right (xmax), we have, in fact, the coordinates
of the top/left corner and the bottom/right one. With both edges and knowing
the shape of the picture, it is possible to draw a rectangle around the object, as
shown in the figure below:

Next, we should find what class ID equal to 16 means. Opening the file coco_-
labels.txt, as a list, each element has an associated index, and inspecting
index 16, we get, as expected, cat. The probability is the value returning from
the score.

Let’s now upload some images with multiple objects on it for testing.

img_path = "./images/cat_dog.jpeg"
orig_img = Image.open(img_path)

Pre-Trained Object Detection Models Overview 1446

Display the image
plt.figure(figsize=(8, 8))
plt.imshow(orig_img)
plt.title("Original Image")
plt.show()

Based on the input details, let’s pre-process the image, changing its shape
and expanding its dimension:

img = orig_img.resize((input_details[0]['shape'][1],
input_details[0]['shape'][2]))

input_data = np.expand_dims(img, axis=0)
input_data.shape, input_data.dtype

The new input_data shape is(1, 300, 300, 3)with a dtype of uint8, which
is compatible with what the model expects.

Using the input_data, let’s run the interpreter, measure the latency, and get
the output:

start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (end_time -

start_time) * 1000 # Convert to milliseconds
print ("Inference time: {:.1f}ms".format(inference_time))

With a latency of around 800 ms, we can get 4 distinct outputs:

boxes = interpreter.get_tensor(output_details[0]['index'])[0]
classes = interpreter.get_tensor(output_details[1]['index'])[0]
scores = interpreter.get_tensor(output_details[2]['index'])[0]
num_detections = int(interpreter.get_tensor(output_details[3]

['index'])[0])

Object Detection 1447

On a quick inspection, we can see that the model detected 2 objects with a
score over 0.5:

for i in range(num_detections):
if scores[i] > 0.5: # Confidence threshold

print(f"Object {i}:")
print(f" Bounding Box: {boxes[i]}")
print(f" Confidence: {scores[i]}")
print(f" Class: {classes[i]}")

And we can also visualize the results:

plt.figure(figsize=(12, 8))
plt.imshow(orig_img)
for i in range(num_detections):

if scores[i] > 0.5: # Adjust threshold as needed
ymin, xmin, ymax, xmax = boxes[i]
(left, right, top, bottom) = (xmin * orig_img.width,

xmax * orig_img.width,
ymin * orig_img.height,
ymax * orig_img.height)

rect = plt.Rectangle((left, top), right-left, bottom-top,
fill=False, color='red', linewidth=2)

plt.gca().add_patch(rect)
class_id = int(classes[i])
class_name = labels[class_id]
plt.text(left, top-10, f'{class_name}: {scores[i]:.2f}',

color='red', fontsize=12, backgroundcolor='white')

Pre-Trained Object Detection Models Overview 1448

EfÏcientDet
EfÏcientDet is not technically an SSD (Single Shot Detector) model, but it shares
some similarities and builds upon ideas from SSD and other object detection
architectures:

1. EfÏcientDet:
• Developed by Google researchers in 2019
• Uses EfÏcientNet as the backbone network
• Employs a novel bi-directional feature pyramid network (BiFPN)
• It uses compound scaling to scale the backbone network and the

object detection components efÏciently.

2. Similarities to SSD:
• Both are single-stage detectors, meaning they perform object local-

ization and classification in a single forward pass.
• Both use multi-scale feature maps to detect objects at different scales.

3. Key differences:
• Backbone: SSD typically uses VGG or MobileNet, while EfÏcientDet

uses EfÏcientNet.
• Feature fusion: SSD uses a simple feature pyramid, while EfÏcient-

Det uses the more advanced BiFPN.
• Scaling method: EfÏcientDet introduces compound scaling for all

components of the network

4. Advantages of EfÏcientDet:
• Generally achieves better accuracy-efÏciency trade-offs than SSD

and many other object detection models.
• More flexible scaling allows for a family of models with different

size-performance trade-offs.

Object Detection 1449

While EfÏcientDet is not an SSD model, it can be seen as an evolution of
single-stage detection architectures, incorporating more advanced techniques
to improve efÏciency and accuracy. When using EfÏcientDet, we can expect
similar output structures to SSD (e.g., bounding boxes and class scores).

On GitHub, you can find another notebook exploring the EfÏcient-
Det model that we did with SSD MobileNet.

Object Detection Project
Now, we will develop a complete Image Classification project from data col-
lection to training and deployment. As we did with the Image Classification
project, the trained and converted model will be used for inference.

We will use the same dataset to train 3 models: SSD-MobileNet V2, FOMO,
and YOLO.

The Goal
All Machine Learning projects need to start with a goal. Let’s assume we are in
an industrial facility and must sort and count wheels and special boxes.

In other words, we should perform a multi-label classification, where each
image can have three classes:

• Background (no objects)
• Box
• Wheel

Raw Data Collection
Once we have defined our Machine Learning project goal, the next and most
crucial step is collecting the dataset. We can use a phone, the Raspi, or a mix to
create the raw dataset (with no labels). Let’s use the simple web app on our
Raspberry Pi to view the QVGA (320 x 240) captured images in a browser.

From GitHub, get the Python script get_img_data.py and open it in the
terminal:

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_EfficientDet.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/IMG_CLASS/python_scripts/get_img_data.py

Object Detection Project 1450

python3 get_img_data.py

Access the web interface:
• On the Raspberry Pi itself (if you have a GUI): Open a web browser and

go to http://localhost:5000
• From another device on the same network: Open a web browser and go to

http://<raspberry_pi_ip>:5000 (Replacewith your Raspberry Pi's
IP address). For example:http://192.168.4.210:5000/‘

The Python script creates a web-based interface for capturing and organizing
image datasets using a Raspberry Pi and its camera. It’s handy for machine
learning projects that require labeled image data or not, as in our case here.

Access the web interface from a browser, enter a generic label for the images
you want to capture, and press Start Capture.

Note that the images to be captured will have multiple labels that
should be defined later.

Use the live preview to position the camera and click Capture Image to save
images under the current label (in this case, box-wheel.

Object Detection 1451

When we have enough images, we can press Stop Capture. The captured
images are saved on the folder dataset/box-wheel:

Get around 60 images. Try to capture different angles, backgrounds,
and light conditions. Filezilla can transfer the created raw dataset
to your main computer.

Labeling Data
The next step in an Object Detect project is to create a labeled dataset. We
should label the raw dataset images, creating bounding boxes around each
picture’s objects (box and wheel). We can use labeling tools like LabelImg,
CVAT, Roboflow, or even the Edge Impulse Studio. Once we have explored the
Edge Impulse tool in other labs, let’s use Roboflow here.

https://pypi.org/project/labelImg/
https://www.cvat.ai/
https://roboflow.com/annotate
https://edgeimpulse.com/

Object Detection Project 1452

We are using Roboflow (free version) here for two main reasons. 1)
We can have auto-labeler, and 2) The annotated dataset is available
in several formats and can be used both on Edge Impulse Studio
(we will use it for MobileNet V2 and FOMO train) and on CoLab
(YOLOv8 train), for example. Having the annotated dataset on Edge
Impulse (Free account), it is not possible to use it for training on
other platforms.

We should upload the raw dataset to Roboflow. Create a free account there
and start a new project, for example, (“box-versus-wheel”).

We will not enter in deep details about the Roboflow process once
many tutorials are available.

Annotate

Once the project is created and the dataset is uploaded, you should make the
annotations using the “Auto-Label” Tool. Note that you can also upload images
with only a background, which should be saved w/o any annotations.

https://roboflow.com/

Object Detection 1453

Once all images are annotated, you should split them into training, validation,
and testing.

Data Pre-Processing

The last step with the dataset is preprocessing to generate a final version for
training. Let’s resize all images to 320×320 and generate augmented versions
of each image (augmentation) to create new training examples from which our
model can learn.

For augmentation, we will rotate the images (+/-15o), crop, and vary the
brightness and exposure.

Object Detection Project 1454

At the end of the process, we will have 153 images.

Now, you should export the annotated dataset in a format that Edge Impulse,
Ultralitics, and other frameworks/tools understand, for example, YOLOv8. Let’s
download a zipped version of the dataset to our desktop.

Object Detection 1455

Here, it is possible to review how the dataset was structured

There are 3 separate folders, one for each split (train/test/valid). For each
of them, there are 2 subfolders, images, and labels. The pictures are stored as
image_id.jpg and images_id.txt, where “image_id” is unique for every picture.

The labels file format will be class_id bounding box coordinates, where
in our case, class_id will be 0 for box and 1 for wheel. The numerical id (o, 1,
2…) will follow the alphabetical order of the class name.

The data.yaml file has info about the dataset as the classes’ names (names:
['box', 'wheel']) following the YOLO format.

Training an SSD MobileNet Model on Edge Impulse Studio 1456

And that’s it! We are ready to start training using the Edge Impulse Studio
(as we will do in the following step), Ultralytics (as we will when discussing
YOLO), or even training from scratch on CoLab (as we did with the Cifar-10
dataset on the Image Classification lab).

The pre-processed dataset can be found at the Roboflow site, or
here:

Training an SSD MobileNet Model on Edge Impulse Studio
Go to Edge Impulse Studio, enter your credentials at Login (or create an ac-
count), and start a new project.

Here, you can clone the project developed for this hands-on lab:
Raspi - Object Detection.

On the Project Dashboard tab, go down and on Project info, and for Labeling
method select Bounding boxes (object detection)

Uploading the annotated data
On Studio, go to the Data acquisition tab, and on the UPLOAD DATA section,
upload from your computer the raw dataset.

We can use the option Select a folder, choosing, for example, the folder
train in your computer, which contains two sub-folders, images, and labels.
Select the Image label format, “YOLO TXT”, upload into the caegory Training,
and press Upload data.

Repeat the process for the test data (upload both folders, test, and validation).
At the end of the upload process, you should end with the annotated dataset of
153 images split in the train/test (84%/16%).

https://universe.roboflow.com/marcelo-rovai-riila/box-versus-wheel-auto-dataset
https://www.edgeimpulse.com/
https://studio.edgeimpulse.com/public/515477/live

Object Detection 1457

Note that labels will be stored at the labels files 0 and 1 , which are
equivalent to box and wheel.

The Impulse Design
The first thing to define when we enter the Create impulse step is to describe
the target device for deployment. A pop-up window will appear. We will select
Raspberry 4, an intermediary device between the Raspi-Zero and the Raspi-5.

This choice will not interfere with the training; it will only give us
an idea about the latency of the model on that specific target.

In this phase, you should define how to:

Training an SSD MobileNet Model on Edge Impulse Studio 1458

• Pre-processing consists of resizing the individual images. In our case, the
images were pre-processed on Roboflow, to 320x320 , so let’s keep it. The
resize will not matter here because the images are already squared. If you
upload a rectangular image, squash it (squared form, without cropping).
Afterward, you could define if the images are converted from RGB to
Grayscale or not.

• Design a Model, in this case, “Object Detection.”

Preprocessing all dataset
In the section Image, select Color depth as RGB, and press Save parameters.

Object Detection 1459

The Studio moves automatically to the next section, Generate features,
where all samples will be pre-processed, resulting in 480 objects: 207 boxes and
273 wheels.

The feature explorer shows that all samples evidence a good separation after
the feature generation.

Model Design, Training, and Test

For training, we should select a pre-trained model. Let’s use the MobileNetV2
SSD FPN-Lite (320x320 only) . It is a pre-trained object detection model de-
signed to locate up to 10 objects within an image, outputting a bounding box
for each object detected. The model is around 3.7 MB in size. It supports an
RGB input at 320×320 px.

Regarding the training hyper-parameters, the model will be trained with:

• Epochs: 25
• Batch size: 32
• Learning Rate: 0.15.

For validation during training, 20% of the dataset (validation_dataset) will be
spared.

Training an SSD MobileNet Model on Edge Impulse Studio 1460

As a result, the model ends with an overall precision score (based on COCO
mAP) of 88.8%, higher than the result when using the test data (83.3%).

Deploying the model
We have two ways to deploy our model:

• TFLite model, which lets deploy the trained model as .tflite for the
Raspi to run it using Python.

• Linux (AARCH64), a binary for Linux (AARCH64), implements the Edge
Impulse Linux protocol, which lets us run our models on any Linux-
based development board, with SDKs for Python, for example. See the
documentation for more information and setup instructions.

Let’s deploy the TFLite model. On the Dashboard tab, go to Transfer learning
model (int8 quantized) and click on the download icon:

https://docs.edgeimpulse.com/docs/edge-impulse-for-linux

Object Detection 1461

Transfer the model from your computer to the Raspi folder./models and
capture or get some images for inference and save them in the folder ./images.

Inference and Post-Processing
The inference can be made as discussed in the Pre-Trained Object DetectionModels
Overview. Let’s start a new notebook to follow all the steps to detect cubes and
wheels on an image.

Import the needed libraries:

import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import tflite_runtime.interpreter as tflite

Define the model path and labels:

model_path = "./models/ei-raspi-object-detection-SSD-\
MobileNetv2-320x0320-int8.lite"

labels = ['box', 'wheel']

Remember that the model will output the class ID as values (0 and
1), following an alphabetic order regarding the class names.

Load the model, allocate the tensors, and get the input and output tensor
details:

Load the TFLite model
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()

Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

One crucial difference to note is that the dtype of the input details of the
model is now int8, which means that the input values go from –128 to +127,
while each pixel of our raw image goes from 0 to 256. This means that we
should pre-process the image to match it. We can check here:

input_dtype = input_details[0]['dtype']
input_dtype

numpy.int8

So, let’s open the image and show it:

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-SSD-MobileNetV2.ipynb

Training an SSD MobileNet Model on Edge Impulse Studio 1462

Load the image
img_path = "./images/box_2_wheel_2.jpg"
orig_img = Image.open(img_path)

Display the image
plt.figure(figsize=(6, 6))
plt.imshow(orig_img)
plt.title("Original Image")
plt.show()

And perform the pre-processing:

scale, zero_point = input_details[0]['quantization']
img = orig_img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (

(img_array / scale + zero_point)
.clip(-128, 127)
.astype(np.int8)

)
input_data = np.expand_dims(img_array, axis=0)

Checking the input data, we can verify that the input tensor is compatible
with what is expected by the model:

input_data.shape, input_data.dtype

Object Detection 1463

((1, 320, 320, 3), dtype('int8'))

Now, it is time to perform the inference. Let’s also calculate the latency of
the model:

Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (

(end_time - start_time)
* 1000 # Convert to milliseconds

)
print ("Inference time: {:.1f}ms".format(inference_time))

The model will take around 600ms to perform the inference in the Raspi-Zero,
which is around 5 times longer than a Raspi-5.

Now, we can get the output classes of objects detected, its bounding boxes
coordinates, and probabilities.

boxes = interpreter.get_tensor(output_details[1]['index'])[0]
classes = interpreter.get_tensor(output_details[3]['index'])[0]
scores = interpreter.get_tensor(output_details[0]['index'])[0]
num_detections = int(

interpreter.get_tensor(
output_details[2]['index']

)[0]
)

for i in range(num_detections):
if scores[i] > 0.5: # Confidence threshold

print(f"Object {i}:")
print(f" Bounding Box: {boxes[i]}")
print(f" Confidence: {scores[i]}")
print(f" Class: {classes[i]}")

Training an SSD MobileNet Model on Edge Impulse Studio 1464

From the results, we can see that 4 objects were detected: two with class ID 0
(box)and two with class ID 1 (wheel), what is correct!

Let’s visualize the result for a threshold of 0.5

threshold = 0.5
plt.figure(figsize=(6,6))
plt.imshow(orig_img)
for i in range(num_detections):

if scores[i] > threshold:
ymin, xmin, ymax, xmax = boxes[i]
(left, right, top, bottom) = (xmin * orig_img.width,

xmax * orig_img.width,
ymin * orig_img.height,
ymax * orig_img.height)

rect = plt.Rectangle((left, top), right-left, bottom-top,
fill=False, color='red', linewidth=2)

plt.gca().add_patch(rect)
class_id = int(classes[i])
class_name = labels[class_id]
plt.text(left, top-10, f'{class_name}: {scores[i]:.2f}',

color='red', fontsize=12, backgroundcolor='white')

Object Detection 1465

But what happens if we reduce the threshold to 0.3, for example?

Training an SSD MobileNet Model on Edge Impulse Studio 1466

We start to see false positives and multiple detections, where the model
detects the same object multiple times with different confidence levels and
slightly different bounding boxes.

Commonly, sometimes, we need to adjust the threshold to smaller values
to capture all objects, avoiding false negatives, which would lead to multiple
detections.

To improve the detection results, we should implement Non-Maximum
Suppression (NMS), which helps eliminate overlapping bounding boxes and
keeps only the most confident detection.

For that, let’s create a general function named non_max_suppression(), with
the role of refining object detection results by eliminating redundant and over-
lapping bounding boxes. It achieves this by iteratively selecting the detection
with the highest confidence score and removing other significantly overlapping
detections based on an Intersection over Union (IoU) threshold.

def non_max_suppression(boxes, scores, threshold):
Convert to corner coordinates
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]

areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]

keep = []
while order.size > 0:

i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])

w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)

inds = np.where(ovr <= threshold)[0]
order = order[inds + 1]

return keep

How it works:
1. Sorting: It starts by sorting all detections by their confidence scores, high-

est to lowest.

Object Detection 1467

2. Selection: It selects the highest-scoring box and adds it to the final list of
detections.

3. Comparison: This selected box is compared with all remaining lower-
scoring boxes.

4. Elimination: Any box that overlaps significantly (above the IoU threshold)
with the selected box is eliminated.

5. Iteration: This process repeats with the next highest-scoring box until all
boxes are processed.

Now, we can define a more precise visualization function that will take into
consideration an IoU threshold, detecting only the objects that were selected
by the non_max_suppression function:

def visualize_detections(image, boxes, classes, scores,
labels, threshold, iou_threshold):

if isinstance(image, Image.Image):
image_np = np.array(image)

else:
image_np = image

height, width = image_np.shape[:2]
Convert normalized coordinates to pixel coordinates
boxes_pixel = boxes * np.array([height, width, height, width])
Apply NMS
keep = non_max_suppression(boxes_pixel, scores, iou_threshold)
Set the figure size to 12x8 inches
fig, ax = plt.subplots(1, figsize=(12, 8))
ax.imshow(image_np)
for i in keep:

if scores[i] > threshold:
ymin, xmin, ymax, xmax = boxes[i]
rect = patches.Rectangle(

(xmin * width, ymin * height),
(xmax - xmin) * width,
(ymax - ymin) * height,
linewidth=2,
edgecolor='r',
facecolor='none'

)

ax.add_patch(rect)
class_name = labels[int(classes[i])]
ax.text(xmin * width, ymin * height - 10,

f'{class_name}: {scores[i]:.2f}', color='red',
fontsize=12, backgroundcolor='white')

plt.show()

Now we can create a function that will call the others, performing inference
on any image:

Training an SSD MobileNet Model on Edge Impulse Studio 1468

def detect_objects(img_path, conf=0.5, iou=0.5):
orig_img = Image.open(img_path)
scale, zero_point = input_details[0]['quantization']
img = orig_img.resize((input_details[0]['shape'][1],

input_details[0]['shape'][2]))
img_array = np.array(img, dtype=np.float32) / 255.0
img_array = (img_array / scale + zero_point).\
clip(-128, 127).astype(np.int8)
input_data = np.expand_dims(img_array, axis=0)

Inference on Raspi-Zero
start_time = time.time()
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
end_time = time.time()
inference_time = (

end_time - start_time
) * 1000 # Convert to milliseconds

print ("Inference time: {:.1f}ms".format(inference_time))

Extract the outputs
boxes = interpreter.get_tensor(output_details[1]['index'])[0]
classes = interpreter.get_tensor(

output_details[3]['index']
)[0]
scores = interpreter.get_tensor(

output_details[0]['index']
)[0]
num_detections = int(

interpreter.get_tensor(
output_details[2]['index']

)[0]
)

visualize_detections(orig_img, boxes, classes,
scores, labels, threshold=conf,
iou_threshold=iou)

Now, running the code, having the same image again with a confidence
threshold of 0.3, but with a small IoU:

img_path = "./images/box_2_wheel_2.jpg"
detect_objects(img_path, conf=0.3,iou=0.05)

Object Detection 1469

Training a FOMO Model at Edge Impulse Studio

The inference with the SSD MobileNet model worked well, but the latency was
significantly high. The inference varied from 0.5 to 1.3 seconds on a Raspi-Zero,
which means around or less than 1 FPS (1 frame per second). One alternative
to speed up the process is to use FOMO (Faster Objects, More Objects).

This novel machine learning algorithm lets us count multiple objects and find
their location in an image in real-time using up to 30× less processing power
and memory than MobileNet SSD or YOLO. The main reason this is possible is
that while other models calculate the object’s size by drawing a square around
it (bounding box), FOMO ignores the size of the image, providing only the
information about where the object is located in the image through its centroid
coordinates.

How FOMO works?

In a typical object detection pipeline, the first stage is extracting features from
the input image. FOMO leverages MobileNetV2 to perform this task. Mo-
bileNetV2 processes the input image to produce a feature map that captures
essential characteristics, such as textures, shapes, and object edges, in a compu-
tationally efÏcient way.

Training a FOMO Model at Edge Impulse Studio 1470

Once these features are extracted, FOMO’s simpler architecture, focused on
center-point detection, interprets the feature map to determine where objects
are located in the image. The output is a grid of cells, where each cell represents
whether or not an object center is detected. The model outputs one or more
confidence scores for each cell, indicating the likelihood of an object being
present.

Let’s see how it works on an image.

FOMO divides the image into blocks of pixels using a factor of 8. For the
input of 96 × 96, the grid would be 12 × 12 (96/8 = 12). For a 160 × 160, the
grid will be 20×20, and so on. Next, FOMO will run a classifier through each
pixel block to calculate the probability that there is a box or a wheel in each of
them and, subsequently, determine the regions that have the highest probability
of containing the object (If a pixel block has no objects, it will be classified as
background). From the overlap of the final region, the FOMO provides the
coordinates (related to the image dimensions) of the centroid of this region.

Object Detection 1471

Trade-off Between Speed and Precision:
• Grid Resolution: FOMO uses a grid of fixed resolution, meaning each

cell can detect if an object is present in that part of the image. While it
doesn’t provide high localization accuracy, it makes a trade-off by being
fast and computationally light, which is crucial for edge devices.

• Multi-Object Detection: Since each cell is independent, FOMO can de-
tect multiple objects simultaneously in an image by identifying multiple
centers.

Impulse Design, new Training and Testing
Return to Edge Impulse Studio, and in the Experiments tab, create another
impulse. Now, the input images should be 160×160 (this is the expected input
size for MobilenetV2).

On the Image tab, generate the features and go to the Object detection tab.
We should select a pre-trained model for training. Let’s use the FOMO

(Faster Objects, More Objects) MobileNetV2 0.35.

Training a FOMO Model at Edge Impulse Studio 1472

Regarding the training hyper-parameters, the model will be trained with:
• Epochs: 30
• Batch size: 32
• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset) will be
spared. We will not apply Data Augmentation for the remaining 80% (train_-
dataset) because our dataset was already augmented during the labeling phase
at Roboflow.

As a result, the model ends with an overall F1 score of 93.3% with an im-
pressive latency of 8 ms (Raspi-4), around 60× less than we got with the SSD
MovileNetV2.

Note that FOMO automatically added a third label background to
the two previously defined boxes (0) and wheels (1).

On the Model testing tab, we can see that the accuracy was 94%. Here is
one of the test sample results:

Object Detection 1473

In object detection tasks, accuracy is generally not the primary eval-
uation metric. Object detection involves classifying objects and
providing bounding boxes around them, making it a more com-
plex problem than simple classification. The issue is that we do not
have the bounding box, only the centroids. In short, using accuracy
as a metric could be misleading and may not provide a complete
understanding of how well the model is performing.

Deploying the model

As we did in the previous section, we can deploy the trained model as TFLite
or Linux (AARCH64). Let’s do it now as Linux (AARCH64), a binary that
implements the Edge Impulse Linux protocol.

Edge Impulse for Linux models is delivered in .eim format. This executable
contains our “full impulse” created in Edge Impulse Studio. The impulse
consists of the signal processing block(s) and any learning and anomaly block(s)
we added and trained. It is compiled with optimizations for our processor or
GPU (e.g., NEON instructions on ARM cores), plus a straightforward IPC layer
(over a Unix socket).

At the Deploy tab, select the option Linux (AARCH64), the int8model and
press Build.

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/
https://docs.edgeimpulse.com/docs/tools/edge-impulse-for-linux
https://docs.edgeimpulse.com/docs/run-inference/linux-eim-executable

Training a FOMO Model at Edge Impulse Studio 1474

The model will be automatically downloaded to your computer.
On our Raspi, let’s create a new working area:

cd ~
cd Documents
mkdir EI_Linux
cd EI_Linux
mkdir models
mkdir images

Rename the model for easy identification:
For example, raspi-object-detection-linux-aarch64-FOMO-int8.eim and

transfer it to the new Raspi folder./models and capture or get some images for
inference and save them in the folder ./images.

Inference and Post-Processing
The inference will be made using the Linux Python SDK. This library lets us
run machine learning models and collect sensor data on Linux machines using
Python. The SDK is open source and hosted on GitHub: edgeimpulse/linux-
sdk-python.

https://docs.edgeimpulse.com/docs/tools/edge-impulse-for-linux/linux-python-sdk
https://docs.edgeimpulse.com/docs/tools/edge-impulse-for-linux
https://github.com/edgeimpulse/linux-sdk-python
https://github.com/edgeimpulse/linux-sdk-python

Object Detection 1475

Let’s set up a Virtual Environment for working with the Linux Python SDK

python3 -m venv ~/eilinux
source ~/eilinux/bin/activate

And Install the all the libraries needed:

sudo apt-get update
sudo apt-get install libatlas-base-dev\

libportaudio0 libportaudio2
sudo apt-get installlibportaudiocpp0 portaudio19-dev

pip3 install edge_impulse_linux -i https://pypi.python.org/simple
pip3 install Pillow matplotlib pyaudio opencv-contrib-python

sudo apt-get install portaudio19-dev
pip3 install pyaudio
pip3 install opencv-contrib-python

Permit our model to be executable.

chmod +x raspi-object-detection-linux-aarch64-FOMO-int8.eim

Install the Jupiter Notebook on the new environment

pip3 install jupyter

Run a notebook locally (on the Raspi-4 or 5 with desktop)

jupyter notebook

or on the browser on your computer:

jupyter notebook --ip=192.168.4.210 --no-browser

Let’s start a new notebook by following all the steps to detect cubes and
wheels on an image using the FOMO model and the Edge Impulse Linux
Python SDK.

Import the needed libraries:

import sys, time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
import cv2
from edge_impulse_linux.image import ImageImpulseRunner

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-Linux-FOMO.ipynb

Training a FOMO Model at Edge Impulse Studio 1476

Define the model path and labels:

model_file = "raspi-object-detection-linux-aarch64-int8.eim"
model_path = "models/"+ model_file # Trained ML model from

Edge Impulse
labels = ['box', 'wheel']

Remember that the model will output the class ID as values (0 and
1), following an alphabetic order regarding the class names.

Load and initialize the model:

Load the model file
runner = ImageImpulseRunner(model_path)

Initialize model
model_info = runner.init()

The model_info will contain critical information about our model. However,
unlike the TFLite interpreter, the EI Linux Python SDK library will now prepare
the model for inference.

So, let’s open the image and show it (Now, for compatibility, we will use
OpenCV, the CV Library used internally by EI. OpenCV reads the image as
BGR, so we will need to convert it to RGB :

Load the image
img_path = "./images/1_box_1_wheel.jpg"
orig_img = cv2.imread(img_path)
img_rgb = cv2.cvtColor(orig_img, cv2.COLOR_BGR2RGB)

Display the image
plt.imshow(img_rgb)
plt.title("Original Image")
plt.show()

Object Detection 1477

Now we will get the features and the preprocessed image (cropped) using
the runner:

features, cropped = runner.\
get_features_from_image_auto_studio_settings(img_rgb)

And perform the inference. Let’s also calculate the latency of the model:

res = runner.classify(features)

Let’s get the output classes of objects detected, their bounding boxes centroids,
and probabilities.

print('Found %d bounding boxes (%d ms.)' % (
len(res["result"]["bounding_boxes"]),
res['timing']['dsp'] + res['timing']['classification']))

for bb in res["result"]["bounding_boxes"]:
print('\t%s (%.2f): x=%d y=%d w=%d h=%d' % (
bb['label'], bb['value'], bb['x'],
bb['y'], bb['width'], bb['height']))

Found 2 bounding boxes (29 ms.)
1 (0.91): x=112 y=40 w=16 h=16
0 (0.75): x=48 y=56 w=8 h=8

The results show that two objects were detected: one with class ID 0 (box)
and one with class ID 1 (wheel), which is correct!

Let’s visualize the result (The threshold is 0.5, the default value set during
the model testing on the Edge Impulse Studio).

Training a FOMO Model at Edge Impulse Studio 1478

print('\tFound %d bounding boxes (latency: %d ms)' % (
len(res["result"]["bounding_boxes"]),
res['timing']['dsp'] + res['timing']['classification']))

plt.figure(figsize=(5,5))
plt.imshow(cropped)

Go through each of the returned bounding boxes
bboxes = res['result']['bounding_boxes']
for bbox in bboxes:

Get the corners of the bounding box
left = bbox['x']
top = bbox['y']
width = bbox['width']
height = bbox['height']

Draw a circle centered on the detection
circ = plt.Circle((left+width//2, top+height//2), 5,

fill=False, color='red', linewidth=3)
plt.gca().add_patch(circ)
class_id = int(bbox['label'])
class_name = labels[class_id]
plt.text(left, top-10, f'{class_name}: {bbox["value"]:.2f}',

color='red', fontsize=12, backgroundcolor='white')
plt.show()

Object Detection 1479

Exploring a YOLO Model using Ultralitics
For this lab, we will explore YOLOv8. Ultralytics YOLOv8 is a version of the
acclaimed real-time object detection and image segmentation model, YOLO.
YOLOv8 is built on cutting-edge advancements in deep learning and com-
puter vision, offering unparalleled performance in terms of speed and accuracy.
Its streamlined design makes it suitable for various applications and easily
adaptable to different hardware platforms, from edge devices to cloud APIs.

Talking about the YOLO Model
The YOLO (You Only Look Once) model is a highly efÏcient and widely used
object detection algorithm known for its real-time processing capabilities. Un-
like traditional object detection systems that repurpose classifiers or localizers
to perform detection, YOLO frames the detection problem as a single regres-
sion task. This innovative approach enables YOLO to simultaneously predict
multiple bounding boxes and their class probabilities from full images in one
evaluation, significantly boosting its speed.

Key Features:
1. Single Network Architecture:

• YOLO employs a single neural network to process the entire image.
This network divides the image into a grid and, for each grid cell,
directly predicts bounding boxes and associated class probabilities.
This end-to-end training improves speed and simplifies the model
architecture.

2. Real-Time Processing:
• One of YOLO’s standout features is its ability to perform object

detection in real-time. Depending on the version and hardware,
YOLO can process images at high frames per second (FPS). This
makes it ideal for applications requiring quick and accurate object
detection, such as video surveillance, autonomous driving, and live
sports analysis.

3. Evolution of Versions:
• Over the years, YOLO has undergone significant improvements, from

YOLOv1 to the latest YOLOv10. Each iteration has introduced en-
hancements in accuracy, speed, and efÏciency. YOLOv8, for instance,
incorporates advancements in network architecture, improved train-
ing methodologies, and better support for various hardware, ensur-
ing a more robust performance.

• Although YOLOv10 is the family’s newest member with an encour-
aging performance based on its paper, it was just released (May 2024)
and is not fully integrated with the Ultralitycs library. Conversely,
the precision-recall curve analysis suggests that YOLOv8 generally
outperforms YOLOv9, capturing a higher proportion of true pos-
itives while minimizing false positives more effectively (for more
details, see this article). So, this lab is based on the YOLOv8n.

https://ultralytics.com/
https://github.com/ultralytics/ultralytics
https://encord.com/blog/performanceyolov9-vs-yolov8-custom-dataset/

Exploring a YOLO Model using Ultralitics 1480

4. Accuracy and EfÏciency:

• While early versions of YOLO traded off some accuracy for speed,
recent versions have made substantial strides in balancing both. The
newer models are faster and more accurate, detecting small objects
(such as bees) and performing well on complex datasets.

5. Wide Range of Applications:

• YOLO’s versatility has led to its adoption in numerous fields. It
is used in trafÏc monitoring systems to detect and count vehicles,
security applications to identify potential threats and agricultural
technology to monitor crops and livestock. Its application extends
to any domain requiring efÏcient and accurate object detection.

6. Community and Development:

• YOLO continues to evolve and is supported by a strong community of
developers and researchers (being the YOLOv8 very strong). Open-
source implementations and extensive documentation have made
it accessible for customization and integration into various projects.
Popular deep learning frameworks like Darknet, TensorFlow, and
PyTorch support YOLO, further broadening its applicability.

• Ultralitics YOLOv8 can not only Detect (our case here) but also Seg-
ment and Pose models pre-trained on the COCO dataset and YOLOv8
Classify models pre-trained on the ImageNet dataset. Track mode is
available for all Detect, Segment, and Pose models.

https://github.com/ultralytics/ultralytics?tab=readme-ov-file
https://docs.ultralytics.com/tasks/detect
https://docs.ultralytics.com/tasks/segment
https://docs.ultralytics.com/tasks/segment
https://docs.ultralytics.com/tasks/pose
https://docs.ultralytics.com/datasets/detect/coco
https://docs.ultralytics.com/tasks/classify
https://docs.ultralytics.com/datasets/classify/imagenet
https://docs.ultralytics.com/modes/track

Object Detection 1481

Figure 20.20: Ultralytics YOLO sup-
ported tasks

Installation
On our Raspi, let’s deactivate the current environment to create a new working
area:

deactivate
cd ~
cd Documents/
mkdir YOLO
cd YOLO
mkdir models
mkdir images

Let’s set up a Virtual Environment for working with the Ultralytics YOLOv8

python3 -m venv ~/yolo
source ~/yolo/bin/activate

And install the Ultralytics packages for local inference on the Raspi
1. Update the packages list, install pip, and upgrade to the latest:

sudo apt update
sudo apt install python3-pip -y
pip install -U pip

2. Install the ultralytics pip package with optional dependencies:

pip install ultralytics[export]

3. Reboot the device:

sudo reboot

Testing the YOLO
After the Raspi-Zero booting, let’s activate the yolo env, go to the working
directory,

Exploring a YOLO Model using Ultralitics 1482

source ~/yolo/bin/activate
cd /Documents/YOLO

and run inference on an image that will be downloaded from the Ultralytics
website, using the YOLOV8n model (the smallest in the family) at the Terminal
(CLI):

yolo predict model='yolov8n' \
source='https://ultralytics.com/images/bus.jpg'

The YOLO model family is pre-trained with the COCO dataset.

The inference result will appear in the terminal. In the image (bus.jpg), 4
persons, 1 bus, and 1 stop signal were detected:

Also, we got a message that Results saved to runs/detect/predict. In-
specting that directory, we can see a new image saved (bus.jpg). Let’s download
it from the Raspi-Zero to our desktop for inspection:

Object Detection 1483

So, the Ultrayitics YOLO is correctly installed on our Raspi. But, on the
Raspi-Zero, an issue is the high latency for this inference, around 18 seconds,
even with the most miniature model of the family (YOLOv8n).

Export Model to NCNN format
Deploying computer vision models on edge devices with limited computational
power, such as the Raspi-Zero, can cause latency issues. One alternative is to
use a format optimized for optimal performance. This ensures that even devices
with limited processing power can handle advanced computer vision tasks
well.

Of all the model export formats supported by Ultralytics, the NCNN is a
high-performance neural network inference computing framework optimized
for mobile platforms. From the beginning of the design, NCNN was deeply
considerate about deployment and use on mobile phones and did not have
third-party dependencies. It is cross-platform and runs faster than all known
open-source frameworks (such as TFLite).

https://docs.ultralytics.com/integrations/ncnn

Exploring a YOLO Model using Ultralitics 1484

NCNN delivers the best inference performance when working with Rasp-
berry Pi devices. NCNN is highly optimized for mobile embedded platforms
(such as ARM architecture).

So, let’s convert our model and rerun the inference:
1. Export a YOLOv8n PyTorch model to NCNN format, creating: ‘/yolov8n_-

ncnn_model’

yolo export model=yolov8n.pt format=ncnn

2. Run inference with the exported model (now the source could be the
bus.jpg image that was downloaded from the website to the current
directory on the last inference):

yolo predict model='./yolov8n_ncnn_model' source='bus.jpg'

The first inference, when the model is loaded, usually has a high
latency (around 17s), but from the 2nd, it is possible to note that the
inference goes down to around 2s.

Exploring YOLO with Python
To start, let’s call the Python Interpreter so we can explore how the YOLO model
works, line by line:

python3

Now, we should call the YOLO library from Ultralitics and load the model:

from ultralytics import YOLO
model = YOLO('yolov8n_ncnn_model')

Next, run inference over an image (let’s use again bus.jpg):

img = 'bus.jpg'
result = model.predict(img, save=True, imgsz=640, conf=0.5,

iou=0.3)

Object Detection 1485

We can verify that the result is almost identical to the one we get running the
inference at the terminal level (CLI), except that the bus stop was not detected
with the reduced NCNN model. Note that the latency was reduced.

Let’s analyze the “result” content.
For example, we can see result[0].boxes.data, showing us the main in-

ference result, which is a tensor shape (4, 6). Each line is one of the objects
detected, being the 4 first columns, the bounding boxes coordinates, the 5th,
the confidence, and the 6th, the class (in this case, 0: person and 5: bus):

We can access several inference results separately, as the inference time, and
have it printed in a better format:

inference_time = int(result[0].speed['inference'])
print(f"Inference Time: {inference_time} ms")

Or we can have the total number of objects detected:

print(f'Number of objects: {len (result[0].boxes.cls)}')

With Python, we can create a detailed output that meets our needs (See Model
Prediction with Ultralytics YOLO for more details). Let’s run a Python script
instead of manually entering it line by line in the interpreter, as shown below.
Let’s use nano as our text editor. First, we should create an empty Python script
named, for example, yolov8_tests.py:

nano yolov8_tests.py

Enter with the code lines:

https://docs.ultralytics.com/modes/predict/
https://docs.ultralytics.com/modes/predict/

Exploring a YOLO Model using Ultralitics 1486

from ultralytics import YOLO

Load the YOLOv8 model
model = YOLO('yolov8n_ncnn_model')

Run inference
img = 'bus.jpg'
result = model.predict(img, save=False, imgsz=640,

conf=0.5, iou=0.3)

print the results
inference_time = int(result[0].speed['inference'])
print(f"Inference Time: {inference_time} ms")
print(f'Number of objects: {len (result[0].boxes.cls)}')

And enter with the commands: [CTRL+O] + [ENTER] +[CTRL+X] to save the
Python script.

Run the script:

python yolov8_tests.py

The result is the same as running the inference at the terminal level (CLI)
and with the built-in Python interpreter.

Calling the YOLO library and loading the model for inference for
the first time takes a long time, but the inferences after that will be
much faster. For example, the first single inference can take several
seconds, but after that, the inference time should be reduced to less
than 1 second.

Object Detection 1487

Training YOLOv8 on a Customized Dataset

Return to our “Box versus Wheel” dataset, labeled on Roboflow. On the
Download Dataset, instead of Download a zip to computer option done for
training on Edge Impulse Studio, we will opt for Show download code. This
option will open a pop-up window with a code snippet that should be pasted
into our training notebook.

For training, let’s adapt one of the public examples available from Ultralitytics
and run it on Google Colab. Below, you can find mine to be adapted in your
project:

• YOLOv8 Box versus Wheel Dataset Training [Open In Colab]

Critical points on the Notebook:

1. Run it with GPU (the NVidia T4 is free)
2. Install Ultralytics using PIP.

https://universe.roboflow.com/marcelo-rovai-riila/box-versus-wheel-auto-dataset
https://colab.research.google.com/github/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/yolov8_box_vs_wheel.ipynb

Exploring a YOLO Model using Ultralitics 1488

3. Now, you can import the YOLO and upload your dataset to the CoLab,
pasting the Download code that we get from Roboflow. Note that our
dataset will be mounted under /content/datasets/:

4. It is essential to verify and change the file data.yaml with the correct
path for the images (copy the path on each images folder).

names:
- box
- wheel
nc: 2
roboflow:

license: CC BY 4.0
project: box-versus-wheel-auto-dataset
url: https://universe.roboflow.com/marcelo-rovai-riila/ \

box-versus-wheel-auto-dataset/dataset/5
version: 5
workspace: marcelo-rovai-riila

test: /content/datasets/Box-versus-Wheel-auto-dataset-5/ \
test/images

train: /content/datasets/Box-versus-Wheel-auto-dataset-5/ \
train/images

val: /content/datasets/Box-versus-Wheel-auto-dataset-5/ \
valid/images

Object Detection 1489

5. Define the main hyperparameters that you want to change from default,
for example:

MODEL = 'yolov8n.pt'
IMG_SIZE = 640
EPOCHS = 25 # For a final project, you should consider

at least 100 epochs

6. Run the training (using CLI):

!yolo task=detect mode=train model={MODEL} \
data={dataset.location}/data.yaml \
epochs={EPOCHS}
imgsz={IMG_SIZE} plots=True

Figure 20.21:
image-20240910111319804

The model took a few minutes to be trained and has an excellent result
(mAP50 of 0.995). At the end of the training, all results are saved in the folder
listed, for example: /runs/detect/train/. There, you can find, for example,
the confusion matrix.

Exploring a YOLO Model using Ultralitics 1490

7. Note that the trained model (best.pt) is saved in the folder /runs/detect/train/weights/.
Now, you should validate the trained model with the valid/images.

!yolo task=detect mode=val model={HOME}/runs/detect/train/\
weights/best.pt data={dataset.location}/data.yaml

The results were similar to training.

8. Now, we should perform inference on the images left aside for testing

!yolo task=detect mode=predict model={HOME}/runs/detect/train/\
weights/best.pt conf=0.25 source={dataset.location}/test/\
images save=True

The inference results are saved in the folder runs/detect/predict. Let’s see
some of them:

Object Detection 1491

9. It is advised to export the train, validation, and test results for a Drive at
Google. To do so, we should mount the drive.
from google.colab import drive
drive.mount('/content/gdrive')

and copy the content of /runs folder to a folder that you should create in
your Drive, for example:

!scp -r /content/runs '/content/gdrive/MyDrive/\
10_UNIFEI/Box_vs_Wheel_Project'

Inference with the trained model, using the Raspi
Download the trained model /runs/detect/train/weights/best.pt to your
computer. Using the FileZilla FTP, let’s transfer the best.pt to the Raspi models
folder (before the transfer, you may change the model name, for example, box_-
wheel_320_yolo.pt).

Using the FileZilla FTP, let’s transfer a few images from the test dataset to
.\YOLO\images:

Let’s return to the YOLO folder and use the Python Interpreter:

cd ..
python

As before, we will import the YOLO library and define our converted model
to detect bees:

from ultralytics import YOLO
model = YOLO('./models/box_wheel_320_yolo.pt')

Now, let’s define an image and call the inference (we will save the image
result this time to external verification):

Object Detection on a live stream 1492

img = './images/1_box_1_wheel.jpg'
result = model.predict(img, save=True, imgsz=320,

conf=0.5, iou=0.3)

Let’s repeat for several images. The inference result is saved on the variable
result, and the processed image on runs/detect/predict8

Using FileZilla FTP, we can send the inference result to our Desktop for
verification:

We can see that the inference result is excellent! The model was trained based
on the smaller base model of the YOLOv8 family (YOLOv8n). The issue is the
latency, around 1 second (or 1 FPS on the Raspi-Zero). Of course, we can reduce
this latency and convert the model to TFLite or NCNN.

Object Detection on a live stream
All the models explored in this lab can detect objects in real-time using a camera.
The captured image should be the input for the trained and converted model.
For the Raspi-4 or 5 with a desktop, OpenCV can capture the frames and display
the inference result.

However, creating a live stream with a webcam to detect objects in real-time
is also possible. For example, let’s start with the script developed for the Image
Classification app and adapt it for a Real-Time Object Detection Web Application
Using TensorFlow Lite and Flask.

This app version will work for all TFLite models. Verify if the model is in its
correct folder, for example:

Object Detection 1493

model_path = "./models/ssd-mobilenet-v1-tflite-default-v1.tflite"

Download the Python script object_detection_app.py from GitHub.
And on the terminal, run:

python3 object_detection_app.py

And access the web interface:
• On the Raspberry Pi itself (if you have a GUI): Open a web browser and

go to http://localhost:5000
• From another device on the same network: Open a web browser and go

to http://<raspberry_pi_ip>:5000 (Replace <raspberry_pi_ip> with
your Raspberry Pi’s IP address). For example: http://192.168.4.210:
5000/

Here are some screenshots of the app running on an external desktop

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/python_scripts/object_detection_app.py

Object Detection on a live stream 1494

Let’s see a technical description of the key modules used in the object detec-
tion application:

1. TensorFlow Lite (tflite_runtime):
• Purpose: EfÏcient inference of machine learning models on edge

devices.
• Why: TFLite offers reduced model size and optimized performance

compared to full TensorFlow, which is crucial for resource-constrained
devices like Raspberry Pi. It supports hardware acceleration and
quantization, further improving efÏciency.

• Key functions: Interpreter for loading and running the model,
get_input_details(), and get_output_details() for interfacing
with the model.

2. Flask:
• Purpose: Lightweight web framework for creating the backend

server.
• Why: Flask’s simplicity and flexibility make it ideal for rapidly devel-

oping and deploying web applications. It’s less resource-intensive
than larger frameworks suitable for edge devices.

• Key components: route decorators for defining API endpoints, Response
objects for streaming video, render_template_string for serving
dynamic HTML.

3. Picamera2:
• Purpose: Interface with the Raspberry Pi camera module.
• Why: Picamera2 is the latest library for controlling Raspberry Pi cam-

eras, offering improved performance and features over the original
Picamera library.

• Key functions: create_preview_configuration() for setting up
the camera, capture_file() for capturing frames.

4. PIL (Python Imaging Library):
• Purpose: Image processing and manipulation.
• Why: PIL provides a wide range of image processing capabilities.

It’s used here to resize images, draw bounding boxes, and convert
between image formats.

• Key classes: Image for loading and manipulating images, ImageDraw
for drawing shapes and text on images.

5. NumPy:
• Purpose: EfÏcient array operations and numerical computing.
• Why: NumPy’s array operations are much faster than pure Python

lists, which is crucial for efÏciently processing image data and model
inputs/outputs.

• Key functions: array() for creating arrays, expand_dims() for adding
dimensions to arrays.

Object Detection 1495

6. Threading:
• Purpose: Concurrent execution of tasks.
• Why: Threading allows simultaneous frame capture, object detec-

tion, and web server operation, crucial for maintaining real-time
performance.

• Key components: Thread class creates separate execution threads,
and Lock is used for thread synchronization.

7. io.BytesIO:
• Purpose: In-memory binary streams.
• Why: Allows efÏcient handling of image data in memory without

needing temporary files, improving speed and reducing I/O opera-
tions.

8. time:
• Purpose: Time-related functions.
• Why: Used for adding delays (time.sleep()) to control frame rate

and for performance measurements.

9. jQuery (client-side):
• Purpose: Simplified DOM manipulation and AJAX requests.
• Why: It makes it easy to update the web interface dynamically and

communicate with the server without page reloads.
• Key functions: .get() and .post() for AJAX requests, DOM ma-

nipulation methods for updating the UI.

Regarding the main app system architecture:
1. Main Thread: Runs the Flask server, handling HTTP requests and serving

the web interface.
2. Camera Thread: Continuously captures frames from the camera.
3. Detection Thread: Processes frames through the TFLite model for object

detection.
4. Frame Buffer: Shared memory space (protected by locks) storing the

latest frame and detection results.

And the app data flow, we can describe in short:
1. Camera captures frame → Frame Buffer
2. Detection thread reads from Frame Buffer → Processes through TFLite

model → Updates detection results in Frame Buffer
3. Flask routes access Frame Buffer to serve the latest frame and detection

results
4. Web client receives updates via AJAX and updates UI

This architecture allows for efÏcient, real-time object detection while main-
taining a responsive web interface running on a resource-constrained edge
device like a Raspberry Pi. Threading and efÏcient libraries like TFLite and PIL

Conclusion 1496

enable the system to process video frames in real-time, while Flask and jQuery
provide a user-friendly way to interact with them.

You can test the app with another pre-processed model, such as the EfÏcient-
Det, changing the app line:

model_path = "./models/lite-model_efficientdet_lite0_\
detection_metadata_1.tflite"

If we want to use the app for the SSD-MobileNetV2 model, trained
on Edge Impulse Studio with the “Box versus Wheel” dataset, the
code should also be adapted depending on the input details, as we
have explored on its notebook.

Conclusion
This lab has explored the implementation of object detection on edge devices like
the Raspberry Pi, demonstrating the power and potential of running advanced
computer vision tasks on resource-constrained hardware. We’ve covered several
vital aspects:

1. Model Comparison: We examined different object detection models,
including SSD-MobileNet, EfÏcientDet, FOMO, and YOLO, comparing
their performance and trade-offs on edge devices.

2. Training and Deployment: Using a custom dataset of boxes and wheels
(labeled on Roboflow), we walked through the process of training mod-
els using Edge Impulse Studio and Ultralytics and deploying them on
Raspberry Pi.

3. Optimization Techniques: To improve inference speed on edge devices,
we explored various optimization methods, such as model quantization
(TFLite int8) and format conversion (e.g., to NCNN).

4. Real-time Applications: The lab exemplified a real-time object detection
web application, demonstrating how these models can be integrated into
practical, interactive systems.

5. Performance Considerations: Throughout the lab, we discussed the bal-
ance between model accuracy and inference speed, a critical consideration
for edge AI applications.

The ability to perform object detection on edge devices opens up numerous
possibilities across various domains, from precision agriculture, industrial
automation, and quality control to smart home applications and environmental
monitoring. By processing data locally, these systems can offer reduced latency,
improved privacy, and operation in environments with limited connectivity.

Looking ahead, potential areas for further exploration include:
• Implementing multi-model pipelines for more complex tasks
• Exploring hardware acceleration options for Raspberry Pi
• Integrating object detection with other sensors for more comprehensive

edge AI systems

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-SSD-MobileNetV2.ipynb

Object Detection 1497

• Developing edge-to-cloud solutions that leverage both local processing
and cloud resources

Object detection on edge devices can create intelligent, responsive systems
that bring the power of AI directly into the physical world, opening up new
frontiers in how we interact with and understand our environment.

Resources
• Dataset (“Box versus Wheel”)
• SSD-MobileNet Notebook on a Raspi
• EfÏcientDet Notebook on a Raspi
• FOMO - EI Linux Notebook on a Raspi
• YOLOv8 Box versus Wheel Dataset Training on CoLab
• Edge Impulse Project - SSD MobileNet and FOMO
• Python Scripts
• Models

https://universe.roboflow.com/marcelo-rovai-riila/box-versus-wheel-auto-dataset
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_MobileNetV1.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/SSD_EfficientDet.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/EI-Linux-FOMO.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OBJ_DETEC/notebooks/yolov8_box_vs_wheel.ipynb
https://studio.edgeimpulse.com/public/515477/live
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/python_scripts
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/tree/main/OBJ_DETEC/models

Small Language Models (SLM)

Figure 20.22: DALL·E prompt - A
1950s-style cartoon illustration show-
ing a Raspberry Pi running a small lan-
guage model at the edge. The Raspberry
Pi is stylized in a retro-futuristic way
with rounded edges and chrome accents,
connected to playful cartoonish sensors
and devices. Speech bubbles are floating
around, representing language process-
ing, and the background has a whimsi-
cal landscape of interconnected devices
with wires and small gadgets, all drawn
in a vintage cartoon style. The color
palette uses soft pastel colors and bold
outlines typical of 1950s cartoons, giv-
ing a fun and nostalgic vibe to the scene.

Overview

In the fast-growing area of artificial intelligence, edge computing presents an
opportunity to decentralize capabilities traditionally reserved for powerful,
centralized servers. This lab explores the practical integration of small versions

1499

Setup 1500

of traditional large language models (LLMs) into a Raspberry Pi 5, transforming
this edge device into an AI hub capable of real-time, on-site data processing.

As large language models grow in size and complexity, Small Language
Models (SLMs) offer a compelling alternative for edge devices, striking a balance
between performance and resource efÏciency. By running these models directly
on Raspberry Pi, we can create responsive, privacy-preserving applications
that operate even in environments with limited or no internet connectivity.

This lab will guide you through setting up, optimizing, and leveraging SLMs
on Raspberry Pi. We will explore the installation and utilization of Ollama. This
open-source framework allows us to run LLMs locally on our machines (our
desktops or edge devices such as the Raspberry Pis or NVidia Jetsons). Ollama
is designed to be efÏcient, scalable, and easy to use, making it a good option
for deploying AI models such as Microsoft Phi, Google Gemma, Meta Llama,
and LLaVa (Multimodal). We will integrate some of those models into projects
using Python’s ecosystem, exploring their potential in real-world scenarios (or
at least point in this direction).

Setup
We could use any Raspi model in the previous labs, but here, the choice must be
the Raspberry Pi 5 (Raspi-5). It is a robust platform that substantially upgrades
the last version 4, equipped with the Broadcom BCM2712, a 2.4 GHz quad-core
64-bit Arm Cortex-A76 CPU featuring Cryptographic Extension and enhanced
caching capabilities. It boasts a VideoCore VII GPU, dual 4Kp60 HDMI®
outputs with HDR, and a 4Kp60 HEVC decoder. Memory options include 4
GB and 8 GB of high-speed LPDDR4X SDRAM, with 8GB being our choice to
run SLMs. It also features expandable storage via a microSD card slot and a
PCIe 2.0 interface for fast peripherals such as M.2 SSDs (Solid State Drives).

For real SSL applications, SSDs are a better option than SD cards.

By the way, as Alasdair Allan discussed, inferencing directly on the Raspberry
Pi 5 CPU—with no GPU acceleration—is now on par with the performance of
the Coral TPU.

https://ollama.com/
https://www.hackster.io/aallan

Small Language Models (SLM) 1501

For more info, please see the complete article: Benchmarking TensorFlow
and TensorFlow Lite on Raspberry Pi 5.

Raspberry Pi Active Cooler

We suggest installing an Active Cooler, a dedicated clip-on cooling solution for
Raspberry Pi 5 (Raspi-5), for this lab. It combines an aluminum heatsink with a
temperature-controlled blower fan to keep the Raspi-5 operating comfortably
under heavy loads, such as running SLMs.

The Active Cooler has pre-applied thermal pads for heat transfer and is
mounted directly to the Raspberry Pi 5 board using spring-loaded push pins.
The Raspberry Pi firmware actively manages it: at 60°C, the blower’s fan will
be turned on; at 67.5°C, the fan speed will be increased; and finally, at 75°C,
the fan increases to full speed. The blower’s fan will spin down automatically
when the temperature drops below these limits.

https://www.hackster.io/news/benchmarking-tensorflow-and-tensorflow-lite-on-raspberry-pi-5-b9156d58a6a2?mc_cid=0cab3d08f4&mc_eid=e96256ccba
https://www.hackster.io/news/benchmarking-tensorflow-and-tensorflow-lite-on-raspberry-pi-5-b9156d58a6a2?mc_cid=0cab3d08f4&mc_eid=e96256ccba

Generative AI (GenAI) 1502

To prevent overheating, all Raspberry Pi boards begin to throttle
the processor when the temperature reaches 80°Cand throttle even
further when it reaches the maximum temperature of 85°C (more
detail here).

Generative AI (GenAI)
Generative AI is an artificial intelligence system capable of creating new, original
content across various mediums such as text, images, audio, and video. These
systems learn patterns from existing data and use that knowledge to generate
novel outputs that didn’t previously exist. Large Language Models (LLMs),
Small LanguageModels (SLMs), and multimodalmodels can all be considered
types of GenAI when used for generative tasks.

GenAI provides the conceptual framework for AI-driven content creation,
with LLMs serving as powerful general-purpose text generators. SLMs adapt
this technology for edge computing, while multimodal models extend GenAI
capabilities across different data types. Together, they represent a spectrum of
generative AI technologies, each with its strengths and applications, collectively
driving AI-powered content creation and understanding.

Large Language Models (LLMs)
Large Language Models (LLMs) are advanced artificial intelligence systems
that understand, process, and generate human-like text. These models are
characterized by their massive scale in terms of the amount of data they are
trained on and the number of parameters they contain. Critical aspects of LLMs
include:

1. Size: LLMs typically contain billions of parameters. For example, GPT-3
has 175 billion parameters, while some newer models exceed a trillion
parameters.

2. TrainingData: They are trained on vast amounts of text data, often includ-
ing books, websites, and other diverse sources, amounting to hundreds
of gigabytes or even terabytes of text.

3. Architecture: Most LLMs use transformer-based architectures, which
allow them to process and generate text by paying attention to different
parts of the input simultaneously.

4. Capabilities: LLMs can perform a wide range of language tasks without
specific fine-tuning, including:

• Text generation
• Translation
• Summarization
• Question answering
• Code generation
• Logical reasoning

5. Few-shot Learning: They can often understand and perform new tasks
with minimal examples or instructions.

https://www.raspberrypi.com/news/heating-and-cooling-raspberry-pi-5/
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)

Small Language Models (SLM) 1503

6. Resource-Intensive: Due to their size, LLMs typically require significant
computational resources to run, often needing powerful GPUs or TPUs.

7. Continual Development: The field of LLMs is rapidly evolving, with
new models and techniques constantly emerging.

8. Ethical Considerations: The use of LLMs raises important questions
about bias, misinformation, and the environmental impact of training
such large models.

9. Applications: LLMs are used in various fields, including content creation,
customer service, research assistance, and software development.

10. Limitations: Despite their power, LLMs can produce incorrect or biased
information and lack true understanding or reasoning capabilities.

We must note that we use large models beyond text, calling them multi-modal
models. These models integrate and process information from multiple types of
input simultaneously. They are designed to understand and generate content
across various forms of data, such as text, images, audio, and video.

Closed vs Open Models:

Closed models, also called proprietary models, are AI models whose internal
workings, code, and training data are not publicly disclosed. Examples: GPT-4
(by OpenAI), Claude (by Anthropic), Gemini (by Google).

Open models, also known as open-source models, are AI models whose
underlying code, architecture, and often training data are publicly available
and accessible. Examples: Gemma (by Google), LLaMA (by Meta) and Phi (by
Microsoft).

Open models are particularly relevant for running models on edge devices
like Raspberry Pi as they can be more easily adapted, optimized, and deployed
in resource-constrained environments. Still, it is crucial to verify their Licenses.
Open models come with various open-source licenses that may affect their use
in commercial applications, while closed models have clear, albeit restrictive,
terms of service.

Figure 20.23: Adapted from
arXiv

https://arxiv.org/pdf/2304.13712

Generative AI (GenAI) 1504

Small Language Models (SLMs)

In the context of edge computing on devices like Raspberry Pi, full-scale LLMs
are typically too large and resource-intensive to run directly. This limitation
has driven the development of smaller, more efÏcient models, such as the Small
Language Models (SLMs).

SLMs are compact versions of LLMs designed to run efÏciently on resource-
constrained devices such as smartphones, IoT devices, and single-board com-
puters like the Raspberry Pi. These models are significantly smaller in size and
computational requirements than their larger counterparts while still retaining
impressive language understanding and generation capabilities.

Key characteristics of SLMs include:

1. Reduced parameter count: Typically ranging from a few hundred mil-
lion to a few billion parameters, compared to two-digit billions in larger
models.

2. Lower memory footprint: Requiring, at most, a few gigabytes of memory
rather than tens or hundreds of gigabytes.

3. Faster inference time: Can generate responses in milliseconds to seconds
on edge devices.

4. Energy efÏciency: Consuming less power, making them suitable for
battery-powered devices.

5. Privacy-preserving: Enabling on-device processing without sending data
to cloud servers.

6. OfÒine functionality: Operating without an internet connection.

SLMs achieve their compact size through various techniques such as knowl-
edge distillation, model pruning, and quantization. While they may not match
the broad capabilities of larger models, SLMs excel in specific tasks and do-
mains, making them ideal for targeted applications on edge devices.

We will generally consider SLMs, language models with less than 5
billion parameters quantized to 4 bits.

Examples of SLMs include compressed versions of models like Meta Llama,
Microsoft PHI, and Google Gemma. These models enable a wide range of nat-
ural language processing tasks directly on edge devices, from text classification
and sentiment analysis to question answering and limited text generation.

For more information on SLMs, the paper, LLM Pruning and Distillation in
Practice: The Minitron Approach, provides an approach applying pruning and
distillation to obtain SLMs from LLMs. And, SMALL LANGUAGE MODELS:
SURVEY, MEASUREMENTS, AND INSIGHTS, presents a comprehensive sur-
vey and analysis of Small Language Models (SLMs), which are language models
with 100 million to 5 billion parameters designed for resource-constrained de-
vices.

https://arxiv.org/pdf/2408.11796
https://arxiv.org/pdf/2408.11796
https://arxiv.org/pdf/2409.15790
https://arxiv.org/pdf/2409.15790

Small Language Models (SLM) 1505

Ollama

Figure 20.24: ollama logo

Ollama is an open-source framework that allows us to run language models
(LMs), large or small, locally on our machines. Here are some critical points
about Ollama:

1. Local Model Execution: Ollama enables running LMs on personal com-
puters or edge devices such as the Raspi-5, eliminating the need for
cloud-based API calls.

2. Ease of Use: It provides a simple command-line interface for download-
ing, running, and managing different language models.

3. Model Variety: Ollama supports various LLMs, including Phi, Gemma,
Llama, Mistral, and other open-source models.

4. Customization: Users can create and share custom models tailored to
specific needs or domains.

5. Lightweight: Designed to be efÏcient and run on consumer-grade hard-
ware.

6. API Integration: Offers an API that allows integration with other appli-
cations and services.

7. Privacy-Focused: By running models locally, it addresses privacy con-
cerns associated with sending data to external servers.

https://ollama.com/

Ollama 1506

8. Cross-Platform: Available for macOS, Windows, and Linux systems (our
case, here).

9. Active Development: Regularly updated with new features and model
support.

10. Community-Driven: Benefits from community contributions and model
sharing.

To learn more about what Ollama is and how it works under the hood, you
should see this short video from Matt Williams, one of the founders of Ollama:

https://www.youtube.com/embed/90ozfdsQOKo

Matt has an entirely free course about Ollama that we recommend:
https://youtu.be/9KEUFe4KQAI?si=D_-q3CMbHiT-twuy

Installing Ollama
Let’s set up and activate a Virtual Environment for working with Ollama:

python3 -m venv ~/ollama
source ~/ollama/bin/activate

And run the command to install Ollama:

curl -fsSL https://ollama.com/install.sh | sh

As a result, an API will run in the background on 127.0.0.1:11434. From
now on, we can run Ollama via the terminal. For starting, let’s verify the Ollama
version, which will also tell us that it is correctly installed:

ollama -v

https://www.youtube.com/@technovangelist
https://www.youtube.com/embed/90ozfdsQOKo
https://youtu.be/9KEUFe4KQAI?si=D_-q3CMbHiT-twuy

Small Language Models (SLM) 1507

On the Ollama Library page, we can find the models Ollama supports. For
example, by filtering by Most popular, we can see Meta Llama, Google Gemma,
Microsoft Phi, LLaVa, etc.

Meta Llama 3.2 1B/3B

Let’s install and run our first small language model, Llama 3.2 1B (and 3B).
The Meta Llama 3.2 series comprises a set of multilingual generative language
models available in 1 billion and 3 billion parameter sizes. These models are
designed to process text input and generate text output. The instruction-tuned
variants within this collection are specifically optimized for multilingual con-
versational applications, including tasks involving information retrieval and
summarization with an agentic approach. When compared to many existing
open-source and proprietary chat models, the Llama 3.2 instruction-tuned mod-
els demonstrate superior performance on widely-used industry benchmarks.

The 1B and 3B models were pruned from the Llama 8B, and then logits from
the 8B and 70B models were used as token-level targets (token-level distillation).
Knowledge distillation was used to recover performance (they were trained
with 9 trillion tokens). The 1B model has 1,24B, quantized to integer (Q8_0),
and the 3B, 3.12B parameters, with a Q4_0 quantization, which ends with a size
of 1.3 GB and 2 GB, respectively. Its context window is 131,072 tokens.

Install and run the Model

https://ollama.com/library
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

Ollama 1508

ollama run llama3.2:1b

Running the model with the command before, we should have the Ollama
prompt available for us to input a question and start chatting with the LLM
model; for example,
>>> What is the capital of France?
Almost immediately, we get the correct answer:
The capital of France is Paris.
Using the option --verbose when calling the model will generate several

statistics about its performance (The model will be polling only the first time
we run the command).

Each metric gives insights into how the model processes inputs and generates
outputs. Here’s a breakdown of what each metric means:

• Total Duration (2.620170326 s): This is the complete time taken from the
start of the command to the completion of the response. It encompasses
loading the model, processing the input prompt, and generating the
response.

• Load Duration (39.947908 ms): This duration indicates the time to load
the model or necessary components into memory. If this value is minimal,
it can suggest that the model was preloaded or that only a minimal setup
was required.

• Prompt Eval Count (32 tokens): The number of tokens in the input
prompt. In NLP, tokens are typically words or subwords, so this count in-
cludes all the tokens that the model evaluated to understand and respond
to the query.

Small Language Models (SLM) 1509

• Prompt Eval Duration (1.644773 s): This measures the model’s time to
evaluate or process the input prompt. It accounts for the bulk of the
total duration, implying that understanding the query and preparing a
response is the most time-consuming part of the process.

• Prompt Eval Rate (19.46 tokens/s): This rate indicates how quickly the
model processes tokens from the input prompt. It reflects the model’s
speed in terms of natural language comprehension.

• Eval Count (8 token(s)): This is the number of tokens in the model’s
response, which in this case was, “The capital of France is Paris.”

• Eval Duration (889.941 ms): This is the time taken to generate the out-
put based on the evaluated input. It’s much shorter than the prompt
evaluation, suggesting that generating the response is less complex or
computationally intensive than understanding the prompt.

• Eval Rate (8.99 tokens/s): Similar to the prompt eval rate, this indicates
the speed at which the model generates output tokens. It’s a crucial metric
for understanding the model’s efÏciency in output generation.

This detailed breakdown can help understand the computational demands
and performance characteristics of running SLMs like Llama on edge devices
like the Raspberry Pi 5. It shows that while prompt evaluation is more time-
consuming, the actual generation of responses is relatively quicker. This analysis
is crucial for optimizing performance and diagnosing potential bottlenecks in
real-time applications.

Loading and running the 3B model, we can see the difference in performance
for the same prompt;

The eval rate is lower, 5.3 tokens/s versus 9 tokens/s with the smaller model.
When question about
>>> What is the distance between Paris and Santiago, Chile?
The 1B model answered 9,841 kilometers (6,093 miles), which is inac-

curate, and the 3B model answered 7,300 miles (11,700 km), which is close
to the correct (11,642 km).

Let’s ask for the Paris’s coordinates:
>>> what is the latitude and longitude of Paris?

Ollama 1510

The latitude and longitude of Paris are 48.8567° N (48°55'
42" N) and 2.3510° E (2°22' 8" E), respectively.

Both 1B and 3B models gave correct answers.

Google Gemma 2 2B

Let’s install Gemma 2, a high-performing and efÏcient model available in three
sizes: 2B, 9B, and 27B. We will install Gemma 2 2B, a lightweight model trained
with 2 trillion tokens that produces outsized results by learning from larger
models through distillation. The model has 2.6 billion parameters and a Q4_0
quantization, which ends with a size of 1.6 GB. Its context window is 8,192
tokens.

Install and run the Model

ollama run gemma2:2b --verbose

Running the model with the command before, we should have the Ollama
prompt available for us to input a question and start chatting with the LLM
model; for example,
>>> What is the capital of France?
Almost immediately, we get the correct answer:
The capital of France is **Paris**. �
And it’ statistics.

https://ollama.com/library/gemma2:2b
https://huggingface.co/collections/google/gemma-2-2b-release-66a20f3796a2ff2a7c76f98f

Small Language Models (SLM) 1511

We can see that Gemma 2:2B has around the same performance as Llama
3.2:3B, but having less parameters.

Other examples:

>>> What is the distance between Paris and Santiago, Chile?

The distance between Paris, France and Santiago, Chile is
approximately **7,000 miles (11,267 kilometers)**.

Keep in mind that this is a straight-line distance, and actual
travel distance can vary depending on the chosen routes and any
stops along the way. � ̀

Also, a good response but less accurate than Llama3.2:3B.

>>> what is the latitude and longitude of Paris?

You got it! Here are the latitudes and longitudes of Paris,
France:

* **Latitude**: 48.8566° N (north)
* **Longitude**: 2.3522° E (east)

Let me know if you'd like to explore more about Paris or its
location! ���

A good and accurate answer (a little more verbose than the Llama answers).

Microsoft Phi3.5 3.8B
Let’s pull a bigger (but still tiny) model, the PHI3.5, a 3.8B lightweight state-of-
the-art open model by Microsoft. The model belongs to the Phi-3 model family
and supports 128K token context length and the languages: Arabic, Chinese,
Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian,
Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish,
Swedish, Thai, Turkish and Ukrainian.

https://ollama.com/library/phi3.5

Ollama 1512

The model size, in terms of bytes, will depend on the specific quantization
format used. The size can go from 2-bit quantization (q2_k) of 1.4 GB (higher
performance/lower quality) to 16-bit quantization (fp-16) of 7.6 GB (lower
performance/higher quality).

Let’s run the 4-bit quantization (Q4_0), which will need 2.2 GB of RAM, with
an intermediary trade-off regarding output quality and performance.

ollama run phi3.5:3.8b --verbose

You can use run or pull to download the model. What happens is
that Ollama keeps note of the pulled models, and once the PHI3
does not exist, before running it, Ollama pulls it.

Let’s enter with the same prompt used before:

>>> What is the capital of France?

The capital of France is Paris. It' extradites significant
historical, cultural, and political importance to the country as
well as being a major European city known for its art, fashion,
gastronomy, and culture. Its influence extends beyond national
borders, with millions of tourists visiting each year from around
the globe. The Seine River flows through Paris before it reaches
the broader English Channel at Le Havre. Moreover, France is one
of Europe's leading economies with its capital playing a key role

...

The answer was very “verbose”, let’s specify a better prompt:

Small Language Models (SLM) 1513

In this case, the answer was still longer than we expected, with an eval rate
of 2.25 tokens/s, more than double that of Gemma and Llama.

Choosing the most appropriate prompt is one of the most important
skills to be used with LLMs, no matter its size.

When we asked the same questions about distance and Latitude/Longitude,
we did not get a good answer for a distance of 13,507 kilometers (8,429
miles), but it was OK for coordinates. Again, it could have been less verbose
(more than 200 tokens for each answer).

We can use any model as an assistant since their speed is relatively decent,
but on September 24 (2023), the Llama2:3B is a better choice. You should try
other models, depending on your needs. � Open LLM Leaderboard can give
you an idea about the best models in size, benchmark, license, etc.

The best model to use is the one fit for your specific necessity. Also,
take into consideration that this field evolves with new models
everyday.

Multimodal Models
Multimodal models are artificial intelligence (AI) systems that can process and
understand information from multiple sources, such as images, text, audio, and
video. In our context, multimodal LLMs can process various inputs, including
text, images, and audio, as prompts and convert those prompts into various
outputs, not just the source type.

We will work here with LLaVA-Phi-3, a fine-tuned LLaVA model from Phi
3 Mini 4k. It has strong performance benchmarks that are on par with the
original LLaVA (Large Language and Vision Assistant) model.

The LLaVA-Phi-3 is an end-to-end trained large multimodal model designed
to understand and generate content based on visual inputs (images) and textual
instructions. It combines the capabilities of a visual encoder and a language
model to process and respond to multimodal inputs.

Let’s install the model:

ollama run llava-phi3:3.8b --verbose

Let’s start with a text input:

>>> You are a helpful AI assistant.
What is the capital of France?

As an AI language model, I can tell you that the capital of
France is Paris. It's not only the largest city in the country
but also serves as its political and administrative center.
Paris is known for its iconic landmarks such as the Eiffel
Tower, Notre-Dame Cathedral, and the Louvre Museum. The city
has a rich history, beautiful architecture, and is widely
considered to be one of the most romantic cities in the world.

https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://ollama.com/library/llava-phi3:3.8b
https://llava-vl.github.io/

Ollama 1514

The response took around 30 s, with an eval rate of 3.93 tokens/s! Not bad!

But let us know to enter with an image as input. For that, let’s create a
directory for working:

cd Documents/
mkdir OLLAMA
cd OLLAMA

Let’s download a 640×320 image from the internet, for example (Wikipedia:
Paris, France):

Using FileZilla, for example, let’s upload the image to the OLLAMA folder at
the Raspi-5 and name it image_test_1.jpg. We should have the whole image
path (we can use pwd to get it).

/home/mjrovai/Documents/OLLAMA/image_test_1.jpg

If you use a desktop, you can copy the image path by clicking the image with
the mouse’s right button.

https://upload.wikimedia.org/wikipedia/commons/thumb/4/4b/La_Tour_Eiffel_vue_de_la_Tour_Saint-Jacques%2C_Paris_ao%C3%BBt_2014_%282%29.jpg/640px-La_Tour_Eiffel_vue_de_la_Tour_Saint-Jacques%2C_Paris_ao%C3%BBt_2014_%282%29.jpg

Small Language Models (SLM) 1515

Let’s enter with this prompt:

>>> Describe the image /home/mjrovai/Documents/OLLAMA/\
image_test_1.jpg

The result was great, but the overall latency was significant; almost 4 minutes
to perform the inference.

Inspecting local resources
Using htop, we can monitor the resources running on our device.

Ollama Python Library 1516

htop

During the time that the model is running, we can inspect the resources:

All four CPUs run at almost 100% of their capacity, and the memory used
with the model loaded is 3.24 GB. Exiting Ollama, the memory goes down to
around 377 MB (with no desktop).

It is also essential to monitor the temperature. When running the Raspberry
with a desktop, you can have the temperature shown on the taskbar:

If you are “headless”, the temperature can be monitored with the command:

vcgencmd measure_temp

If you are doing nothing, the temperature is around 50°C for CPUs running
at 1%. During inference, with the CPUs at 100%, the temperature can rise to
almost 70°C. This is OK and means the active cooler is working, keeping the
temperature below 80°C / 85°C (its limit).

Ollama Python Library
So far, we have explored SLMs’ chat capability using the command line on a
terminal. However, we want to integrate those models into our projects, so
Python seems to be the right path. The good news is that Ollama has such a
library.

The Ollama Python library simplifies interaction with advanced LLM models,
enabling more sophisticated responses and capabilities, besides providing the
easiest way to integrate Python 3.8+ projects with Ollama.

For a better understanding of how to create apps using Ollama with Python,
we can follow Matt Williams’s videos, as the one below:

https://www.youtube.com/embed/_4K20tOsXK8

https://github.com/ollama/ollama-python
https://github.com/ollama/ollama
https://www.youtube.com/@technovangelist
https://www.youtube.com/embed/_4K20tOsXK8

Small Language Models (SLM) 1517

Installation:
In the terminal, run the command:

pip install ollama

We will need a text editor or an IDE to create a Python script. If you run the
Raspberry OS on a desktop, several options, such as Thonny and Geany, have
already been installed by default (accessed by [Menu][Programming]). You can
download other IDEs, such as Visual Studio Code, from [Menu][Recommended
Software]. When the window pops up, go to [Programming], select the option
of your choice, and press [Apply].

If you prefer using Jupyter Notebook for development:

pip install jupyter
jupyter notebook --generate-config

To run Jupyter Notebook, run the command (change the IP address for yours):

jupyter notebook --ip=192.168.4.209 --no-browser

On the terminal, you can see the local URL address to open the notebook:

Ollama Python Library 1518

We can access it from another computer by entering the Raspberry Pi’s IP
address and the provided token in a web browser (we should copy it from the
terminal).

In our working directory in the Raspi, we will create a new Python 3 notebook.
Let’s enter with a very simple script to verify the installed models:

import ollama
ollama.list()

All the models will be printed as a dictionary, for example:

{'name': 'gemma2:2b',
'model': 'gemma2:2b',
'modified_at': '2024-09-24T19:30:40.053898094+01:00',
'size': 1629518495,
'digest': (

'8ccf136fdd5298f3ffe2d69862750ea7fb56555fa4d5b18c0'
'4e3fa4d82ee09d7'
),

'details': {'parent_model': '',
'format': 'gguf',
'family': 'gemma2',
'families': ['gemma2'],
'parameter_size': '2.6B',
'quantization_level': 'Q4_0'}}]}

Let’s repeat one of the questions that we did before, but now using ollama.generate()
from Ollama python library. This API will generate a response for the given
prompt with the provided model. This is a streaming endpoint, so there will
be a series of responses. The final response object will include statistics and
additional data from the request.

Small Language Models (SLM) 1519

MODEL = 'gemma2:2b'
PROMPT = 'What is the capital of France?'

res = ollama.generate(model=MODEL, prompt=PROMPT)
print (res)

In case you are running the code as a Python script, you should save it, for
example, test_ollama.py. You can use the IDE to run it or do it directly on the
terminal. Also, remember that you should always call the model and define it
when running a stand-alone script.

python test_ollama.py

As a result, we will have the model response in a JSON format:

{
'model': 'gemma2:2b',
'created_at': '2024-09-25T14:43:31.869633807Z',
'response': 'The capital of France is **Paris**.\n',
'done': True,
'done_reason': 'stop',
'context': [

106, 1645, 108, 1841, 603, 573, 6037, 576, 6081, 235336,
107, 108, 106, 2516, 108, 651, 6037, 576, 6081, 603, 5231,
29437, 168428, 235248, 244304, 241035, 235248, 108

],
'total_duration': 24259469458,
'load_duration': 19830013859,
'prompt_eval_count': 16,
'prompt_eval_duration': 1908757000,
'eval_count': 14,
'eval_duration': 2475410000

}

As we can see, several pieces of information are generated, such as:
• response: the main output text generated by the model in response to

our prompt.
– The capital of France is **Paris**. ��

• context: the token IDs representing the input and context used by the
model. Tokens are numerical representations of text used for processing
by the language model.

– [106, 1645, 108, 1841, 603, 573, 6037, 576, 6081, 235336,
107, 108, 106, 2516, 108, 651, 6037, 576, 6081, 603, 5231,
29437, 168428, 235248, 244304, 241035, 235248, 108]

The Performance Metrics:

Ollama Python Library 1520

• total_duration: The total time taken for the operation in nanoseconds. In
this case, approximately 24.26 seconds.

• load_duration: The time taken to load the model or components in
nanoseconds. About 19.83 seconds.

• prompt_eval_duration: The time taken to evaluate the prompt in nanosec-
onds. Around 16 nanoseconds.

• eval_count: The number of tokens evaluated during the generation. Here,
14 tokens.

• eval_duration: The time taken for the model to generate the response in
nanoseconds. Approximately 2.5 seconds.

But, what we want is the plain ‘response’ and, perhaps for analysis, the
total duration of the inference, so let’s change the code to extract it from the
dictionary:

print(f"\n{res['response']}")
print(

f"\n [INFO] Total Duration: "
f"{res['total_duration']/1e9:.2f} seconds"

)

Now, we got:

The capital of France is **Paris**. ��

[INFO] Total Duration: 24.26 seconds

Using Ollama.chat()
Another way to get our response is to use ollama.chat(), which generates

the next message in a chat with a provided model. This is a streaming endpoint,
so a series of responses will occur. Streaming can be disabled using "stream":
false. The final response object will also include statistics and additional data
from the request.

PROMPT_1 = 'What is the capital of France?'

response = ollama.chat(model=MODEL, messages=[
{'role': 'user','content': PROMPT_1,},])
resp_1 = response['message']['content']
print(f"\n{resp_1}")
print(f"\n [INFO] Total Duration: "

f"{(res['total_duration']/1e9):.2f} seconds")

The answer is the same as before.
An important consideration is that by using ollama.generate(), the re-

sponse is “clear” from the model’s “memory” after the end of inference (only
used once), but If we want to keep a conversation, we must use ollama.chat().
Let’s see it in action:

Small Language Models (SLM) 1521

PROMPT_1 = 'What is the capital of France?'
response = ollama.chat(model=MODEL, messages=[
{'role': 'user','content': PROMPT_1,},])
resp_1 = response['message']['content']
print(f"\n{resp_1}")
print(f"\n [INFO] Total Duration: "

f"{(response['total_duration']/1e9):.2f} seconds")

PROMPT_2 = 'and of Italy?'
response = ollama.chat(model=MODEL, messages=[
{'role': 'user','content': PROMPT_1,},
{'role': 'assistant','content': resp_1,},
{'role': 'user','content': PROMPT_2,},])
resp_2 = response['message']['content']
print(f"\n{resp_2}")
print(f"\n [INFO] Total Duration: "

f"{(response_2['total_duration']/1e9):.2f} seconds")

In the above code, we are running two queries, and the second prompt
considers the result of the first one.

Here is how the model responded:

The capital of France is **Paris**. ��

[INFO] Total Duration: 2.82 seconds

The capital of Italy is **Rome**. ��

[INFO] Total Duration: 4.46 seconds

Getting an image description:
In the same way that we have used the LlaVa-PHI-3 model with the com-

mand line to analyze an image, the same can be done here with Python. Let’s
use the same image of Paris, but now with the ollama.generate():

MODEL = 'llava-phi3:3.8b'
PROMPT = "Describe this picture"

with open('image_test_1.jpg', 'rb') as image_file:
img = image_file.read()

response = ollama.generate(
model=MODEL,
prompt=PROMPT,
images= [img]

)

Ollama Python Library 1522

print(f"\n{response['response']}")
print(f"\n [INFO] Total Duration: "

f"{(res['total_duration']/1e9):.2f} seconds")

Here is the result:

This image captures the iconic cityscape of Paris, France. The
vantage point is high, providing a panoramic view of the Seine
River that meanders through the heart of the city. Several
bridges arch gracefully over the river, connecting different
parts of the city. The Eiffel Tower, an iron lattice structure
with a pointed top and two antennas on its summit, stands
tall in the background, piercing the sky. It is painted in a
light gray color, contrasting against the blue sky speckled
with white clouds.

The buildings that line the river are predominantly white or
beige, their uniform color palette broken occasionally by red
roofs peeking through. The Seine River itself appears calm
and wide, reflecting the city's architectural beauty in its
surface. On either side of the river, trees add a touch of
green to the urban landscape.

The image is taken from an elevated perspective, looking down
on the city. This viewpoint allows for a comprehensive view of
Paris's beautiful architecture and layout. The relative
positions of the buildings, bridges, and other structures
create a harmonious composition that showcases the city's charm.

In summary, this image presents a serene day in Paris, with its
architectural marvels - from the Eiffel Tower to the river-side
buildings - all bathed in soft colors under a clear sky.

[INFO] Total Duration: 256.45 seconds

The model took about 4 minutes (256.45 s) to return with a detailed image
description.

In the 10-Ollama_Python_Library notebook, it is possible to find
the experiments with the Ollama Python library.

Function Calling
So far, we can observe that by using the model’s response into a variable, we
can effectively incorporate it into real-world projects. However, a major issue
arises when the model provides varying responses to the same input. For
instance, let’s assume that we only need the name of a country’s capital and
its coordinates as the model’s response in the previous examples, without any

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/10-Ollama_Python_Library.ipynb

Small Language Models (SLM) 1523

additional information, even when utilizing verbose models like Microsoft Phi.
To ensure consistent responses, we can employ the ‘Ollama function call,’ which
is fully compatible with the OpenAI API.

But what exactly is “function calling”?

In modern artificial intelligence, function calling with Large Language Models
(LLMs) allows these models to perform actions beyond generating text. By
integrating with external functions or APIs, LLMs can access real-time data,
automate tasks, and interact with various systems.

For instance, instead of merely responding to a query about the weather,
an LLM can call a weather API to fetch the current conditions and provide
accurate, up-to-date information. This capability enhances the relevance and
accuracy of the model’s responses and makes it a powerful tool for driving
workflows and automating processes, transforming it into an active participant
in real-world applications.

For more details about Function Calling, please see this video made by
Marvin Prison:

https://www.youtube.com/embed/eHfMCtlsb1o

Let’s create a project.

We want to create an app where the user enters a country’s name and gets, as
an output, the distance in km from the capital city of such a country and the
app’s location (for simplicity, We will use Santiago, Chile, as the app location).

Once the user enters a country name, the model will return the name of its
capital city (as a string) and the latitude and longitude of such city (in float).
Using those coordinates, we can use a simple Python library (haversine) to
calculate the distance between those 2 points.

The idea of this project is to demonstrate a combination of language model
interaction, structured data handling with Pydantic, and geospatial calculations
using the Haversine formula (traditional computing).

First, let us install some libraries. Besides Haversine, the main one is the Ope-
nAI Python library, which provides convenient access to the OpenAI REST API
from any Python 3.7+ application. The other one is Pydantic (and instructor), a
robust data validation and settings management library engineered by Python
to enhance the robustness and reliability of our codebase. In short, Pydantic
will help ensure that our model’s response will always be consistent.

https://www.youtube.com/@MervinPraison
https://www.youtube.com/embed/eHfMCtlsb1o
https://pypi.org/project/haversine/
https://github.com/openai/openai-python
https://github.com/openai/openai-python
https://docs.pydantic.dev/latest/

Ollama Python Library 1524

pip install haversine
pip install openai
pip install pydantic
pip install instructor

Now, we should create a Python script designed to interact with our model
(LLM) to determine the coordinates of a country’s capital city and calculate the
distance from Santiago de Chile to that capital.

Let’s go over the code:

1. Importing Libraries

import sys
from haversine import haversine
from openai import OpenAI
from pydantic import BaseModel, Field
import instructor

• sys: Provides access to system-specific parameters and functions. It’s
used to get command-line arguments.

• haversine: A function from the haversine library that calculates the dis-
tance between two geographic points using the Haversine formula.

• openAI: A module for interacting with the OpenAI API (although it’s
used in conjunction with a local setup, Ollama). Everything is off-line
here.

• pydantic: Provides data validation and settings management using Python-
type annotations. It’s used to define the structure of expected response
data.

• instructor: A module is used to patch the OpenAI client to work in a
specific mode (likely related to structured data handling).

2. Defining Input and Model

country = sys.argv[1] # Get the country from
command-line arguments

MODEL = 'phi3.5:3.8b' # The name of the model to be used
mylat = -33.33 # Latitude of Santiago de Chile
mylon = -70.51 # Longitude of Santiago de Chile

• country: On a Python script, getting the country name from command-
line arguments is possible. On a Jupyter notebook, we can enter its name,
for example,

– country = "France"

• MODEL: Specifies the model being used, which is, in this example, the
phi3.5.

Small Language Models (SLM) 1525

• mylat and mylon: Coordinates of Santiago de Chile, used as the starting
point for the distance calculation.

3. Defining the Response Data Structure

class CityCoord(BaseModel):
city: str = Field(

...,
description="Name of the city"

)
lat: float = Field(

...,
description="Decimal Latitude of the city"

)
lon: float = Field(

...,
description="Decimal Longitude of the city"

)

• CityCoord: A Pydantic model that defines the expected structure of the
response from the LLM. It expects three fields: city (name of the city), lat
(latitude), and lon (longitude).

4. Setting Up the OpenAI Client

client = instructor.patch(
OpenAI(

base_url="http://localhost:11434/v1", # Local API base
URL (Ollama)

api_key="ollama", # API key
(not used)

),
mode=instructor.Mode.JSON, # Mode for

structured
JSON output

)

• OpenAI: This setup initializes an OpenAI client with a local base URL
and an API key (ollama). It uses a local server.

• instructor.patch: Patches the OpenAI client to work in JSON mode, en-
abling structured output that matches the Pydantic model.

5. Generating the Response

Ollama Python Library 1526

resp = client.chat.completions.create(
model=MODEL,
messages=[

{
"role": "user",
"content": f"return the decimal latitude and \
decimal longitude of the capital of the {country}."

}
],
response_model=CityCoord,
max_retries=10

)

• client.chat.completions.create: Calls the LLM to generate a response.
• model: Specifies the model to use (llava-phi3).
• messages: Contains the prompt for the LLM, asking for the latitude and

longitude of the capital city of the specified country.
• response_model: Indicates that the response should conform to the City-

Coord model.
• max_retries: The maximum number of retry attempts if the request fails.

6. Calculating the Distance

distance = haversine(
(mylat, mylon),
(resp.lat, resp.lon),
unit='km'

)

print(
f"Santiago de Chile is about {int(round(distance, -1))} "
f"kilometers away from {resp.city}."

)

• haversine: Calculates the distance between Santiago de Chile and the
capital city returned by the LLM using their respective coordinates.

• (mylat, mylon): Coordinates of Santiago de Chile.
• resp.city: Name of the country’s capital
• (resp.lat, resp.lon): Coordinates of the capital city are provided by the

LLM response.
• unit = ‘km’: Specifies that the distance should be calculated in kilometers.
• print: Outputs the distance, rounded to the nearest 10 kilometers, with

thousands of separators for readability.

Running the code

Small Language Models (SLM) 1527

If we enter different countries, for example, France, Colombia, and the United
States, We can note that we always receive the same structured information:

Santiago de Chile is about 8,060 kilometers away from
Washington, D.C..

Santiago de Chile is about 4,250 kilometers away from Bogotá.
Santiago de Chile is about 11,630 kilometers away from Paris.

If you run the code as a script, the result will be printed on the terminal:

And the calculations are pretty good!

In the 20-Ollama_Function_Calling notebook, it is possible to find
experiments with all models installed.

Adding images

Now it is time to wrap up everything so far! Let’s modify the script so that
instead of entering the country name (as a text), the user enters an image, and
the application (based on SLM) returns the city in the image and its geographic
location. With those data, we can calculate the distance as before.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/20-Ollama_Function_Calling.ipynb

Ollama Python Library 1528

For simplicity, we will implement this new code in two steps. First, the LLM
will analyze the image and create a description (text). This text will be passed
on to another instance, where the model will extract the information needed to
pass along.

We will start importing the libraries

import sys
import time
from haversine import haversine
import ollama
from openai import OpenAI
from pydantic import BaseModel, Field
import instructor

We can see the image if you run the code on the Jupyter Notebook. For that
we need also import:

import matplotlib.pyplot as plt
from PIL import Image

Those libraries are unnecessary if we run the code as a script.

Now, we define the model and the local coordinates:

MODEL = 'llava-phi3:3.8b'
mylat = -33.33
mylon = -70.51

We can download a new image, for example, Machu Picchu from Wikipedia.
On the Notebook we can see it:

Load the image
img_path = "image_test_3.jpg"
img = Image.open(img_path)

Display the image
plt.figure(figsize=(8, 8))
plt.imshow(img)
plt.axis('off')
#plt.title("Image")
plt.show()

Small Language Models (SLM) 1529

Now, let’s define a function that will receive the image and will return the
decimal latitude and decimal longitude of the city in the image, its
name, and what country it is located

def image_description(img_path):
with open(img_path, 'rb') as file:

response = ollama.chat(
model=MODEL,
messages=[
{
'role': 'user',
'content': '''return the decimal latitude and \
decimal longitude of the city in the image, \
its name, and what country it is located''',
'images': [file.read()],

},
],
options = {
'temperature': 0,
}

)
#print(response['message']['content'])
return response['message']['content']

We can print the entire response for debug purposes.

Ollama Python Library 1530

The image description generated for the function will be passed as a prompt
for the model again.

start_time = time.perf_counter() # Start timing

class CityCoord(BaseModel):
city: str = Field(

...,
description="Name of the city in the image"

)
country: str = Field(

...,
description=(

"Name of the country where "
"the city in the image is located"

)
)
lat: float = Field(

...,
description=(

"Decimal latitude of the city in "
"the image"

)
)
lon: float = Field(

...,
description=(

"Decimal longitude of the city in "
"the image"

)
)

enables `response_model` in create call
client = instructor.patch(

OpenAI(
base_url="http://localhost:11434/v1",
api_key="ollama"

),
mode=instructor.Mode.JSON,

)

image_description = image_description(img_path)
Send this description to the model
resp = client.chat.completions.create(

model=MODEL,
messages=[

Small Language Models (SLM) 1531

{
"role": "user",
"content": image_description,

}
],
response_model=CityCoord,
max_retries=10,
temperature=0,

)

If we print the image description , we will get:

The image shows the ancient city of Machu Picchu, located in
Peru. The city is perched on a steep hillside and consists of
various structures made of stone. It is surrounded by lush
greenery and towering mountains. The sky above is blue with
scattered clouds.

Machu Picchu's latitude is approximately 13.5086° S, and its
longitude is around 72.5494° W.

And the second response from the model (resp) will be:

CityCoord(city='Machu Picchu', country='Peru', lat=-13.5086,
lon=-72.5494)

Now, we can do a “Post-Processing”, calculating the distance and preparing
the final answer:

distance = haversine(
(mylat, mylon),
(resp.lat, resp.lon),
unit='km'

)

print((
f"\nThe image shows {resp.city}, with lat: "
f"{round(resp.lat, 2)} and long: "
f"{round(resp.lon, 2)}, located in "
f"{resp.country} and about "
f"{int(round(distance, -1)):,} kilometers "
f"away from Santiago, Chile.\n"

))

end_time = time.perf_counter() # End timing
elapsed_time = end_time - start_time # Calculate elapsed time

Ollama Python Library 1532

print(
f"[INFO] ==> The code (running {MODEL}), "
f"took {elapsed_time:.1f} seconds to execute.\n"

)

And we will get:

The image shows Machu Picchu, with lat:-13.16 and long:
-72.54, located in Peru and about 2,250 kilometers away
from Santiago, Chile.

print(
f"[INFO] ==> The code (running {MODEL}), "
f"took {elapsed_time:.1f} seconds "
f"to execute.\n"

)

In the 30-Function_Calling_with_images notebook, it is possible to find the
experiments with multiple images.

Let’s now download the script calc_distance_image.py from the GitHub
and run it on the terminal with the command:

python calc_distance_image.py \
/home/mjrovai/Documents/OLLAMA/image_test_3.jpg

Enter with the Machu Picchu image full patch as an argument. We will get
the same previous result.

How about Paris?

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/30-Function_Calling_with_images.ipynb

Small Language Models (SLM) 1533

Of course, there are many ways to optimize the code used here. Still, the
idea is to explore the considerable potential of function calling with SLMs at
the edge, allowing those models to integrate with external functions or APIs.
Going beyond text generation, SLMs can access real-time data, automate tasks,
and interact with various systems.

SLMs: Optimization Techniques

Large Language Models (LLMs) have revolutionized natural language pro-
cessing, but their deployment and optimization come with unique challenges.
One significant issue is the tendency for LLMs (and more, the SLMs) to gen-
erate plausible-sounding but factually incorrect information, a phenomenon
known as hallucination. This occurs when models produce content that seems
coherent but is not grounded in truth or real-world facts.

Other challenges include the immense computational resources required for
training and running these models, the difÏculty in maintaining up-to-date
knowledge within the model, and the need for domain-specific adaptations.
Privacy concerns also arise when handling sensitive data during training or
inference. Additionally, ensuring consistent performance across diverse tasks
and maintaining ethical use of these powerful tools present ongoing challenges.
Addressing these issues is crucial for the effective and responsible deployment
of LLMs in real-world applications.

The fundamental techniques for enhancing LLM (and SLM) performance
and efÏciency are Fine-tuning, Prompt engineering, and Retrieval-Augmented
Generation (RAG).

• Fine-tuning, while more resource-intensive, offers a way to specialize
LLMs for particular domains or tasks. This process involves further
training the model on carefully curated datasets, allowing it to adapt its
vast general knowledge to specific applications. Fine-tuning can lead to
substantial improvements in performance, especially in specialized fields
or for unique use cases.

• Prompt engineering is at the forefront of LLM optimization. By carefully
crafting input prompts, we can guide models to produce more accurate
and relevant outputs. This technique involves structuring queries that
leverage the model’s pre-trained knowledge and capabilities, often incor-
porating examples or specific instructions to shape the desired response.

• Retrieval-Augmented Generation (RAG) represents another powerful
approach to improving LLM performance. This method combines the
vast knowledge embedded in pre-trained models with the ability to access
and incorporate external, up-to-date information. By retrieving relevant
data to supplement the model’s decision-making process, RAG can signifi-
cantly enhance accuracy and reduce the likelihood of generating outdated
or false information.

For edge applications, it is more beneficial to focus on techniques like RAG
that can enhance model performance without needing on-device fine-tuning.
Let’s explore it.

RAG Implementation 1534

RAG Implementation
In a basic interaction between a user and a language model, the user asks
a question, which is sent as a prompt to the model. The model generates a
response based solely on its pre-trained knowledge. In a RAG process, there’s
an additional step between the user’s question and the model’s response. The
user’s question triggers a retrieval process from a knowledge base.

A simple RAG project
Here are the steps to implement a basic Retrieval Augmented Generation (RAG):

• Determine the type of documents you’ll be using: The best types are
documents from which we can get clean and unobscured text. PDFs can
be problematic because they are designed for printing, not for extracting
sensible text. To work with PDFs, we should get the source document or
use tools to handle it.

• Chunk the text: We can’t store the text as one long stream because of con-
text size limitations and the potential for confusion. Chunking involves
splitting the text into smaller pieces. Chunk text has many ways, such as
character count, tokens, words, paragraphs, or sections. It is also possible
to overlap chunks.

• Create embeddings: Embeddings are numerical representations of text
that capture semantic meaning. We create embeddings by passing each
chunk of text through a particular embedding model. The model outputs
a vector, the length of which depends on the embedding model used. We
should pull one (or more) embedding models from Ollama, to perform
this task. Here are some examples of embedding models available at
Ollama.

Model Parameter Size Embedding Size

mxbai-embed-large 334M 1024
nomic-embed-text 137M 768
all-minilm 23M 384

Generally, larger embedding sizes capture more nuanced infor-
mation about the input. Still, they also require more compu-

https://ollama.com/blog/embedding-models

Small Language Models (SLM) 1535

tational resources to process, and a higher number of param-
eters should increase the latency (but also the quality of the
response).

• Store the chunks and embeddings in a vector database: We will need a
way to efÏciently find the most relevant chunks of text for a given prompt,
which is where a vector database comes in. We will use Chromadb, an
AI-native open-source vector database, which simplifies building RAGs
by creating knowledge, facts, and skills pluggable for LLMs. Both the
embedding and the source text for each chunk are stored.

• Build the prompt: When we have a question, we create an embedding
and query the vector database for the most similar chunks. Then, we
select the top few results and include their text in the prompt.

The goal of RAG is to provide the model with the most relevant information
from our documents, allowing it to generate more accurate and informative
responses. So, let’s implement a simple example of an SLM incorporating a
particular set of facts about bees (“Bee Facts”).

Inside the ollama env, enter the command in the terminal for Chromadb
installation:

pip install ollama chromadb

Let’s pull an intermediary embedding model, nomic-embed-text

ollama pull nomic-embed-text

And create a working directory:

cd Documents/OLLAMA/
mkdir RAG-simple-bee
cd RAG-simple-bee/

Let’s create a new Jupyter notebook, 40-RAG-simple-bee for some exploration:
Import the needed libraries:

import ollama
import chromadb
import time

And define aor models:

EMB_MODEL = "nomic-embed-text"
MODEL = 'llama3.2:3B'

Initially, a knowledge base about bee facts should be created. This involves
collecting relevant documents and converting them into vector embeddings.
These embeddings are then stored in a vector database, allowing for efÏcient
similarity searches later. Enter with the “document,” a base of “bee facts” as a
list:

https://www.trychroma.com/
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/40-RAG-simple-bee.ipynb

RAG Implementation 1536

documents = [
"Bee-keeping, also known as apiculture, involves the \
maintenance of bee colonies, typically in hives, by humans.",
"The most commonly kept species of bees is the European \
honey bee (Apis mellifera).",

...

"There are another 20,000 different bee species in \
the world.",
"Brazil alone has more than 300 different bee species, and \
the vast majority, unlike western honey bees, don’t sting.",
"Reports written in 1577 by Hans Staden, mention three \
native bees used by indigenous people in Brazil.", \
"The indigenous people in Brazil used bees for medicine \
and food purposes",
"From Hans Staden report: probable species: mandaçaia \
(Melipona quadrifasciata), mandaguari (Scaptotrigona \
postica) and jataí-amarela (Tetragonisca angustula)."

]

We do not need to “chunk” the document here because we will use
each element of the list and a chunk.

Now, we will create our vector embedding database bee_facts and store the
document in it:

client = chromadb.Client()
collection = client.create_collection(name="bee_facts")

store each document in a vector embedding database
for i, d in enumerate(documents):

response = ollama.embeddings(model=EMB_MODEL, prompt=d)
embedding = response["embedding"]
collection.add(
ids=[str(i)],
embeddings=[embedding],
documents=[d]

)

Now that we have our “Knowledge Base” created, we can start making
queries, retrieving data from it:

Small Language Models (SLM) 1537

User Query: The process begins when a user asks a question, such as “How
many bees are in a colony? Who lays eggs, and how much? How about common
pests and diseases?”

prompt = "How many bees are in a colony? Who lays eggs and \
how much? How about common pests and diseases?"

Query Embedding: The user’s question is converted into a vector embedding
using the same embedding model used for the knowledge base.

response = ollama.embeddings(
prompt=prompt,
model=EMB_MODEL

)

Relevant Document Retrieval: The system searches the knowledge base
using the query embedding to find the most relevant documents (in this case,
the 5 more probable). This is done using a similarity search, which compares
the query embedding to the document embeddings in the database.

results = collection.query(
query_embeddings=[response["embedding"]],
n_results=5

)
data = results['documents']

Prompt Augmentation: The retrieved relevant information is combined with
the original user query to create an augmented prompt. This prompt now
contains the user’s question and pertinent facts from the knowledge base.

prompt = (
f"Using this data: {data}. "
f"Respond to this prompt: {prompt}"

)

RAG Implementation 1538

Answer Generation: The augmented prompt is then fed into a language
model, in this case, the llama3.2:3b model. The model uses this enriched
context to generate a comprehensive answer. Parameters like temperature,
top_k, and top_p are set to control the randomness and quality of the generated
response.

output = ollama.generate(
model=MODEL,
prompt = (

f"Using this data: {data}. "
f"Respond to this prompt: {prompt}"

)

options={
"temperature": 0.0,
"top_k":10,
"top_p":0.5 }

)

Response Delivery: Finally, the system returns the generated answer to the
user.

print(output['response'])

Based on the provided data, here are the answers to your \
questions:

1. How many bees are in a colony?
A typical bee colony can contain between 20,000 and 80,000 bees.

2. Who lays eggs and how much?
The queen bee lays up to 2,000 eggs per day during peak seasons.

3. What about common pests and diseases?
Common pests and diseases that affect bees include varroa \
mites, hive beetles, and foulbrood.

Let’s create a function to help answer new questions:

def rag_bees(prompt, n_results=5, temp=0.0, top_k=10, top_p=0.5):
start_time = time.perf_counter() # Start timing

generate an embedding for the prompt and retrieve the data
response = ollama.embeddings(
prompt=prompt,
model=EMB_MODEL

)

Small Language Models (SLM) 1539

results = collection.query(
query_embeddings=[response["embedding"]],
n_results=n_results

)
data = results['documents']

generate a response combining the prompt and data retrieved
output = ollama.generate(
model=MODEL,
prompt = (

f"Using this data: {data}. "
f"Respond to this prompt: {prompt}"

)

options={
"temperature": temp,
"top_k": top_k,
"top_p": top_p }

)

print(output['response'])

end_time = time.perf_counter() # End timing
elapsed_time = round(

(end_time - start_time), 1
) # Calculate elapsed time

print(
f"\n[INFO] ==> The code for model: {MODEL}, "
f"took {elapsed_time}s to generate the answer.\n"

)

print(
f"\n[INFO] ==> The code for model: {MODEL}, "
f"took {elapsed_time}s to generate the answer.\n"

)

We can now create queries and call the function:

prompt = "Are bees in Brazil?"
rag_bees(prompt)

Yes, bees are found in Brazil. According to the data, Brazil \
has more than 300 different bee species, and indigenous people \
in Brazil used bees for medicine and food purposes. \

RAG Implementation 1540

Additionally, reports from 1577 mention three native bees \
used by indigenous people in Brazil.

[INFO] ==> The code for model: llama3.2:3b, took 22.7s to \
generate the answer.

By the way, if the model used supports multiple languages, we can use it (for
example, Portuguese), even if the dataset was created in English:

prompt = "Existem abelhas no Brazil?"
rag_bees(prompt)

Sim, existem abelhas no Brasil! De acordo com o relato de Hans \
Staden, há três espécies de abelhas nativas do Brasil que \
foram mencionadas: mandaçaia (Melipona quadrifasciata), \
mandaguari (Scaptotrigona postica) e jataí-amarela \
(Tetragonisca angustula). Além disso, o Brasil é conhecido \
por ter mais de 300 espécies diferentes de abelhas, a \
maioria das quais não é agressiva e não põe veneno.

[INFO] ==> The code for model: llama3.2:3b, took 54.6s to \
generate the answer.

Going Further

The small LLM models tested worked well at the edge, both in text and with im-
ages, but of course, they had high latency regarding the last one. A combination
of specific and dedicated models can lead to better results; for example, in real
cases, an Object Detection model (such as YOLO) can get a general description
and count of objects on an image that, once passed to an LLM, can help extract
essential insights and actions.

According to Avi Baum, CTO at Hailo,

In the vast landscape of artificial intelligence (AI), one of the most
intriguing journeys has been the evolution of AI on the edge. This
journey has taken us from classic machine vision to the realms
of discriminative AI, enhancive AI, and now, the groundbreaking
frontier of generative AI. Each step has brought us closer to a future
where intelligent systems seamlessly integrate with our daily lives,
offering an immersive experience of not just perception but also
creation at the palm of our hand.

Small Language Models (SLM) 1541

Conclusion
This lab has demonstrated how a Raspberry Pi 5 can be transformed into a
potent AI hub capable of running large language models (LLMs) for real-time,
on-site data analysis and insights using Ollama and Python. The Raspberry
Pi’s versatility and power, coupled with the capabilities of lightweight LLMs
like Llama 3.2 and LLaVa-Phi-3-mini, make it an excellent platform for edge
computing applications.

The potential of running LLMs on the edge extends far beyond simple data
processing, as in this lab’s examples. Here are some innovative suggestions for
using this project:

1. Smart Home Automation:
• Integrate SLMs to interpret voice commands or analyze sensor data for

intelligent home automation. This could include real-time monitoring
and control of home devices, security systems, and energy management,
all processed locally without relying on cloud services.

2. Field Data Collection and Analysis:
• Deploy SLMs on Raspberry Pi in remote or mobile setups for real-time

data collection and analysis. This can be used in agriculture to monitor
crop health, in environmental studies for wildlife tracking, or in disaster
response for situational awareness and resource management.

3. Educational Tools:
• Create interactive educational tools that leverage SLMs to provide instant

feedback, language translation, and tutoring. This can be particularly
useful in developing regions with limited access to advanced technology
and internet connectivity.

4. Healthcare Applications:
• Use SLMs for medical diagnostics and patient monitoring. They can

provide real-time analysis of symptoms and suggest potential treatments.

Resources 1542

This can be integrated into telemedicine platforms or portable health
devices.

5. Local Business Intelligence:
• Implement SLMs in retail or small business environments to analyze

customer behavior, manage inventory, and optimize operations. The
ability to process data locally ensures privacy and reduces dependency
on external services.

6. Industrial IoT:
• Integrate SLMs into industrial IoT systems for predictive maintenance,

quality control, and process optimization. The Raspberry Pi can serve
as a localized data processing unit, reducing latency and improving the
reliability of automated systems.

7. Autonomous Vehicles:
• Use SLMs to process sensory data from autonomous vehicles, enabling

real-time decision-making and navigation. This can be applied to drones,
robots, and self-driving cars for enhanced autonomy and safety.

8. Cultural Heritage and Tourism:
• Implement SLMs to provide interactive and informative cultural heritage

sites and museum guides. Visitors can use these systems to get real-time
information and insights, enhancing their experience without internet
connectivity.

9. Artistic and Creative Projects:
• Use SLMs to analyze and generate creative content, such as music, art, and

literature. This can foster innovative projects in the creative industries and
allow for unique interactive experiences in exhibitions and performances.

10. Customized Assistive Technologies:
• Develop assistive technologies for individuals with disabilities, provid-

ing personalized and adaptive support through real-time text-to-speech,
language translation, and other accessible tools.

Resources
• 10-Ollama_Python_Library notebook
• 20-Ollama_Function_Calling notebook
• 30-Function_Calling_with_images notebook
• 40-RAG-simple-bee notebook
• calc_distance_image python script

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/10-Ollama_Python_Library.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/20-Ollama_Function_Calling.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/30-Function_Calling_with_images.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/40-RAG-simple-bee.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/OLLAMA_SLMs/calc_distance_image.py

Vision-Language Models (VLM)

Figure 20.25: DALL·E prompt - A
Raspberry Pi setup featuring vision
tasks. The image shows a Raspberry
Pi connected to a camera, with various
computer vision tasks displayed visually
around it, including object detection,
image captioning, segmentation, and
visual grounding. The Raspberry Pi is
placed on a desk, with a display showing
bounding boxes and annotations related
to these tasks. The background should
be a home workspace, with tools and de-
vices typically used by developers and
hobbyists.

Introduction
In this hands-on lab, we will continuously explore AI applications at the Edge,
from the basic setup of the Florence-2, Microsoft’s state-of-the-art vision foun-
dation model, to advanced implementations on devices like the Raspberry Pi.
We will learn to use Vision-Languageor Models (VLMs) for tasks such as cap-
tioning, object detection, grounding, segmentation, and OCR on a Raspberry
Pi.

Why Florence-2 at the Edge?
Florence-2 is a vision-language model open-sourced by Microsoft under the
MIT license, which significantly advances vision-language models by combin-
ing a lightweight architecture with robust capabilities. Thanks to its training
on the massive FLD-5B dataset, which contains 126 million images and 5.4
billion visual annotations, it achieves performance comparable to larger models.
This makes Florence-2 ideal for deployment at the edge, where power and
computational resources are limited.

1543

https://arxiv.org/abs/2311.06242

Introduction 1544

In this tutorial, we will explore how to use Florence-2 for real-time computer
vision applications, such as:

• Image captioning
• Object detection
• Segmentation
• Visual grounding

Visual grounding involves linking textual descriptions to specific
regions within an image. This enables the model to understand
where particular objects or entities described in a prompt are in
the image. For example, if the prompt is “a red car,” the model
will identify and highlight the region where the red car is found
in the image. Visual grounding is helpful for applications where
precise alignment between text and visual content is needed, such
as human-computer interaction, image annotation, and interactive
AI systems.

In the tutorial, we will walk through:
• Setting up Florence-2 on the Raspberry Pi
• Running inference tasks such as object detection and captioning
• Optimizing the model to get the best performance from the edge device
• Exploring practical, real-world applications with fine-tuning.

Florence-2 Model Architecture
Florence-2 utilizes a unified, prompt-based representation to handle various
vision-language tasks. The model architecture consists of two main components:
an image encoder and a multi-modal transformer encoder-decoder.

Input

Image Text Prompt

Image Encoder (DaVIT) Text Tokenize

Multimodality Encoder

(Transformer)

Multimodality Decoder

(Transformer)

Output

(Text/Coordinates)

• Image Encoder: The image encoder is based on the DaViT (Dual Atten-
tion Vision Transformers) architecture. It converts input images into a
series of visual token embeddings. These embeddings serve as the foun-
dational representations of the visual content, capturing both spatial and
contextual information about the image.

https://arxiv.org/abs/2204.03645
https://arxiv.org/abs/2204.03645

Vision-Language Models (VLM) 1545

• Multi-Modal Transformer Encoder-Decoder: Florence-2’s core is the
multi-modal transformer encoder-decoder, which combines visual token
embeddings from the image encoder with textual embeddings generated
by a BERT-like model. This combination allows the model to simultane-
ously process visual and textual inputs, enabling a unified approach to
tasks such as image captioning, object detection, and segmentation.

The model’s training on the extensive FLD-5B dataset ensures it can effec-
tively handle diverse vision tasks without requiring task-specific modifications.
Florence-2 uses textual prompts to activate specific tasks, making it highly
flexible and capable of zero-shot generalization. For tasks like object detection
or visual grounding, the model incorporates additional location tokens to rep-
resent regions within the image, ensuring a precise understanding of spatial
relationships.

Florence-2’s compact architecture and innovative training approach
allow it to perform computer vision tasks accurately, even on resource-
constrained devices like the Raspberry Pi.

Technical Overview
Florence-2 introduces several innovative features that set it apart:

Architecture

• Lightweight Design: Two variants available
– Florence-2-Base: 232 million parameters
– Florence-2-Large: 771 million parameters

• Unified Representation: Handles multiple vision tasks through a single
architecture

• DaViT Vision Encoder: Converts images into visual token embeddings
• Transformer-basedMulti-modal Encoder-Decoder: Processes combined

visual and text embeddings

Technical Overview 1546

Training Dataset (FLD-5B)

• 126 million unique images
• 5.4 billion comprehensive annotations, including:

– 500M text annotations
– 1.3B region-text annotations
– 3.6B text-phrase-region annotations

• Automated annotation pipeline using specialist models
• Iterative refinement process for high-quality labels

Key Capabilities
Florence-2 excels in multiple vision tasks:

Zero-shot Performance

• Image Captioning: Achieves 135.6 CIDEr score on COCO
• Visual Grounding: 84.4% recall@1 on Flickr30k
• Object Detection: 37.5 mAP on COCO val2017
• Referring Expression: 67.0% accuracy on RefCOCO

Fine-tuned Performance

• Competitive with specialist models despite the smaller size
• Outperforms larger models in specific benchmarks
• EfÏcient adaptation to new tasks

Vision-Language Models (VLM) 1547

Practical Applications
Florence-2 can be applied across various domains:

1. Content Understanding
• Automated image captioning for accessibility
• Visual content moderation
• Media asset management

2. E-commerce
• Product image analysis
• Visual search
• Automated product tagging

3. Healthcare
• Medical image analysis
• Diagnostic assistance
• Research data processing

4. Security & Surveillance
• Object detection and tracking
• Anomaly detection
• Scene understanding

Comparing Florence-2 with other VLMs
Florence-2 stands out from other visual language models due to its impressive
zero-shot capabilities. Unlike models like Google PaliGemma, which rely on
extensive fine-tuning to adapt to various tasks, Florence-2 works right out of the
box, as we will see in this lab. It can also compete with larger models like GPT-
4V and Flamingo, which often have many more parameters but only sometimes
match Florence-2’s performance. For example, Florence-2 achieves better zero-
shot results than Kosmos-2 despite having over twice the parameters.

In benchmark tests, Florence-2 has shown remarkable performance in tasks
like COCO captioning and referring expression comprehension. It outper-
formed models like PolyFormer and UNINEXT in object detection and seg-
mentation tasks on the COCO dataset. It is a highly competitive choice for
real-world applications where both performance and resource efÏciency are
crucial.

Setup and Installation
Our choice of edge device is the Raspberry Pi 5 (Raspi-5). Its robust platform
is equipped with the Broadcom BCM2712, a 2.4 GHz quad-core 64-bit Arm
Cortex-A76 CPU featuring Cryptographic Extension and enhanced caching
capabilities. It boasts a VideoCore VII GPU, dual 4Kp60 HDMI® outputs with
HDR, and a 4Kp60 HEVC decoder. Memory options include 4 GB and 8 GB of
high-speed LPDDR4X SDRAM, with 8 GB being our choice to run Florence-2. It

https://huggingface.co/blog/paligemma
https://docs.ultralytics.com/datasets/detect/coco/

Setup and Installation 1548

also features expandable storage via a microSD card slot and a PCIe 2.0 interface
for fast peripherals such as M.2 SSDs (Solid State Drives).

For real applications, SSDs are a better option than SD cards.

We suggest installing an Active Cooler, a dedicated clip-on cooling solution
for Raspberry Pi 5 (Raspi-5), for this lab. It combines an aluminum heatsink with
a temperature-controlled blower fan to keep the Raspi-5 operating comfortably
under heavy loads, such as running Florense-2.

Environment configuration
To run Microsoft Florense-2 on the Raspberry Pi 5, we’ll need a few libraries:

1. Transformers:
• Florence-2 uses the transformers library from Hugging Face for

model loading and inference. This library provides the architecture
for working with pre-trained vision-language models, making it
easy to perform tasks like image captioning, object detection, and
more. Essentially, transformers helps in interacting with the model,
processing input prompts, and obtaining outputs.

2. PyTorch:
• PyTorch is a deep learning framework that provides the infrastruc-

ture needed to run the Florence-2 model, which includes tensor
operations, GPU acceleration (if a GPU is available), and model
training/inference functionalities. The Florence-2 model is trained
in PyTorch, and we need it to leverage its functions, layers, and
computation capabilities to perform inferences on the Raspberry Pi.

3. Timm (PyTorch Image Models):
• Florence-2 uses timm to access efÏcient implementations of vision

models and pre-trained weights. Specifically, the timm library is
utilized for the image encoder part of Florence-2, particularly for

https://huggingface.co/microsoft/Florence-2-base
https://huggingface.co/docs/transformers/en/index

Vision-Language Models (VLM) 1549

managing the DaViT architecture. It provides model definitions
and optimized code for common vision tasks and allows the easy
integration of different backbones that are lightweight and suitable
for edge devices.

4. Einops:
• Einops is a library for flexible and powerful tensor operations. It

makes it easy to reshape and manipulate tensor dimensions, which is
especially important for the multi-modal processing done in Florence-
2. Vision-language models like Florence-2 often need to rearrange
image data, text embeddings, and visual embeddings to align cor-
rectly for the transformer blocks, and einops simplifies these com-
plex operations, making the code more readable and concise.

In short, these libraries enable different essential components of Florence-2:
• Transformers and PyTorch are needed to load the model and run the

inference.
• Timm is used to access and efÏciently implement the vision encoder.
• Einops helps reshape data, facilitating the integration of visual and text

features.

All these components work together to help Florence-2 run seamlessly on our
Raspberry Pi, allowing it to perform complex vision-language tasks relatively
quickly.

Considering that the Raspberry Pi already has its OS installed, let’s use SSH
to reach it from another computer:

ssh mjrovai@raspi-5.local

And check the IP allocated to it:

hostname -I

192.168.4.209

Setup and Installation 1550

Updating the Raspberry Pi
First, ensure your Raspberry Pi is up to date:

sudo apt update
sudo apt upgrade -y

Initial setup for using PIP:

sudo apt install python3-pip
sudo rm /usr/lib/python3.11/EXTERNALLY-MANAGED
pip3 install --upgrade pip

Install Dependencies

sudo apt-get install libjpeg-dev libopenblas-dev libopenmpi-dev \
libomp-dev

Let’s set up and activate a Virtual Environment for working with Florence-2:

python3 -m venv ~/florence
source ~/florence/bin/activate

Install PyTorch

pip3 install setuptools numpy Cython
pip3 install requests
pip3 install torch torchvision \

--index-url https://download.pytorch.org/whl/cpu
pip3 install torchaudio \

--index-url https://download.pytorch.org/whl/cpu

Let’s verify that PyTorch is correctly installed:

Install Transformers, Timm and Einops:

pip3 install transformers
pip3 install timm einops

Install the model:

Vision-Language Models (VLM) 1551

pip3 install autodistill-florence-2

Jupyter Notebook and Python libraries
Installing a Jupyter Notebook to run and test our Python scripts is possible.

pip3 install jupyter
pip3 install numpy Pillow matplotlib
jupyter notebook --generate-config

Testing the installation
Running the Jupyter Notebook on the remote computer

jupyter notebook --ip=192.168.4.209 --no-browser

Running the above command on the SSH terminal, we can see the local URL
address to open the notebook:

The notebook with the code used on this initial test can be found on the Lab
GitHub:

• 10-florence2_test.ipynb

We can access it on the remote computer by entering the Raspberry Pi’s IP
address and the provided token in a web browser (copy the entire URL from
the terminal).

From the Home page, create a new notebook [Python 3 (ipykernel)] and
copy and paste the example code from Hugging Face Hub.

The code is designed to run Florence-2 on a given image to perform object
detection. It loads the model, processes an image and a prompt, and then
generates a response to identify and describe the objects in the image.

• The processor helps prepare text and image inputs.
• The model takes the processed inputs to generate a meaningful response.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/10-florence2_test.ipynb
https://huggingface.co/microsoft/Florence-2-base#how-to-get-started-with-the-model

Setup and Installation 1552

• The post-processing step refines the generated output into a more inter-
pretable form, like bounding boxes for detected objects.

This workflow leverages the versatility of Florence-2 to handle
vision-language tasks and is implemented efÏciently using Py-
Torch, Transformers, and related image-processing tools.

import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForCausalLM

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = (

torch.float16 if torch.cuda.is_available() else torch.float32
)

model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base",
torch_dtype=torch_dtype,
trust_remote_code=True

).to(device)
processor = AutoProcessor.from_pretrained(

"microsoft/Florence-2-base",
trust_remote_code=True

)

prompt = "<OD>"

url = (
"https://huggingface.co/datasets/huggingface/"
"documentation-images/resolve/main/transformers/"
"tasks/car.jpg?download=true"

)
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(
text=prompt,
images=image,
return_tensors="pt"

).to(device, torch_dtype)

generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,

Vision-Language Models (VLM) 1553

num_beams=3,
)
generated_text = processor.batch_decode(

generated_ids, skip_special_tokens=False)[0]

parsed_answer = processor.post_process_generation(
generated_text,
task="<OD>",
image_size=(image.width, image.height)

)

print(parsed_answer)

Let’s break down the provided code step by step:

Importing Required Libraries

import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForCausalLM

• requests: Used to make HTTP requests. In this case, it downloads an
image from a URL.

• PIL (Pillow): Provides tools for manipulating images. Here, it’s used to
open the downloaded image.

• torch: PyTorch is imported to handle tensor operations and determine
the hardware availability (CPU or GPU).

• transformers: This module provides easy access to Florence-2 by using
AutoProcessor and AutoModelForCausalLM to load pre-trained models
and process inputs.

Determining the Device and Data Type

device = (
"cuda:0"
if torch.cuda.is_available()
else "cpu"

)

torch_dtype = (
torch.float16
if torch.cuda.is_available()
else torch.float32

)

Setup and Installation 1554

• Device Setup: The code checks if a CUDA-enabled GPU is available
(torch.cuda.is_available()). The device is set to “cuda:0” if a GPU is
available. Otherwise, it defaults to "cpu" (our case here).

• Data Type Setup: If a GPU is available, torch.float16 is chosen, which
uses half-precision floats to speed up processing and reduce memory us-
age. On the CPU, it defaults to torch.float32 to maintain compatibility.

Loading the Model and Processor

model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base",
torch_dtype=torch_dtype,
trust_remote_code=True

).to(device)

processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-base",
trust_remote_code=True

)

• Model Initialization:
– AutoModelForCausalLM.from_pretrained() loads the pre-trained

Florence-2 model from Microsoft’s repository on Hugging Face. The
torch_dtype is set according to the available hardware (GPU/CPU),
and trust_remote_code=True allows the use of any custom code
that might be provided with the model.

– .to(device) moves the model to the appropriate device (either CPU
or GPU). In our case, it will be set to CPU.

• Processor Initialization:
– AutoProcessor.from_pretrained() loads the processor for Florence-

2. The processor is responsible for transforming text and image
inputs into a format the model can work with (e.g., encoding text,
normalizing images, etc.).

Defining the Prompt

prompt = "<OD>"

• Prompt Definition: The string "<OD>" is used as a prompt. This refers to
“Object Detection”, instructing the model to detect objects on the image.

Vision-Language Models (VLM) 1555

Downloading and Loading the Image

url = "https://huggingface.co/datasets/huggingface/"
"documentation-images/resolve/main/transformers/"
"tasks/car.jpg?download=true"

image = Image.open(requests.get(url, stream=True).raw)

• Downloading the Image: The requests.get() function fetches the im-
age from the specified URL. The stream=True parameter ensures the
image is streamed rather than downloaded completely at once.

• Opening the Image: Image.open() opens the image so the model can
process it.

Processing Inputs

inputs = processor(
text=prompt,
images=image,
return_tensors="pt"

).to(
device,
torch_dtype

)

• Processing Input Data: The processor() function processes the text
(prompt) and the image (image). The return_tensors="pt" argument
converts the processed data into PyTorch tensors, which are necessary
for inputting data into the model.

• Moving Inputs to Device: .to(device, torch_dtype) moves the inputs
to the correct device (CPU or GPU) and assigns the appropriate data type.

Generating the Output

generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3,

)

• Model Generation: model.generate() is used to generate the output
based on the input data.

– input_ids: Represents the tokenized form of the prompt.

Setup and Installation 1556

– pixel_values: Contains the processed image data.
– max_new_tokens=1024: Specifies the maximum number of new to-

kens to be generated in the response. This limits the response length.
– do_sample=False: Disables sampling; instead, the generation uses

deterministic methods (beam search).
– num_beams=3: Enables beam search with three beams, which im-

proves output quality by considering multiple possibilities during
generation.

Decoding the Generated Text

generated_text = processor.batch_decode(
generated_ids,
skip_special_tokens=False

)[0]

• Batch Decode: processor.batch_decode() decodes the generated IDs
(tokens) into readable text. The skip_special_tokens=False parameter
means that the output will include any special tokens that may be part of
the response.

Post-processing the Generation

parsed_answer = processor.post_process_generation(
generated_text,
task="<OD>",
image_size=(image.width, image.height)

)

• Post-Processing: processor.post_process_generation() is called to
process the generated text further, interpreting it based on the task ("<OD>"
for object detection) and the size of the image.

• This function extracts specific information from the generated text, such
as bounding boxes for detected objects, making the output more useful
for visual tasks.

Printing the Output

print(parsed_answer)

• Finally, print(parsed_answer) displays the output, which could include
object detection results, such as bounding box coordinates and labels for
the detected objects in the image.

Vision-Language Models (VLM) 1557

Result

Running the code, we get as the Parsed Answer:

[{'<OD>': {
'bboxes': [
[34.23999786376953, 160.0800018310547, 597.4400024414062],
[371.7599792480469, 272.32000732421875, 241.67999267578125],
[303.67999267578125, 247.4399871826172, 454.0799865722656],
[276.7200012207031, 553.9199829101562, 370.79998779296875],
[96.31999969482422, 280.55999755859375, 198.0800018310547],
[371.2799987792969]
],
'labels': ['car', 'door handle', 'wheel', 'wheel']

}}]

First, let’s inspect the image:

import matplotlib.pyplot as plt
plt.figure(figsize=(8, 8))
plt.imshow(image)
plt.axis('off')
plt.show()

By the Object Detection result, we can see that:

'labels': ['car', 'door handle', 'wheel', 'wheel']

It seems that at least a few objects were detected. We can also implement a
code to draw the bounding boxes in the find objects:

Setup and Installation 1558

def plot_bbox(image, data):
Create a figure and axes
fig, ax = plt.subplots()

Display the image
ax.imshow(image)

Plot each bounding box
for bbox, label in zip(data['bboxes'], data['labels']):

Unpack the bounding box coordinates
x1, y1, x2, y2 = bbox
Create a Rectangle patch
rect = patches.Rectangle(

(x1, y1), x2 - x1, y2 - y1,
linewidth=1,
edgecolor='r',
facecolor='none'

)
Add the rectangle to the Axes
ax.add_patch(rect)
Annotate the label
plt.text(x1, y1, label, color='white', fontsize=8,

bbox=dict(facecolor='red', alpha=0.5))

Remove the axis ticks and labels
ax.axis('off')

Show the plot
plt.show()

Box (x0, y0, x1, y1): Location tokens correspond to the top-left and
bottom-right corners of a box.

And running

plot_bbox(image, parsed_answer['<OD>'])

We get:

Vision-Language Models (VLM) 1559

Florence-2 Tasks

Florence-2 is designed to perform a variety of computer vision and vision-
language tasks through prompts. These tasks can be activated by providing a
specific textual prompt to the model, as we saw with <OD> (Object Detection).

Florence-2’s versatility comes from combining these prompts, allowing us
to guide the model’s behavior to perform specific vision tasks. Changing the
prompt allows us to adapt Florence-2 to different tasks without needing task-
specific modifications in the architecture. This capability directly results from
Florence-2’s unified model architecture and large-scale multi-task training on
the FLD-5B dataset.

Here are some of the key tasks that Florence-2 can perform, along with
example prompts:

Object Detection (OD)

• Prompt: "<OD>"
• Description: Identifies objects in an image and provides bounding boxes

for each detected object. This task is helpful for applications like visual
inspection, surveillance, and general object recognition.

Image Captioning

• Prompt: "<CAPTION>"
• Description: Generates a textual description for an input image. This

task helps the model describe what is happening in the image, providing
a human-readable caption for content understanding.

Florence-2 Tasks 1560

Detailed Captioning

• Prompt: "<DETAILED_CAPTION>"
• Description: Generates a more detailed caption with more nuanced infor-

mation about the scene, such as the objects present and their relationships.

Visual Grounding

• Prompt: "<CAPTION_TO_PHRASE_GROUNDING>"
• Description: Links a textual description to specific regions in an image.

For example, given a prompt like “a green car,” the model highlights
where the green car is in the image. This is useful for human-computer
interaction, where you must find specific objects based on text.

Segmentation

• Prompt: "<REFERRING_EXPRESSION_SEGMENTATION>"
• Description: Performs segmentation based on a referring expression,

such as “the blue cup.” The model identifies and segments the specific
region containing the object mentioned in the prompt (all related pixels).

Dense Region Captioning

• Prompt: "<DENSE_REGION_CAPTION>"
• Description: Provides captions for multiple regions within an image,

offering a detailed breakdown of all visible areas, including different
objects and their relationships.

OCR with Region

• Prompt: "<OCR_WITH_REGION>"
• Description: Performs Optical Character Recognition (OCR) on an image

and provides bounding boxes for the detected text. This is useful for
extracting and locating textual information in images, such as reading
signs, labels, or other forms of text in images.

Phrase Grounding for Specific Expressions

• Prompt: "<CAPTION_TO_PHRASE_GROUNDING>" along with a specific ex-
pression, such as "a wine glass".

• Description: Locates the area in the image that corresponds to a spe-
cific textual phrase. This task allows for identifying particular objects or
elements when prompted with a word or keyword.

Vision-Language Models (VLM) 1561

Open Vocabulary Object Detection
• Prompt: "<OPEN_VOCABULARY_OD>"
• Description: The model can detect objects without being restricted to

a predefined list of classes, making it helpful in recognizing a broader
range of items based on general visual understanding.

Exploring computer vision and vision-language tasks
For exploration, all codes can be found on the GitHub:

• 20-florence_2.ipynb

Let’s use a couple of images created by Dall-E and upload them to the Rasp-5
(FileZilla can be used for that). The images will be saved on a sub-folder named
images :

dogs_cats = Image.open('./images/dogs-cats.jpg')
table = Image.open('./images/table.jpg')

Let’s create a function to facilitate our exploration and to keep track of the
latency of the model for different tasks:

def run_example(task_prompt, text_input=None, image=None):
start_time = time.perf_counter() # Start timing
if text_input is None:

prompt = task_prompt
else:

prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image,

return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/20-florence_2.ipynb

Exploring computer vision and vision-language tasks 1562

max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,

)
generated_text = processor.batch_decode(

generated_ids,
skip_special_tokens=False

)[0]
parsed_answer = processor.post_process_generation(

generated_text,
task=task_prompt,
image_size=(image.width, image.height)

)

end_time = time.perf_counter() # End timing
elapsed_time = end_time - start_time # Calculate elapsed time
print(f" \n[INFO] ==> Florence-2-base ({task_prompt}), \

took {elapsed_time:.1f} seconds to execute.\n")

return parsed_answer

Caption
1. Dogs and Cats

run_example(task_prompt='<CAPTION>',image=dogs_cats)

[INFO] ==> Florence-2-base (<CAPTION>), \
took 16.1 seconds to execute.

{'<CAPTION>': 'A group of dogs and cats sitting in a garden.'}

2. Table

run_example(task_prompt='<CAPTION>',image=table)

[INFO] ==> Florence-2-base (<CAPTION>), \
took 16.5 seconds to execute.

{'<CAPTION>': 'A wooden table topped with a plate of fruit \
and a glass of wine.'}

DETAILED_CAPTION
1. Dogs and Cats

Vision-Language Models (VLM) 1563

run_example(task_prompt='<DETAILED_CAPTION>',image=dogs_cats)

[INFO] ==> Florence-2-base (<DETAILED_CAPTION>), \
took 25.5 seconds to execute.

{'<DETAILED_CAPTION>': 'The image shows a group of cats and \
dogs sitting on top of a lush green field, surrounded by plants \
with flowers, trees, and a house in the background. The sky is \
visible above them, creating a peaceful atmosphere.'}

2. Table

run_example(task_prompt='<DETAILED_CAPTION>',image=table)

[INFO] ==> Florence-2-base (<DETAILED_CAPTION>), \
took 26.8 seconds to execute.

{'<DETAILED_CAPTION>': 'The image shows a wooden table with \
a bottle of wine and a glass of wine on it, surrounded by \
a variety of fruits such as apples, oranges, and grapes. \
In the background, there are chairs, plants, trees, and \
a house, all slightly blurred.'}

MORE_DETAILED_CAPTION
1. Dogs and Cats

run_example(task_prompt='<MORE_DETAILED_CAPTION>',image=dogs_cats)

[INFO] ==> Florence-2-base (<MORE_DETAILED_CAPTION>), \
took 49.8 seconds to execute.

{'<MORE_DETAILED_CAPTION>': 'The image shows a group of four \
cats and a dog in a garden. The garden is filled with colorful \
flowers and plants, and there is a pathway leading up to \
a house in the background. The main focus of the image is \
a large German Shepherd dog standing on the left side of \
the garden, with its tongue hanging out and its mouth open, \
as if it is panting or panting. On the right side, there are \
two smaller cats, one orange and one gray, sitting on the \
grass. In the background, there is another golden retriever \
dog sitting and looking at the camera. The sky is blue and \
the sun is shining, creating a warm and inviting atmosphere.'}

2. Table

Exploring computer vision and vision-language tasks 1564

run_example(task_prompt='< MORE_DETAILED_CAPTION>',image=table)

INFO] ==> Florence-2-base (<MORE_DETAILED_CAPTION>), \
took 32.4 seconds to execute.

{'<MORE_DETAILED_CAPTION>': 'The image shows a wooden table \
with a wooden tray on it. On the tray, there are various \
fruits such as grapes, oranges, apples, and grapes. There \
is also a bottle of red wine on the table. The background \
shows a garden with trees and a house. The overall mood \
of the image is peaceful and serene.'}

We can note that the more detailed the caption task, the longer the
latency and the possibility of mistakes (like “The image shows a
group of four cats and a dog in a garden”, instead of two dogs and
three cats).

OD - Object Detection
We can run the same previous function for object detection using the prompt
<OD>.

task_prompt = '<OD>'
results = run_example(task_prompt,image=dogs_cats)
print(results)

Let’s see the result:

[INFO] ==> Florence-2-base (<OD>), took 20.9 seconds to execute.

{'<OD>': {'bboxes': [
[737.79, 571.90, 1022.46, 980.48],
[0.51, 593.40, 211.45, 991.74],
[445.95, 721.40, 680.44, 850.43],
[39.42, 91.64, 491.00, 933.37],
[570.88, 184.83, 974.33, 782.84]
],
'labels': ['cat', 'cat', 'cat', 'dog', 'dog']

}}

Only by the labels ['cat,' 'cat,' 'cat,' 'dog,' 'dog'] is it possible to
see that the main objects in the image were captured. Let’s apply the function
used before to draw the bounding boxes:

plot_bbox(dogs_cats, results['<OD>'])

Vision-Language Models (VLM) 1565

Let’s also do it with the Table image:

task_prompt = '<OD>'
results = run_example(task_prompt,image=table)
plot_bbox(table, results['<OD>'])

[INFO] ==> Florence-2-base (<OD>), took 40.8 seconds to execute.

Exploring computer vision and vision-language tasks 1566

DENSE_REGION_CAPTION
It is possible to mix the classic Object Detection with the Caption task in specific
sub-regions of the image:

task_prompt = '<DENSE_REGION_CAPTION>'

results = run_example(task_prompt,image=dogs_cats)
plot_bbox(dogs_cats, results['<DENSE_REGION_CAPTION>'])

results = run_example(task_prompt,image=table)
plot_bbox(table, results['<DENSE_REGION_CAPTION>'])

CAPTION_TO_PHRASE_GROUNDING
With this task, we can enter with a caption, such as “a wine glass”, “a wine
bottle,” or “a half orange,” and Florence-2 will localize the object in the image:

task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'

results = run_example(
task_prompt,
text_input="a wine bottle",
image=table

)
plot_bbox(table, results['<CAPTION_TO_PHRASE_GROUNDING>'])

results = run_example(
task_prompt,
text_input="a wine glass",
image=table

)
plot_bbox(table, results['<CAPTION_TO_PHRASE_GROUNDING>'])

Vision-Language Models (VLM) 1567

results = run_example(
task_prompt,
text_input="a half orange",
image=table

)
plot_bbox(table, results['<CAPTION_TO_PHRASE_GROUNDING>'])

[INFO] ==> Florence-2-base (<CAPTION_TO_PHRASE_GROUNDING>), \
took 15.7 seconds to execute
each task.

Cascade Tasks
We can also enter the image caption as the input text to push Florence-2 to find
more objects:

task_prompt = '<CAPTION>'
results = run_example(task_prompt,image=dogs_cats)
text_input = results[task_prompt]
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(task_prompt, text_input,image=dogs_cats)
plot_bbox(dogs_cats, results['<CAPTION_TO_PHRASE_GROUNDING>'])

Changing the task_prompt among <CAPTION,> <DETAILED_CAPTION> and
<MORE_DETAILED_CAPTION>, we will get more objects in the image.

Exploring computer vision and vision-language tasks 1568

OPEN_VOCABULARY_DETECTION

<OPEN_VOCABULARY_DETECTION> allows Florence-2 to detect recognizable ob-
jects in an image without relying on a predefined list of categories, making
it a versatile tool for identifying various items that may not have been explic-
itly labeled during training. Unlike <CAPTION_TO_PHRASE_GROUNDING>, which
requires a specific text phrase to locate and highlight a particular object in
an image, <OPEN_VOCABULARY_DETECTION> performs a broad scan to find and
classify all objects present.

This makes <OPEN_VOCABULARY_DETECTION> particularly useful for applica-
tions where you need a comprehensive overview of everything in an image
without prior knowledge of what to expect. Enter with a text describing specific
objects not previously detected, resulting in their detection. For example:

task_prompt = '<OPEN_VOCABULARY_DETECTION>'

text = [
"a house",
"a tree",
"a standing cat at the left",
"a sleeping cat on the ground",
"a standing cat at the right",
"a yellow cat"

]

for txt in text:
results = run_example(

task_prompt,
text_input=txt,
image=dogs_cats

)

bbox_results = convert_to_od_format(
results['<OPEN_VOCABULARY_DETECTION>']

)

plot_bbox(dogs_cats, bbox_results)

Vision-Language Models (VLM) 1569

[INFO] ==> Florence-2-base (<OPEN_VOCABULARY_DETECTION>), \
took 15.1 seconds to execute
each task.

Note: Trying to use Florence-2 to find objects that were not found
can leads to mistakes (see exaamples on the Notebook).

Referring expression segmentation
We can also segment a specific object in the image and give its description
(caption), such as “a wine bottle” on the table image or “a German Sheppard”
on the dogs_cats.

Referring expression segmentation results format: {'<REFERRING_EXPRESSION_-
SEGMENTATION>': {'Polygons': [[[polygon]], ...], 'labels': ['', '',
...]}}, one object is represented by a list of polygons. each polygon is [x1,
y1, x2, y2, ..., xn, yn].

Polygon (x1, y1, …, xn, yn): Location tokens represent the vertices
of a polygon in clockwise order.

So, let’s first create a function to plot the segmentation:

from PIL import Image, ImageDraw, ImageFont
import copy
import random
import numpy as np
colormap = [

'blue', 'orange', 'green', 'purple', 'brown', 'pink', 'gray',
'olive', 'cyan', 'red', 'lime', 'indigo', 'violet', 'aqua',
'magenta', 'coral', 'gold', 'tan', 'skyblue'

]

Exploring computer vision and vision-language tasks 1570

def draw_polygons(image, prediction, fill_mask=False):
"""
Draws segmentation masks with polygons on an image.

Parameters:
- image_path: Path to the image file.
- prediction: Dictionary containing 'polygons' and 'labels'

keys. 'polygons' is a list of lists, each
containing vertices of a polygon. 'labels' is
a list of labels corresponding to each polygon.

- fill_mask: Boolean indicating whether to fill the polygons
with color.

"""
Load the image

draw = ImageDraw.Draw(image)

Set up scale factor if needed (use 1 if not scaling)
scale = 1

Iterate over polygons and labels
for polygons, label in zip(

prediction['polygons'],
prediction['labels']

):
color = random.choice(colormap)
fill_color = (

random.choice(colormap)
if fill_mask else None

)

for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:

print('Invalid polygon:', _polygon)
continue

_polygon = (_polygon * scale).reshape(-1).tolist()

Draw the polygon
if fill_mask:

draw.polygon(
_polygon,
outline=color,
fill=fill_color

Vision-Language Models (VLM) 1571

)
else:

draw.polygon(
_polygon,
outline=color
)

Draw the label text
draw.text(

(_polygon[0] + 8, _polygon[1] + 2),
label,
fill=color

)

Save or display the image
#image.show() # Display the image
display(image)

Now we can run the functions:

task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'

results = run_example(
task_prompt,
text_input="a wine bottle",
image=table

)
output_image = copy.deepcopy(table)
draw_polygons(output_image,

results['<REFERRING_EXPRESSION_SEGMENTATION>'],
fill_mask=True)

results = run_example(
task_prompt,
text_input="a german sheppard",
image=dogs_cats

)
output_image = copy.deepcopy(dogs_cats)
draw_polygons(output_image,

results['<REFERRING_EXPRESSION_SEGMENTATION>'],
fill_mask=True)

Exploring computer vision and vision-language tasks 1572

[INFO] ==> Florence-2-base
(<REFERRING_EXPRESSION_SEGMENTATION>), took 207.0 seconds
to execute each task.

Region to Segmentation
With this task, it is also possible to give the object coordinates in the image
to segment it. The input format is '<loc_x1><loc_y1><loc_x2><loc_y2>',
[x1, y1, x2, y2] , which is the quantized coordinates in [0, 999].

For example, when running the code:

task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(

task_prompt,
text_input="a half orange",
image=table

)
results

The results were:

{'<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[343.552001953125,
689.6640625,
530.9440307617188,
873.9840698242188]],

'labels': ['a half']}}

Using the bboxes rounded coordinates:

task_prompt = '<REGION_TO_SEGMENTATION>'
results = run_example(

task_prompt,
text_input=(

"<loc_343><loc_690>"
"<loc_531><loc_874>"

),

Vision-Language Models (VLM) 1573

image=table
)
output_image = copy.deepcopy(table)
draw_polygons(

output_image,
results['<REGION_TO_SEGMENTATION>'],
fill_mask=True

)

We got the segmentation of the object on those coordinates (Latency: 83
seconds):

Region to Texts

We can also give the region (coordinates and ask for a caption):

task_prompt = '<REGION_TO_CATEGORY>'
results = run_example(

task_prompt,
text_input=(

"<loc_343><loc_690>"
"<loc_531><loc_874>"

),
image=table

)
results

Exploring computer vision and vision-language tasks 1574

[INFO] ==> Florence-2-base (<REGION_TO_CATEGORY>), \
took 14.3 seconds to execute.

{{
'<REGION_TO_CATEGORY>':

'orange<loc_343><loc_690>'
'<loc_531><loc_874>'

}

The model identified an orange in that region. Let’s ask for a description:

task_prompt = '<REGION_TO_DESCRIPTION>'
results = run_example(

task_prompt,
text_input=(

"<loc_343><loc_690>"
"<loc_531><loc_874>"

),
image=table

)
results

[INFO] ==> Florence-2-base (<REGION_TO_CATEGORY>), \
took 14.6 seconds to execute.

{
'<REGION_TO_CATEGORY>':

'orange<loc_343><loc_690>'
'<loc_531><loc_874>'

}

In this case, the description did not provide more details, but it could. Try
another example.

OCR
With Florence-2, we can perform Optical Character Recognition (OCR) on an
image, getting what is written on it (task_prompt = '<OCR>' and also get
the bounding boxes (location) for the detected text (ask_prompt = '<OCR_-
WITH_REGION>'). Those tasks can help extract and locate textual information
in images, such as reading signs, labels, or other forms of text in images.

Let’s upload a flyer from a talk in Brazil to Raspi. Let’s test works in another
language, here Portuguese):

flayer = Image.open('./images/embarcados.jpg')
Display the image
plt.figure(figsize=(8, 8))

Vision-Language Models (VLM) 1575

plt.imshow(flayer)
plt.axis('off')
#plt.title("Image")
plt.show()

Let’s examine the image with '<MORE_DETAILED_CAPTION>' :

[INFO] ==> Florence-2-base (<MORE_DETAILED_CAPTION>), \
took 85.2 seconds to execute.

{'<MORE_DETAILED_CAPTION>': 'The image is a promotional poster \
for an event called "Machine Learning Embarcados" hosted by \
Marcelo Roval. The poster has a black background with white \
text. On the left side of the poster, there is a logo of a \
coffee cup with the text "Café Com Embarcados" above it. \
Below the logo, it says "25 de Setembro as 17th" which \
translates to "25th of September as 17" in English. \n\nOn \
the right side, there aretwo smaller text boxes with the names \
of the participants and their names. The first text box reads \
"Democratizando a Inteligência Artificial para Paises em \
Desenvolvimento" and the second text box says "Toda \
quarta-feira" which is Portuguese for "Transmissão via in \
Portuguese".\n\nIn the center of the image, there has a photo \
of Marcelo, a man with a beard and glasses, smiling at the \
camera. He is wearing a white hard hat and a white shirt. \
The text boxes are in orange and yellow colors.'}

The description is very accurate. Let’s get to the more important words with
the task OCR:

task_prompt = '<OCR>'
run_example(task_prompt,image=flayer)

Exploring computer vision and vision-language tasks 1576

[INFO] ==> Florence-2-base (<OCR>), took 37.7 seconds to execute.

{'<OCR>':
'Machine Learning Café com Embarcado Embarcados '
'Democratizando a Inteligência Artificial para Paises em '
'25 de Setembro às 17h Desenvolvimento Toda quarta-feira '
'Marcelo Roval Professor na UNIFIEI e Transmissão via in '
'Co-Director do TinyML4D'}

Let’s locate the words in the flyer:

task_prompt = '<OCR_WITH_REGION>'
results = run_example(task_prompt,image=flayer)

Let’s also create a function to draw bounding boxes around the detected
words:

def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes = prediction['quad_boxes']
labels = prediction['labels']
for box, label in zip(bboxes, labels):

color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),

"{}".format(label),
align="right",
fill=color)

display(image)

output_image = copy.deepcopy(flayer)
draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])

Vision-Language Models (VLM) 1577

We can inspect the detected words:

results['<OCR_WITH_REGION>']['labels']

'</s>Machine Learning',
'Café',
'com',
'Embarcado',
'Embarcados',
'Democratizando a Inteligência',
'Artificial para Paises em',
'25 de Setembro ás 17h',
'Desenvolvimento',
'Toda quarta-feira',
'Marcelo Roval',
'Professor na UNIFIEI e',
'Transmissão via',
'in',
'Co-Director do TinyML4D']

Latency Summary
The latency observed for different tasks using Florence-2 on the Raspberry Pi
(Raspi-5) varied depending on the complexity of the task:

• Image Captioning: It took approximately 16-17 seconds to generate a
caption for an image.

• Detailed Captioning: Increased latency to around 25-27 seconds, requir-
ing generating more nuanced scene descriptions.

• More Detailed Captioning: It took about 32-50 seconds, and the latency
increased as the description grew more complex.

• Object Detection: It took approximately 20-41 seconds, depending on
the image’s complexity and the number of detected objects.

Fine-Tunning 1578

• Visual Grounding: Approximately 15-16 seconds to localize specific
objects based on textual prompts.

• OCR (Optical Character Recognition): Extracting text from an image
took around 37-38 seconds.

• Segmentation and Region to Segmentation: Segmentation tasks took
considerably longer, with a latency of around 83-207 seconds, depending
on the complexity and the number of regions to be segmented.

These latency times highlight the resource constraints of edge devices like
the Raspberry Pi and emphasize the need to optimize the model and the envi-
ronment to achieve real-time performance.

Running complex tasks can use all 8 GB of the Raspi-5’s memory. For
example, the above screenshot during the Florence OD task shows
4 CPUs at full speed and over 5 GB of memory in use. Consider
increasing the SWAP memory to 2 GB.

Checking the CPU temperature with vcgencmd measure_temp , showed that
temperature can go up to +80oC.

Fine-Tunning

As explored in this lab, Florence supports many tasks out of the box, including
captioning, object detection, OCR, and more. However, like other pre-trained
foundational models, Florence-2 may need domain-specific knowledge. For
example, it may need to improve with medical or satellite imagery. In such
cases, fine-tuning with a custom dataset is necessary. The Roboflow tutorial,
How to Fine-tune Florence-2 for Object Detection Tasks, shows how to fine-tune
Florence-2 on object detection datasets to improve model performance for our
specific use case.

Based on the above tutorial, it is possible to fine-tune the Florence-2 model
to detect boxes and wheels used in previous labs:

https://blog.roboflow.com/fine-tune-florence-2-object-detection/

Vision-Language Models (VLM) 1579

It is important to note that after fine-tuning, the model can still detect classes
that don’t belong to our custom dataset, like cats, dogs, grapes, etc, as seen
before).

The complete fine-tunning project using a previously annotated dataset in
Roboflow and executed on CoLab can be found in the notebook:

• 30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb

In another example, in the post, Fine-tuning Florence-2 - Microsoft’s Cutting-
edge Vision Language Models, the authors show an example of fine-tuning
Florence on DocVQA. The authors report that Florence 2 can perform visual ques-
tion answering (VQA), but the released models don’t include VQA capability.

Conclusion
Florence-2 offers a versatile and powerful approach to vision-language tasks at
the edge, providing performance that rivals larger, task-specific models, such
as YOLO for object detection, BERT/RoBERTa for text analysis, and specialized
OCR models.

Thanks to its multi-modal transformer architecture, Florence-2 is more flexi-
ble than YOLO in terms of the tasks it can handle. These include object detection,
image captioning, and visual grounding.

Unlike BERT, which focuses purely on language, Florence-2 integrates vision
and language, allowing it to excel in applications that require both modalities,
such as image captioning and visual grounding.

Moreover, while traditional OCR models such as Tesseract and EasyOCR are
designed solely for recognizing and extracting text from images, Florence-2’s
OCR capabilities are part of a broader framework that includes contextual
understanding and visual-text alignment. This makes it particularly useful
for scenarios that require both reading text and interpreting its context within
images.

Overall, Florence-2 stands out for its ability to seamlessly integrate various
vision-language tasks into a unified model that is efÏcient enough to run on
edge devices like the Raspberry Pi. This makes it a compelling choice for
developers and researchers exploring AI applications at the edge.

Key Advantages of Florence-2
1. Unified Architecture

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb
https://huggingface.co/blog/finetune-florence2
https://huggingface.co/blog/finetune-florence2

Conclusion 1580

• Single model handles multiple vision tasks vs. specialized models
(YOLO, BERT, Tesseract)

• Eliminates the need for multiple model deployments and integra-
tions

• Consistent API and interface across tasks

2. Performance Comparison
• Object Detection: Comparable to YOLOv8 (~37.5 mAP on COCO

vs. YOLOv8’s ~39.7 mAP) despite being general-purpose
• Text Recognition: Handles multiple languages effectively like spe-

cialized OCR models (Tesseract, EasyOCR)
• Language Understanding: Integrates BERT-like capabilities for text

processing while adding visual context

3. Resource EfÏciency
• The Base model (232M parameters) achieves strong results despite

smaller size
• Runs effectively on edge devices (Raspberry Pi)
• Single model deployment vs. multiple specialized models

Trade-offs
1. Performance vs. Specialized Models

• YOLO series may offer faster inference for pure object detection
• Specialized OCR models might handle complex document layouts

better
• BERT/RoBERTa provide deeper language understanding for text-

only tasks

2. Resource Requirements
• Higher latency on edge devices (15-200s depending on task)
• Requires careful memory management on Raspberry Pi
• It may need optimization for real-time applications

3. Deployment Considerations
• Initial setup is more complex than single-purpose models
• Requires understanding of multiple task types and prompts
• The learning curve for optimal prompt engineering

Best Use Cases
1. Resource-Constrained Environments

• Edge devices requiring multiple vision capabilities
• Systems with limited storage/deployment capacity
• Applications needing flexible vision processing

Vision-Language Models (VLM) 1581

2. Multi-modal Applications
• Content moderation systems
• Accessibility tools
• Document analysis workflows

3. Rapid Prototyping
• Quick deployment of vision capabilities
• Testing multiple vision tasks without separate models
• Proof-of-concept development

Future Implications
Florence-2 represents a shift toward unified vision models that could eventually
replace task-specific architectures in many applications. While specialized mod-
els maintain advantages in specific scenarios, the convenience and efÏciency of
unified models like Florence-2 make them increasingly attractive for real-world
deployments.

The lab demonstrates Florence-2’s viability on edge devices, suggesting future
IoT, mobile computing, and embedded systems applications where deploying
multiple specialized models would be impractical.

Resources
• 10-florence2_test.ipynb
• 20-florence_2.ipynb
• 30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/10-florence2_test.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/20-florence_2.ipynb
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/FLORENCE-2/notebooks/30-Finetune_florence_2_on_detection_dataset_box_vs_wheel.ipynb

Shared Labs

The labs in this section cover topics and techniques that are applicable across
different hardware platforms. These labs are designed to be independent
of specific boards, allowing you to focus on the fundamental concepts and
algorithms used in (tiny) ML applications.

By exploring these shared labs, you’ll gain a deeper understanding of the com-
mon challenges and solutions in embedded machine learning. The knowledge
and skills acquired here will be valuable regardless of the specific hardware
you work with in the future.

Exercise Nicla Vision XIAO ESP32S3

KWS Feature Engineering � Link � Link
DSP Spectral Features Block � Link � Link

1583

./kws_feature_eng/kws_feature_eng.qmd
./kws_feature_eng/kws_feature_eng.qmd
./dsp_spectral_features_block/dsp_spectral_features_block.qmd
./dsp_spectral_features_block/dsp_spectral_features_block.qmd

KWS Feature Engineering

Figure 20.26: DALL·E 3 Prompt:
1950s style cartoon scene set in an audio
research room. Two scientists, one hold-
ing a magnifying glass and the other tak-
ing notes, examine large charts pinned
to the wall. These charts depict FFT
graphs and time curves related to au-
dio data analysis. The room has a retro
ambiance, with wooden tables, vintage
lamps, and classic audio analysis tools.

Overview
In this hands-on tutorial, the emphasis is on the critical role that feature en-
gineering plays in optimizing the performance of machine learning models
applied to audio classification tasks, such as speech recognition. It is essential to
be aware that the performance of any machine learning model relies heavily on

1585

The KWS 1586

the quality of features used, and we will deal with “under-the-hood” mechanics
of feature extraction, mainly focusing on Mel-frequency Cepstral CoefÏcients
(MFCCs), a cornerstone in the field of audio signal processing.

Machine learning models, especially traditional algorithms, don’t understand
audio waves. They understand numbers arranged in some meaningful way,
i.e., features. These features encapsulate the characteristics of the audio signal,
making it easier for models to distinguish between different sounds.

This tutorial will deal with generating features specifically for au-
dio classification. This can be particularly interesting for applying
machine learning to a variety of audio data, whether for speech
recognition, music categorization, insect classification based on
wingbeat sounds, or other sound analysis tasks

The KWS
The most common TinyML application is Keyword Spotting (KWS), a subset
of the broader field of speech recognition. While general speech recognition
transcribes all spoken words into text, Keyword Spotting focuses on detecting
specific “keywords” or “wake words” in a continuous audio stream. The system
is trained to recognize these keywords as predefined phrases or words, such
as yes or no. In short, KWS is a specialized form of speech recognition with its
own set of challenges and requirements.

Here a typical KWS Process using MFCC Feature Converter:

Applications of KWS
• Voice Assistants: In devices like Amazon’s Alexa or Google Home, KWS

is used to detect the wake word (“Alexa” or “Hey Google”) to activate the
device.

• Voice-Activated Controls: In automotive or industrial settings, KWS can
be used to initiate specific commands like “Start engine” or “Turn off
lights.”

• Security Systems: Voice-activated security systems may use KWS to
authenticate users based on a spoken passphrase.

KWS Feature Engineering 1587

• Telecommunication Services: Customer service lines may use KWS to
route calls based on spoken keywords.

Differences from General Speech Recognition
• Computational EfÏciency: KWS is usually designed to be less computa-

tionally intensive than full speech recognition, as it only needs to recognize
a small set of phrases.

• Real-time Processing: KWS often operates in real-time and is optimized
for low-latency detection of keywords.

• Resource Constraints: KWS models are often designed to be lightweight,
so they can run on devices with limited computational resources, like
microcontrollers or mobile phones.

• Focused Task: While general speech recognition models are trained to
handle a broad range of vocabulary and accents, KWS models are fine-
tuned to recognize specific keywords, often in noisy environments accu-
rately.

Overview to Audio Signals
Understanding the basic properties of audio signals is crucial for effective fea-
ture extraction and, ultimately, for successfully applying machine learning
algorithms in audio classification tasks. Audio signals are complex waveforms
that capture fluctuations in air pressure over time. These signals can be char-
acterized by several fundamental attributes: sampling rate, frequency, and
amplitude.

• Frequency andAmplitude: Frequency refers to the number of oscillations
a waveform undergoes per unit time and is also measured in Hz. In the
context of audio signals, different frequencies correspond to different
pitches. Amplitude, on the other hand, measures the magnitude of the
oscillations and correlates with the loudness of the sound. Both frequency
and amplitude are essential features that capture audio signals’ tonal and
rhythmic qualities.

• Sampling Rate: The sampling rate, often denoted in Hertz (Hz), defines
the number of samples taken per second when digitizing an analog signal.
A higher sampling rate allows for a more accurate digital representation of
the signal but also demands more computational resources for processing.
Typical sampling rates include 44.1 kHz for CD-quality audio and 16 kHz
or 8 kHz for speech recognition tasks. Understanding the trade-offs in
selecting an appropriate sampling rate is essential for balancing accuracy
and computational efÏciency. In general, with TinyML projects, we work
with 16 kHz. Although music tones can be heard at frequencies up to
20 kHz, voice maxes out at 8 kHz. Traditional telephone systems use an
8 kHz sampling frequency.

For an accurate representation of the signal, the sampling rate must
be at least twice the highest frequency present in the signal.

https://en.wikipedia.org/wiki/Audio_frequency
https://en.wikipedia.org/wiki/Amplitude
https://en.wikipedia.org/wiki/Sampling_(signal_processing)

Overview to Audio Signals 1588

• Time Domain vs. Frequency Domain: Audio signals can be analyzed
in the time and frequency domains. In the time domain, a signal is
represented as a waveform where the amplitude is plotted against time.
This representation helps to observe temporal features like onset and
duration but the signal’s tonal characteristics are not well evidenced.
Conversely, a frequency domain representation provides a view of the
signal’s constituent frequencies and their respective amplitudes, typically
obtained via a Fourier Transform. This is invaluable for tasks that require
understanding the signal’s spectral content, such as identifying musical
notes or speech phonemes (our case).

The image below shows the words YES and NO with typical representations
in the Time (Raw Audio) and Frequency domains:

Why Not Raw Audio?
While using raw audio data directly for machine learning tasks may seem
tempting, this approach presents several challenges that make it less suitable
for building robust and efÏcient models.

Using raw audio data for Keyword Spotting (KWS), for example, on TinyML
devices poses challenges due to its high dimensionality (using a 16 kHz sam-
pling rate), computational complexity for capturing temporal features, suscepti-
bility to noise, and lack of semantically meaningful features, making feature ex-
traction techniques like MFCCs a more practical choice for resource-constrained
applications.

Here are some additional details of the critical issues associated with using
raw audio:

• High Dimensionality: Audio signals, especially those sampled at high
rates, result in large amounts of data. For example, a 1-second audio
clip sampled at 16 kHz will have 16,000 individual data points. High-
dimensional data increases computational complexity, leading to longer
training times and higher computational costs, making it impractical
for resource-constrained environments. Furthermore, the wide dynamic
range of audio signals requires a significant amount of bits per sample,
while conveying little useful information.

KWS Feature Engineering 1589

• Temporal Dependencies: Raw audio signals have temporal structures
that simple machine learning models may find hard to capture. While
recurrent neural networks like LSTMs can model such dependencies, they
are computationally intensive and tricky to train on tiny devices.

• Noise and Variability: Raw audio signals often contain background
noise and other non-essential elements affecting model performance.
Additionally, the same sound can have different characteristics based
on various factors such as distance from the microphone, the orientation
of the sound source, and acoustic properties of the environment, adding
to the complexity of the data.

• Lack of Semantic Meaning: Raw audio doesn’t inherently contain se-
mantically meaningful features for classification tasks. Features like pitch,
tempo, and spectral characteristics, which can be crucial for speech recog-
nition, are not directly accessible from raw waveform data.

• Signal Redundancy: Audio signals often contain redundant information,
with certain portions of the signal contributing little to no value to the task
at hand. This redundancy can make learning inefÏcient and potentially
lead to overfitting.

For these reasons, feature extraction techniques such as Mel-frequency Cep-
stral CoefÏcients (MFCCs), Mel-Frequency Energies (MFEs), and simple Spec-
tograms are commonly used to transform raw audio data into a more manage-
able and informative format. These features capture the essential characteristics
of the audio signal while reducing dimensionality and noise, facilitating more
effective machine learning.

Overview to MFCCs

What are MFCCs?
Mel-frequency Cepstral CoefÏcients (MFCCs) are a set of features derived from
the spectral content of an audio signal. They are based on human auditory
perceptions and are commonly used to capture the phonetic characteristics of
an audio signal. The MFCCs are computed through a multi-step process that
includes pre-emphasis, framing, windowing, applying the Fast Fourier Trans-
form (FFT) to convert the signal to the frequency domain, and finally, applying
the Discrete Cosine Transform (DCT). The result is a compact representation of
the original audio signal’s spectral characteristics.

The image below shows the words YES and NO in their MFCC representation:

https://annals-csis.org/Volume_18/drp/pdf/185.pdf
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

Overview to MFCCs 1590

This video explains the Mel Frequency Cepstral CoefÏcients (MFCC)
and how to compute them.

Why are MFCCs important?
MFCCs are crucial for several reasons, particularly in the context of Keyword
Spotting (KWS) and TinyML:

• Dimensionality Reduction: MFCCs capture essential spectral character-
istics of the audio signal while significantly reducing the dimensionality
of the data, making it ideal for resource-constrained TinyML applications.

• Robustness: MFCCs are less susceptible to noise and variations in pitch
and amplitude, providing a more stable and robust feature set for audio
classification tasks.

• Human Auditory System Modeling: The Mel scale in MFCCs approxi-
mates the human ear’s response to different frequencies, making them
practical for speech recognition where human-like perception is desired.

• Computational EfÏciency: The process of calculating MFCCs is compu-
tationally efÏcient, making it well-suited for real-time applications on
hardware with limited computational resources.

In summary, MFCCs offer a balance of information richness and computa-
tional efÏciency, making them popular for audio classification tasks, particularly
in constrained environments like TinyML.

Computing MFCCs
The computation of Mel-frequency Cepstral CoefÏcients (MFCCs) involves
several key steps. Let’s walk through these, which are particularly important
for Keyword Spotting (KWS) tasks on TinyML devices.

• Pre-emphasis: The first step is pre-emphasis, which is applied to accen-
tuate the high-frequency components of the audio signal and balance the
frequency spectrum. This is achieved by applying a filter that amplifies the
difference between consecutive samples. The formula for pre-emphasis
is: 𝑦(𝑡) = 𝑥(𝑡)−𝛼𝑥(𝑡−1), where 𝛼 is the pre-emphasis factor, typically
around 0.97.

• Framing: Audio signals are divided into short frames (the frame length),
usually 20 to 40 milliseconds. This is based on the assumption that fre-
quencies in a signal are stationary over a short period. Framing helps in
analyzing the signal in such small time slots. The frame stride (or step)
will displace one frame and the adjacent. Those steps could be sequential
or overlapped.

• Windowing: Each frame is then windowed to minimize the disconti-
nuities at the frame boundaries. A commonly used window function
is the Hamming window. Windowing prepares the signal for a Fourier
transform by minimizing the edge effects. The image below shows three
frames (10, 20, and 30) and the time samples after windowing (note that
the frame length and frame stride are 20 ms):

https://youtu.be/SJo7vPgRlBQ?si=KSgzmDg8DtSVqzXp

KWS Feature Engineering 1591

• Fast Fourier Transform (FFT) The Fast Fourier Transform (FFT) is applied
to each windowed frame to convert it from the time domain to the fre-
quency domain. The FFT gives us a complex-valued representation that
includes both magnitude and phase information. However, for MFCCs,
only the magnitude is used to calculate the Power Spectrum. The power
spectrum is the square of the magnitude spectrum and measures the
energy present at each frequency component.

The power spectrum 𝑃 (𝑓) of a signal 𝑥(𝑡) is defined as 𝑃 (𝑓) =|𝑋(𝑓)|2, where 𝑋(𝑓) is the Fourier Transform of 𝑥(𝑡). By squaring
the magnitude of the Fourier Transform, we emphasize stronger fre-
quencies over weaker ones, thereby capturing more relevant spectral
characteristics of the audio signal. This is important in applications
like audio classification, speech recognition, and Keyword Spotting
(KWS), where the focus is on identifying distinct frequency patterns
that characterize different classes of audio or phonemes in speech.

• Mel Filter Banks: The frequency domain is then mapped to the Mel
scale, which approximates the human ear’s response to different frequen-

https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Mel_scale

Hands-On using Python 1592

cies. The idea is to extract more features (more filter banks) in the lower
frequencies and less in the high frequencies. Thus, it performs well on
sounds distinguished by the human ear. Typically, 20 to 40 triangular
filters extract the Mel-frequency energies. These energies are then log-
transformed to convert multiplicative factors into additive ones, making
them more suitable for further processing.

• Discrete Cosine Transform (DCT): The last step is to apply the Discrete
Cosine Transform (DCT) to the log Mel energies. The DCT helps to decor-
relate the energies, effectively compressing the data and retaining only
the most discriminative features. Usually, the first 12-13 DCT coefÏcients
are retained, forming the final MFCC feature vector.

Hands-On using Python

Let’s apply what we discussed while working on an actual audio sample. Open
the notebook on Google CoLab and extract the MLCC features on your audio
samples: [Open In Colab]

Conclusion

What Feature Extraction technique should we use?

https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/Audio_Data_Analysis.ipynb

KWS Feature Engineering 1593

Mel-frequency Cepstral CoefÏcients (MFCCs), Mel-Frequency Energies (MFEs),
or Spectrogram are techniques for representing audio data, which are often
helpful in different contexts.

In general, MFCCs are more focused on capturing the envelope of the power
spectrum, which makes them less sensitive to fine-grained spectral details but
more robust to noise. This is often desirable for speech-related tasks. On the
other hand, spectrograms or MFEs preserve more detailed frequency informa-
tion, which can be advantageous in tasks that require discrimination based on
fine-grained spectral content.

MFCCs are particularly strong for
1. Speech Recognition: MFCCs are excellent for identifying phonetic con-

tent in speech signals.
2. Speaker Identification: They can be used to distinguish between different

speakers based on voice characteristics.
3. Emotion Recognition: MFCCs can capture the nuanced variations in

speech indicative of emotional states.
4. Keyword Spotting: Especially in TinyML, where low computational

complexity and small feature size are crucial.

Spectrograms or MFEs are often more suitable for
1. Music Analysis: Spectrograms can capture harmonic and timbral struc-

tures in music, which is essential for tasks like genre classification, instru-
ment recognition, or music transcription.

2. Environmental Sound Classification: In recognizing non-speech, en-
vironmental sounds (e.g., rain, wind, trafÏc), the full spectrogram can
provide more discriminative features.

3. Birdsong Identification: The intricate details of bird calls are often better
captured using spectrograms.

4. Bioacoustic Signal Processing: In applications like dolphin or bat call
analysis, the fine-grained frequency information in a spectrogram can be
essential.

5. Audio Quality Assurance: Spectrograms are often used in professional
audio analysis to identify unwanted noises, clicks, or other artifacts.

Resources
• Audio_Data_Analysis Colab Notebook

https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/Audio_Data_Analysis.ipynb

DSP Spectral Features

Figure 20.27: DALL·E 3 Prompt:
1950s style cartoon illustration of a
Latin male and female scientist in a vi-
bration research room. Theman is using
a calculus ruler to examine ancient cir-
cuitry. The woman is at a computer
with complex vibration graphs. The
wooden table has boards with sensors,
prominently an accelerometer. A clas-
sic, rounded-back computer shows the
Arduino IDE with code for LED pin
assignments and machine learning al-
gorithms for movement detection. The
Serial Monitor displays FFT, classifi-
cation, wavelets, and DSPs. Vintage
lamps, tools, and charts with FFT and
Wavelets graphs complete the scene.

Overview
TinyML projects related to motion (or vibration) involve data from IMUs (usu-
ally accelerometers and Gyroscopes). These time-series type datasets should
be preprocessed before inputting them into a Machine Learning model training,
which is a challenging area for embedded machine learning. Still, Edge Impulse

1595

Extracting Features Review 1596

helps overcome this complexity with its digital signal processing (DSP) pre-
processing step and, more specifically, the Spectral Features Block for Inertial
sensors.

But how does it work under the hood? Let’s dig into it.

Extracting Features Review
Extracting features from a dataset captured with inertial sensors, such as ac-
celerometers, involves processing and analyzing the raw data. Accelerometers
measure the acceleration of an object along one or more axes (typically three,
denoted as X, Y, and Z). These measurements can be used to understand vari-
ous aspects of the object’s motion, such as movement patterns and vibrations.
Here’s a high-level overview of the process:

Data collection: First, we need to gather data from the accelerometers. De-
pending on the application, data may be collected at different sampling rates.
It’s essential to ensure that the sampling rate is high enough to capture the
relevant dynamics of the studied motion (the sampling rate should be at least
double the maximum relevant frequency present in the signal).

Data preprocessing: Raw accelerometer data can be noisy and contain errors
or irrelevant information. Preprocessing steps, such as filtering and normal-
ization, can help clean and standardize the data, making it more suitable for
feature extraction.

The Studio does not perform normalization or standardization, so
sometimes, when working with Sensor Fusion, it could be necessary
to perform this step before uploading data to the Studio. This is
particularly crucial in sensor fusion projects, as seen in this tutorial,
Sensor Data Fusion with Spresense and CommonSense.

Segmentation: Depending on the nature of the data and the application,
dividing the data into smaller segments or windows may be necessary. This
can help focus on specific events or activities within the dataset, making feature
extraction more manageable and meaningful. The window size and overlap
(window span) choice depend on the application and the frequency of the
events of interest. As a rule of thumb, we should try to capture a couple of
“data cycles.”

Feature extraction: Once the data is preprocessed and segmented, you can
extract features that describe the motion’s characteristics. Some typical features
extracted from accelerometer data include:

• Time-domain features describe the data’s statistical properties within
each segment, such as mean, median, standard deviation, skewness, kur-
tosis, and zero-crossing rate.

• Frequency-domain features are obtained by transforming the data into the
frequency domain using techniques like the Fast Fourier Transform (FFT).
Some typical frequency-domain features include the power spectrum,
spectral energy, dominant frequencies (amplitude and frequency), and
spectral entropy.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://docs.edgeimpulse.com/experts/air-quality-and-environmental-projects/environmental-sensor-fusion-commonsense
https://www.mdpi.com/1424-8220/22/5/2012
https://en.wikipedia.org/wiki/Fast_Fourier_transform

DSP Spectral Features 1597

• Time-frequency domain features combine the time and frequency do-
main information, such as the Short-Time Fourier Transform (STFT) or
the Discrete Wavelet Transform (DWT). They can provide a more detailed
understanding of how the signal’s frequency content changes over time.

In many cases, the number of extracted features can be large, which may lead
to overfitting or increased computational complexity. Feature selection tech-
niques, such as mutual information, correlation-based methods, or principal
component analysis (PCA), can help identify the most relevant features for a
given application and reduce the dimensionality of the dataset. The Studio can
help with such feature-relevant calculations.

Let’s explore in more detail a typical TinyML Motion Classification project
covered in this series of Hands-Ons.

A TinyML Motion Classification project

In the hands-on project, Motion Classification and Anomaly Detection, we simu-
lated mechanical stresses in transport, where our problem was to classify four
classes of movement:

• Maritime (pallets in boats)
• Terrestrial (pallets in a Truck or Train)
• Lift (pallets being handled by Fork-Lift)
• Idle (pallets in Storage houses)

The accelerometers provided the data on the pallet (or container).

Below is one sample (raw data) of 10 seconds, captured with a sampling
frequency of 50 Hz:

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform

Data Pre-Processing 1598

The result is similar when this analysis is done over another dataset
with the same principle, using a different sampling frequency, 62.5 Hz
instead of 50 Hz.

Data Pre-Processing
The raw data captured by the accelerometer (a “time series” data) should be
converted to “tabular data” using one of the typical Feature Extraction methods
described in the last section.

We should segment the data using a sliding window over the sample data for
feature extraction. The project captured accelerometer data every 10 seconds
with a sample rate of 62.5 Hz. A 2-second window captures 375 data points (3
axis × 2 seconds × 62.5 samples). The window is slid every 80 ms, creating a
larger dataset where each instance has 375 “raw features.”

On the Studio, the previous version (V1) of the Spectral Analysis Block
extracted as time-domain features only the RMS, and for the frequency-domain,
the peaks and frequency (using FFT) and the power characteristics (PSD) of the
signal over time resulting in a fixed tabular dataset of 33 features (11 per each
axis),

DSP Spectral Features 1599

Those 33 features were the Input tensor of a Neural Network Classifier.
In 2022, Edge Impulse released version 2 of the Spectral Analysis block, which

we will explore here.

Edge Impulse - Spectral Analysis Block V.2 under the hood
In Version 2, Time Domain Statistical features per axis/channel are:

• RMS
• Skewness
• Kurtosis

And the Frequency Domain Spectral features per axis/channel are:
• Spectral Power
• Skewness (in the next version)
• Kurtosis (in the next version)

In this link, we can have more details about the feature extraction.

Clone the public project. You can also follow the explanation, play-
ing with the code using my Google CoLab Notebook: Edge Impulse
Spectral Analysis Block Notebook.

Start importing the libraries:

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import math
from scipy.stats import skew, kurtosis
from scipy import signal
from scipy.signal import welch
from scipy.stats import entropy
from sklearn import preprocessing

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://studio.edgeimpulse.com/public/198358/latest
https://colab.research.google.com/github/Mjrovai/TinyML4D/blob/main/SciTinyM-2023/Edge_Impulse-Spectral_Analysis_Block/Edge_Impulse_Spectral_Analysis_Block_V3.ipynb
https://colab.research.google.com/github/Mjrovai/TinyML4D/blob/main/SciTinyM-2023/Edge_Impulse-Spectral_Analysis_Block/Edge_Impulse_Spectral_Analysis_Block_V3.ipynb

Data Pre-Processing 1600

import pywt

plt.rcParams['figure.figsize'] = (12, 6)
plt.rcParams['lines.linewidth'] = 3

From the studied project, let’s choose a data sample from accelerometers as
below:

• Window size of 2 seconds: [2,000] ms
• Sample frequency: [62.5] Hz
• We will choose the [None] filter (for simplicity) and a
• FFT length: [16].

f = 62.5 # Hertz
wind_sec = 2 # seconds
FFT_Lenght = 16
axis = ['accX', 'accY', 'accZ']
n_sensors = len(axis)

Selecting the Raw Features on the Studio Spectral Analysis tab, we can copy
all 375 data points of a particular 2-second window to the clipboard.

DSP Spectral Features 1601

Paste the data points to a new variable data:

data = [
-5.6330, 0.2376, 9.8701,
-5.9442, 0.4830, 9.8701,
-5.4217, ...

]
No_raw_features = len(data)
N = int(No_raw_features/n_sensors)

The total raw features are 375, but we will work with each axis individually,
where 𝑁 = 125 (number of samples per axis).

We aim to understand how Edge Impulse gets the processed features.

So, you should also past the processed features on a variable (to compare the
calculated features in Python with the ones provided by the Studio) :

features = [
2.7322, -0.0978, -0.3813,
2.3980, 3.8924, 24.6841,
9.6303, ...

]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)

The total number of processed features is 39, which means 13 features/axis.
Looking at those 13 features closely, we will find 3 for the time domain (RMS,

Skewness, and Kurtosis):

Data Pre-Processing 1602

• [rms] [skew] [kurtosis]

and 10 for the frequency domain (we will return to this later).
• [spectral skew][spectral kurtosis][Spectral Power 1] ... [Spectral

Power 8]

Splitting raw data per sensor
The data has samples from all axes; let’s split and plot them separately:

def plot_data(sensors, axis, title):
[plt.plot(x, label=y) for x,y in zip(sensors, axis)]
plt.legend(loc='lower right')
plt.title(title)
plt.xlabel('#Sample')
plt.ylabel('Value')
plt.box(False)
plt.grid()
plt.show()

accX = data[0::3]
accY = data[1::3]
accZ = data[2::3]
sensors = [accX, accY, accZ]
plot_data(sensors, axis, 'Raw Features')

Subtracting the mean
Next, we should subtract the mean from the data. Subtracting the mean from a

data set is a common data pre-processing step in statistics and machine learning.
The purpose of subtracting the mean from the data is to center the data around
zero. This is important because it can reveal patterns and relationships that
might be hidden if the data is not centered.

Here are some specific reasons why subtracting the mean can be helpful:
• It simplifies analysis: By centering the data, the mean becomes zero,

making some calculations simpler and easier to interpret.

DSP Spectral Features 1603

• It removes bias: If the data is biased, subtracting the mean can remove it
and allow for a more accurate analysis.

• It can reveal patterns: Centering the data can help uncover patterns that
might be hidden if the data is not centered. For example, centering the
data can help you identify trends over time if you analyze a time series
dataset.

• It can improve performance: In some machine learning algorithms, cen-
tering the data can improve performance by reducing the influence of
outliers and making the data more easily comparable. Overall, subtracting
the mean is a simple but powerful technique that can be used to improve
the analysis and interpretation of data.

dtmean = [
(sum(x) / len(x))
for x in sensors

]

[
print('mean_' + x + ' =', round(y, 4))
for x, y in zip(axis, dtmean)

][0]

accX = [(x - dtmean[0]) for x in accX]
accY = [(x - dtmean[1]) for x in accY]
accZ = [(x - dtmean[2]) for x in accZ]
sensors = [accX, accY, accZ]

plot_data(sensors, axis, 'Raw Features - Subctract the Mean')

Time Domain Statistical features
RMS Calculation

Time Domain Statistical features 1604

The RMS value of a set of values (or a continuous-time waveform) is the
square root of the arithmetic mean of the squares of the values or the square
of the function that defines the continuous waveform. In physics, the RMS
value of an electrical current is defined as the “value of the direct current that
dissipates the same power in a resistor.”

In the case of a set of 𝑛 values 𝑥1,𝑥2,…,𝑥𝑛, the RMS is:

𝑥RMS = √ 1𝑛 (𝑥21 +𝑥22 +⋯+𝑥2𝑛)
NOTE that the RMS value is different for the original raw data, and
after subtracting the mean

Using numpy and standardized data (subtracting mean)
rms = [np.sqrt(np.mean(np.square(x))) for x in sensors]

We can compare the calculated RMS values here with the ones presented by
Edge Impulse:

[print('rms_'+x+'= ', round(y, 4)) for x,y in zip(axis, rms)][0]
print("\nCompare with Edge Impulse result features")
print(features[0:N_feat:N_feat_axis])

rms_accX= 2.7322
rms_accY= 0.7833
rms_accZ= 0.1383
Compared with Edge Impulse result features:
[2.7322, 0.7833, 0.1383]
Skewness and kurtosis calculation
In statistics, skewness and kurtosis are two ways to measure the shape of a

distribution.
Here, we can see the sensor values distribution:

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(13, 4))
sns.kdeplot(accX, fill=True, ax=axes[0])
sns.kdeplot(accY, fill=True, ax=axes[1])
sns.kdeplot(accZ, fill=True, ax=axes[2])
axes[0].set_title('accX')
axes[1].set_title('accY')
axes[2].set_title('accZ')
plt.suptitle('IMU Sensors distribution', fontsize=16, y=1.02)
plt.show()

DSP Spectral Features 1605

Skewness is a measure of the asymmetry of a distribution. This value can be
positive or negative.

• A negative skew indicates that the tail is on the left side of the distribution,
which extends towards more negative values.

• A positive skew indicates that the tail is on the right side of the distribution,
which extends towards more positive values.

• A zero value indicates no skewness in the distribution at all, meaning the
distribution is perfectly symmetrical.

skew = [skew(x, bias=False) for x in sensors]
[print('skew_'+x+'= ', round(y, 4))

for x,y in zip(axis, skew)][0]
print("\nCompare with Edge Impulse result features")
features[1:N_feat:N_feat_axis]

skew_accX= -0.099
skew_accY= 0.1756
skew_accZ= 6.9463
Compared with Edge Impulse result features:
[-0.0978, 0.1735, 6.8629]
Kurtosis is a measure of whether or not a distribution is heavy-tailed or

light-tailed relative to a normal distribution.

https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis

Spectral features 1606

• The kurtosis of a normal distribution is zero.
• If a given distribution has a negative kurtosis, it is said to be playkurtic,

which means it tends to produce fewer and less extreme outliers than the
normal distribution.

• If a given distribution has a positive kurtosis , it is said to be leptokurtic,
which means it tends to produce more outliers than the normal distribu-
tion.

kurt = [kurtosis(x, bias=False) for x in sensors]
[print('kurt_'+x+'= ', round(y, 4))

for x,y in zip(axis, kurt)][0]
print("\nCompare with Edge Impulse result features")
features[2:N_feat:N_feat_axis]

kurt_accX= -0.3475
kurt_accY= 1.2673
kurt_accZ= 68.1123
Compared with Edge Impulse result features:
[-0.3813, 1.1696, 65.3726]

Spectral features
The filtered signal is passed to the Spectral power section, which computes the
FFT to generate the spectral features.

Since the sampled window is usually larger than the FFT size, the window
will be broken into frames (or “sub-windows”), and the FFT is calculated over
each frame.

FFT length - The FFT size. This determines the number of FFT bins and the
resolution of frequency peaks that can be separated. A low number means
more signals will average together in the same FFT bin, but it also reduces the
number of features and model size. A high number will separate more signals
into separate bins, generating a larger model.

DSP Spectral Features 1607

• The total number of Spectral Power features will vary depending on how
you set the filter and FFT parameters. With No filtering, the number of
features is 1/2 of the FFT Length.

Spectral Power - Welch’s method
We should use Welch’s method to split the signal on the frequency domain

in bins and calculate the power spectrum for each bin. This method divides the
signal into overlapping segments, applies a window function to each segment,
computes the periodogram of each segment using DFT, and averages them to
obtain a smoother estimate of the power spectrum.

Function used by Edge Impulse instead of scipy.signal.welch().
def welch_max_hold(fx, sampling_freq, nfft, n_overlap):

n_overlap = int(n_overlap)
spec_powers = [0 for _ in range(nfft//2+1)]
ix = 0
while ix <= len(fx):

Slicing truncates if end_idx > len,
and rfft will auto-zero pad
fft_out = np.abs(np.fft.rfft(fx[ix:ix+nfft], nfft))
spec_powers = np.maximum(spec_powers, fft_out**2/nfft)
ix = ix + (nfft-n_overlap)

return np.fft.rfftfreq(nfft, 1/sampling_freq), spec_powers

Applying the above function to 3 signals:

fax,Pax = welch_max_hold(accX, fs, FFT_Lenght, 0)
fay,Pay = welch_max_hold(accY, fs, FFT_Lenght, 0)
faz,Paz = welch_max_hold(accZ, fs, FFT_Lenght, 0)
specs = [Pax, Pay, Paz]

We can plot the Power Spectrum P(f):

plt.plot(fax,Pax, label='accX')
plt.plot(fay,Pay, label='accY')
plt.plot(faz,Paz, label='accZ')
plt.legend(loc='upper right')
plt.xlabel('Frequency (Hz)')
#plt.ylabel('PSD [V**2/Hz]')
plt.ylabel('Power')
plt.title('Power spectrum P(f) using Welch's method')
plt.grid()
plt.box(False)
plt.show()

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html

Spectral features 1608

Besides the Power Spectrum, we can also include the skewness and kurtosis
of the features in the frequency domain (should be available on a new version):

spec_skew = [skew(x, bias=False) for x in specs]
spec_kurtosis = [kurtosis(x, bias=False) for x in specs]

Let’s now list all Spectral features per axis and compare them with EI:

print("EI Processed Spectral features (accX): ")
print(features[3:N_feat_axis][0:])
print("\nCalculated features:")
print (round(spec_skew[0],4))
print (round(spec_kurtosis[0],4))
[print(round(x, 4)) for x in Pax[1:]][0]

EI Processed Spectral features (accX):
2.398, 3.8924, 24.6841, 9.6303, 8.4867, 7.7793, 2.9963, 5.6242, 3.4198, 4.2735
Calculated features:
2.9069 8.5569 24.6844 9.6304 8.4865 7.7794 2.9964 5.6242 3.4198 4.2736

print("EI Processed Spectral features (accY): ")
print(features[16:26][0:]) # 13: 3+N_feat_axis;

26 = 2x N_feat_axis
print("\nCalculated features:")
print (round(spec_skew[1],4))
print (round(spec_kurtosis[1],4))
[print(round(x, 4)) for x in Pay[1:]][0]

EI Processed Spectral features (accY):
0.9426, -0.8039, 5.429, 0.999, 1.0315, 0.9459, 1.8117, 0.9088, 1.3302, 3.112
Calculated features:
1.1426 -0.3886 5.4289 0.999 1.0315 0.9458 1.8116 0.9088 1.3301 3.1121

DSP Spectral Features 1609

print("EI Processed Spectral features (accZ): ")
print(features[29:][0:]) #29: 3+(2*N_feat_axis);
print("\nCalculated features:")
print (round(spec_skew[2],4))
print (round(spec_kurtosis[2],4))
[print(round(x, 4)) for x in Paz[1:]][0]

EI Processed Spectral features (accZ):

0.3117, -1.3812, 0.0606, 0.057, 0.0567, 0.0976, 0.194, 0.2574, 0.2083, 0.166

Calculated features:

0.3781 -1.4874 0.0606 0.057 0.0567 0.0976 0.194 0.2574 0.2083 0.166

Time-frequency domain

Wavelets

Wavelet is a powerful technique for analyzing signals with transient features or
abrupt changes, such as spikes or edges, which are difÏcult to interpret with
traditional Fourier-based methods.

Wavelet transforms work by breaking down a signal into different frequency
components and analyzing them individually. The transformation is achieved
by convolving the signal with a wavelet function, a small waveform centered
at a specific time and frequency. This process effectively decomposes the signal
into different frequency bands, each of which can be analyzed separately.

One of the critical benefits of wavelet transforms is that they allow for time-
frequency analysis, which means that they can reveal the frequency content
of a signal as it changes over time. This makes them particularly useful for
analyzing non-stationary signals, which vary over time.

Wavelets have many practical applications, including signal and image com-
pression, denoising, feature extraction, and image processing.

Let’s select Wavelet on the Spectral Features block in the same project:

• Type: Wavelet
• Wavelet Decomposition Level: 1
• Wavelet: bior1.3

https://en.wikipedia.org/wiki/Wavelet

Time-frequency domain 1610

The Wavelet Function

wavelet_name='bior1.3'
num_layer = 1

wavelet = pywt.Wavelet(wavelet_name)
[phi_d,psi_d,phi_r,psi_r,x] = wavelet.wavefun(level=5)
plt.plot(x, psi_d, color='red')
plt.title('Wavelet Function')
plt.ylabel('Value')
plt.xlabel('Time')
plt.grid()
plt.box(False)
plt.show()

DSP Spectral Features 1611

As we did before, let’s copy and past the Processed Features:

features = [
3.6251, 0.0615, 0.0615,
-7.3517, -2.7641, 2.8462,
5.0924, ...

]
N_feat = len(features)
N_feat_axis = int(N_feat/n_sensors)

Edge Impulse computes the Discrete Wavelet Transform (DWT) for each one
of the Wavelet Decomposition levels selected. After that, the features will be
extracted.

In the case of Wavelets, the extracted features are basic statistical values, crossing
values, and entropy. There are, in total, 14 features per layer as below:

• [11] Statiscal Features: n5, n25, n75, n95, mean, median, standard devia-
tion (std), variance (var) root mean square (rms), kurtosis, and skewness
(skew).

• [2] Crossing Features: Zero crossing rate (zcross) and mean crossing rate
(mcross) are the times that the signal passes through the baseline (𝑦 = 0)
and the average level (y = u) per unit of time, respectively

• [1] Complexity Feature: Entropy is a characteristic measure of the com-
plexity of the signal

All the above 14 values are calculated for each Layer (including L0, the
original signal)

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html

Time-frequency domain 1612

• The total number of features varies depending on how you set the filter
and the number of layers. For example, with [None] filtering and Level[1],
the number of features per axis will be 14 × 2 (L0 and L1) = 28. For the
three axes, we will have a total of 84 features.

Wavelet Analysis

Wavelet analysis decomposes the signal (accX, accY, and accZ) into different
frequency components using a set of filters, which separate these components
into low-frequency (slowly varying parts of the signal containing long-term
patterns), such as accX_l1, accY_l1, accZ_l1 and, high-frequency (rapidly vary-
ing parts of the signal containing short-term patterns) components, such as
accX_d1, accY_d1, accZ_d1, permitting the extraction of features for further
analysis or classification.

Only the low-frequency components (approximation coefÏcients, or cA) will
be used. In this example, we assume only one level (Single-level Discrete
Wavelet Transform), where the function will return a tuple. With a multilevel
decomposition, the “Multilevel 1D Discrete Wavelet Transform”, the result will
be a list (for detail, please see: Discrete Wavelet Transform (DWT))

(accX_l1, accX_d1) = pywt.dwt(accX, wavelet_name)
(accY_l1, accY_d1) = pywt.dwt(accY, wavelet_name)
(accZ_l1, accZ_d1) = pywt.dwt(accZ, wavelet_name)
sensors_l1 = [accX_l1, accY_l1, accZ_l1]

Plot power spectrum versus frequency
plt.plot(accX_l1, label='accX')
plt.plot(accY_l1, label='accY')
plt.plot(accZ_l1, label='accZ')
plt.legend(loc='lower right')
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Wavelet Approximation')
plt.grid()
plt.box(False)
plt.show()

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html

DSP Spectral Features 1613

Feature Extraction
Let’s start with the basic statistical features. Note that we apply the function
for both the original signals and the resultant cAs from the DWT:

def calculate_statistics(signal):
n5 = np.percentile(signal, 5)
n25 = np.percentile(signal, 25)
n75 = np.percentile(signal, 75)
n95 = np.percentile(signal, 95)
median = np.percentile(signal, 50)
mean = np.mean(signal)
std = np.std(signal)
var = np.var(signal)
rms = np.sqrt(np.mean(np.square(signal)))
return [n5, n25, n75, n95, median, mean, std, var, rms]

stat_feat_l0 = [calculate_statistics(x) for x in sensors]
stat_feat_l1 = [calculate_statistics(x) for x in sensors_l1]

The Skelness and Kurtosis:

skew_l0 = [skew(x, bias=False) for x in sensors]
skew_l1 = [skew(x, bias=False) for x in sensors_l1]
kurtosis_l0 = [kurtosis(x, bias=False) for x in sensors]
kurtosis_l1 = [kurtosis(x, bias=False) for x in sensors_l1]

Zero crossing (zcross) is the number of times the wavelet coefÏcient crosses
the zero axis. It can be used to measure the signal’s frequency content since
high-frequency signals tend to have more zero crossings than low-frequency
signals.

Time-frequency domain 1614

Mean crossing (mcross), on the other hand, is the number of times the
wavelet coefÏcient crosses the mean of the signal. It can be used to measure
the amplitude since high-amplitude signals tend to have more mean crossings
than low-amplitude signals.

def getZeroCrossingRate(arr):
my_array = np.array(arr)
zcross = float(

"{:.2f}".format(
(((my_array[:-1] * my_array[1:]) < 0).sum()) / len(arr)

)
)
return zcross

def getMeanCrossingRate(arr):
mcross = getZeroCrossingRate(np.array(arr) - np.mean(arr))
return mcross

def calculate_crossings(list):
zcross=[]
mcross=[]
for i in range(len(list)):

zcross_i = getZeroCrossingRate(list[i])
zcross.append(zcross_i)
mcross_i = getMeanCrossingRate(list[i])
mcross.append(mcross_i)

return zcross, mcross

cross_l0 = calculate_crossings(sensors)
cross_l1 = calculate_crossings(sensors_l1)

In wavelet analysis, entropy refers to the degree of disorder or randomness
in the distribution of wavelet coefÏcients. Here, we used Shannon entropy,
which measures a signal’s uncertainty or randomness. It is calculated as the
negative sum of the probabilities of the different possible outcomes of the signal
multiplied by their base 2 logarithm. In the context of wavelet analysis, Shannon
entropy can be used to measure the complexity of the signal, with higher values
indicating greater complexity.

def calculate_entropy(signal, base=None):
value, counts = np.unique(signal, return_counts=True)
return entropy(counts, base=base)

entropy_l0 = [calculate_entropy(x) for x in sensors]
entropy_l1 = [calculate_entropy(x) for x in sensors_l1]

Let’s now list all the wavelet features and create a list by layers.

DSP Spectral Features 1615

L1_features_names = [
"L1-n5", "L1-n25", "L1-n75", "L1-n95", "L1-median",
"L1-mean", "L1-std", "L1-var", "L1-rms", "L1-skew",
"L1-Kurtosis", "L1-zcross", "L1-mcross", "L1-entropy"

]

L0_features_names = [
"L0-n5", "L0-n25", "L0-n75", "L0-n95", "L0-median",
"L0-mean", "L0-std", "L0-var", "L0-rms", "L0-skew",
"L0-Kurtosis", "L0-zcross", "L0-mcross", "L0-entropy"

]

all_feat_l0 = []
for i in range(len(axis)):

feat_l0 = (
stat_feat_l0[i]
+ [skew_l0[i]]
+ [kurtosis_l0[i]]
+ [cross_l0[0][i]]
+ [cross_l0[1][i]]
+ [entropy_l0[i]]

)
[print(axis[i] + ' +x+= ', round(y, 4))

for x, y in zip(LO_features_names, feat_l0)][0]
all_feat_l0.append(feat_l0)

all_feat_l0 = [
item
for sublist in all_feat_l0
for item in sublist

]
print(f"\nAll L0 Features = {len(all_feat_l0)}")

all_feat_l1 = []
for i in range(len(axis)):

feat_l1 = (
stat_feat_l1[i]
+ [skew_l1[i]]
+ [kurtosis_l1[i]]
+ [cross_l1[0][i]]
+ [cross_l1[1][i]]
+ [entropy_l1[i]]

)
[print(axis[i]+' '+x+'= ', round(y, 4))

for x,y in zip(L1_features_names, feat_l1)][0]
all_feat_l1.append(feat_l1)

Time-frequency domain 1616

all_feat_l1 = [
item
for sublist in all_feat_l1
for item in sublist

]
print(f"\nAll L1 Features = {len(all_feat_l1)}")

DSP Spectral Features 1617

Conclusion
Edge Impulse Studio is a powerful online platform that can handle the pre-
processing task for us. Still, given our engineering perspective, we want to
understand what is happening under the hood. This knowledge will help us
find the best options and hyper-parameters for tuning our projects.

Daniel Situnayake wrote in his blog: “Raw sensor data is highly dimensional
and noisy. Digital signal processing algorithms help us sift the signal from
the noise. DSP is an essential part of embedded engineering, and many edge
processors have on-board acceleration for DSP. As an ML engineer, learning
basic DSP gives you superpowers for handling high-frequency time series data
in your models.” I recommend you read Dan’s excellent post in its totality: nn
to cpp: What you need to know about porting deep learning models to the
edge.

https://situnayake.com/
https://situnayake.com/2023/03/21/nn-to-cpp.html
https://situnayake.com/2023/03/21/nn-to-cpp.html
https://situnayake.com/2023/03/21/nn-to-cpp.html

APPENDIX

1619

PhD Survival Guide

Technical knowledge in machine learning systems or be it in any other field,
while essential, is only one dimension of successful research and scholarship.
The journey through (graduate) school and beyond demands a broader set of
skills: the ability to read and synthesize complex literature, communicate ideas
effectively, manage time, and navigate academic careers thoughtfully.

This appendix is a small set of resources that address these important but
often underdiscussed aspects of academic life. The curated materials span
from seminal works that have guided multiple generations of researchers to
contemporary discussions of productivity and scientific communication.

Many of these resources originated in computer science and engineering
contexts, with each section focusing on a distinct aspect of academic life and
presenting authoritative sources that have proven particularly valuable for
graduate students and early-career researchers.

If you have suggestions or recommendations, please feel free to contact me
vj[@]eecs harvard edu or issue a GitHub PR with your suggestion!

1621

https://github.com/harvard-edge/cs249r_book/pulls

Career Advice

On Research Careers and Productivity
1. How to Have a Bad Career in Research/Academia A humorous and

insightful guide by Turing Award winner David Patterson on common
pitfalls to avoid in academic research.

2. You and Your Research A famous lecture by Richard Hamming on how
to do impactful research and why some researchers excel.

3. Ten Simple Rules for Doing Your Best Research, According to Hamming
A summary and expansion on Richard Hamming’s principles, providing
practical and motivational guidance for researchers at all stages.

4. The Importance of Stupidity in Scientific Research A short essay by Martin
A. Schwartz on embracing the challenges of research and learning to thrive
in the unknown.

5. Advice to a Young Scientist A classic book by Peter Medawar offering
practical and philosophical advice on scientific research careers.

On Reading and Learning
1. How to Read a Paper A guide by S. Keshav on how to efÏciently read and

understand research papers.
2. EfÏcient Reading of Papers in Science and Technology Practical advice by

Michael J. Hanson for handling the large volume of research papers in
technical fields.

On Time Management and Productivity
1. Deep Work By Cal Newport, this book provides strategies for focusing

deeply and maximizing productivity in cognitively demanding tasks.
2. Applying to Ph.D. Programs in Computer Science) A guide by Mor

Harchol-Balter on time management, research strategies, and thriving
during a Ph.D.

3. The Unwritten Laws of Engineering Though focused on engineering, W.
J. King offers timeless advice on professionalism and effectiveness in
technical work.

1623

https://people.eecs.berkeley.edu/~pattrsn/talks/BadCareer.pdf
https://www.cs.virginia.edu/~robins/YouAndYourResearch.html
https://doi.org/10.1371/journal.pcbi.1004086
https://jcs.biologists.org/content/joces/121/11/1771.full.pdf
https://www.goodreads.com/book/show/905743.Advice_To_A_Young_Scientist
https://web.stanford.edu/class/ee384m/Handouts/HowtoReadPaper.pdf
https://www.cs.columbia.edu/~hgs/netbib/efficientReading.pdf
https://www.calnewport.com/books/deep-work/
https://www.cs.cmu.edu/~harchol/gradschooltalk.pdf
https://rotorlab.tamu.edu/me489/README/2010%20ASME%20Unwritten_Laws_of_Enginering.pdf

On Oral Presentation Advice 1624

On Oral Presentation Advice
1. Oral Presentation Advice A concise guide by Mark Hill on delivering

clear and engaging oral presentations in academic and technical contexts.
2. How to Give a Good Research Talk A guide by Simon Peyton Jones,

John Hughes, and John Launchbury on crafting and delivering effective
research presentations.

3. Ten Simple Rules for Making Good Oral Presentations A practical set of
tips published by PLOS Computational Biology for delivering impactful
oral presentations.

On Writing and Communicating Science
Any suggestions?

Video Resources
1. You and Your Research by Richard Hamming A video lecture of Richard

Hamming’s talk on achieving significant research contributions.
2. How to Write a Great Research Paper Simon Peyton Jones shares tips on

writing research papers and presenting ideas effectively.

https://pages.cs.wisc.edu/~markhill/conference-talk.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/08/giving-a-talk.pdf
https://simon.peytonjones.org/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030077
https://www.youtube.com/watch?v=a1zDuOPkMSw
https://youtu.be/VK51E3gHENc

REFERENCES

1625

References

0001, Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, et al. 2018a. “TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning.” In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), 578–94.
https://www.usenix.org/conference/osdi18/presentation/chen.

———, et al. 2018b. “TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning.” In OSDI, 578–94. https://www.usenix.org/conferenc
e/osdi18/presentation/chen.

0003, Mu Li, David G. Andersen, Alexander J. Smola, and Kai Yu. 2014.
“Communication EfÏcient Distributed Machine Learning with the Param-
eter Server.” In Advances in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada, edited by Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, 19–27.
https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42
943881c655f-Abstract.html.

Abadi, Martin, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. “Deep Learning with Differential Pri-
vacy.” In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 308–18. CCS ’16. New York, NY, USA: ACM.
https://doi.org/10.1145/2976749.2978318.

Abadi, Martı́n, Ashish Agarwal, Paul Barham, et al. 2015. “TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems.” Google Brain.

Abadi, Martı́n, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, et al. 2016. “TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Systems.” arXiv Preprint
arXiv:1603.04467, March. http://arxiv.org/abs/1603.04467v2.

Abadi, Martı́n, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, et al. 2016. “TensorFlow: A System for Large-Scale
Machine Learning.” In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), 265–83. USENIX Association. https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

Abdelkader, Ahmed, Michael J. Curry, Liam Fowl, Tom Goldstein, Avi Schwarzschild,
Manli Shu, Christoph Studer, and Chen Zhu. 2020. “Headless Horse-
man: Adversarial Attacks on Transfer Learning Models.” In ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing

1627

https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html
https://doi.org/10.1145/2976749.2978318
http://arxiv.org/abs/1603.04467v2
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

References 1628

(ICASSP), 3087–91. IEEE. https://doi.org/10.1109/icassp40776.2020.90531
81.

Abdelkhalik, Hamdy, Yehia Arafa, Nandakishore Santhi, and Abdel-Hameed
A. Badawy. 2022. “Demystifying the Nvidia Ampere Architecture Through
Microbenchmarking and Instruction-Level Analysis.” In 2022 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE. https://doi.org/
10.1109/hpec55821.2022.9926299.

Addepalli, Sravanti, B. S. Vivek, Arya Baburaj, Gaurang Sriramanan, and R.
Venkatesh Babu. 2020. “Towards Achieving Adversarial Robustness by
Enforcing Feature Consistency Across Bit Planes.” In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 1020–29. IEEE.
https://doi.org/10.1109/cvpr42600.2020.00110.

Adi, Yossi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
2018. “Turning Your Weakness into a Strength: Watermarking Deep Neural
Networks by Backdooring.” In 27th USENIX Security Symposium (USENIX
Security 18), 1615–31.

Agrawal, Dakshi, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and Berk
Sunar. 2007. “Trojan Detection Using IC Fingerprinting.” In 2007 IEEE
Symposium on Security and Privacy (SP ’07), 296–310. Springer; IEEE. https:
//doi.org/10.1109/sp.2007.36.

Ahmadilivani, Mohammad Hasan, Mahdi Taheri, Jaan Raik, Masoud Danesh-
talab, and Maksim Jenihhin. 2024. “A Systematic Literature Review on
Hardware Reliability Assessment Methods for Deep Neural Networks.”
ACM Computing Surveys 56 (6): 1–39. https://doi.org/10.1145/3638242.

Ahmed, Reyan, Greg Bodwin, Keaton Hamm, Stephen Kobourov, and Richard
Spence. 2021. “On Additive Spanners in Weighted Graphs with Local Error.”
arXiv Preprint arXiv:2103.09731 64 (12): 58–65. https://doi.org/10.1145/34
67017.

Akidau, Tyler, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, et al. 2015. “The
Dataflow Model: A Practical Approach to Balancing Correctness, Latency,
and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing.”
Proceedings of the VLDB Endowment 8 (12): 1792–1803. https://doi.org/10.1
4778/2824032.2824076.

Altayeb, Moez, Marco Zennaro, and Marcelo Rovai. 2022. “Classifying Mosquito
Wingbeat Sound Using TinyML.” In Proceedings of the 2022 ACM Conference
on Information Technology for Social Good, 132–37. ACM. https://doi.org/10
.1145/3524458.3547258.

Alvim, Mário S., Konstantinos Chatzikokolakis, Yusuke Kawamoto, and Catus-
cia Palamidessi. 2022. “Information Leakage Games: Exploring Information
as a Utility Function.” ACM Transactions on Privacy and Security 25 (3): 1–36.
https://doi.org/10.1145/3517330.

Amershi, Saleema, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zim-
mermann. 2019. “Software Engineering for Machine Learning: A Case
Study.” In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP), 291–300. IEEE. https:
//doi.org/10.1109/icse-seip.2019.00042.

https://doi.org/10.1109/icassp40776.2020.9053181
https://doi.org/10.1109/icassp40776.2020.9053181
https://doi.org/10.1109/hpec55821.2022.9926299
https://doi.org/10.1109/hpec55821.2022.9926299
https://doi.org/10.1109/cvpr42600.2020.00110
https://doi.org/10.1109/sp.2007.36
https://doi.org/10.1109/sp.2007.36
https://doi.org/10.1145/3638242
https://doi.org/10.1145/3467017
https://doi.org/10.1145/3467017
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/3524458.3547258
https://doi.org/10.1145/3524458.3547258
https://doi.org/10.1145/3517330
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1109/icse-seip.2019.00042

References 1629

Amiel, Frederic, Christophe Clavier, and Michael Tunstall. 2006. “Fault Analysis
of DPA-Resistant Algorithms.” In Fault Diagnosis and Tolerance in Cryptogra-
phy, 223–36. Springer; Springer Berlin Heidelberg. https://doi.org/10.100
7/11889700/_20.

Amodei, Dario, Danny Hernandez, et al. 2018. “AI and Compute.” OpenAI
Blog. https://openai.com/research/ai-and-compute.

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman,
and Dan Mané. 2016. “Concrete Problems in AI Safety.” arXiv Preprint
arXiv:1606.06565, June. http://arxiv.org/abs/1606.06565v2.

Andrae, Anders, and Tomas Edler. 2015. “On Global Electricity Usage of
Communication Technology: Trends to 2030.” Challenges 6 (1): 117–57.
https://doi.org/10.3390/challe6010117.

Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, et al. 2017. “Understanding the Mi-
rai Botnet.” In 26th USENIX Security Symposium (USENIX Security 17),
16:1093–1110.

Ardila, Rosana, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer,
Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and
Gregor Weber. 2020. “Common Voice: A Massively-Multilingual Speech
Corpus.” In Proceedings of the Twelfth Language Resources and Evaluation Confer-
ence, 4218–22. Marseille, France: European Language Resources Association.
https://aclanthology.org/2020.lrec-1.520.

Arifeen, Tooba, Abdus Sami Hassan, and Jeong-A Lee. 2020. “Approximate
Triple Modular Redundancy: A Survey.” IEEE Access 8: 139851–67. https:
//doi.org/10.1109/access.2020.3012673.

Arivazhagan, Manoj Ghuhan, Vinay Aggarwal, Aaditya Kumar Singh, and
Sunav Choudhary. 2019. “Federated Learning with Personalization Layers.”
CoRR abs/1912.00818 (December). http://arxiv.org/abs/1912.00818v1.

Asonov, D., and R. Agrawal. n.d. “Keyboard Acoustic Emanations.” In IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004, 3–11. IEEE; IEEE.
https://doi.org/10.1109/secpri.2004.1301311.

Ateniese, Giuseppe, Luigi V. Mancini, Angelo Spognardi, Antonio Villani,
Domenico Vitali, and Giovanni Felici. 2015. “Hacking Smart Machines
with Smarter Ones: How to Extract Meaningful Data from Machine Learn-
ing Classifiers.” International Journal of Security and Networks 10 (3): 137.
https://doi.org/10.1504/ijsn.2015.071829.

Attia, Zachi I., Alan Sugrue, Samuel J. Asirvatham, Michael J. Ackerman, Suraj
Kapa, Paul A. Friedman, and Peter A. Noseworthy. 2018. “Noninvasive
Assessment of Dofetilide Plasma Concentration Using a Deep Learning
(Neural Network) Analysis of the Surface Electrocardiogram: A Proof of
Concept Study.” PLOS ONE 13 (8): e0201059. https://doi.org/10.1371/jo
urnal.pone.0201059.

Aygun, Sercan, Ece Olcay Gunes, and Christophe De Vleeschouwer. 2021.
“EfÏcient and Robust Bitstream Processing in Binarised Neural Networks.”
Electronics Letters 57 (5): 219–22. https://doi.org/10.1049/ell2.12045.

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. “Layer Nor-
malization.” arXiv Preprint arXiv:1607.06450, July. http://arxiv.org/abs/16
07.06450v1.

https://doi.org/10.1007/11889700/_20
https://doi.org/10.1007/11889700/_20
https://openai.com/research/ai-and-compute
http://arxiv.org/abs/1606.06565v2
https://doi.org/10.3390/challe6010117
https://aclanthology.org/2020.lrec-1.520
https://doi.org/10.1109/access.2020.3012673
https://doi.org/10.1109/access.2020.3012673
http://arxiv.org/abs/1912.00818v1
https://doi.org/10.1109/secpri.2004.1301311
https://doi.org/10.1504/ijsn.2015.071829
https://doi.org/10.1371/journal.pone.0201059
https://doi.org/10.1371/journal.pone.0201059
https://doi.org/10.1049/ell2.12045
http://arxiv.org/abs/1607.06450v1
http://arxiv.org/abs/1607.06450v1

References 1630

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014. “Neural
Machine Translation by Jointly Learning to Align and Translate.” arXiv
Preprint arXiv:1409.0473, September. http://arxiv.org/abs/1409.0473v7.

Bai, Tao, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021. “Recent Ad-
vances in Adversarial Training for Adversarial Robustness.” arXiv Preprint
arXiv:2102.01356, February. http://arxiv.org/abs/2102.01356v5.

Bamoumen, Hatim, Anas Temouden, Nabil Benamar, and Yousra Chtouki.
2022. “How TinyML Can Be Leveraged to Solve Environmental Problems:
A Survey.” In 2022 International Conference on Innovation and Intelligence for
Informatics, Computing, and Technologies (3ICT), 338–43. IEEE; IEEE. https:
//doi.org/10.1109/3ict56508.2022.9990661.

Banbury, Colby R., Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel,
Jeremy Holleman, Xinyuan Huang, et al. 2020. “Benchmarking TinyML
Systems: Challenges and Direction.” arXiv Preprint arXiv:2003.04821, March.
http://arxiv.org/abs/2003.04821v4.

Banbury, Colby, Emil Njor, Andrea Mattia Garavagno, Matthew Stewart, Pete
Warden, Manjunath Kudlur, Nat Jeffries, Xenofon Fafoutis, and Vijay Janapa
Reddi. 2024. “Wake Vision: A Tailored Dataset and Benchmark Suite for
TinyML Computer Vision Applications,” May. http://arxiv.org/abs/2405
.00892v4.

Banbury, Colby, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries,
Csaba Kiraly, Pietro Montino, et al. 2021. “MLPerf Tiny Benchmark.” arXiv
Preprint arXiv:2106.07597, June. http://arxiv.org/abs/2106.07597v4.

Bannon, Pete, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes.
2019. “Computer and Redundancy Solution for the Full Self-Driving Com-
puter.” In 2019 IEEE Hot Chips 31 Symposium (HCS), 1–22. IEEE Computer
Society; IEEE. https://doi.org/10.1109/hotchips.2019.8875645.

Baraglia, David, and Hokuto Konno. 2019. “On the Bauer-Furuta and Seiberg-
Witten Invariants of Families of 4-Manifolds.” arXiv Preprint arXiv:1903.01649,
March, 8955–67. http://arxiv.org/abs/1903.01649v3.

Bardenet, Rémi, Olivier Cappé, Gersende Fort, and Balázs Kégl. 2015. “Adaptive
MCMC with Online Relabeling.” Bernoulli 21 (3). https://doi.org/10.3150/
13-bej578.

Barenghi, Alessandro, Guido M. Bertoni, Luca Breveglieri, Mauro Pellicioli,
and Gerardo Pelosi. 2010. “Low Voltage Fault Attacks to AES.” In 2010 IEEE
International Symposium onHardware-Oriented Security and Trust (HOST), 7–12.
IEEE; IEEE. https://doi.org/10.1109/hst.2010.5513121.

Barocas, Solon, Moritz Hardt, and Arvind Narayanan. 2023. Fairness and
Machine Learning: Limitations and Opportunities. MIT Press.

Barroso, Luiz André, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines. Springer
International Publishing. https://doi.org/10.1007/978-3-031-01741-4.

Barroso, Luiz André, and Urs Hölzle. 2007b. “The Case for Energy-Proportional
Computing.” Computer 40 (12): 33–37. https://doi.org/10.1109/mc.2007.44
3.

———. 2007a. “The Case for Energy-Proportional Computing.” Computer 40
(12): 33–37. https://doi.org/10.1109/mc.2007.443.

http://arxiv.org/abs/1409.0473v7
http://arxiv.org/abs/2102.01356v5
https://doi.org/10.1109/3ict56508.2022.9990661
https://doi.org/10.1109/3ict56508.2022.9990661
http://arxiv.org/abs/2003.04821v4
http://arxiv.org/abs/2405.00892v4
http://arxiv.org/abs/2405.00892v4
http://arxiv.org/abs/2106.07597v4
https://doi.org/10.1109/hotchips.2019.8875645
http://arxiv.org/abs/1903.01649v3
https://doi.org/10.3150/13-bej578
https://doi.org/10.3150/13-bej578
https://doi.org/10.1109/hst.2010.5513121
https://doi.org/10.1007/978-3-031-01741-4
https://doi.org/10.1109/mc.2007.443
https://doi.org/10.1109/mc.2007.443
https://doi.org/10.1109/mc.2007.443

References 1631

Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. 2019. The
Datacenter as a Computer: Designing Warehouse-Scale Machines. Springer
International Publishing. https://doi.org/10.1007/978-3-031-01761-2.

Baydin, Atilim Gunes, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. 2017a. “Automatic Differentiation in Machine Learn-
ing: A Survey.” J. Mach. Learn. Res. 18: 153:1–43. https://jmlr.org/papers/
v18/17-468.html.

———. 2017b. “Automatic Differentiation in Machine Learning: A Survey.”
J. Mach. Learn. Res. 18 (153): 153:1–43. https://jmlr.org/papers/v18/17-
468.html.

Beaton, Albert E., and John W. Tukey. 1974. “The Fitting of Power Series, Mean-
ing Polynomials, Illustrated on Band-Spectroscopic Data.” Technometrics 16
(2): 147. https://doi.org/10.2307/1267936.

Bedford Taylor, Michael. 2017. “The Evolution of Bitcoin Hardware.” Computer
50 (9): 58–66. https://doi.org/10.1109/mc.2017.3571056.

Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. “On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big? �.” In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, 610–23. ACM. https://doi.org/10.1145/34
42188.3445922.

Bengio, Emmanuel, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. 2015.
“Conditional Computation in Neural Networks for Faster Models.” arXiv
Preprint arXiv:1511.06297, November. http://arxiv.org/abs/1511.06297v2.

Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. 2013b. “Estimat-
ing or Propagating Gradients Through Stochastic Neurons for Conditional
Computation.” arXiv Preprint, August. http://arxiv.org/abs/1308.3432v1.

———. 2013a. “Estimating or Propagating Gradients Through Stochastic
Neurons for Conditional Computation.” arXiv Preprint arXiv:1308.3432,
August. http://arxiv.org/abs/1308.3432v1.

Ben-Nun, Tal, and Torsten Hoefler. 2019. “Demystifying Parallel and Dis-
tributed Deep Learning: An in-Depth Concurrency Analysis.” ACM Com-
puting Surveys 52 (4): 1–43. https://doi.org/10.1145/3320060.

Berger, Vance W., and YanYan Zhou. 2014. “Wiley StatsRef: Statistics Reference
Online.” Wiley Statsref: Statistics Reference Online. Wiley. https://doi.org/10
.1002/9781118445112.stat06558.

Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. “Theano: A CPU and GPU Math Compiler in Python.”
In Proceedings of the 9th Python in Science Conference, 4:18–24. 1. SciPy. https:
//doi.org/10.25080/majora-92bf1922-003.

Beyer, Lucas, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron
van den Oord. 2020. “Are We Done with ImageNet?” arXiv Preprint
arXiv:2006.07159, June. http://arxiv.org/abs/2006.07159v1.

Bhagoji, Arjun Nitin, Warren He, Bo Li, and Dawn Song. 2018. “Practical Black-
Box Attacks on Deep Neural Networks Using EfÏcient Query Mechanisms.”
In Computer Vision – ECCV 2018, 158–74. Springer International Publishing.
https://doi.org/10.1007/978-3-030-01258-8/_10.

https://doi.org/10.1007/978-3-031-01761-2
https://jmlr.org/papers/v18/17-468.html
https://jmlr.org/papers/v18/17-468.html
https://jmlr.org/papers/v18/17-468.html
https://jmlr.org/papers/v18/17-468.html
https://doi.org/10.2307/1267936
https://doi.org/10.1109/mc.2017.3571056
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/1511.06297v2
http://arxiv.org/abs/1308.3432v1
http://arxiv.org/abs/1308.3432v1
https://doi.org/10.1145/3320060
https://doi.org/10.1002/9781118445112.stat06558
https://doi.org/10.1002/9781118445112.stat06558
https://doi.org/10.25080/majora-92bf1922-003
https://doi.org/10.25080/majora-92bf1922-003
http://arxiv.org/abs/2006.07159v1
https://doi.org/10.1007/978-3-030-01258-8/_10

References 1632

Bhamra, Ran, Adrian Small, Christian Hicks, and Olimpia Pilch. 2024. “Impact
Pathways: Geopolitics, Risk and Ethics in Critical Minerals Supply Chains.”
International Journal of Operations &Amp; Production Management, September.
https://doi.org/10.1108/ijopm-03-2024-0228.

Biggio, Battista, Blaine Nelson, and Pavel Laskov. 2012. “Poisoning Attacks
Against Support Vector Machines.” In Proceedings of the 29th International
Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 -
July 1, 2012. icml.cc / Omnipress. http://icml.cc/2012/papers/880.pdf.

Binkert, Nathan, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, et al. 2011. “The Gem5 Simulator.”
ACM SIGARCH Computer Architecture News 39 (2): 1–7. https://doi.org/10
.1145/2024716.2024718.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Springer.
Blackwood, Jayden, Frances C. Wright, Nicole J. Look Hong, and Anna R.

Gagliardi. 2019. “Quality of DCIS Information on the Internet: A Content
Analysis.” Breast Cancer Research and Treatment 177 (2): 295–305. https:
//doi.org/10.1007/s10549-019-05315-8.

Bolchini, Cristiana, Luca Cassano, Antonio Miele, and Alessandro Toschi. 2023.
“Fast and Accurate Error Simulation for CNNs Against Soft Errors.” IEEE
Transactions on Computers 72 (4): 984–97. https://doi.org/10.1109/tc.2022.
3184274.

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, et al. 2021. “On the Opportunities
and Risks of Foundation Models.” arXiv Preprint arXiv:2108.07258, August.
http://arxiv.org/abs/2108.07258v3.

Bouri, Elie. 2015. “A Broadened Causality in Variance Approach to Assess the
Risk Dynamics Between Crude Oil Prices and the Jordanian Stock Market.”
Energy Policy 85 (October): 271–79. https://doi.org/10.1016/j.enpol.2015.0
6.001.

Bourtoule, Lucas, Varun Chandrasekaran, Christopher A. Choquette-Choo,
Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot.
2021. “Machine Unlearning.” In 2021 IEEE Symposium on Security and Privacy
(SP), 141–59. IEEE; IEEE. https://doi.org/10.1109/sp40001.2021.00019.

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, et al. 2018. “JAX: Composable
Transformations of Python+NumPy Programs.” http://github.com/googl
e/jax.

Brain, Google. 2020. “XLA: Optimizing Compiler for Machine Learning.”
TensorFlow Blog. https://tensorflow.org/xla.

———. 2022. TensorFlow Documentation. https://www.tensorflow.org/.
Brakerski, Zvika et al. 2022. “Federated Learning and the Rise of Edge Intelli-

gence: Challenges and Opportunities.” Communications of the ACM 65 (8):
54–63.

Breck, Eric, Shanqing Cai, Eric Nielsen, Mohamed Salib, and D. Sculley. 2020.
“The ML Test Score: A Rubric for ML Production Readiness and Technical
Debt Reduction.” IEEE Transactions on Big Data 6 (2): 347–61.

Breier, Jakub, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu.
2018. “DeepLaser: Practical Fault Attack on Deep Neural Networks.” ArXiv

https://doi.org/10.1108/ijopm-03-2024-0228
http://icml.cc/2012/papers/880.pdf
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1007/s10549-019-05315-8
https://doi.org/10.1007/s10549-019-05315-8
https://doi.org/10.1109/tc.2022.3184274
https://doi.org/10.1109/tc.2022.3184274
http://arxiv.org/abs/2108.07258v3
https://doi.org/10.1016/j.enpol.2015.06.001
https://doi.org/10.1016/j.enpol.2015.06.001
https://doi.org/10.1109/sp40001.2021.00019
http://github.com/google/jax
http://github.com/google/jax
https://tensorflow.org/xla
https://www.tensorflow.org/

References 1633

Preprint abs/1806.05859 (June): 619–33. http://arxiv.org/abs/1806.05859
v2.

Brown, Samantha. 2021. “Long-Term Software Support: A Key Factor in
Sustainable AI Hardware.” Computer Ethics and Sustainability 14 (2): 112–30.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
and et al. 2020. “Language Models Are Few-Shot Learners.” Advances in
Neural Information Processing Systems (NeurIPS) 33: 1877–1901.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language Models Are
Few-Shot Learners.” arXiv Preprint arXiv:2005.14165, May. http://arxiv.or
g/abs/2005.14165v4.

Brynjolfsson, Erik, and Andrew McAfee. 2014. The Second Machine Age: Work,
Progress, and Prosperity in a Time of Brilliant Technologies, 1st Edition. W. W.
Norton Company.

Buolamwini, Joy, and Timnit Gebru. 2018. “Gender Shades: Intersectional
Accuracy Disparities in Commercial Gender Classification.” In Conference
on Fairness, Accountability and Transparency, 77–91. PMLR. http://proceedi
ngs.mlr.press/v81/buolamwini18a.html.

Burnet, David, and Richard Thomas. 1989. “Spycatcher: The Commodification
of Truth.” Journal of Law and Society 16 (2): 210. https://doi.org/10.2307/14
10360.

Bursztein, Elie, Luca Invernizzi, Karel Král, Daniel Moghimi, Jean-Michel
Picod, and Marina Zhang. 2024. “Generalized Power Attacks Against
Crypto Hardware Using Long-Range Deep Learning.” IACR Transactions
on Cryptographic Hardware and Embedded Systems 2024 (3): 472–99. https:
//doi.org/10.46586/tches.v2024.i3.472-499.

Bursztein, Elie, Luca Invernizzi, Karel Král, and Jean-Michel Picod. 2019.
“SCAAML: Side Channel Attacks Assisted with Machine Learning.” https:
//github.com/google/scaaml.

Bushnell, Michael L, and Vishwani D Agrawal. 2002. “Built-in Self-Test.” Essen-
tials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits,
489–548.

C. P. Baldé, V. Gray, V. Forti. 2017. “The Global e-Waste Monitor 2017: Quantities,
Flows and Resources.” United Nations University, International Telecommunica-
tionUnion, International SolidWaste Association.https://www.itu.int/en/ITU-
D/Climate-Change/Documents/GEM\%202017/Global-E-waste\%20Mon-
itor\%202017\%20.pdf .

Cai, Carrie J., Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel
Smilkov, Martin Wattenberg, et al. 2019. “Human-Centered Tools for Coping
with Imperfect Algorithms During Medical Decision-Making.” In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems, edited
by Jennifer G. Dy and Andreas Krause, 80:1–14. Proceedings of Machine
Learning Research. ACM. https://doi.org/10.1145/3290605.3300234.

Cai, Han, Chuang Gan, and Song Han. 2020. “Once-for-All: Train One Network
and Specialize It for EfÏcient Deployment.” In International Conference on
Learning Representations.

Calvo, Rafael A., Dorian Peters, Karina Vold, and Richard M. Ryan. 2020.
“Supporting Human Autonomy in AI Systems: A Framework for Ethical

http://arxiv.org/abs/1806.05859v2
http://arxiv.org/abs/1806.05859v2
http://arxiv.org/abs/2005.14165v4
http://arxiv.org/abs/2005.14165v4
http://proceedings.mlr.press/v81/buolamwini18a.html
http://proceedings.mlr.press/v81/buolamwini18a.html
https://doi.org/10.2307/1410360
https://doi.org/10.2307/1410360
https://doi.org/10.46586/tches.v2024.i3.472-499
https://doi.org/10.46586/tches.v2024.i3.472-499
https://github.com/google/scaaml
https://github.com/google/scaaml
%0A%20%20%20%20https://www.itu.int/en/ITU-D/Climate-Change/Documents/GEM/%202017/Global-E-waste/%20Monitor/%202017/%20.pdf%0A%20%20
%0A%20%20%20%20https://www.itu.int/en/ITU-D/Climate-Change/Documents/GEM/%202017/Global-E-waste/%20Monitor/%202017/%20.pdf%0A%20%20
%0A%20%20%20%20https://www.itu.int/en/ITU-D/Climate-Change/Documents/GEM/%202017/Global-E-waste/%20Monitor/%202017/%20.pdf%0A%20%20
https://doi.org/10.1145/3290605.3300234

References 1634

Enquiry.” In Ethics of Digital Well-Being, 31–54. Springer International Pub-
lishing. https://doi.org/10.1007/978-3-030-50585-1/_2.

Carlini, Nicholas, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang 0001, Micah
Sherr, Clay Shields, David A. Wagner 0001, and Wenchao Zhou. 2016.
“Hidden Voice Commands.” In 25th USENIX Security Symposium (USENIX
Security 16), 513–30. https://www.usenix.org/conference/usenixsecurity
16/technical-sessions/presentation/carlini.

Carlini, Nicholas, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke,
Jonathan Hayase, A. Feder Cooper, Katherine Lee, et al. 2024. “Stealing Part
of a Production Language Model.” arXiv Preprint arXiv:2403.06634, March.
http://arxiv.org/abs/2403.06634v2.

Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2009. “Anomaly Detec-
tion: A Survey.” ACM Computing Surveys 41 (3): 1–58. https://doi.org/10.1
145/1541880.1541882.

Chapelle, O., B. Scholkopf, and A. Zien Eds. 2009. “Semi-Supervised Learning
(Chapelle, o. Et Al., Eds.; 2006) [Book Reviews].” IEEE Transactions on Neural
Networks 20 (3): 542–42. https://doi.org/10.1109/tnn.2009.2015974.

Chen, Chaofan, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan
Su. 2019. “This Looks Like That: Deep Learning for Interpretable Image
Recognition.” In Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, edited by Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox,
and Roman Garnett, 8928–39. https://proceedings.neurips.cc/paper/201
9/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html.

Chen, Emma, Shvetank Prakash, Vijay Janapa Reddi, David Kim, and Pranav
Rajpurkar. 2023. “A Framework for Integrating Artificial Intelligence for
Clinical Care with Continuous Therapeutic Monitoring.” Nature Biomedical
Engineering, November. https://doi.org/10.1038/s41551-023-01115-0.

Chen, H.-W. 2006. “Gallium, Indium, and Arsenic Pollution of Groundwater
from a Semiconductor Manufacturing Area of Taiwan.” Bulletin of Environ-
mental Contamination and Toxicology 77 (2): 289–96. https://doi.org/10.100
7/s00128-006-1062-3.

Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, et al. 2021. “Evaluating Large
Language Models Trained on Code.” arXiv Preprint arXiv:2107.03374, July.
http://arxiv.org/abs/2107.03374v2.

Chen, Mia Xu, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey,
George Foster, Llion Jones, et al. 2018. “The Best of Both Worlds: Combining
Recent Advances in Neural Machine Translation.” In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), 30:5998–6008. Association for Computational Linguistics.
https://doi.org/10.18653/v1/p18-1008.

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. “MXNet: A Flexible
and EfÏcient Machine Learning Library for Heterogeneous Distributed
Systems.” arXiv Preprint arXiv:1512.01274, December. http://arxiv.org/ab
s/1512.01274v1.

https://doi.org/10.1007/978-3-030-50585-1/_2
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/carlini
http://arxiv.org/abs/2403.06634v2
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/tnn.2009.2015974
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://doi.org/10.1038/s41551-023-01115-0
https://doi.org/10.1007/s00128-006-1062-3
https://doi.org/10.1007/s00128-006-1062-3
http://arxiv.org/abs/2107.03374v2
https://doi.org/10.18653/v1/p18-1008
http://arxiv.org/abs/1512.01274v1
http://arxiv.org/abs/1512.01274v1

References 1635

Chen, Tianqi, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. “Training
Deep Nets with Sublinear Memory Cost.” CoRR abs/1604.06174 (April).
http://arxiv.org/abs/1604.06174v2.

Chen, Wei-Yu, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin
Huang. 2019. “A Closer Look at Few-Shot Classification.” In International
Conference on Learning Representations (ICLR).

Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. 2017. “Eyeriss: A Spatial Archi-
tecture for Energy-EfÏcient Dataflow for Convolutional Neural Networks.”
IEEE Micro, 1–1. https://doi.org/10.1109/mm.2017.265085944.

Chen, Yu-Hsin, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2016. “Ey-
eriss: A Spatial Architecture for Energy-EfÏcient Dataflow for Convolu-
tional Neural Networks.” IEEE Journal of Solid-State Circuits 51 (1): 186–98.
https://doi.org/10.1109/JSSC.2015.2488709.

Chen, Zitao, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben.
2019. “<I>BinFI</i>: An EfÏcient Fault Injector for Safety-Critical Machine
Learning Systems.” In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 1–23. SC ’19. New
York, NY, USA: ACM. https://doi.org/10.1145/3295500.3356177.

Chen, Zitao, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik Pattabira-
man, and Nathan DeBardeleben. 2020. “TensorFI: A Flexible Fault Injection
Framework for TensorFlow Applications.” In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), 426–35. IEEE; IEEE.
https://doi.org/10.1109/issre5003.2020.00047.

Cheng, Eric, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher, Hyung-
min Cho, Kevin Skadron, Mircea R. Stan, et al. 2016. “CLEAR: <U>c</u>
Ross <u>-l</u> Ayer <u>e</u> Xploration for <u>a</u> Rchitecting
<u>r</u> Esilience - Combining Hardware and Software Techniques to
Tolerate Soft Errors in Processor Cores.” In Proceedings of the 53rd Annual
Design Automation Conference, 1–6. ACM. https://doi.org/10.1145/2897937.
2897996.

Cheng, Yu et al. 2022. “Memory-EfÏcient Deep Learning: Advances in Model
Compression and Sparsification.” ACM Computing Surveys.

Cheshire, David. 2021. “Circular Economy and Sustainable AI: Designing Out
Waste in the Tech Industry.” In The Handbook to Building a Circular Economy,
48–61. RIBA Publishing. https://doi.org/10.4324/9781003212775-8.

Chetlur, Sharan, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. “cuDNN: EfÏcient
Primitives for Deep Learning.” arXiv Preprint arXiv:1410.0759, October.
http://arxiv.org/abs/1410.0759v3.

Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. “On the Properties of Neural Machine Translation: Encoder-
Decoder Approaches.” In Eighth Workshop on Syntax, Semantics and Structure
in Statistical Translation (SSST-8), 103–11. Association for Computational
Linguistics.

Choi, Jungwook, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. “PACT: Pa-
rameterized Clipping Activation for Quantized Neural Networks.” arXiv
Preprint, May. http://arxiv.org/abs/1805.06085v2.

http://arxiv.org/abs/1604.06174v2
https://doi.org/10.1109/mm.2017.265085944
https://doi.org/10.1109/JSSC.2015.2488709
https://doi.org/10.1145/3295500.3356177
https://doi.org/10.1109/issre5003.2020.00047
https://doi.org/10.1145/2897937.2897996
https://doi.org/10.1145/2897937.2897996
https://doi.org/10.4324/9781003212775-8
http://arxiv.org/abs/1410.0759v3
http://arxiv.org/abs/1805.06085v2

References 1636

Choi, Sebin, and Sungmin Yoon. 2024. “GPT-Based Data-Driven Urban Building
Energy Modeling (GPT-UBEM): Concept, Methodology, and Case Studies.”
Energy and Buildings 325 (December): 115042. https://doi.org/10.1016/j.en
build.2024.115042.

Chollet, François et al. 2015. “Keras.” GitHub Repository. https://github.com/f
chollet/keras.

Chollet, François. 2018. “Introduction to Keras.” March 9th.
Choquette, Jack. 2023. “NVIDIA Hopper H100 GPU: Scaling Performance.”

IEEE Micro 43 (3): 9–17. https://doi.org/10.1109/mm.2023.3256796.
Choudhary, Tejalal, Vipul Mishra, Anurag Goswami, and Jagannathan Saranga-

pani. 2020. “A Comprehensive Survey on Model Compression and Acceler-
ation.” Artificial Intelligence Review 53 (7): 5113–55. https://doi.org/10.100
7/s10462-020-09816-7.

Chowdhery, Aakanksha, Anatoli Noy, Gaurav Misra, Zhuyun Dai, Quoc V. Le,
and Jeff Dean. 2021. “Edge TPU: An Edge-Optimized Inference Accelerator
for Deep Learning.” In International Symposium on Computer Architecture.

Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and
Dario Amodei. 2017. “Deep Reinforcement Learning from Human Pref-
erences.” In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, edited by Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, 4299–4307. https://proceedings.neurips.cc/paper/2017/hash/d
5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

Chu, Grace, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton,
Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, and An-
drew Howard. 2021. “Discovering Multi-Hardware Mobile Models via
Architecture Search.” In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 3016–25. IEEE. https://doi.org/10
.1109/cvprw53098.2021.00337.

Chung, Jae-Won, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, and Mosharaf
Chowdhury. 2023. “Reducing Energy Bloat in Large Model Training.” ArXiv
Preprint abs/2312.06902 (December). http://arxiv.org/abs/2312.06902v3.

Ciez, Rebecca E., and J. F. Whitacre. 2019. “Examining Different Recycling
Processes for Lithium-Ion Batteries.” Nature Sustainability 2 (2): 148–56.
https://doi.org/10.1038/s41893-019-0222-5.

Coleman, Cody, Edward Chou, Julian Katz-Samuels, Sean Culatana, Peter Bailis,
Alexander C. Berg, Robert Nowak, Roshan Sumbaly, Matei Zaharia, and
I. Zeki Yalniz. 2022. “Similarity Search for EfÏcient Active Learning and
Search of Rare Concepts.” Proceedings of the AAAI Conference on Artificial
Intelligence 36 (6): 6402–10. https://doi.org/10.1609/aaai.v36i6.20591.

Commission, European. 2023. “Sustainable Digital Markets Act: Environmental
Transparency in AI.”

Contro, Filippo, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda. 2021.
“EtherSolve: Computing an Accurate Control-Flow Graph from Ethereum
Bytecode.” arXiv Preprint arXiv:2103.09113, March. http://arxiv.org/abs/
2103.09113v1.

https://doi.org/10.1016/j.enbuild.2024.115042
https://doi.org/10.1016/j.enbuild.2024.115042
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1109/mm.2023.3256796
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.1007/s10462-020-09816-7
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html
https://doi.org/10.1109/cvprw53098.2021.00337
https://doi.org/10.1109/cvprw53098.2021.00337
http://arxiv.org/abs/2312.06902v3
https://doi.org/10.1038/s41893-019-0222-5
https://doi.org/10.1609/aaai.v36i6.20591
http://arxiv.org/abs/2103.09113v1
http://arxiv.org/abs/2103.09113v1

References 1637

Cooper, Tom, Suzanne Fallender, Joyann Pafumi, Jon Dettling, Sebastien Hum-
bert, and Lindsay Lessard. 2011. “A Semiconductor Company’s Examination
of Its Water Footprint Approach.” In Proceedings of the 2011 IEEE Interna-
tional Symposium on Sustainable Systems and Technology, 1–6. IEEE; IEEE.
https://doi.org/10.1109/issst.2011.5936865.

Cope, Gord. 2009. “Pure Water, Semiconductors and the Recession.” Global
Water Intelligence 10 (10).

Corporation, Intel. 2021. oneDNN: Intel’s Deep Learning Neural Network Library.
https://github.com/oneapi-src/oneDNN.

Corporation, NVIDIA. 2017. “GPU-Accelerated Machine Learning and Deep
Learning.” Technical Report.

———. 2021. NVIDIA cuDNN: GPU Accelerated Deep Learning. https://develo
per.nvidia.com/cudnn.

Corporation, Thinking Machines. 1992. CM-5 Technical Summary. Thinking
Machines Corporation.

Costa, Tiago, Chen Shi, Kevin Tien, and Kenneth L. Shepard. 2019. “A CMOS
2D Transmit Beamformer with Integrated PZT Ultrasound Transducers
for Neuromodulation.” In 2019 IEEE Custom Integrated Circuits Conference
(CICC), 1–4. IEEE. https://doi.org/10.1109/cicc.2019.8780236.

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. 2016. “Bina-
ryConnect: Training Deep Neural Networks with Binary Weights During
Propagations.” Advances in Neural Information Processing Systems (NeurIPS)
28: 3123–31.

Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. “Binarized Neural Networks: Training Deep Neural Net-
works with Weights and Activations Constrained to +1 or -1.” arXiv Preprint
arXiv:1602.02830, February. http://arxiv.org/abs/1602.02830v3.

Crankshaw, Daniel, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E Gon-
zalez, and Ion Stoica. 2017. “Clipper: A {Low-Latency} Online Prediction
Serving System.” In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 613–27.

Cui, Hongyi, Jiajun Li, and Peng et al. Xie. 2019. “A Survey on Machine
Learning Compilers: Taxonomy, Challenges, and Future Directions.” ACM
Computing Surveys 52 (4): 1–39.

Curnow, H. J. 1976. “A Synthetic Benchmark.” The Computer Journal 19 (1):
43–49. https://doi.org/10.1093/comjnl/19.1.43.

Cybenko, G. 1992. “Approximation by Superpositions of a Sigmoidal Function.”
Mathematics of Control, Signals, and Systems 5 (4): 455–55. https://doi.org/
10.1007/bf02134016.

Dally, William J., Stephen W. Keckler, and David B. Kirk. 2021. “Evolution
of the Graphics Processing Unit (GPU).” IEEE Micro 41 (6): 42–51. https:
//doi.org/10.1109/mm.2021.3113475.

Dao, Tri, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Gro-
gan, Alexander Liu, Aniruddh Rao, Atri Rudra, and Christopher Ré. 2022.
“Monarch: Expressive Structured Matrices for EfÏcient and Accurate Train-
ing,” April. http://arxiv.org/abs/2204.00595v1.

David, Robert, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian
Li, Nick Kreeger, et al. 2021. “Tensorflow Lite Micro: Embedded Machine

https://doi.org/10.1109/issst.2011.5936865
https://github.com/oneapi-src/oneDNN
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://doi.org/10.1109/cicc.2019.8780236
http://arxiv.org/abs/1602.02830v3
https://doi.org/10.1093/comjnl/19.1.43
https://doi.org/10.1007/bf02134016
https://doi.org/10.1007/bf02134016
https://doi.org/10.1109/mm.2021.3113475
https://doi.org/10.1109/mm.2021.3113475
http://arxiv.org/abs/2204.00595v1

References 1638

Learning for Tinyml Systems.” Proceedings of Machine Learning and Systems
3: 800–811.

Davies, Martin. 2011. “Endangered Elements: Critical Thinking.” In Study
Skills for International Postgraduates, 111–30. Macmillan Education UK. https:
//doi.org/10.1007/978-0-230-34553-9/_8.

Davies, Mike et al. 2021. “Advancing Neuromorphic Computing with Sparse
Networks.” Nature Electronics.

Dayarathna, Miyuru, Yonggang Wen, and Rui Fan. 2016. “Data Center Energy
Consumption Modeling: A Survey.” IEEE Communications Surveys &Amp;
Tutorials 18 (1): 732–94. https://doi.org/10.1109/comst.2015.2481183.

Dean, Jeff, David Patterson, and Cliff Young. 2018. “A New Golden Age in
Computer Architecture: Empowering the Machine-Learning Revolution.”
IEEE Micro 38 (2): 21–29. https://doi.org/10.1109/mm.2018.112130030.

Dean, Jeffrey, and Sanjay Ghemawat. 2008. “MapReduce: Simplified Data
Processing on Large Clusters.” Communications of the ACM 51 (1): 107–13.
https://doi.org/10.1145/1327452.1327492.

Deng, Chulin, Yujun Zhang, and Yanzhi Wu. 2022. “TinyTrain: Learning to
Train Compact Neural Networks on the Edge.” In Proceedings of the 39th
International Conference on Machine Learning (ICML).

Deng, Jia, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. “ImageNet:
A Large-Scale Hierarchical Image Database.” In 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 248–55. Ieee; IEEE. https://doi.or
g/10.1109/cvprw.2009.5206848.

Deng, Li. 2012. “The MNIST Database of Handwritten Digit Images for Machine
Learning Research [Best of the Web].” IEEE Signal Processing Magazine 29
(6): 141–42. https://doi.org/10.1109/msp.2012.2211477.

Deng, Yuzhe, Aryan Mokhtari, and Asuman Ozdaglar. 2021. “Adaptive Fed-
erated Optimization.” In Proceedings of the 38th International Conference on
Machine Learning (ICML).

Dettmers, Tim, and Luke Zettlemoyer. 2019. “Sparse Networks from Scratch:
Faster Training Without Losing Performance.” arXiv Preprint arXiv:1907.04840,
July. http://arxiv.org/abs/1907.04840v2.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.
“BERT: Pre-Training of Deep Bidirectional Transformers for Language Un-
derstanding,” October, 4171–86. http://arxiv.org/abs/1810.04805v2.

Domingos, Pedro. 2016. “The Master Algorithm: How the Quest for the
Ultimate Learning Machine Will Remake Our World.” Choice Reviews Online
53 (07): 53–3100. https://doi.org/10.5860/choice.194685.

Dongarra, Jack J., Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson.
1988. “An Extended Set of FORTRAN Basic Linear Algebra Subprograms.”
ACM Transactions on Mathematical Software 14 (1): 1–17. https://doi.org/10
.1145/42288.42291.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. 2020. “An
Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.”
International Conference on Learning Representations (ICLR), October. http:
//arxiv.org/abs/2010.11929v2.

https://doi.org/10.1007/978-0-230-34553-9/_8
https://doi.org/10.1007/978-0-230-34553-9/_8
https://doi.org/10.1109/comst.2015.2481183
https://doi.org/10.1109/mm.2018.112130030
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1109/cvprw.2009.5206848
https://doi.org/10.1109/msp.2012.2211477
http://arxiv.org/abs/1907.04840v2
http://arxiv.org/abs/1810.04805v2
https://doi.org/10.5860/choice.194685
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
http://arxiv.org/abs/2010.11929v2
http://arxiv.org/abs/2010.11929v2

References 1639

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al. 2021. “An
Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale.”
International Conference on Learning Representations.

Duarte, Javier, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi, Shve-
tank Prakash, and Vijay Janapa Reddi. 2022a. “FastML Science Benchmarks:
Accelerating Real-Time Scientific Edge Machine Learning.” arXiv Preprint
arXiv:2207.07958, July. http://arxiv.org/abs/2207.07958v1.

———. 2022b. “FastML Science Benchmarks: Accelerating Real-Time Scientific
Edge Machine Learning,” July. http://arxiv.org/abs/2207.07958v1.

Duisterhof, Bardienus P., Shushuai Li, Javier Burgues, Vijay Janapa Reddi, and
Guido C. H. E. de Croon. 2021. “Sniffy Bug: A Fully Autonomous Swarm
of Gas-Seeking Nano Quadcopters in Cluttered Environments.” In 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
9099–9106. IEEE; IEEE. https://doi.org/10.1109/iros51168.2021.9636217.

Dwork, Cynthia. n.d. “Differential Privacy: A Survey of Results.” In Theory
and Applications of Models of Computation, 1–19. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-79228-4/_1.

Dwork, Cynthia, and Aaron Roth. 2013. “The Algorithmic Foundations of
Differential Privacy.” Foundations and Trends® in Theoretical Computer Science
9 (3-4): 211–407. https://doi.org/10.1561/0400000042.

Egwutuoha, Ifeanyi P., David Levy, Bran Selic, and Shiping Chen. 2013. “A
Survey of Fault Tolerance Mechanisms and Checkpoint/Restart Implemen-
tations for High Performance Computing Systems.” The Journal of Supercom-
puting 65 (3): 1302–26. https://doi.org/10.1007/s11227-013-0884-0.

Eisenman, Assaf, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and
Murali Annavaram. 2022. “Check-n-Run: A Checkpointing System for
Training Deep Learning Recommendation Models.” In 19th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 22), 929–43.
https://www.usenix.org/conference/nsdi22/presentation/eisenman.

Elman, Jeffrey L. 2002. “Finding Structure in Time.” In Cognitive Modeling,
14:257–88. 2. The MIT Press. https://doi.org/10.7551/mitpress/1888.003.
0015.

Elsen, Erich, Marat Dukhan, Trevor Gale, and Karen Simonyan. 2020. “Fast
Sparse ConvNets.” In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 14617–26. IEEE. https://doi.org/10.1109/cvpr
42600.2020.01464.

Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. 2019b. “Neural
Architecture Search.” In Automated Machine Learning, 63–77. Springer Inter-
national Publishing. https://doi.org/10.1007/978-3-030-05318-5/_3.

———. 2019a. “Neural Architecture Search.” In Automated Machine Learning,
20:63–77. 55. Springer International Publishing. https://doi.org/10.1007/
978-3-030-05318-5/_3.

Emily Denton, Rob Fergus, Soumith Chintala. 2014. “Exploiting Linear Struc-
ture Within Convolutional Networks for EfÏcient Evaluation.” In Advances
in Neural Information Processing Systems (NeurIPS), 1269–77.

http://arxiv.org/abs/2207.07958v1
http://arxiv.org/abs/2207.07958v1
https://doi.org/10.1109/iros51168.2021.9636217
https://doi.org/10.1007/978-3-540-79228-4/_1
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/s11227-013-0884-0
https://www.usenix.org/conference/nsdi22/presentation/eisenman
https://doi.org/10.7551/mitpress/1888.003.0015
https://doi.org/10.7551/mitpress/1888.003.0015
https://doi.org/10.1109/cvpr42600.2020.01464
https://doi.org/10.1109/cvpr42600.2020.01464
https://doi.org/10.1007/978-3-030-05318-5/_3
https://doi.org/10.1007/978-3-030-05318-5/_3
https://doi.org/10.1007/978-3-030-05318-5/_3

References 1640

Everingham, Mark, Luc Van Gool, Christopher K. I. Williams, John Winn,
and Andrew Zisserman. 2009. “The Pascal Visual Object Classes (VOC)
Challenge.” International Journal of Computer Vision 88 (2): 303–38. https:
//doi.org/10.1007/s11263-009-0275-4.

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2017. “Robust
Physical-World Attacks on Deep Learning Models.” ArXiv Preprint abs/1707.08945
(July). http://arxiv.org/abs/1707.08945v5.

Farwell, James P., and Rafal Rohozinski. 2011. “Stuxnet and the Future of Cyber
War.” Survival 53 (1): 23–40. https://doi.org/10.1080/00396338.2011.5555
86.

Fedus, William, Barret Zoph, and Noam Shazeer. 2021. “Switch Transformers:
Scaling to Trillion Parameter Models with Simple and EfÏcient Sparsity.”
Journal of Machine Learning Research.

Fei-Fei, Li, R. Fergus, and P. Perona. n.d. “Learning Generative Visual Models
from Few Training Examples: An Incremental Bayesian Approach Tested
on 101 Object Categories.” In 2004 Conference on Computer Vision and Pattern
Recognition Workshop. IEEE. https://doi.org/10.1109/cvpr.2004.383.

Feldman, Andrew, Sean Lie, Michael James, et al. 2020. “The Cerebras Wafer-
Scale Engine: Opportunities and Challenges of Building an Accelerator at
Wafer Scale.” IEEE Micro 40 (2): 20–29. https://doi.org/10.1109/MM.2020.
2975796.

Ferentinos, Konstantinos P. 2018. “Deep Learning Models for Plant Disease
Detection and Diagnosis.” Computers and Electronics in Agriculture 145 (Febru-
ary): 311–18. https://doi.org/10.1016/j.compag.2018.01.009.

Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Tobias Springen-
berg, Manuel Blum, and Frank Hutter. 2019. “Auto-Sklearn: EfÏcient and
Robust Automated Machine Learning.” In Automated Machine Learning,
113–34. Springer International Publishing. https://doi.org/10.1007/978-3-
030-05318-5/_6.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. 2017. “Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks.” In Proceedings of the 34th
International Conference on Machine Learning (ICML).

Fisher, Lawrence D. 1981. “The 8087 Numeric Data Processor.” IEEE Computer
14 (7): 19–29. https://doi.org/10.1109/MC.1981.1653991.

Flynn, M. J. 1966. “Very High-Speed Computing Systems.” Proceedings of the
IEEE 54 (12): 1901–9. https://doi.org/10.1109/proc.1966.5273.

Francalanza, Adrian, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian
Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017. “A Foundation
for Runtime Monitoring.” In Runtime Verification, 8–29. Springer; Springer
International Publishing. https://doi.org/10.1007/978-3-319-67531-2/_2.

Fredrikson, Matt, Somesh Jha, and Thomas Ristenpart. 2015. “Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures.”
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, 1322–33. ACM. https://doi.org/10.1145/2810103.2813677.

Friedman, Batya. 1996. “Value-Sensitive Design.” Interactions 3 (6): 16–23.
https://doi.org/10.1145/242485.242493.

https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
http://arxiv.org/abs/1707.08945v5
https://doi.org/10.1080/00396338.2011.555586
https://doi.org/10.1080/00396338.2011.555586
https://doi.org/10.1109/cvpr.2004.383
https://doi.org/10.1109/MM.2020.2975796
https://doi.org/10.1109/MM.2020.2975796
https://doi.org/10.1016/j.compag.2018.01.009
https://doi.org/10.1007/978-3-030-05318-5/_6
https://doi.org/10.1007/978-3-030-05318-5/_6
https://doi.org/10.1109/MC.1981.1653991
https://doi.org/10.1109/proc.1966.5273
https://doi.org/10.1007/978-3-319-67531-2/_2
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/242485.242493

References 1641

Fursov, Ivan, Matvey Morozov, Nina Kaploukhaya, Elizaveta Kovtun, Rodrigo
Rivera-Castro, Gleb Gusev, Dmitry Babaev, Ivan Kireev, Alexey Zaytsev, and
Evgeny Burnaev. 2021. “Adversarial Attacks on Deep Models for Financial
Transaction Records.” In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery &Amp; Data Mining, 2868–78. ACM. https://doi.org/
10.1145/3447548.3467145.

Gale, Trevor, Erich Elsen, and Sara Hooker. 2019b. “The State of Sparsity in
Deep Neural Networks.” arXiv Preprint arXiv:1902.09574, February. http:
//arxiv.org/abs/1902.09574v1.

———. 2019a. “The State of Sparsity in Deep Neural Networks.” arXiv Preprint
arXiv:1902.09574, February. http://arxiv.org/abs/1902.09574v1.

Gale, Trevor, Deepak Narayanan, Cliff Young, and Matei Zaharia. 2022. “MegaBlocks:
EfÏcient Sparse Training with Mixture-of-Experts,” November. http://arxi
v.org/abs/2211.15841v1.

Gama, João, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. “A Survey on Concept Drift Adaptation.” ACM Comput-
ing Surveys 46 (4): 1–37. https://doi.org/10.1145/2523813.

Gandolfi, Karine, Christophe Mourtel, and Francis Olivier. 2001. “Electromag-
netic Analysis: Concrete Results.” In Cryptographic Hardware and Embed-
ded Systems — CHES 2001, 251–61. Springer; Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-44709-1/_21.

Gao, Yansong, Said F. Al-Sarawi, and Derek Abbott. 2020. “Physical Unclonable
Functions.” Nature Electronics 3 (2): 81–91. https://doi.org/10.1038/s41928-
020-0372-5.

Garg, Harvinder Atwal. 2020. Practical DataOps: Delivering Agile Data Science at
Scale. Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-5494-3.

Gassend, Blaise, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. 2002.
“Silicon Physical Random Functions.” In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security - CCS ’02, 148–60. ACM; ACM
Press. https://doi.org/10.1145/586131.586132.

Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021b. “Datasheets for
Datasets.” Communications of the ACM 64 (12): 86–92. https://doi.org/10.1
145/3458723.

———. 2021a. “Datasheets for Datasets.” Communications of the ACM 64 (12):
86–92. https://doi.org/10.1145/3458723.

Geiger, Atticus, Hanson Lu, Thomas Icard, and Christopher Potts. 2021. “Causal
Abstractions of Neural Networks.” In Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, Virtual, edited by Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer
Wortman Vaughan, 9574–86. https://proceedings.neurips.cc/paper/2021/
hash/4f5c422f4d49a5a807eda27434231040-Abstract.html.

Gholami, Amir et al. 2021. “A Survey of Quantization Methods for EfÏcient Neu-
ral Network Inference.” IEEE Transactions on Neural Networks and Learning
Systems 32 (10): 4562–81. https://doi.org/10.1109/TNNLS.2021.3088493.

Gholami, Amir, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. 2021. “A Survey of Quantization Methods for EfÏcient

https://doi.org/10.1145/3447548.3467145
https://doi.org/10.1145/3447548.3467145
http://arxiv.org/abs/1902.09574v1
http://arxiv.org/abs/1902.09574v1
http://arxiv.org/abs/1902.09574v1
http://arxiv.org/abs/2211.15841v1
http://arxiv.org/abs/2211.15841v1
https://doi.org/10.1145/2523813
https://doi.org/10.1007/3-540-44709-1/_21
https://doi.org/10.1038/s41928-020-0372-5
https://doi.org/10.1038/s41928-020-0372-5
https://doi.org/10.1007/978-1-4842-5494-3
https://doi.org/10.1145/586131.586132
https://doi.org/10.1145/3458723
https://doi.org/10.1145/3458723
https://doi.org/10.1145/3458723
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html
https://doi.org/10.1109/TNNLS.2021.3088493

References 1642

Neural Network Inference.” arXiv Preprint arXiv:2103.13630, March. http:
//arxiv.org/abs/2103.13630v3.

Gholami, Amir, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Ma-
honey, and Kurt Keutzer. 2024. “AI and Memory Wall.” IEEE Micro 44 (3):
33–39. https://doi.org/10.1109/mm.2024.3373763.

Gnad, Dennis R. E., Fabian Oboril, and Mehdi B. Tahoori. 2017. “Voltage
Drop-Based Fault Attacks on FPGAs Using Valid Bitstreams.” In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL),
1–7. IEEE; IEEE. https://doi.org/10.23919/fpl.2017.8056840.

Goldberg, David. 1991. “What Every Computer Scientist Should Know about
Floating-Point Arithmetic.” ACM Computing Surveys 23 (1): 5–48. https:
//doi.org/10.1145/103162.103163.

Golub, Gene H., and Charles F. Van Loan. 1996. Matrix Computations. Johns
Hopkins University Press.

Goncalves, Andre, Priyadip Ray, Braden Soper, Jennifer Stevens, Linda Coyle,
and Ana Paula Sales. 2020. “Generation and Evaluation of Synthetic Patient
Data.” BMC Medical Research Methodology 20 (1): 1–40. https://doi.org/10.1
186/s12874-020-00977-1.

Gong, Ruihao, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen
Lin, Fengwei Yu, and Junjie Yan. 2019. “Differentiable Soft Quantization:
Bridging Full-Precision and Low-Bit Neural Networks.” arXiv Preprint
arXiv:1908.05033, August. http://arxiv.org/abs/1908.05033v1.

Goodfellow, Ian J., Aaron Courville, and Yoshua Bengio. 2013b. “Scaling
up Spike-and-Slab Models for Unsupervised Feature Learning.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 35 (8): 1902–14.
https://doi.org/10.1109/tpami.2012.273.

———. 2013c. “Scaling up Spike-and-Slab Models for Unsupervised Feature
Learning.” IEEE Transactions on Pattern Analysis and Machine Intelligence 35
(8): 1902–14. https://doi.org/10.1109/tpami.2012.273.

———. 2013a. “Scaling up Spike-and-Slab Models for Unsupervised Feature
Learning.” IEEE Transactions on Pattern Analysis and Machine Intelligence 35
(8): 1902–14. https://doi.org/10.1109/tpami.2012.273.

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. 2014. “Explaining
and Harnessing Adversarial Examples.” ICLR, December. http://arxiv.or
g/abs/1412.6572v3.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. “Generative
Adversarial Networks.” Communications of the ACM 63 (11): 139–44. https:
//doi.org/10.1145/3422622.

Google. n.d. “XLA: Optimizing Compiler for Machine Learning.” <https://www.ten-
sorflow.org/xla>.

Gordon, Mitchell, Kevin Duh, and Nicholas Andrews. 2020. “Compressing
BERT: Studying the Effects of Weight Pruning on Transfer Learning.” In
Proceedings of the 5th Workshop on Representation Learning for NLP. Association
for Computational Linguistics. https://doi.org/10.18653/v1/2020.repl4nl
p-1.18.

http://arxiv.org/abs/2103.13630v3
http://arxiv.org/abs/2103.13630v3
https://doi.org/10.1109/mm.2024.3373763
https://doi.org/10.23919/fpl.2017.8056840
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1186/s12874-020-00977-1
https://doi.org/10.1186/s12874-020-00977-1
http://arxiv.org/abs/1908.05033v1
https://doi.org/10.1109/tpami.2012.273
https://doi.org/10.1109/tpami.2012.273
https://doi.org/10.1109/tpami.2012.273
http://arxiv.org/abs/1412.6572v3
http://arxiv.org/abs/1412.6572v3
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://doi.org/10.18653/v1/2020.repl4nlp-1.18

References 1643

Gou, Jianping, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. 2021.
“Knowledge Distillation: A Survey.” International Journal of Computer Vision
129 (6): 1789–819. https://doi.org/10.1007/s11263-021-01453-z.

Gräfe, Ralf, Qutub Syed Sha, Florian Geissler, and Michael Paulitsch. 2023.
“Large-Scale Application of Fault Injection into PyTorch Models -an Exten-
sion to PyTorchFI for Validation EfÏciency.” In 2023 53rd Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks - Supplemen-
tal Volume (DSN-s), 56–62. IEEE; IEEE. https://doi.org/10.1109/dsn-
s58398.2023.00025.

Graphcore. 2020. “The Colossus MK2 IPU Processor.” Graphcore Technical Paper.
Groeneveld, Dirk, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney,

Oyvind Tafjord, Ananya Harsh Jha, et al. 2024. “OLMo: Accelerating the
Science of Language Models.” arXiv Preprint arXiv:2402.00838, February.
http://arxiv.org/abs/2402.00838v4.

Grossman, Elizabeth. 2007. High Tech Trash: Digital Devices, Hidden Toxics, and
Human Health. Island press.

Gu, Ivy. 2023. “Deep Learning Model Compression (Ii) by Ivy Gu Medium.”
https://ivygdy.medium.com/deep-learning-model-compression-ii-
546352ea9453.

Gudivada, Venkat N., Dhana Rao Rao, et al. 2017. “Data Quality Considerations
for Big Data and Machine Learning: Going Beyond Data Cleaning and
Transformations.” IEEE Transactions on Knowledge and Data Engineering.

Gujarati, Arpan, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. 2020. “Serving DNNs Like Clock-
work: Performance Predictability from the Bottom Up.” In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), 443–62.
https://www.usenix.org/conference/osdi20/presentation/gujarati.

Gulshan, Varun, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu, Arunacha-
lam Narayanaswamy, Subhashini Venugopalan, et al. 2016. “Develop-
ment and Validation of a Deep Learning Algorithm for Detection of Dia-
betic Retinopathy in Retinal Fundus Photographs.” JAMA 316 (22): 2402.
https://doi.org/10.1001/jama.2016.17216.

Guo, Yutao, Hao Wang, Hui Zhang, Tong Liu, Zhaoguang Liang, Yunlong
Xia, Li Yan, et al. 2019. “Mobile Photoplethysmographic Technology to
Detect Atrial Fibrillation.” Journal of the American College of Cardiology 74 (19):
2365–75. https://doi.org/10.1016/j.jacc.2019.08.019.

Gupta, Suyog, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. “Deep Learning with Limited Numerical Precision.” In International
Conference on Machine Learning, 1737–46. PMLR.

Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee,
David Brooks, and Carole-Jean Wu. 2022. “ACT: Designing Sustainable
Computer Systems with an Architectural Carbon Modeling Tool.” In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture,
784–99. ACM. https://doi.org/10.1145/3470496.3527408.

Gupta, Udit, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-
Yeon Wei, David Brooks, and Carole-Jean Wu. 2022. “Chasing Carbon: The
Elusive Environmental Footprint of Computing.” IEEE Micro 42 (6): 68–78.
https://doi.org/10.1109/MM.2022.3186575.

https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1109/dsn-s58398.2023.00025
https://doi.org/10.1109/dsn-s58398.2023.00025
http://arxiv.org/abs/2402.00838v4
https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453
https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1016/j.jacc.2019.08.019
https://doi.org/10.1145/3470496.3527408
https://doi.org/10.1109/MM.2022.3186575

References 1644

Hamming, R. W. 1950. “Error Detecting and Error Correcting Codes.” Bell
System Technical Journal 29 (2): 147–60. https://doi.org/10.1002/j.1538-
7305.1950.tb00463.x.

Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. “EIE: EfÏcient Inference Engine on Compressed
Deep Neural Network.” In 2016 ACM/IEEE 43rd Annual International Sympo-
sium on Computer Architecture (ISCA), 243–54. IEEE. https://doi.org/10.110
9/isca.2016.30.

Han, Song, Huizi Mao, and William J. Dally. 2015. “Deep Compression:
Compressing Deep Neural Networks with Pruning, Trained Quantization
and Huffman Coding.” arXiv Preprint arXiv:1510.00149, October. http:
//arxiv.org/abs/1510.00149v5.

———. 2016. “Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding.” International Confer-
ence on Learning Representations (ICLR).

Han, Song, Jeff Pool, John Tran, and William J. Dally. 2015. “Learning Both
Weights and Connections for EfÏcient Neural Networks.” CoRR abs/1506.02626
(June): 1135–43. http://arxiv.org/abs/1506.02626v3.

Handlin, Oscar. 1965. “Science and Technology in Popular Culture.” Daedalus-
Us., 156–70.

Hard, Andrew, Kanishka Rao, Rajiv Mathews, Saurabh Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel
Ramage. 2018. “Federated Learning for Mobile Keyboard Prediction.” In
International Conference on Learning Representations (ICLR).

Harris, Michael. 2023. “The Environmental Cost of Next-Generation AI Chips:
Energy, Water, and Carbon Impacts.” Journal of Green Computing 17 (1):
22–38.

Hayes, Tyler L., Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher
Kanan. 2020. “REMIND Your Neural Network to Prevent Catastrophic
Forgetting.” In Computer Vision – ECCV 2020, 466–83. Springer International
Publishing. https://doi.org/10.1007/978-3-030-58598-3/_28.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016a. “Deep
Residual Learning for Image Recognition.” In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 770–78. IEEE. https://doi.
org/10.1109/cvpr.2016.90.

———. 2016b. “Deep Residual Learning for Image Recognition.” In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 770–78. IEEE.
https://doi.org/10.1109/cvpr.2016.90.

He, Xuzhen. 2023a. “Accelerated Linear Algebra Compiler for Computationally
EfÏcient Numerical Models: Success and Potential Area of Improvement.”
PLOS ONE 18 (2): e0282265. https://doi.org/10.1371/journal.pone.02822
65.

———. 2023b. “Accelerated Linear Algebra Compiler for Computationally
EfÏcient Numerical Models: Success and Potential Area of Improvement.”
PLOS ONE 18 (2): e0282265. https://doi.org/10.1371/journal.pone.02822
65.

He, Yi, Prasanna Balaprakash, and Yanjing Li. 2020. “FIdelity: EfÏcient Re-
silience Analysis Framework for Deep Learning Accelerators.” In 2020 53rd

https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/isca.2016.30
https://doi.org/10.1109/isca.2016.30
http://arxiv.org/abs/1510.00149v5
http://arxiv.org/abs/1510.00149v5
http://arxiv.org/abs/1506.02626v3
https://doi.org/10.1007/978-3-030-58598-3/_28
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1371/journal.pone.0282265
https://doi.org/10.1371/journal.pone.0282265
https://doi.org/10.1371/journal.pone.0282265
https://doi.org/10.1371/journal.pone.0282265

References 1645

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
270–81. IEEE; IEEE. https://doi.org/10.1109/micro50266.2020.00033.

He, Yihui, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018.
“AMC: AutoML for Model Compression and Acceleration on Mobile De-
vices.” In Computer Vision – ECCV 2018, 815–32. Springer International
Publishing. https://doi.org/10.1007/978-3-030-01234-2/_48.

He, Yi, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nis-
hant Patil, and Yanjing Li. 2023. “Understanding and Mitigating Hardware
Failures in Deep Learning Training Systems.” In Proceedings of the 50th An-
nual International Symposium on Computer Architecture, 1–16. IEEE; ACM.
https://doi.org/10.1145/3579371.3589105.

Hébert-Johnson, Úrsula, Michael P. Kim, Omer Reingold, and Guy N. Rothblum.
2018. “Multicalibration: Calibration for the (Computationally-Identifiable)
Masses.” InProceedings of the 35th International Conference onMachine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, edited by
Jennifer G. Dy and Andreas Krause, 80:1944–53. Proceedings of Machine
Learning Research. PMLR. http://proceedings.mlr.press/v80/hebert-
johnson18a.html.

Henderson, Peter, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and
Joelle Pineau. 2020a. “Towards the Systematic Reporting of the Energy and
Carbon Footprints of Machine Learning.” CoRR abs/2002.05651 (248): 1–43.
https://doi.org/10.48550/arxiv.2002.05651.

———. 2020b. “Towards the Systematic Reporting of the Energy and Carbon
Footprints of Machine Learning.” Journal of Machine Learning Research 21
(248): 1–43. http://arxiv.org/abs/2002.05651v2.

Hendrycks, Dan, and Thomas Dietterich. 2019. “Benchmarking Neural Net-
work Robustness to Common Corruptions and Perturbations.” arXiv Preprint
arXiv:1903.12261, March. http://arxiv.org/abs/1903.12261v1.

Hennessy, John L., and David A. Patterson. 2019. “A New Golden Age for
Computer Architecture.” Communications of the ACM 62 (2): 48–60. https:
//doi.org/10.1145/3282307.

Hennessy, John L, and David A Patterson. 2003. “Computer Architecture: A
Quantitative Approach.” Morgan Kaufmann.

Hernandez, Danny, Tom B. Brown, et al. 2020. “Measuring the Algorithmic
EfÏciency of Neural Networks.” OpenAI Blog. https://openai.com/researc
h/ai-and-efficiency.

Hernandez, Danny, and Tom B. Brown. 2020. “Measuring the Algorithmic
EfÏciency of Neural Networks.” arXiv Preprint arXiv:2007.03051, May. https:
//doi.org/10.48550/arxiv.2005.04305.

Hestness, Joel, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo
Jun, Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi
Zhou. 2017. “Deep Learning Scaling Is Predictable, Empirically.” arXiv
Preprint arXiv:1712.00409, December. http://arxiv.org/abs/1712.00409v1.

Himmelstein, Gracie, David Bates, and Li Zhou. 2022. “Examination of Stigma-
tizing Language in the Electronic Health Record.” JAMA Network Open 5
(1): e2144967. https://doi.org/10.1001/jamanetworkopen.2021.44967.

https://doi.org/10.1109/micro50266.2020.00033
https://doi.org/10.1007/978-3-030-01234-2/_48
https://doi.org/10.1145/3579371.3589105
http://proceedings.mlr.press/v80/hebert-johnson18a.html
http://proceedings.mlr.press/v80/hebert-johnson18a.html
https://doi.org/10.48550/arxiv.2002.05651
http://arxiv.org/abs/2002.05651v2
http://arxiv.org/abs/1903.12261v1
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://openai.com/research/ai-and-efficiency
https://openai.com/research/ai-and-efficiency
https://doi.org/10.48550/arxiv.2005.04305
https://doi.org/10.48550/arxiv.2005.04305
http://arxiv.org/abs/1712.00409v1
https://doi.org/10.1001/jamanetworkopen.2021.44967

References 1646

Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 2015a. “Distilling the Knowledge
in a Neural Network.” arXiv Preprint arXiv:1503.02531, March. http://arxiv.
org/abs/1503.02531v1.

———. 2015b. “Distilling the Knowledge in a Neural Network.” arXiv Preprint
arXiv:1503.02531, March. http://arxiv.org/abs/1503.02531v1.

Hirschberg, Julia, and Christopher D. Manning. 2015. “Advances in Natural
Language Processing.” Science 349 (6245): 261–66. https://doi.org/10.112
6/science.aaa8685.

Hochreiter, Sepp. 1998. “The Vanishing Gradient Problem During Learning
Recurrent Neural Nets and Problem Solutions.” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 06 (02): 107–16. https:
//doi.org/10.1142/s0218488598000094.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.”
Neural Computation 9 (8): 1735–80. https://doi.org/10.1162/neco.1997.9.8.
1735.

Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra
Peste. 2021. “Sparsity in Deep Learning: Pruning and Growth for EfÏcient
Inference and Training in Neural Networks.” arXiv Preprint arXiv:2102.00554
22 (January): 1–124. http://arxiv.org/abs/2102.00554v1.

Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandros
Nikolaos Ziogas. 2021. “Sparsity in Deep Learning: Pruning and Growth
for EfÏcient Inference and Training in Neural Networks.” Journal of Machine
Learning Research 22 (241): 1–124.

Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, et al. 2022. “Training
Compute-Optimal Large Language Models.” arXiv Preprint arXiv:2203.15556,
March. http://arxiv.org/abs/2203.15556v1.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. “Multilayer
Feedforward Networks Are Universal Approximators.” Neural Networks 2
(5): 359–66. https://doi.org/10.1016/0893-6080(89)90020-8.

Horowitz, Mark. 2014. “1.1 Computing’s Energy Problem (and What We Can
Do about It).” In 2014 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC). IEEE. https://doi.org/10.1109/isscc.2014.67573
23.

Hosseini, Hossein, Sreeram Kannan, Baosen Zhang, and Radha Poovendran.
2017. “Deceiving Google’s Perspective API Built for Detecting Toxic Com-
ments.” ArXiv Preprint abs/1702.08138 (February). http://arxiv.org/abs/
1702.08138v1.

Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Chloé
de Laroussilhe, Andrea Gesmundo, Mohammad Attariyan, and Sylvain
Gelly. 2019. “Parameter-EfÏcient Transfer Learning for NLP.” In International
Conference on Machine Learning, 2790–99. PMLR.

Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017a.
“MobileNets: EfÏcient Convolutional Neural Networks for Mobile Vision
Applications,” April. http://arxiv.org/abs/1704.04861v1.

http://arxiv.org/abs/1503.02531v1
http://arxiv.org/abs/1503.02531v1
http://arxiv.org/abs/1503.02531v1
https://doi.org/10.1126/science.aaa8685
https://doi.org/10.1126/science.aaa8685
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2102.00554v1
http://arxiv.org/abs/2203.15556v1
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/isscc.2014.6757323
https://doi.org/10.1109/isscc.2014.6757323
http://arxiv.org/abs/1702.08138v1
http://arxiv.org/abs/1702.08138v1
http://arxiv.org/abs/1704.04861v1

References 1647

———. 2017b. “MobileNets: EfÏcient Convolutional Neural Networks for
Mobile Vision Applications.” ArXiv Preprint abs/1704.04861 (April). http:
//arxiv.org/abs/1704.04861v1.

Howard, Jeremy, and Sylvain Gugger. 2020. “Fastai: A Layered API for Deep
Learning.” Information 11 (2): 108. https://doi.org/10.3390/info11020108.

Hsiao, Yu-Shun, Zishen Wan, Tianyu Jia, Radhika Ghosal, Abdulrahman Mah-
moud, Arijit Raychowdhury, David Brooks, Gu-Yeon Wei, and Vijay Janapa
Reddi. 2023. “MAVFI: An End-to-End Fault Analysis Framework with
Anomaly Detection and Recovery for Micro Aerial Vehicles.” In 2023 Design,
Automation &Amp; Test in Europe Conference &Amp; Exhibition (DATE), 1–6.
IEEE; IEEE. https://doi.org/10.23919/date56975.2023.10137246.

Hsu, Liang-Ching, Ching-Yi Huang, Yen-Hsun Chuang, Ho-Wen Chen, Ya-Ting
Chan, Heng Yi Teah, Tsan-Yao Chen, Chiung-Fen Chang, Yu-Ting Liu, and
Yu-Min Tzou. 2016. “Accumulation of Heavy Metals and Trace Elements in
Fluvial Sediments Received EfÒuents from Traditional and Semiconductor
Industries.” Scientific Reports 6 (1): 34250. https://doi.org/10.1038/srep34
250.

Hu, Bowen, Zhiqiang Zhang, and Yun Fu. 2021. “Triple Wins: Boosting Ac-
curacy, Robustness and EfÏciency Together by Enabling Input-Adaptive
Inference.” Advances in Neural Information Processing Systems 34: 18537–50.

Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. 2021. “LoRA: Low-Rank Adap-
tation of Large Language Models.” arXiv Preprint arXiv:2106.09685, June.
http://arxiv.org/abs/2106.09685v2.

Hu, Jie, Peng Lin, Huajun Zhang, Zining Lan, Wenxin Chen, Kailiang Xie, Siyun
Chen, Hao Wang, and Sheng Chang. 2023. “A Dynamic Pruning Method
on Multiple Sparse Structures in Deep Neural Networks.” IEEE Access 11:
38448–57. https://doi.org/10.1109/access.2023.3267469.

Huang, Wei, Jie Chen, and Lei Zhang. 2023. “Adaptive Neural Networks
for Real-Time Processing in Autonomous Systems.” IEEE Transactions on
Intelligent Transportation Systems.

Huang, Yanping et al. 2019. “GPipe: EfÏcient Training of Giant Neural Net-
works Using Pipeline Parallelism.” In Advances in Neural Information Process-
ing Systems (NeurIPS).

Hubara, Itay, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2018. “Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations.” Journal of Machine Learning
Research (JMLR) 18: 1–30.

Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren. 2019a. AutomatedMachine
Learning: Methods, Systems, Challenges. Automated Machine Learning. Springer
International Publishing. https://doi.org/10.1007/978-3-030-05318-5.

———. 2019b. Automated Machine Learning: Methods, Systems, Challenges.
Springer International Publishing. https://doi.org/10.1007/978-3-030-
05318-5.

Hutter, Michael, Jorn-Marc Schmidt, and Thomas Plos. 2009. “Contact-Based
Fault Injections and Power Analysis on RFID Tags.” In 2009 European Confer-
ence on Circuit Theory and Design, 409–12. IEEE; IEEE. https://doi.org/10.1
109/ecctd.2009.5275012.

http://arxiv.org/abs/1704.04861v1
http://arxiv.org/abs/1704.04861v1
https://doi.org/10.3390/info11020108
https://doi.org/10.23919/date56975.2023.10137246
https://doi.org/10.1038/srep34250
https://doi.org/10.1038/srep34250
http://arxiv.org/abs/2106.09685v2
https://doi.org/10.1109/access.2023.3267469
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1109/ecctd.2009.5275012
https://doi.org/10.1109/ecctd.2009.5275012

References 1648

Hwu, Wen-mei W. 2011. “Introduction.” In GPU Computing Gems Emerald
Edition, xix–xx. Elsevier. https://doi.org/10.1016/b978-0-12-384988-
5.00064-4.

Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf, William
J. Dally, and Kurt Keutzer. 2016. “SqueezeNet: AlexNet-Level Accuracy
with 50x Fewer Parameters and <0.5MB Model Size,” February. http://arxi
v.org/abs/1602.07360v4.

Inan, Hakan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer,
Yuning Mao, Michael Tontchev, et al. 2023. “Llama Guard: LLM-Based
Input-Output Safeguard for Human-AI Conversations,” December. http:
//arxiv.org/abs/2312.06674v1.

Inc., Framework Computer. 2022. “Modular Laptops: A New Approach to
Sustainable Computing.”

Inc., Tesla. 2021. “Tesla AI Day: D1 Dojo Chip.” Tesla AI Day Presentation.
Inmon, W. H. 2005. Building the Data Warehouse. John Wiley Sons.
Ioffe, Sergey, and Christian Szegedy. 2015a. “Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift.” International
Conference on Machine Learning, 448–56.

———. 2015b. “Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift.” International Conference on Machine
Learning (ICML), February, 448–56. http://arxiv.org/abs/1502.03167v3.

Ippolito, Daphne, Florian Tramer, Milad Nasr, Chiyuan Zhang, Matthew Jagiel-
ski, Katherine Lee, Christopher Choquette Choo, and Nicholas Carlini. 2023.
“Preventing Generation of Verbatim Memorization in Language Models
Gives a False Sense of Privacy.” In Proceedings of the 16th International Natu-
ral Language Generation Conference, 28–53. Association for Computational
Linguistics. https://doi.org/10.18653/v1/2023.inlg-main.3.

Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018a. “Quan-
tization and Training of Neural Networks for EfÏcient Integer-Arithmetic-
Only Inference.” In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2704–13. IEEE. https://doi.org/10.1109/cvpr.2018.00286.

———. 2018c. “Quantization and Training of Neural Networks for EfÏcient
Integer-Arithmetic-Only Inference.” In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2704–13. IEEE. https://doi.org/10.110
9/cvpr.2018.00286.

———. 2018b. “Quantization and Training of Neural Networks for EfÏcient
Integer-Arithmetic-Only Inference.” In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2704–13. IEEE. https://doi.org/10.110
9/cvpr.2018.00286.

Jacobs, David, Bas Rokers, Archisman Rudra, and Zili Liu. 2002. “Fragment
Completion in Humans and Machines.” In Advances in Neural Information
Processing Systems 14, 35:27–34. The MIT Press. https://doi.org/10.7551/
mitpress/1120.003.0008.

Jaech, Aaron, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, et al. 2024. “OpenAI O1 System Card.” CoRR.
https://doi.org/10.48550/ARXIV.2412.16720.

https://doi.org/10.1016/b978-0-12-384988-5.00064-4
https://doi.org/10.1016/b978-0-12-384988-5.00064-4
http://arxiv.org/abs/1602.07360v4
http://arxiv.org/abs/1602.07360v4
http://arxiv.org/abs/2312.06674v1
http://arxiv.org/abs/2312.06674v1
http://arxiv.org/abs/1502.03167v3
https://doi.org/10.18653/v1/2023.inlg-main.3
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.7551/mitpress/1120.003.0008
https://doi.org/10.7551/mitpress/1120.003.0008
https://doi.org/10.48550/ARXIV.2412.16720

References 1649

Janapa Reddi, Vijay et al. 2022. “MLPerf Mobile V2. 0: An Industry-Standard
Benchmark Suite for Mobile Machine Learning.” In Proceedings of Machine
Learning and Systems, 4:806–23.

Jevons, William Stanley. 1865. The Coal Question: An Inquiry Concerning the
Progress of the Nation, and the Probable Exhaustion of Our Coal Mines. London:
Macmillan; Co. https://www.econlib.org/library/YPDBooks/Jevons/jv
nCQ.html.

Jha, A. R. 2014. Rare Earth Materials: Properties and Applications. CRC Press.
https://doi.org/10.1201/b17045.

Jha, Saurabh, Subho Banerjee, Timothy Tsai, Siva K. S. Hari, Michael B. Sullivan,
Zbigniew T. Kalbarczyk, Stephen W. Keckler, and Ravishankar K. Iyer. 2019.
“ML-Based Fault Injection for Autonomous Vehicles: A Case for Bayesian
Fault Injection.” In 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 112–24. IEEE; IEEE. https://doi.or
g/10.1109/dsn.2019.00025.

Jia, Xianyan, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu
Zhou, Liqiang Xie, et al. 2018. “Highly Scalable Deep Learning Training
System with Mixed-Precision: Training ImageNet in Four Minutes.” arXiv
Preprint arXiv:1807.11205, July. http://arxiv.org/abs/1807.11205v1.

Jia, Xu, Bert De Brabandere, Tinne Tuytelaars, and Luc Van Gool. 2016. “Dy-
namic Filter Networks.” Advances in Neural Information Processing Systems
29.

Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. “Caffe: Con-
volutional Architecture for Fast Feature Embedding.” In Proceedings of
the 22nd ACM International Conference on Multimedia, 675–78. ACM. https:
//doi.org/10.1145/2647868.2654889.

Jia, Zhihao, Matei Zaharia, and Alex Aiken. 2018. “Beyond Data and Model
Parallelism for Deep Neural Networks.” arXiv Preprint arXiv:1807.05358,
July. http://arxiv.org/abs/1807.05358v1.

Jia, Ziheng, Nathan Tillman, Luis Vega, Po-An Ouyang, Matei Zaharia, and
Joseph E. Gonzalez. 2019. “Optimizing DNN Computation with Relaxed
Graph Substitutions.” Conference on Machine Learning and Systems (MLSys).

Jiao, Xiaoqi, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. 2020. “TinyBERT: Distilling BERT for Natural Language
Understanding.” In Findings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguistics. https://doi.org/
10.18653/v1/2020.findings-emnlp.372.

Johnson, Rebecca. 2018. “The Right to Repair Movement and Its Implications
for AI Hardware Longevity.” Technology and Society Review 20 (4): 87–102.

Johnson-Roberson, Matthew, Charles Barto, Rounak Mehta, Sharath Nittur
Sridhar, Karl Rosaen, and Ram Vasudevan. 2017. “Driving in the Matrix:
Can Virtual Worlds Replace Human-Generated Annotations for Real World
Tasks?” In 2017 IEEE International Conference on Robotics and Automation
(ICRA), 746–53. Singapore, Singapore: IEEE. https://doi.org/10.1109/icra
.2017.7989092.

Jones, Gareth A. 2018. “Joining Dessins Together.” arXiv Preprint arXiv:1810.03960,
October. http://arxiv.org/abs/1810.03960v1.

https://www.econlib.org/library/YPDBooks/Jevons/jvnCQ.html
https://www.econlib.org/library/YPDBooks/Jevons/jvnCQ.html
https://doi.org/10.1201/b17045
https://doi.org/10.1109/dsn.2019.00025
https://doi.org/10.1109/dsn.2019.00025
http://arxiv.org/abs/1807.11205v1
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1807.05358v1
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.1109/icra.2017.7989092
https://doi.org/10.1109/icra.2017.7989092
http://arxiv.org/abs/1810.03960v1

References 1650

Jones, Nicholas P., Mark Johnson, and Claire Montgomery. 2021. “The Envi-
ronmental Impact of Data Centers: Challenges and Sustainable Solutions.”
Energy Reports 7: 4381–92.

Jordan, T. L. 1982. “A Guide to Parallel Computation and Some Cray-1 Experi-
ences.” In Parallel Computations, 1–50. Elsevier. https://doi.org/10.1016/b9
78-0-12-592101-5.50006-3.

Joulin, Armand, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017.
“Bag of Tricks for EfÏcient Text Classification.” In Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, 18:1–42. Association for Computational Linguistics.
https://doi.org/10.18653/v1/e17-2068.

Jouppi, Norman P. et al. 2017. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA).

Jouppi, Norman P., Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas
B. Jablin, George Kurian, James Laudon, et al. 2021b. “Ten Lessons from
Three Generations Shaped Google’s TPUv4i : Industrial Product.” In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), 64:1–14. 5. IEEE. https://doi.org/10.1109/isca52012.2021.00010.

———, et al. 2021a. “Ten Lessons from Three Generations Shaped Google’s
TPUv4i : Industrial Product.” In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 1–14. IEEE. https://doi.org/10
.1109/isca52012.2021.00010.

Jouppi, Norman P., Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil,
James Laudon, Cliff Young, and David Patterson. 2020. “A Domain-Specific
Supercomputer for Training Deep Neural Networks.” Communications of the
ACM 63 (7): 67–78. https://doi.org/10.1145/3360307.

Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, et al. 2017a. “In-Datacenter Performance
Analysis of a Tensor Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ACM. https://doi.
org/10.1145/3079856.3080246.

———, et al. 2017c. “In-Datacenter Performance Analysis of a Tensor Processing
Unit.” In Proceedings of the 44th Annual International Symposium on Computer
Architecture, 1–12. ACM. https://doi.org/10.1145/3079856.3080246.

———, et al. 2017b. “In-Datacenter Performance Analysis of a Tensor Process-
ing Unit.” In Proceedings of the 44th Annual International Symposium on Com-
puter Architecture, 1–12. ACM. https://doi.org/10.1145/3079856.3080246.

Joye, Marc, and Michael Tunstall. 2012. Fault Analysis in Cryptography. Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29656-7.

Kannan, Harish, Pradeep Dubey, and Mark Horowitz. 2023. “Chiplet-Based
Architectures: The Future of AI Accelerators.” IEEE Micro 43 (1): 46–55.
https://doi.org/10.1109/MM.2022.1234567.

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. “Scaling Laws for Neural Language Models.” ArXiv Preprint
abs/2001.08361 (January). http://arxiv.org/abs/2001.08361v1.

https://doi.org/10.1016/b978-0-12-592101-5.50006-3
https://doi.org/10.1016/b978-0-12-592101-5.50006-3
https://doi.org/10.18653/v1/e17-2068
https://doi.org/10.1109/isca52012.2021.00010
https://doi.org/10.1109/isca52012.2021.00010
https://doi.org/10.1109/isca52012.2021.00010
https://doi.org/10.1145/3360307
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1109/MM.2022.1234567
http://arxiv.org/abs/2001.08361v1

References 1651

Kawazoe Aguilera, Marcos, Wei Chen, and Sam Toueg. 1997. “Heartbeat:
A Timeout-Free Failure Detector for Quiescent Reliable Communication.”
In Distributed Algorithms, 126–40. Springer; Springer Berlin Heidelberg.
https://doi.org/10.1007/bfb0030680.

Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, et al. 2021. “Dynabench: Rethinking Bench-
marking in NLP.” In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, 9:418–34. Online: Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021.naacl-main.324.

Kim, Jungrae, Michael Sullivan, and Mattan Erez. 2015. “Bamboo ECC: Strong,
Safe, and Flexible Codes for Reliable Computer Memory.” In 2015 IEEE 21st
International Symposium on High Performance Computer Architecture (HPCA),
101–12. IEEE; IEEE. https://doi.org/10.1109/hpca.2015.7056025.

Kim, Sunju, Chungsik Yoon, Seunghon Ham, Jihoon Park, Ohun Kwon, Donguk
Park, Sangjun Choi, Seungwon Kim, Kwonchul Ha, and Won Kim. 2018.
“Chemical Use in the Semiconductor Manufacturing Industry.” International
Journal of Occupational and Environmental Health 24 (3-4): 109–18. https:
//doi.org/10.1080/10773525.2018.1519957.

Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for Stochastic
Optimization.” ICLR, December. http://arxiv.org/abs/1412.6980v9.

Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, et al. 2017. “Overcoming Catas-
trophic Forgetting in Neural Networks.” Proceedings of the National Academy
of Sciences 114 (13): 3521–26. https://doi.org/10.1073/pnas.1611835114.

Kleppmann, Martin. 2016. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Media. http:
//shop.oreilly.com/product/0636920032175.do.

Ko, Yohan. 2021. “Characterizing System-Level Masking Effects Against Soft
Errors.” Electronics 10 (18): 2286. https://doi.org/10.3390/electronics10182
286.

Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, et al. 2019b. “Spectre Attacks: Exploiting Speculative
Execution.” In 2019 IEEE Symposium on Security and Privacy (SP), 1–19. IEEE.
https://doi.org/10.1109/sp.2019.00002.

———, et al. 2019a. “Spectre Attacks: Exploiting Speculative Execution.”
In 2019 IEEE Symposium on Security and Privacy (SP), 1–19. IEEE. https:
//doi.org/10.1109/sp.2019.00002.

Kocher, Paul, Joshua Jaffe, and Benjamin Jun. 1999. “Differential Power Analy-
sis.” In Advances in Cryptology — CRYPTO’ 99, 388–97. Springer; Springer
Berlin Heidelberg. https://doi.org/10.1007/3-540-48405-1/_25.

Kocher, Paul, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011. “Introduc-
tion to Differential Power Analysis.” Journal of Cryptographic Engineering 1
(1): 5–27. https://doi.org/10.1007/s13389-011-0006-y.

Koh, Pang Wei, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma
Pierson, Been Kim, and Percy Liang. 2020. “Concept Bottleneck Models.” In
Proceedings of the 37th International Conference onMachine Learning, ICML 2020,

https://doi.org/10.1007/bfb0030680
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.1109/hpca.2015.7056025
https://doi.org/10.1080/10773525.2018.1519957
https://doi.org/10.1080/10773525.2018.1519957
http://arxiv.org/abs/1412.6980v9
https://doi.org/10.1073/pnas.1611835114
http://shop.oreilly.com/product/0636920032175.do
http://shop.oreilly.com/product/0636920032175.do
https://doi.org/10.3390/electronics10182286
https://doi.org/10.3390/electronics10182286
https://doi.org/10.1109/sp.2019.00002
https://doi.org/10.1109/sp.2019.00002
https://doi.org/10.1109/sp.2019.00002
https://doi.org/10.1007/3-540-48405-1/_25
https://doi.org/10.1007/s13389-011-0006-y

References 1652

13-18 July 2020, Virtual Event, 119:5338–48. Proceedings of Machine Learning
Research. PMLR. http://proceedings.mlr.press/v119/koh20a.html.

Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, et al. 2021. “WILDS: A Bench-
mark of in-the-Wild Distribution Shifts.” In Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, edited by Marina Meila and Tong Zhang, 139:5637–64. Proceedings
of Machine Learning Research. PMLR. http://proceedings.mlr.press/v139
/koh21a.html.

Koizumi, Yuma, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and Keisuke
Imoto. 2019. “ToyADMOS: A Dataset of Miniature-Machine Operating
Sounds for Anomalous Sound Detection.” In 2019 IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics (WASPAA), 313–17. IEEE;
IEEE. https://doi.org/10.1109/waspaa.2019.8937164.

Konecný, Jakub, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.
2016. “Federated Optimization: Distributed Machine Learning for on-
Device Intelligence.” CoRR. http://arxiv.org/abs/1610.02527.

Kreuzberger, Dominik, Florian Kerschbaum, and Thomas Kuhn. 2022. “Ma-
chine Learning Operations (MLOps): Overview, Definition, and Architec-
ture.” ACM Computing Surveys (CSUR) 55 (5): 1–32. https://doi.org/10.114
5/3533378.

Krishnamoorthi, Raghuraman. 2018. “Quantizing Deep Convolutional Net-
works for EfÏcient Inference: A Whitepaper.” arXiv Preprint arXiv:1806.08342,
June. http://arxiv.org/abs/1806.08342v1.

Krishnan, Rayan, Pranav Rajpurkar, and Eric J. Topol. 2022. “Self-Supervised
Learning in Medicine and Healthcare.” Nature Biomedical Engineering 6 (12):
1346–52. https://doi.org/10.1038/s41551-022-00914-1.

Krizhevsky, Alex. 2009. “Learning Multiple Layers of Features from Tiny
Images.”

Krizhevsky, Alex, Geoffrey Hinton, et al. 2009. “Learning Multiple Layers of
Features from Tiny Images.”

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017b. “ImageNet
Classification with Deep Convolutional Neural Networks.” Communications
of the ACM 60 (6): 84–90. https://doi.org/10.1145/3065386.

———. 2017c. “ImageNet Classification with Deep Convolutional Neural
Networks.” Edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger.
Communications of the ACM 60 (6): 84–90. https://doi.org/10.1145/3065386.

———. 2017a. “ImageNet Classification with Deep Convolutional Neural
Networks.” Communications of the ACM 60 (6): 84–90. https://doi.org/10.1
145/3065386.

Kuchaiev, Oleksii, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl Case,
and Paulius Micikevicius. 2018. “OpenSeq2Seq: Extensible Toolkit for
Distributed and Mixed Precision Training of Sequence-to-Sequence Models.”
In Proceedings of Workshop for NLP Open Source Software (NLP-OSS), 41–46.
Association for Computational Linguistics. https://doi.org/10.18653/v1/
w18-2507.

Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. Springer New
York. https://doi.org/10.1007/978-1-4614-6849-3.

http://proceedings.mlr.press/v119/koh20a.html
http://proceedings.mlr.press/v139/koh21a.html
http://proceedings.mlr.press/v139/koh21a.html
https://doi.org/10.1109/waspaa.2019.8937164
http://arxiv.org/abs/1610.02527
https://doi.org/10.1145/3533378
https://doi.org/10.1145/3533378
http://arxiv.org/abs/1806.08342v1
https://doi.org/10.1038/s41551-022-00914-1
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.18653/v1/w18-2507
https://doi.org/10.18653/v1/w18-2507
https://doi.org/10.1007/978-1-4614-6849-3

References 1653

Kung. 1982. “Why Systolic Architectures?” Computer 15 (1): 37–46. https:
//doi.org/10.1109/mc.1982.1653825.

Kung, Hsiang Tsung, and Charles E Leiserson. 1979. “Systolic Arrays (for
VLSI).” In Sparse Matrix Proceedings 1978, 1:256–82. Society for industrial;
applied mathematics Philadelphia, PA, USA.

Labarge, Isaac E. n.d. “Neural Network Pruning for ECG Arrhythmia Classifi-
cation.” Proceedings of Machine Learning and Systems (MLSys). PhD thesis,
California Polytechnic State University. https://doi.org/10.15368/theses.
2020.76.

Lai, Liangzhen, Naveen Suda, and Vikas Chandra. 2018. “CMSIS-NN: EfÏ-
cient Neural Network Kernels for Arm Cortex-m CPUs.” ArXiv Preprint
abs/1801.06601 (January). http://arxiv.org/abs/1801.06601v1.

Lai, Pete Warden Daniel Situnayake. 2020. TinyML: Machine Learning with
TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers. O’Reilly
Media.

Lam, Monica D., Edward E. Rothberg, and Michael E. Wolf. 1991. “The Cache
Performance and Optimizations of Blocked Algorithms.” In Proceedings of
the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS-IV, 63–74. ACM Press. https:
//doi.org/10.1145/106972.106981.

Lange, Klaus-Dieter. 2009. “Identifying Shades of Green: The SPECpower
Benchmarks.” Computer 42 (3): 95–97. https://doi.org/10.1109/mc.2009.84.

Lattner, Chris, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. 2020. “MLIR: A Compiler Infrastructure for the End of
Moore’s Law.” arXiv Preprint arXiv:2002.11054, February. http://arxiv.org/
abs/2002.11054v2.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015a. “Deep Learning.”
Nature 521 (7553): 436–44. https://doi.org/10.1038/nature14539.

———. 2015b. “Deep Learning.” Nature 521 (7553): 436–44. https://doi.org/
10.1038/nature14539.

LeCun, Yann, Leon Bottou, Genevieve B. Orr, and Klaus -Robert Müller. 1998.
“EfÏcient BackProp.” In Neural Networks: Tricks of the Trade, 1524:9–50.
Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-49430-8/_2.

LeCun, Yann, John S. Denker, and Sara A. Solla. 1989. “Optimal Brain Damage.”
In Advances in Neural Information Processing Systems, 2:598–605. Morgan-
Kaufmann. http://papers.nips.cc/paper/250-optimal-brain-damage.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. 1989. “Backpropagation Applied to Handwritten Zip Code
Recognition.” Neural Computation 1 (4): 541–51. https://doi.org/10.1162/
neco.1989.1.4.541.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-Based Learn-
ing Applied to Document Recognition.” Proceedings of the IEEE 86 (11):
2278–2324. https://doi.org/10.1109/5.726791.

Lee, Minwoong, Namho Lee, Huijeong Gwon, Jongyeol Kim, Younggwan
Hwang, and Seongik Cho. 2022. “Design of Radiation-Tolerant High-Speed
Signal Processing Circuit for Detecting Prompt Gamma Rays by Nuclear

https://doi.org/10.1109/mc.1982.1653825
https://doi.org/10.1109/mc.1982.1653825
https://doi.org/10.15368/theses.2020.76
https://doi.org/10.15368/theses.2020.76
http://arxiv.org/abs/1801.06601v1
https://doi.org/10.1145/106972.106981
https://doi.org/10.1145/106972.106981
https://doi.org/10.1109/mc.2009.84
http://arxiv.org/abs/2002.11054v2
http://arxiv.org/abs/2002.11054v2
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/3-540-49430-8/_2
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791

References 1654

Explosion.” Electronics 11 (18): 2970. https://doi.org/10.3390/electronics1
1182970.

Lepikhin, Dmitry et al. 2020. “GShard: Scaling Giant Models with Condi-
tional Computation.” In Proceedings of the International Conference on Learning
Representations.

LeRoy Poff, N, MM Brinson, and JW Day. 2002. “Aquatic Ecosystems & Global
Climate Change.” Pew Center on Global Climate Change.

Levy, Orin, Alon Cohen, Asaf Cassel, and Yishay Mansour. 2023. “EfÏcient Rate
Optimal Regret for Adversarial Contextual MDPs Using Online Function
Approximation.” arXiv Preprint arXiv:2303.01464, March. http://arxiv.org/
abs/2303.01464v2.

Li, Fengfu, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. 2016. “Ternary
Weight Networks.” arXiv Preprint, May. http://arxiv.org/abs/1605.04711
v3.

Li, Guanpeng, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017. “Understanding
Error Propagation in Deep Learning Neural Network (DNN) Accelerators
and Applications.” In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 1–12. ACM. https:
//doi.org/10.1145/3126908.3126964.

Li, Lisha, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. “Hyperband: A Novel Bandit-Based Approach to Hy-
perparameter Optimization.” J. Mach. Learn. Res. 18: 185:1–52. https:
//jmlr.org/papers/v18/16-558.html.

Li, Qinbin, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu,
and Bingsheng He. 2023. “A Survey on Federated Learning Systems: Vision,
Hype and Reality for Data Privacy and Protection.” IEEE Transactions on
Knowledge and Data Engineering 35 (4): 3347–66. https://doi.org/10.1109/tk
de.2021.3124599.

Li, Tian, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. “Feder-
ated Learning: Challenges, Methods, and Future Directions.” IEEE Signal
Processing Magazine 37 (3): 50–60. https://doi.org/10.1109/msp.2020.29757
49.

Li, Zhuohan, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin,
Yanping Huang, et al. 2023. “{AlpaServe}: Statistical Multiplexing with
Model Parallelism for Deep Learning Serving.” In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), 663–79.

Liang, Percy, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, et al. 2022. “Holistic Evaluation of Language
Models.” arXiv Preprint arXiv:2211.09110, November. http://arxiv.org/ab
s/2211.09110v2.

Lin, Ji, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
2020. “MCUNet: Tiny Deep Learning on IoT Devices.” In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual, edited
by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/
hash/86c51678350f656dcc7f490a43946ee5-Abstract.html.

https://doi.org/10.3390/electronics11182970
https://doi.org/10.3390/electronics11182970
http://arxiv.org/abs/2303.01464v2
http://arxiv.org/abs/2303.01464v2
http://arxiv.org/abs/1605.04711v3
http://arxiv.org/abs/1605.04711v3
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://jmlr.org/papers/v18/16-558.html
https://jmlr.org/papers/v18/16-558.html
https://doi.org/10.1109/tkde.2021.3124599
https://doi.org/10.1109/tkde.2021.3124599
https://doi.org/10.1109/msp.2020.2975749
https://doi.org/10.1109/msp.2020.2975749
http://arxiv.org/abs/2211.09110v2
http://arxiv.org/abs/2211.09110v2
https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html

References 1655

Lin, Jiong, Qing Gao, Yungui Gong, Yizhou Lu, Chao Zhang, and Fengge Zhang.
2020. “Primordial Black Holes and Secondary Gravitational Waves from
k/g Inflation.” arXiv Preprint arXiv:2001.05909, January. http://arxiv.org/
abs/2001.05909v2.

Lin, Ji, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen
Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. 2023.
“AWQ: Activation-Aware Weight Quantization for LLM Compression and
Acceleration.” arXiv Preprint arXiv:2306.00978 abs/2306.00978 (June). http:
//arxiv.org/abs/2306.00978v5.

Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han. 2023.
“Tiny Machine Learning: Progress and Futures [Feature].” IEEE Circuits and
Systems Magazine 23 (3): 8–34. https://doi.org/10.1109/mcas.2023.3302182.

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. “Microsoft COCO:
Common Objects in Context.” In Computer Vision – ECCV 2014, 740–55.
Springer; Springer International Publishing. https://doi.org/10.1007/978-
3-319-10602-1/_48.

Lindgren, Simon. 2023. Handbook of Critical Studies of Artificial Intelligence.
Edward Elgar Publishing.

Lindholm, Andreas, Dave Zachariah, Petre Stoica, and Thomas B. Schon. 2019.
“Data Consistency Approach to Model Validation.” IEEE Access 7: 59788–96.
https://doi.org/10.1109/access.2019.2915109.

Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. 2008.
“NVIDIA Tesla: A Unified Graphics and Computing Architecture.” IEEE
Micro 28 (2): 39–55. https://doi.org/10.1109/mm.2008.31.

Liu, Chen, Guillaume Bellec, Bernhard Vogginger, David Kappel, Johannes
Partzsch, Felix Neumärker, Sebastian Höppner, et al. 2018. “Memory-
EfÏcient Deep Learning on a SpiNNaker 2 Prototype.” Frontiers in Neu-
roscience 12 (November): 840. https://doi.org/10.3389/fnins.2018.00840.

Liu, Yanan, Xiaoxia Wei, Jinyu Xiao, Zhijie Liu, Yang Xu, and Yun Tian. 2020.
“Energy Consumption and Emission Mitigation Prediction Based on Data
Center TrafÏc and PUE for Global Data Centers.” Global Energy Interconnec-
tion 3 (3): 272–82. https://doi.org/10.1016/j.gloei.2020.07.008.

Liu, Yingcheng, Guo Zhang, Christopher G. Tarolli, Rumen Hristov, Stella
Jensen-Roberts, Emma M. Waddell, Taylor L. Myers, et al. 2022. “Monitoring
Gait at Home with Radio Waves in Parkinson’s Disease: A Marker of Severity,
Progression, and Medication Response.” Science Translational Medicine 14
(663): eadc9669. https://doi.org/10.1126/scitranslmed.adc9669.

Lopez-Paz, David, and Marc’Aurelio Ranzato. 2017. “Gradient Episodic Mem-
ory for Continual Learning.” In NIPS, 30:6467–76. https://proceeding
s.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-
Abstract.html.

Lu, Yucheng, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christo-
pher De Sa, and Amir Yazdanbakhsh. 2023. “STEP: Learning n:m Struc-
tured Sparsity Masks from Scratch with Precondition,” February. http:
//arxiv.org/abs/2302.01172v1.

Luna, William Fernando Martı́nez. 2018a. “CONSUMER PROTECTION AGAINST
PLANNED OBSOLESCENCE. AN INTERNATIONAL PRIVATE LAW ANAL-

http://arxiv.org/abs/2001.05909v2
http://arxiv.org/abs/2001.05909v2
http://arxiv.org/abs/2306.00978v5
http://arxiv.org/abs/2306.00978v5
https://doi.org/10.1109/mcas.2023.3302182
https://doi.org/10.1007/978-3-319-10602-1/_48
https://doi.org/10.1007/978-3-319-10602-1/_48
https://doi.org/10.1109/access.2019.2915109
https://doi.org/10.1109/mm.2008.31
https://doi.org/10.3389/fnins.2018.00840
https://doi.org/10.1016/j.gloei.2020.07.008
https://doi.org/10.1126/scitranslmed.adc9669
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
http://arxiv.org/abs/2302.01172v1
http://arxiv.org/abs/2302.01172v1

References 1656

YSIS.” In Planned Obsolescence and the Rulle of Law, 12:229–80. 3. Universidad
del Externado de Colombia. https://doi.org/10.2307/j.ctv1ddcwvh.9.

———. 2018b. “CONSUMER PROTECTION AGAINST PLANNED OBSOLES-
CENCE. AN INTERNATIONAL PRIVATE LAW ANALYSIS.” In Planned
Obsolescence and the Rulle of Law, 15:229–80. 2. Universidad del Externado
de Colombia. https://doi.org/10.2307/j.ctv1ddcwvh.9.

Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to Interpreting
Model Predictions.” In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, edited by Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, 4765–74. https://proceedings.neurips.cc/paper/2017/ha
sh/8a20a8621978632d76c43dfd28b67767-Abstract.html.

Lyons, Richard G. 2011. Understanding Digital Signal Processing. 3rd ed. Prentice
Hall.

Ma, Dongning, Fred Lin, Alban Desmaison, Joel Coburn, Daniel Moore, Sri-
ram Sankar, and Xun Jiao. 2024. “Dr. DNA: Combating Silent Data Cor-
ruptions in Deep Learning Using Distribution of Neuron Activations.” In
Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3, 239–52. ACM.
https://doi.org/10.1145/3620666.3651349.

Ma, Jeffrey, Alan Tu, Yiling Chen, and Vijay Janapa Reddi. 2024. “FedStaleWeight:
Buffered Asynchronous Federated Learning with Fair Aggregation via Stal-
eness Reweighting,” June. http://arxiv.org/abs/2406.02877v1.

Maas, Martin, David G. Andersen, Michael Isard, Mohammad Mahdi Javan-
mard, Kathryn S. McKinley, and Colin Raffel. 2024. “Combining Ma-
chine Learning and Lifetime-Based Resource Management for Memory
Allocation and Beyond.” Communications of the ACM 67 (4): 87–96. https:
//doi.org/10.1145/3611018.

Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. 2017. “Towards Deep Learning Models Resistant to
Adversarial Attacks.” arXiv Preprint arXiv:1706.06083, June. http://arxiv.or
g/abs/1706.06083v4.

Mahmoud, Abdulrahman, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez
Vicarte, Sarita V. Adve, Christopher W. Fletcher, Iuri Frosio, and Siva Kumar
Sastry Hari. 2020. “PyTorchFI: A Runtime Perturbation Tool for DNNs.” In
2020 50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN-w), 25–31. IEEE; IEEE. https://doi.org/10.1
109/dsn-w50199.2020.00014.

Mahmoud, Abdulrahman, Siva Kumar Sastry Hari, Christopher W. Fletcher,
Sarita V. Adve, Charbel Sakr, Naresh Shanbhag, Pavlo Molchanov, Michael
B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021. “Optimizing
Selective Protection for CNN Resilience.” In 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE), 127–38. IEEE. https:
//doi.org/10.1109/issre52982.2021.00025.

Mahmoud, Abdulrahman, Thierry Tambe, Tarek Aloui, David Brooks, and
Gu-Yeon Wei. 2022. “GoldenEye: A Platform for Evaluating Emerging Nu-
merical Data Formats in DNN Accelerators.” In 2022 52nd Annual IEEE/IFIP

https://doi.org/10.2307/j.ctv1ddcwvh.9
https://doi.org/10.2307/j.ctv1ddcwvh.9
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1145/3620666.3651349
http://arxiv.org/abs/2406.02877v1
https://doi.org/10.1145/3611018
https://doi.org/10.1145/3611018
http://arxiv.org/abs/1706.06083v4
http://arxiv.org/abs/1706.06083v4
https://doi.org/10.1109/dsn-w50199.2020.00014
https://doi.org/10.1109/dsn-w50199.2020.00014
https://doi.org/10.1109/issre52982.2021.00025
https://doi.org/10.1109/issre52982.2021.00025

References 1657

International Conference on Dependable Systems and Networks (DSN), 206–14.
IEEE. https://doi.org/10.1109/dsn53405.2022.00031.

Martin, C. Dianne. 1993. “The Myth of the Awesome Thinking Machine.”
Communications of the ACM 36 (4): 120–33. https://doi.org/10.1145/255950
.153587.

Marulli, Fiammetta, Stefano Marrone, and Laura Verde. 2022. “Sensitivity of
Machine Learning Approaches to Fake and Untrusted Data in Healthcare
Domain.” Journal of Sensor and Actuator Networks 11 (2): 21. https://doi.or
g/10.3390/jsan11020021.

Masanet, Eric, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey.
2020b. “Recalibrating Global Data Center Energy-Use Estimates.” Science
367 (6481): 984–86. https://doi.org/10.1126/science.aba3758.

———. 2020a. “Recalibrating Global Data Center Energy-Use Estimates.”
Science 367 (6481): 984–86. https://doi.org/10.1126/science.aba3758.

Maslej, Nestor, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy, Katrina
Ligett, Terah Lyons, James Manyika, et al. 2023. “Artificial Intelligence Index
Report 2023.” ArXiv Preprint abs/2310.03715 (October). http://arxiv.org/
abs/2310.03715v1.

Maslej, Nestor, Loredana Fattorini, C. Raymond Perrault, Vanessa Parli, Anka
Reuel, Erik Brynjolfsson, John Etchemendy, et al. 2024. “Artificial Intelli-
gence Index Report 2024.” CoRR. https://doi.org/10.48550/ARXIV.2405.19
522.

Mattson, Peter, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg
Diamos, David Kanter, Paulius Micikevicius, et al. 2020. “MLPerf: An
Industry Standard Benchmark Suite for Machine Learning Performance.”
IEEE Micro 40 (2): 8–16. https://doi.org/10.1109/mm.2020.2974843.

Mazumder, Mark, Sharad Chitlangia, Colby Banbury, Yiping Kang, Juan Manuel
Ciro, Keith Achorn, Daniel Galvez, et al. 2021. “Multilingual Spoken Words
Corpus.” In Thirty-Fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

McAuliffe, Michael, Michaela Socolof, Sarah Mihuc, Michael Wagner, and
Morgan Sonderegger. 2017. “Montreal Forced Aligner: Trainable Text-
Speech Alignment Using Kaldi.” In Interspeech 2017, 498–502. ISCA. https:
//doi.org/10.21437/interspeech.2017-1386.

McCarthy, John. 1981. “EPISTEMOLOGICAL PROBLEMS OF ARTIFICIAL
INTELLIGENCE.” In Readings in Artificial Intelligence, 459–65. Elsevier. https:
//doi.org/10.1016/b978-0-934613-03-3.50035-0.

McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017a. “Communication-EfÏcient Learning of Deep Net-
works from Decentralized Data.” In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April
2017, Fort Lauderdale, FL, USA, edited by Aarti Singh and Xiaojin (Jerry)
Zhu, 54:1273–82. Proceedings of Machine Learning Research. PMLR. http:
//proceedings.mlr.press/v54/mcmahan17a.html.

———. 2017b. “Communication-EfÏcient Learning of Deep Networks from
Decentralized Data.” In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS), 1273–82. PMLR. http://procee
dings.mlr.press/v54/mcmahan17a.html.

https://doi.org/10.1109/dsn53405.2022.00031
https://doi.org/10.1145/255950.153587
https://doi.org/10.1145/255950.153587
https://doi.org/10.3390/jsan11020021
https://doi.org/10.3390/jsan11020021
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758
http://arxiv.org/abs/2310.03715v1
http://arxiv.org/abs/2310.03715v1
https://doi.org/10.48550/ARXIV.2405.19522
https://doi.org/10.48550/ARXIV.2405.19522
https://doi.org/10.1109/mm.2020.2974843
https://doi.org/10.21437/interspeech.2017-1386
https://doi.org/10.21437/interspeech.2017-1386
https://doi.org/10.1016/b978-0-934613-03-3.50035-0
https://doi.org/10.1016/b978-0-934613-03-3.50035-0
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html

References 1658

McMahan, H Brendan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2017.
“Communication-EfÏcient Learning of Deep Networks from Decentralized
Data.” In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS), 1273–82.

Mellempudi, Naveen, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul.
2019. “Mixed Precision Training with 8-Bit Floating Point.” arXiv Preprint
arXiv:1905.12334, May. http://arxiv.org/abs/1905.12334v1.

Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
“Pointer Sentinel Mixture Models.” arXiv Preprint arXiv:1609.07843, Septem-
ber. http://arxiv.org/abs/1609.07843v1.

Micikevicius, Paulius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, et al. 2017b. “Mixed Precision Train-
ing.” arXiv Preprint arXiv:1710.03740, October. http://arxiv.org/abs/1710
.03740v3.

———, et al. 2017a. “Mixed Precision Training.” arXiv Preprint arXiv:1710.03740,
October. http://arxiv.org/abs/1710.03740v3.

Micikevicius, Paulius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep
Dubey, Richard Grisenthwaite, Sangwon Ha, et al. 2022. “FP8 Formats for
Deep Learning.” arXiv Preprint arXiv:2209.05433, September. http://arxiv.
org/abs/2209.05433v2.

Miller, Charlie. 2019. “Lessons Learned from Hacking a Car.” IEEE Design
&Amp; Test 36 (6): 7–9. https://doi.org/10.1109/mdat.2018.2863106.

Miller, Charlie, and Chris Valasek. 2015. “The Antivirus Hacker’s Handbook.”
Black Hat USA. Wiley. https://doi.org/10.1002/9781119183525.ch15.

Mills, Andrew, and Stephen Le Hunte. 1997. “An Overview of Semiconductor
Photocatalysis.” Journal of Photochemistry and Photobiology A: Chemistry 108
(1): 1–35. https://doi.org/10.1016/s1010-6030(97)00118-4.

Mirhoseini, Azalia et al. 2017. “Device Placement Optimization with Reinforce-
ment Learning.” International Conference on Machine Learning (ICML).

Mohanram, K., and N. A. Touba. n.d. “Partial Error Masking to Reduce Soft
Error Failure Rate in Logic Circuits.” In Proceedings. 16th IEEE Symposium
on Computer Arithmetic, 433–40. IEEE; IEEE Comput. Soc. https://doi.org/
10.1109/dftvs.2003.1250141.

Moore, Gordon. 2021. “Cramming More Components onto Integrated Circuits
(1965).” In Ideas That Created the Future, 261–66. The MIT Press. https:
//doi.org/10.7551/mitpress/12274.003.0027.

Mukherjee, S. S., J. Emer, and S. K. Reinhardt. n.d. “The Soft Error Problem:
An Architectural Perspective.” In 11th International Symposium on High-
Performance Computer Architecture, 243–47. IEEE; IEEE. https://doi.org/10.1
109/hpca.2005.37.

Nagel, Markus, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. 2021b. “A White Paper on
Neural Network Quantization.” arXiv Preprint arXiv:2106.08295, June. http:
//arxiv.org/abs/2106.08295v1.

———. 2021a. “A White Paper on Neural Network Quantization.” arXiv
Preprint arXiv:2106.08295, June. http://arxiv.org/abs/2106.08295v1.

Narang, Sharan, Hyung Won Chung, Yi Tay, Liam Fedus, Thibault Fevry,
Michael Matena, Karishma Malkan, et al. 2021. “Do Transformer Mod-

http://arxiv.org/abs/1905.12334v1
http://arxiv.org/abs/1609.07843v1
http://arxiv.org/abs/1710.03740v3
http://arxiv.org/abs/1710.03740v3
http://arxiv.org/abs/1710.03740v3
http://arxiv.org/abs/2209.05433v2
http://arxiv.org/abs/2209.05433v2
https://doi.org/10.1109/mdat.2018.2863106
https://doi.org/10.1002/9781119183525.ch15
https://doi.org/10.1016/s1010-6030(97)00118-4
https://doi.org/10.1109/dftvs.2003.1250141
https://doi.org/10.1109/dftvs.2003.1250141
https://doi.org/10.7551/mitpress/12274.003.0027
https://doi.org/10.7551/mitpress/12274.003.0027
https://doi.org/10.1109/hpca.2005.37
https://doi.org/10.1109/hpca.2005.37
http://arxiv.org/abs/2106.08295v1
http://arxiv.org/abs/2106.08295v1
http://arxiv.org/abs/2106.08295v1

References 1659

ifications Transfer Across Implementations and Applications?” In Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, 21:1–67. 140. Association for Computational Linguistics. https:
//doi.org/10.18653/v1/2021.emnlp-main.465.

Narayanan, Arvind, and Vitaly Shmatikov. 2006. “How to Break Anonymity of
the Netflix Prize Dataset.” CoRR. http://arxiv.org/abs/cs/0610105.

Narayanan, Deepak, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, et al. 2021a.
“EfÏcient Large-Scale Language Model Training on GPU Clusters Using
Megatron-LM.” NeurIPS, April. http://arxiv.org/abs/2104.04473v5.

Narayanan, Deepak, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, et al. 2021b. “EfÏ-
cient Large-Scale Language Model Training on GPU Clusters Using Megatron-
LM.” In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 1–15. ACM. https://doi.org/10.114
5/3458817.3476209.

Nayak, Prateeth, Takuya Higuchi, Anmol Gupta, Shivesh Ranjan, Stephen
Shum, Siddharth Sigtia, Erik Marchi, et al. 2022. “Improving Voice Trigger
Detection with Metric Learning.” arXiv Preprint arXiv:2204.02455, April.
http://arxiv.org/abs/2204.02455v2.

Ng, Davy Tsz Kit, Jac Ka Lok Leung, Kai Wah Samuel Chu, and Maggie Shen
Qiao. 2021. “<Scp>AI</Scp> Literacy: Definition, Teaching, Evaluation
and Ethical Issues.” Proceedings of the Association for Information Science and
Technology 58 (1): 504–9. https://doi.org/10.1002/pra2.487.

Ngo, Richard, Lawrence Chan, and Sören Mindermann. 2022. “The Alignment
Problem from a Deep Learning Perspective.” ArXiv Preprint abs/2209.00626
(August). http://arxiv.org/abs/2209.00626v8.

Nguyen, John, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael
Rabbat, Mani Malek, and Dzmitry Huba. 2021. “Federated Learning with
Buffered Asynchronous Aggregation,” June. http://arxiv.org/abs/2106.0
6639v4.

Nishigaki, Shinsuke. 2024. “Eigenphase Distributions of Unimodular Circular
Ensembles.” arXiv Preprint arXiv:2401.09045 36 (January). http://arxiv.or
g/abs/2401.09045v2.

Norrie, Thomas, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James
Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021. “The
Design Process for Google’s Training Chips: TPUv2 and TPUv3.” IEEE
Micro 41 (2): 56–63. https://doi.org/10.1109/mm.2021.3058217.

Northcutt, Curtis G, Anish Athalye, and Jonas Mueller. 2021. “Pervasive La-
bel Errors in Test Sets Destabilize Machine Learning Benchmarks.” arXiv.
https://doi.org/https://doi.org/10.48550/arXiv.2103.14749 arXiv-issued
DOI via DataCite.

NVIDIA. 2021. “TensorRT: High-Performance Deep Learning Inference Library.”
NVIDIA Developer Blog. https://developer.nvidia.com/tensorrt.

Oakden-Rayner, Luke, Jared Dunnmon, Gustavo Carneiro, and Christopher
Re. 2020. “Hidden Stratification Causes Clinically Meaningful Failures in
Machine Learning for Medical Imaging.” InProceedings of the ACMConference

https://doi.org/10.18653/v1/2021.emnlp-main.465
https://doi.org/10.18653/v1/2021.emnlp-main.465
http://arxiv.org/abs/cs/0610105
http://arxiv.org/abs/2104.04473v5
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
http://arxiv.org/abs/2204.02455v2
https://doi.org/10.1002/pra2.487
http://arxiv.org/abs/2209.00626v8
http://arxiv.org/abs/2106.06639v4
http://arxiv.org/abs/2106.06639v4
http://arxiv.org/abs/2401.09045v2
http://arxiv.org/abs/2401.09045v2
https://doi.org/10.1109/mm.2021.3058217
https://doi.org/10.48550/arXiv.2103.14749%20arXiv-issued%20DOI%20via%20DataCite
https://doi.org/10.48550/arXiv.2103.14749%20arXiv-issued%20DOI%20via%20DataCite
https://developer.nvidia.com/tensorrt

References 1660

on Health, Inference, and Learning, 151–59. ACM. https://doi.org/10.1145/33
68555.3384468.

Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil Mullainathan.
2019. “Dissecting Racial Bias in an Algorithm Used to Manage the Health
of Populations.” Science 366 (6464): 447–53. https://doi.org/10.1126/scienc
e.aax2342.

Oecd. 2023. “A Blueprint for Building National Compute Capacity for Artificial
Intelligence.” 350. Organisation for Economic Co-Operation; Development
(OECD). https://doi.org/10.1787/876367e3-en.

OECD.AI. 2021. “Measuring the Geographic Distribution of AI Computing
Capacity.” <https://oecd.ai/en/policy-circle/computing-capacity>.

Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov,
and Shan Carter. 2020. “Zoom in: An Introduction to Circuits.” Distill 5 (3):
e00024–001. https://doi.org/10.23915/distill.00024.001.

Oprea, Alina, Anoop Singhal, and Apostol Vassilev. 2022. “Poisoning Attacks
Against Machine Learning: Can Machine Learning Be Trustworthy?” Com-
puter 55 (11): 94–99. https://doi.org/10.1109/mc.2022.3190787.

Orekondy, Tribhuvanesh, Bernt Schiele, and Mario Fritz. 2019. “Knockoff Nets:
Stealing Functionality of Black-Box Models.” In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 4949–58. IEEE. https:
//doi.org/10.1109/cvpr.2019.00509.

Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips.
2008. “GPU Computing.” Proceedings of the IEEE 96 (5): 879–99. https:
//doi.org/10.1109/jproc.2008.917757.

Palmer, John F. 1980. “The INTEL® 8087 Numeric Data Processor.” In Proceed-
ings of the May 19-22, 1980, National Computer Conference on - AFIPS ’80, 887.
ACM Press. https://doi.org/10.1145/1500518.1500674.

Panda, Priyadarshini, Indranil Chakraborty, and Kaushik Roy. 2019. “Dis-
cretization Based Solutions for Secure Machine Learning Against Adversar-
ial Attacks.” IEEE Access 7: 70157–68. https://doi.org/10.1109/access.2019.
2919463.

Papadimitriou, George, and Dimitris Gizopoulos. 2021. “Demystifying the
System Vulnerability Stack: Transient Fault Effects Across the Layers.” In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), 902–15. IEEE; IEEE. https://doi.org/10.1109/isca52012.2021.00075.

Papernot, Nicolas, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. 2016. “Distillation as a Defense to Adversarial Perturbations Against
Deep Neural Networks.” In 2016 IEEE Symposium on Security and Privacy
(SP), 582–97. IEEE; IEEE. https://doi.org/10.1109/sp.2016.41.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001. “BLEU:
A Method for Automatic Evaluation of Machine Translation.” In Proceedings
of the 40th Annual Meeting on Association for Computational Linguistics - ACL
’02, 311. Association for Computational Linguistics. https://doi.org/10.311
5/1073083.1073135.

Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D. Cubuk, and Quoc V. Le. 2019. “SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition.” arXiv Preprint
arXiv:1904.08779, April. http://arxiv.org/abs/1904.08779v3.

https://doi.org/10.1145/3368555.3384468
https://doi.org/10.1145/3368555.3384468
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1787/876367e3-en
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.1109/mc.2022.3190787
https://doi.org/10.1109/cvpr.2019.00509
https://doi.org/10.1109/cvpr.2019.00509
https://doi.org/10.1109/jproc.2008.917757
https://doi.org/10.1109/jproc.2008.917757
https://doi.org/10.1145/1500518.1500674
https://doi.org/10.1109/access.2019.2919463
https://doi.org/10.1109/access.2019.2919463
https://doi.org/10.1109/isca52012.2021.00075
https://doi.org/10.1109/sp.2016.41
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1904.08779v3

References 1661

Parrish, Alicia, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max Bartolo,
Oana Inel, Juan Ciro, et al. 2023. “Adversarial Nibbler: A Data-Centric
Challenge for Improving the Safety of Text-to-Image Models.” ArXiv Preprint
abs/2305.14384 (May). http://arxiv.org/abs/2305.14384v1.

Paszke, Adam, Sam Gross, Francisco Massa, and et al. 2019. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.” Advances in
Neural Information Processing Systems (NeurIPS) 32: 8026–37.

Patel, Paresh D., Absar Lakdawala, Sajan Chourasia, and Rajesh N. Patel. 2016.
“Bio Fuels for Compression Ignition Engine: A Review on Engine Perfor-
mance, Emission and Life Cycle Analysis.” Renewable and Sustainable Energy
Reviews 65 (November): 24–43. https://doi.org/10.1016/j.rser.2016.06.010.

Patterson, David A., and John L. Hennessy. 2021a. Computer Architecture: A
Quantitative Approach. 6th ed. Morgan Kaufmann.

———. 2021b. Computer Organization and Design RISC-v Edition: The Hardware
Software Interface. 2nd ed. San Francisco, CA: Morgan Kaufmann.

———. 2021c. Computer Organization and Design: The Hardware/Software Interface.
5th ed. Morgan Kaufmann.

Patterson, David, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang, Lluis-
Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and Jeff Dean.
2022. “The Carbon Footprint of Machine Learning Training Will Plateau,
Then Shrink.” Computer 55 (7): 18–28. https://doi.org/10.1109/mc.2022.31
48714.

Patterson, David, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021a. “Carbon
Emissions and Large Neural Network Training.” arXiv Preprint arXiv:2104.10350,
April. http://arxiv.org/abs/2104.10350v3.

———. 2021b. “Carbon Emissions and Large Neural Network Training.” arXiv
Preprint arXiv:2104.10350, April. http://arxiv.org/abs/2104.10350v3.

Patterson, David, Joseph Gonzalez, Quoc Le, Maud Texier, and Jeff Dean. 2022.
“Carbon-Aware Computing for Sustainable AI.” Communications of the ACM
65 (11): 50–58.

Penedo, Guilherme, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Mar-
garet Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf. 2024.
“The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale.”
arXiv Preprint arXiv:2406.17557, June. http://arxiv.org/abs/2406.17557v2.

Peters, Dorian, Rafael A. Calvo, and Richard M. Ryan. 2018. “Designing for
Motivation, Engagement and Wellbeing in Digital Experience.” Frontiers in
Psychology 9 (May): 797. https://doi.org/10.3389/fpsyg.2018.00797.

Phillips, P. Jonathon, Carina A. Hahn, Peter C. Fontana, David A. Broniatowski,
and Mark A. Przybocki. 2020. “Four Principles of Explainable Artificial
Intelligence.” Gaithersburg, Maryland. National Institute of Standards; Tech-
nology (NIST). https://doi.org/10.6028/nist.ir.8312-draft.

Pineau, Joelle, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière,
Alina Beygelzimer, Florence d’Alché-Buc, Emily Fox, and Hugo Larochelle.
2021. “Improving Reproducibility in Machine Learning Research (a Re-
port from the Neurips 2019 Reproducibility Program).” Journal of Machine
Learning Research 22 (164): 1–20.

http://arxiv.org/abs/2305.14384v1
https://doi.org/10.1016/j.rser.2016.06.010
https://doi.org/10.1109/mc.2022.3148714
https://doi.org/10.1109/mc.2022.3148714
http://arxiv.org/abs/2104.10350v3
http://arxiv.org/abs/2104.10350v3
http://arxiv.org/abs/2406.17557v2
https://doi.org/10.3389/fpsyg.2018.00797
https://doi.org/10.6028/nist.ir.8312-draft

References 1662

Plank, James S. 1997. “A Tutorial on Reed-Solomon Coding for Fault-Tolerance
in RAID-Like Systems.” Software: Practice and Experience 27 (9): 995–1012.
https://doi.org/10.1002/(sici)1097-024x(199709)27:9%3C995::aid-
spe111%3E3.0.co;2-6.

Pont, Michael J, and Royan HL Ong. 2002. “Using Watchdog Timers to Improve
the Reliability of Single-Processor Embedded Systems: Seven New Patterns
and a Case Study.” In Proceedings of the First Nordic Conference on Pattern
Languages of Programs, 159–200. Citeseer.

Prakash, Shvetank, Tim Callahan, Joseph Bushagour, Colby Banbury, Alan
V. Green, Pete Warden, Tim Ansell, and Vijay Janapa Reddi. 2023. “CFU
Playground: Full-Stack Open-Source Framework for Tiny Machine Learning
(TinyML) Acceleration on FPGAs.” In 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), abs/2201.01863:157–67.
IEEE. https://doi.org/10.1109/ispass57527.2023.00024.

Psoma, Sotiria D., and Chryso Kanthou. 2023. “Wearable Insulin Biosensors for
Diabetes Management: Advances and Challenges.” Biosensors 13 (7): 719.
https://doi.org/10.3390/bios13070719.

Puckett, Jim. 2016. E-Waste and the Global Environment: The Hidden Cost of
Discarded Electronics. MIT Press.

Pushkarna, Mahima, Andrew Zaldivar, and Oddur Kjartansson. 2022. “Data
Cards: Purposeful and Transparent Dataset Documentation for Responsible
AI.” In 2022 ACM Conference on Fairness, Accountability, and Transparency,
1776–826. ACM. https://doi.org/10.1145/3531146.3533231.

Putnam, Andrew, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, et al. 2014. “A Recon-
figurable Fabric for Accelerating Large-Scale Datacenter Services.” ACM
SIGARCH Computer Architecture News 42 (3): 13–24. https://doi.org/10.114
5/2678373.2665678.

Qi, Chen, Shibo Shen, Rongpeng Li, Zhifeng Zhao, Qing Liu, Jing Liang, and
Honggang Zhang. 2021. “An EfÏcient Pruning Scheme of Deep Neural
Networks for Internet of Things Applications.” EURASIP Journal onAdvances
in Signal Processing 2021 (1): 31. https://doi.org/10.1186/s13634-021-00744-
4.

Qi, Xuan, Burak Kantarci, and Chen Liu. 2017. “GPU-Based Acceleration of
SDN Controllers.” In Network as a Service for Next Generation Internet, 339–56.
Institution of Engineering; Technology. https://doi.org/10.1049/pbte073e
/_ch14.

Quaye, Jessica, Alicia Parrish, Oana Inel, Charvi Rastogi, Hannah Rose Kirk,
Minsuk Kahng, Erin Van Liemt, et al. 2024. “Adversarial Nibbler: An
Open Red-Teaming Method for Identifying Diverse Harms in Text-to-Image
Generation.” In The 2024 ACM Conference on Fairness, Accountability, and
Transparency, 388–406. ACM. https://doi.org/10.1145/3630106.3658913.

Quiñonero-Candela, Joaquin, Masashi Sugiyama, Anton Schwaighofer, and
Neil D. Lawrence. 2008. “Dataset Shift in Machine Learning.” The MIT Press.
The MIT Press. https://doi.org/10.7551/mitpress/7921.003.0002.

R. V., Rashmi, and Karthikeyan A. 2018. “Secure Boot of Embedded Appli-
cations - a Review.” In 2018 Second International Conference on Electron-

https://doi.org/10.1002/(sici)1097-024x(199709)27:9%3C995::aid-spe111%3E3.0.co;2-6
https://doi.org/10.1002/(sici)1097-024x(199709)27:9%3C995::aid-spe111%3E3.0.co;2-6
https://doi.org/10.1109/ispass57527.2023.00024
https://doi.org/10.3390/bios13070719
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1145/2678373.2665678
https://doi.org/10.1186/s13634-021-00744-4
https://doi.org/10.1186/s13634-021-00744-4
https://doi.org/10.1049/pbte073e/_ch14
https://doi.org/10.1049/pbte073e/_ch14
https://doi.org/10.1145/3630106.3658913
https://doi.org/10.7551/mitpress/7921.003.0002

References 1663

ics, Communication and Aerospace Technology (ICECA), 291–98. IEEE. https:
//doi.org/10.1109/iceca.2018.8474730.

Radosavovic, Ilija, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollar. 2020. “Designing Network Design Spaces.” In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 10428–36.
IEEE. https://doi.org/10.1109/cvpr42600.2020.01044.

Rainio, Oona, Jarmo Teuho, and Riku Klén. 2024. “Evaluation Metrics and
Statistical Tests for Machine Learning.” Scientific Reports 14 (1): 6086.

Rajbhandari, Samyam, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020.
“ZeRO: Memory Optimization Towards Training Trillion Parameter Models.”
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). https://doi.org/10.5555/3433701.34
33721.

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
“SQuAD: 100,000+ Questions for Machine Comprehension of Text.” arXiv
Preprint arXiv:1606.05250, June, 2383–92. https://doi.org/10.18653/v1/d16-
1264.

Ramcharan, Amanda, Kelsee Baranowski, Peter McCloskey, Babuali Ahmed,
James Legg, and David P. Hughes. 2017. “Deep Learning for Image-Based
Cassava Disease Detection.” Frontiers in Plant Science 8 (October): 1852.
https://doi.org/10.3389/fpls.2017.01852.

Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. 2021. “Zero-Shot Text-to-Image
Generation.” In Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, edited by Marina Meila
and Tong Zhang, 139:8821–31. Proceedings of Machine Learning Research.
PMLR. http://proceedings.mlr.press/v139/ramesh21a.html.

Ranganathan, Parthasarathy, and Urs Hölzle. 2024. “Twenty Five Years of
Warehouse-Scale Computing.” IEEE Micro 44 (5): 11–22. https://doi.org/
10.1109/mm.2024.3409469.

Rashid, Layali, Karthik Pattabiraman, and Sathish Gopalakrishnan. 2012. “In-
termittent Hardware Errors Recovery: Modeling and Evaluation.” In 2012
Ninth International Conference on Quantitative Evaluation of Systems, 220–29.
IEEE; IEEE. https://doi.org/10.1109/qest.2012.37.

———. 2015. “Characterizing the Impact of Intermittent Hardware Faults on
Programs.” IEEE Transactions on Reliability 64 (1): 297–310. https://doi.org/
10.1109/tr.2014.2363152.

Rastegari, Mohammad, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
2016. “XNOR-Net: ImageNet Classification Using Binary Convolutional
Neural Networks.” In Computer Vision – ECCV 2016, 525–42. Springer
International Publishing. https://doi.org/10.1007/978-3-319-46493-0/_32.

Ratner, Alex, Braden Hancock, Jared Dunnmon, Roger Goldman, and Christo-
pher Ré. 2018. “Snorkel MeTaL: Weak Supervision for Multi-Task Learning.”
In Proceedings of the Second Workshop on Data Management for End-to-End Ma-
chine Learning. ACM. https://doi.org/10.1145/3209889.3209898.

Reagen, Brandon, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David
Brooks. 2017. Deep Learning for Computer Architects. Springer International
Publishing. https://doi.org/10.1007/978-3-031-01756-8.

https://doi.org/10.1109/iceca.2018.8474730
https://doi.org/10.1109/iceca.2018.8474730
https://doi.org/10.1109/cvpr42600.2020.01044
https://doi.org/10.5555/3433701.3433721
https://doi.org/10.5555/3433701.3433721
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.3389/fpls.2017.01852
http://proceedings.mlr.press/v139/ramesh21a.html
https://doi.org/10.1109/mm.2024.3409469
https://doi.org/10.1109/mm.2024.3409469
https://doi.org/10.1109/qest.2012.37
https://doi.org/10.1109/tr.2014.2363152
https://doi.org/10.1109/tr.2014.2363152
https://doi.org/10.1007/978-3-319-46493-0/_32
https://doi.org/10.1145/3209889.3209898
https://doi.org/10.1007/978-3-031-01756-8

References 1664

Reagen, Brandon, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu
Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. 2018. “Ares: A
Framework for Quantifying the Resilience of Deep Neural Networks.” In
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 1–6. IEEE.
https://doi.org/10.1109/dac.2018.8465834.

Real, Esteban, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019b. “Regu-
larized Evolution for Image Classifier Architecture Search.” Proceedings
of the AAAI Conference on Artificial Intelligence 33 (01): 4780–89. https:
//doi.org/10.1609/aaai.v33i01.33014780.

———. 2019a. “Regularized Evolution for Image Classifier Architecture Search.”
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01): 4780–89.
https://doi.org/10.1609/aaai.v33i01.33014780.

RebufÏ, Sylvestre-Alvise, Hakan Bilen, and Andrea Vedaldi. 2017. “Learning
Multiple Visual Domains with Residual Adapters.” In Advances in Neural
Information Processing Systems. Vol. 30.

Reddi, Vijay Janapa, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, et al. 2019. “MLPerf In-
ference Benchmark.” arXiv Preprint arXiv:1911.02549, November, 446–59.
https://doi.org/10.1109/isca45697.2020.00045.

Reddi, Vijay Janapa, and Meeta Sharma Gupta. 2013. Resilient Architecture
Design for Voltage Variation. Springer International Publishing. https://doi.
org/10.1007/978-3-031-01739-1.

Reis, G. A., J. Chang, N. Vachharajani, R. Rangan, and D. I. August. n.d. “SWIFT:
Software Implemented Fault Tolerance.” In International Symposium on Code
Generation and Optimization, 243–54. IEEE; IEEE. https://doi.org/10.1109/
cgo.2005.34.

Research, Microsoft. 2021. DeepSpeed: Extreme-Scale Model Training for Everyone.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “” Why Should

i Trust You?” Explaining the Predictions of Any Classifier.” In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 1135–44.

Richter, Joel D., and Xinyu Zhao. 2021. “The Molecular Biology of FMRP: New
Insights into Fragile x Syndrome.” Nature Reviews Neuroscience 22 (4): 209–22.
https://doi.org/10.1038/s41583-021-00432-0.

Robertson, J., and M. Riley. 2018. “The Big Hack: How China Used a Tiny Chip
to Infiltrate u.s. Companies - Bloomberg.”https://www.bloomberg.com/news/fea-
tures/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-
s-top-companies .

Rodio, Angelo, and Giovanni Neglia. 2024. “FedStale: Leveraging Stale Client
Updates in Federated Learning,” May. http://arxiv.org/abs/2405.04171v1.

Rolnick, David, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Greg
Wayne. 2019. “Experience Replay for Continual Learning.” In Advances in
Neural Information Processing Systems (NeurIPS).

Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn
Ommer. 2022. “High-Resolution Image Synthesis with Latent Diffusion
Models.” In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 10674–85. IEEE. https://doi.org/10.1109/cvpr52688.2022.0
1042.

https://doi.org/10.1109/dac.2018.8465834
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1609/aaai.v33i01.33014780
https://doi.org/10.1109/isca45697.2020.00045
https://doi.org/10.1007/978-3-031-01739-1
https://doi.org/10.1007/978-3-031-01739-1
https://doi.org/10.1109/cgo.2005.34
https://doi.org/10.1109/cgo.2005.34
https://doi.org/10.1038/s41583-021-00432-0
%0A%20%20%20%20https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies%0A%20%20
%0A%20%20%20%20https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies%0A%20%20
%0A%20%20%20%20https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies%0A%20%20
http://arxiv.org/abs/2405.04171v1
https://doi.org/10.1109/cvpr52688.2022.01042
https://doi.org/10.1109/cvpr52688.2022.01042

References 1665

Romero, Francisco, Qian Li 0027, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. “INFaaS: Automated Model-Less Inference Serving.” In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 397–411. https://www.usen
ix.org/conference/atc21/presentation/romero.

Rosenblatt, F. 1958. “The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain.” Psychological Review 65 (6): 386–408.
https://doi.org/10.1037/h0042519.

Rudin, Cynthia. 2019. “Stop Explaining Black Box Machine Learning Models
for High Stakes Decisions and Use Interpretable Models Instead.” Nature
Machine Intelligence 1 (5): 206–15. https://doi.org/10.1038/s42256-019-0048-
x.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. “Learn-
ing Representations by Back-Propagating Errors.” Nature 323 (6088): 533–36.
https://doi.org/10.1038/323533a0.

Russell, Mark. 2022. “Tech Industry Trends in Hardware Lock-in and Their
Sustainability Implications.” Sustainable Computing Journal 10 (1): 34–50.

Russell, Stuart. 2021. “Human-Compatible Artificial Intelligence.” In Human-
Like Machine Intelligence, 3–23. Oxford University Press. https://doi.org/10
.1093/oso/9780198862536.003.0001.

Ryan, Richard M., and Edward L. Deci. 2000. “Self-Determination Theory
and the Facilitation of Intrinsic Motivation, Social Development, and Well-
Being.” American Psychologist 55 (1): 68–78. https://doi.org/10.1037/0003-
066x.55.1.68.

Sabour, Sara, Nicholas Frosst, and Geoffrey E Hinton. 2017. “Dynamic Routing
Between Capsules.” In Advances in Neural Information Processing Systems.
Vol. 30.

Sambasivan, Nithya, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M Aroyo. 2021. “‘Everyone Wants to Do the Model Work,
Not the Data Work’: Data Cascades in High-Stakes AI.” In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems, 1–15. ACM.
https://doi.org/10.1145/3411764.3445518.

Sangchoolie, Behrooz, Karthik Pattabiraman, and Johan Karlsson. 2017. “One
Bit Is (Not) Enough: An Empirical Study of the Impact of Single and Multiple
Bit-Flip Errors.” In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 97–108. IEEE; IEEE. https://doi.or
g/10.1109/dsn.2017.30.

Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. “Dis-
tilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter.”
arXiv Preprint arXiv:1910.01108, October. http://arxiv.org/abs/1910.01108
v4.

Savas, Esra, Reza Shokri, Lalith Singaravelu, Nithya Swamy, and Mitali Bafna.
2022. “ML-ExRay: Visibility and Explainability for Monitoring ML Model
Behavior.” In Proceedings of the 2022 IEEE Symposium on Security and Privacy
(SP), 1352–69. IEEE.

Scardapane, Simone, Ye Wang, and Massimo Panella. 2020. “Why Should i
Trust You? A Survey of Explainability of Machine Learning for Healthcare.”
Pattern Recognition Letters 140: 47–57.

https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1037/h0042519
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/323533a0
https://doi.org/10.1093/oso/9780198862536.003.0001
https://doi.org/10.1093/oso/9780198862536.003.0001
https://doi.org/10.1037/0003-066x.55.1.68
https://doi.org/10.1037/0003-066x.55.1.68
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1109/dsn.2017.30
https://doi.org/10.1109/dsn.2017.30
http://arxiv.org/abs/1910.01108v4
http://arxiv.org/abs/1910.01108v4

References 1666

Schäfer, Mike S. 2023. “The Notorious GPT: Science Communication in the
Age of Artificial Intelligence.” Journal of Science Communication 22 (02): Y02.
https://doi.org/10.22323/2.22020402.

Schelter, Sebastian, Matthias Boehm, Johannes Kirschnick, Kostas Tzoumas,
and Gunnar Ratsch. 2018. “Automating Large-Scale Machine Learning
Model Management.” In Proceedings of the 2018 IEEE International Conference
on Data Engineering (ICDE), 137–48. IEEE.

Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020. “Green
AI.” Communications of the ACM 63 (12): 54–63. https://doi.org/10.1145/33
81831.

Sculley, D., G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,
M. Young, J. F. Crespo, and D. Dennison. 2015. “Hidden Technical Debt in
Machine Learning Systems.” In Advances in Neural Information Processing
Systems. Vol. 28.

Seide, Frank, and Amit Agarwal. 2016. “CNTK: Microsoft’s Open-Source Deep-
Learning Toolkit.” In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2135–35. ACM. https:
//doi.org/10.1145/2939672.2945397.

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017. “Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization.” In
2017 IEEE International Conference on Computer Vision (ICCV), 618–26. IEEE.
https://doi.org/10.1109/iccv.2017.74.

Seong, Nak Hee, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A. Rivers,
and Hsien-Hsin S. Lee. 2010. “SAFER: Stuck-at-Fault Error Recovery for
Memories.” In 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, 115–24. IEEE; IEEE. https://doi.org/10.1109/micro.2010
.46.

Settles, Burr. 2012a. Active Learning. Computer Sciences Technical Report. Uni-
versity of Wisconsin–Madison; Springer International Publishing. https:
//doi.org/10.1007/978-3-031-01560-1.

———. 2012b. Active Learning. University of Wisconsin-Madison Department
of Computer Sciences. Vol. 1648. Springer International Publishing. https:
//doi.org/10.1007/978-3-031-01560-1.

Sevilla, Jaime, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn,
and Pablo Villalobos. 2022a. “Compute Trends Across Three Eras of Ma-
chine Learning.” In 2022 International Joint Conference on Neural Networks
(IJCNN), 1–8. IEEE. https://doi.org/10.1109/ijcnn55064.2022.9891914.

———. 2022b. “Compute Trends Across Three Eras of Machine Learning.”
In 2022 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE.
https://doi.org/10.1109/ijcnn55064.2022.9891914.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2017. “On
a Formal Model of Safe and Scalable Self-Driving Cars.” ArXiv Preprint
abs/1708.06374 (August). http://arxiv.org/abs/1708.06374v6.

Shallue, Christopher J., Jaehoon Lee, et al. 2019. “Measuring the Effects of
Data Parallelism on Neural Network Training.” Journal of Machine Learning
Research 20: 1–49. http://jmlr.org/papers/v20/18-789.html.

https://doi.org/10.22323/2.22020402
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1109/iccv.2017.74
https://doi.org/10.1109/micro.2010.46
https://doi.org/10.1109/micro.2010.46
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1109/ijcnn55064.2022.9891914
https://doi.org/10.1109/ijcnn55064.2022.9891914
http://arxiv.org/abs/1708.06374v6
http://jmlr.org/papers/v20/18-789.html

References 1667

Shan, Shawn, Wenxin Ding, Josephine Passananti, Stanley Wu, Haitao Zheng,
and Ben Y. Zhao. 2023. “Nightshade: Prompt-Specific Poisoning Attacks on
Text-to-Image Generative Models.” ArXiv Preprint abs/2310.13828 (October).
http://arxiv.org/abs/2310.13828v3.

Shang, J., G. Wang, and Y. Liu. 2018. “Accelerating Genomic Data Analysis
with Domain-Specific Architectures.” IEEE Transactions on Computers 67 (7):
965–78. https://doi.org/10.1109/TC.2018.2799212.

Sharma, Amit. 2020. “Industrial AI and Vendor Lock-in: The Hidden Costs of
Proprietary Ecosystems.” AI and Industry Review 8 (3): 55–70.

Shazeer, Noam, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, et al. 2018. “Mesh-TensorFlow: Deep
Learning for Supercomputers.” arXiv Preprint arXiv:1811.02084, November.
http://arxiv.org/abs/1811.02084v1.

Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc
Le, Geoffrey Hinton, and Jeff Dean. 2017. “Outrageously Large Neural
Networks: The Sparsely-Gated Mixture-of-Experts Layer.” arXiv Preprint
arXiv:1701.06538, January. http://arxiv.org/abs/1701.06538v1.

Shazeer, Noam, Azalia Mirhoseini, Piotr Maziarz, et al. 2017. “Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.” In
International Conference on Learning Representations.

Sheaffer, Jeremy W., David P. Luebke, and Kevin Skadron. 2007. “A Hardware
Redundancy and Recovery Mechanism for Reliable Scientific Computation
on Graphics Processors.” In Graphics Hardware, 2007:55–64. Citeseer. https:
//doi.org/10.2312/EGGH/EGGH07/055-064.

Shen, Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. 2019. “Q-BERT: Hessian Based Ul-
tra Low Precision Quantization of BERT.” Proceedings of the AAAI Conference
on Artificial Intelligence 34 (05): 8815–21. https://doi.org/10.1609/aaai.v34
i05.6409.

Sheng, Victor S., and Jing Zhang. 2019. “Machine Learning with Crowd-
sourcing: A Brief Summary of the Past Research and Future Directions.”
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01): 9837–43.
https://doi.org/10.1609/aaai.v33i01.33019837.

Shneiderman, Ben. 2020. “Bridging the Gap Between Ethics and Practice:
Guidelines for Reliable, Safe, and Trustworthy Human-Centered AI Sys-
tems.” ACM Transactions on Interactive Intelligent Systems 10 (4): 1–31. https:
//doi.org/10.1145/3419764.

———. 2022. Human-Centered AI. Oxford University Press.
Shoeybi, Mohammad, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared

Casper, and Bryan Catanzaro. 2019a. “Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model Parallelism.” arXiv Preprint
arXiv:1909.08053, September. http://arxiv.org/abs/1909.08053v4.

———. 2019b. “Megatron-LM: Training Multi-Billion Parameter Language
Models Using Model Parallelism.” arXiv Preprint arXiv:1909.08053, Septem-
ber. http://arxiv.org/abs/1909.08053v4.

Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.
“Membership Inference Attacks Against Machine Learning Models.” In

http://arxiv.org/abs/2310.13828v3
https://doi.org/10.1109/TC.2018.2799212
http://arxiv.org/abs/1811.02084v1
http://arxiv.org/abs/1701.06538v1
https://doi.org/10.2312/EGGH/EGGH07/055-064
https://doi.org/10.2312/EGGH/EGGH07/055-064
https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v33i01.33019837
https://doi.org/10.1145/3419764
https://doi.org/10.1145/3419764
http://arxiv.org/abs/1909.08053v4
http://arxiv.org/abs/1909.08053v4

References 1668

2017 IEEE Symposium on Security and Privacy (SP), 3–18. IEEE; IEEE. https:
//doi.org/10.1109/sp.2017.41.

Singh, Narendra, and Oladele A. Ogunseitan. 2022. “Disentangling the World-
wide Web of e-Waste and Climate Change Co-Benefits.” Circular Economy 1
(2): 100011. https://doi.org/10.1016/j.cec.2022.100011.

Skorobogatov, Sergei. 2009. “Local Heating Attacks on Flash Memory Devices.”
In 2009 IEEE International Workshop on Hardware-Oriented Security and Trust,
1–6. IEEE; IEEE. https://doi.org/10.1109/hst.2009.5225028.

Skorobogatov, Sergei P., and Ross J. Anderson. 2003. “Optical Fault Induction
Attacks.” In Cryptographic Hardware and Embedded Systems - CHES 2002, 2–12.
Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-
36400-5/_2.

Slade, Giles. 2007. Made to Break: Technology and Obsolescence in America. Har-
vard University Press. https://doi.org/10.4159/9780674043756.

Smith, Steven W. 1997. The Scientist and Engineer’s Guide to Digital Signal Process-
ing. California Technical Publishing. https://www.dspguide.com/.

Sodani, Avinash. 2015. “Knights Landing (KNL): 2nd Generation Intel® Xeon
Phi Processor.” In 2015 IEEE Hot Chips 27 Symposium (HCS), 1–24. IEEE.
https://doi.org/10.1109/hotchips.2015.7477467.

Sokolova, Marina, and Guy Lapalme. 2009. “A Systematic Analysis of Per-
formance Measures for Classification Tasks.” Information Processing &Amp;
Management 45 (4): 427–37. https://doi.org/10.1016/j.ipm.2009.03.002.

Stahel, Walter R. 2016. “The Circular Economy.” Nature 531 (7595): 435–38.
https://doi.org/10.1038/531435a.

Statista. 2022. “Number of Internet of Things (IoT) Connected Devices World-
wide from 2019 to 2030.” https://www.statista.com/statistics/802690/w
orldwide-connected-devices-by-access-technology/.

Stephens, Nigel, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole,
Giacomo Gabrielli, Matt Horsnell, et al. 2017. “The ARM Scalable Vector
Extension.” IEEE Micro 37 (2): 26–39. https://doi.org/10.1109/mm.2017.35.

Strassen, Volker. 1969. “Gaussian Elimination Is Not Optimal.” Numerische
Mathematik 13 (4): 354–56. https://doi.org/10.1007/bf02165411.

Strickland, Eliza. 2019. “IBM Watson, Heal Thyself: How IBM Overpromised
and Underdelivered on AI Health Care.” IEEE Spectrum 56 (4): 24–31. https:
//doi.org/10.1109/mspec.2019.8678513.

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2019a. “Energy
and Policy Considerations for Deep Learning in NLP.” In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, 3645–50.
Association for Computational Linguistics. https://doi.org/10.18653/v1/
p19-1355.

———. 2019b. “Energy and Policy Considerations for Deep Learning in NLP.”
arXiv Preprint arXiv:1906.02243, June, 3645–50. https://doi.org/10.18653/v
1/p19-1355.

Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. 2023. “Data Centers on
Wheels: Emissions from Computing Onboard Autonomous Vehicles.” IEEE
Micro 43 (1): 29–39. https://doi.org/10.1109/mm.2022.3219803.

Sullivan, Gary J., Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. 2012.
“Overview of the High EfÏciency Video Coding (HEVC) Standard.” IEEE

https://doi.org/10.1109/sp.2017.41
https://doi.org/10.1109/sp.2017.41
https://doi.org/10.1016/j.cec.2022.100011
https://doi.org/10.1109/hst.2009.5225028
https://doi.org/10.1007/3-540-36400-5/_2
https://doi.org/10.1007/3-540-36400-5/_2
https://doi.org/10.4159/9780674043756
https://www.dspguide.com/
https://doi.org/10.1109/hotchips.2015.7477467
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1038/531435a
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://doi.org/10.1109/mm.2017.35
https://doi.org/10.1007/bf02165411
https://doi.org/10.1109/mspec.2019.8678513
https://doi.org/10.1109/mspec.2019.8678513
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.18653/v1/p19-1355
https://doi.org/10.1109/mm.2022.3219803

References 1669

Transactions on Circuits and Systems for Video Technology 22 (12): 1649–68.
https://doi.org/10.1109/tcsvt.2012.2221191.

Sun, Siqi, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. “Patient Knowledge Dis-
tillation for BERT Model Compression.” In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association
for Computational Linguistics. https://doi.org/10.18653/v1/d19-1441.

Systems, Cerebras. 2021a. “The Wafer-Scale Engine 2: Scaling AI Compute
Beyond GPUs.” Cerebras White Paper. https://cerebras.ai/product-chip/.

———. 2021b. “Wafer-Scale Deep Learning Acceleration with the Cerebras
CS-2.” Cerebras Technical Paper.

Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017a. “EfÏcient
Processing of Deep Neural Networks: A Tutorial and Survey.” Proceedings of
the IEEE 105 (12): 2295–2329. https://doi.org/10.1109/jproc.2017.2761740.

Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017b. “EfÏcient
Processing of Deep Neural Networks: A Tutorial and Survey.” Proceedings of
the IEEE 105 (12): 2295–2329. https://doi.org/10.1109/jproc.2017.2761740.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. 2013a. “Intriguing Properties of
Neural Networks.” ICLR, December. http://arxiv.org/abs/1312.6199v4.

———. 2013b. “Intriguing Properties of Neural Networks.” Edited by Yoshua
Bengio and Yann LeCun, December. http://arxiv.org/abs/1312.6199v4.

Tambe, Thierry, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi,
Alexander Rush, David Brooks, and Gu-Yeon Wei. 2020. “Algorithm-
Hardware Co-Design of Adaptive Floating-Point Encodings for Resilient
Deep Learning Inference.” In 2020 57th ACM/IEEE Design Automation Con-
ference (DAC), 1–6. IEEE; IEEE. https://doi.org/10.1109/dac18072.2020.92
18516.

Tan, Mingxing, and Quoc V Le. 2019a. “EfÏcientNet: Rethinking Model Scaling
for Convolutional Neural Networks.” In International Conference on Machine
Learning (ICML), 6105–14.

Tan, Mingxing, and Quoc V. Le. 2019b. “EfÏcientNet: Rethinking Model Scal-
ing for Convolutional Neural Networks.” In Proceedings of the International
Conference on Machine Learning (ICML), 6105–14.

———. 2019c. “EfÏcientNet: Rethinking Model Scaling for Convolutional
Neural Networks.” In International Conference on Machine Learning.

Team, The Theano Development, Rami Al-Rfou, Guillaume Alain, Amjad Alma-
hairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, et al. 2016.
“Theano: A Python Framework for Fast Computation of Mathematical Ex-
pressions,” May. http://arxiv.org/abs/1605.02688v1.

Teerapittayanon, Surat, Bradley McDanel, and H. T. Kung. 2017. “BranchyNet:
Fast Inference via Early Exiting from Deep Neural Networks.” arXiv Preprint
arXiv:1709.01686, September. http://arxiv.org/abs/1709.01686v1.

The Sustainable Development Goals Report 2018. 2018. New York: United Nations.
https://doi.org/10.18356/7d014b41-en.

Thompson, Neil, Tobias Spanuth, and Hyrum Anderson Matthews. 2023. “The
Computational Limits of Deep Learning and the Future of AI.” Communica-
tions of the ACM 66 (3): 48–57. https://doi.org/10.1145/3580309.

https://doi.org/10.1109/tcsvt.2012.2221191
https://doi.org/10.18653/v1/d19-1441
https://cerebras.ai/product-chip/
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/jproc.2017.2761740
http://arxiv.org/abs/1312.6199v4
http://arxiv.org/abs/1312.6199v4
https://doi.org/10.1109/dac18072.2020.9218516
https://doi.org/10.1109/dac18072.2020.9218516
http://arxiv.org/abs/1605.02688v1
http://arxiv.org/abs/1709.01686v1
https://doi.org/10.18356/7d014b41-en
https://doi.org/10.1145/3580309

References 1670

Thornton, James E. 1965. “Design of a Computer: The Control Data 6600.”
Communications of the ACM 8 (6): 330–35.

Thyagarajan, Aditya, Elı́as Snorrason, Curtis G. Northcutt, and Jonas Mueller
0001. 2022. “Identifying Incorrect Annotations in Multi-Label Classification
Data.” CoRR. https://doi.org/10.48550/ARXIV.2211.13895.

Tianqi, Chen et al. 2018. “TVM: An Automated End-to-End Optimizing Com-
piler for Deep Learning.” 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), 578–94.

Tirtalistyani, Rose, Murtiningrum Murtiningrum, and Rameshwar S. Kanwar.
2022. “Indonesia Rice Irrigation System: Time for Innovation.” Sustainability
14 (19): 12477. https://doi.org/10.3390/su141912477.

Tramèr, Florian, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh.
2019. “AdVersarial: Perceptual Ad Blocking Meets Adversarial Machine
Learning.” In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2005–21. ACM. https://doi.org/10.1145/3319
535.3354222.

Tramèr, Florian, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. “Stealing Machine Learning Models via Prediction APIs.” In 25th
USENIX Security Symposium (USENIX Security 16), 601–18.

Tsai, Min-Jen, Ping-Yi Lin, and Ming-En Lee. 2023. “Adversarial Attacks on
Medical Image Classification.” Cancers 15 (17): 4228. https://doi.org/10.3
390/cancers15174228.

Tsai, Timothy, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa, and
Stephen W. Keckler. 2021. “NVBitFI: Dynamic Fault Injection for GPUs.”
In 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 284–91. IEEE; IEEE. https://doi.org/10.1109/dsn489
87.2021.00041.

Tschand, Arya, Arun Tejusve Raghunath Rajan, Sachin Idgunji, Anirban Ghosh,
Jeremy Holleman, Csaba Kiraly, Pawan Ambalkar, et al. 2024. “MLPerf
Power: Benchmarking the Energy EfÏciency of Machine Learning Sys-
tems from Microwatts to Megawatts for Sustainable AI.” arXiv Preprint
arXiv:2410.12032, October. http://arxiv.org/abs/2410.12032v2.

Uchida, Yusuke, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. 2017.
“Embedding Watermarks into Deep Neural Networks.” In Proceedings of the
2017 ACM on International Conference on Multimedia Retrieval, 269–77. ACM;
ACM. https://doi.org/10.1145/3078971.3078974.

Umuroglu, Yaman, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. 2017. “FINN: A Framework
for Fast, Scalable Binarized Neural Network Inference.” In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
65–74. ACM. https://doi.org/10.1145/3020078.3021744.

Un, and World Economic Forum. 2019. ANewCircular Vision for Electronics, Time
for a Global Reboot. PACE - Platform for Accelerating the Circular Economy.
https://www3.weforum.org/docs/WEF/_A/_New/_Circular/_Vision/
_for/_Electronics.pdf.

V. Forti, R. Kuehr, C. P. Baldé. 2020. The Global e-Waste Monitor 2020: Quantities,
Flows, and Circular Economy Potential. United Nations University, Interna-

https://doi.org/10.48550/ARXIV.2211.13895
https://doi.org/10.3390/su141912477
https://doi.org/10.1145/3319535.3354222
https://doi.org/10.1145/3319535.3354222
https://doi.org/10.3390/cancers15174228
https://doi.org/10.3390/cancers15174228
https://doi.org/10.1109/dsn48987.2021.00041
https://doi.org/10.1109/dsn48987.2021.00041
http://arxiv.org/abs/2410.12032v2
https://doi.org/10.1145/3078971.3078974
https://doi.org/10.1145/3020078.3021744
https://www3.weforum.org/docs/WEF/_A/_New/_Circular/_Vision/_for/_Electronics.pdf
https://www3.weforum.org/docs/WEF/_A/_New/_Circular/_Vision/_for/_Electronics.pdf

References 1671

tional Telecommunication Union,; International Solid Waste Association.
https://ewastemonitor.info.

Vangal, Sriram, Somnath Paul, Steven Hsu, Amit Agarwal, Saurabh Kumar,
Ram Krishnamurthy, Harish Krishnamurthy, James Tschanz, Vivek De,
and Chris H. Kim. 2021. “Wide-Range Many-Core SoC Design in Scaled
CMOS: Challenges and Opportunities.” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 29 (5): 843–56. https://doi.org/10.1109/tvlsi.20
21.3061649.

Vanschoren, Joaquin. 2018. “Meta-Learning: A Survey.” ArXiv Preprint arXiv:1810.03548,
October. http://arxiv.org/abs/1810.03548v1.

Velazco, Raoul, Gilles Foucard, and Paul Peronnard. 2010. “Combining Results
of Accelerated Radiation Tests and Fault Injections to Predict the Error Rate
of an Application Implemented in SRAM-Based FPGAs.” IEEE Transactions
on Nuclear Science 57 (6): 3500–3505. https://doi.org/10.1109/tns.2010.208
7355.

Verma, Team Dual_Boot: Swapnil. 2022. “Elephant AI.” Hackster.io. https:
//www.hackster.io/dual//_boot/elephant-ai-ba71e9.

Vinuesa, Ricardo, Hossein Azizpour, Iolanda Leite, Madeline Balaam, Vir-
ginia Dignum, Sami Domisch, Anna Felländer, Simone Daniela Langhans,
Max Tegmark, and Francesco Fuso Nerini. 2020. “The Role of Artificial
Intelligence in Achieving the Sustainable Development Goals.” Nature Com-
munications 11 (1): 233. https://doi.org/10.1038/s41467-019-14108-y.

Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017. “Counterfactual
Explanations Without Opening the Black Box: Automated Decisions and
the GDPR.” SSRN Electronic Journal 31: 841. https://doi.org/10.2139/ssrn
.3063289.

Wald, Peter H., and Jeffrey R. Jones. 1987. “Semiconductor Manufacturing:
An Introduction to Processes and Hazards.” American Journal of Industrial
Medicine 11 (2): 203–21. https://doi.org/10.1002/ajim.4700110209.

Wan, Zishen, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia, Vijay Janapa Reddi,
and Arijit Raychowdhury. 2021. “Analyzing and Improving Fault Tolerance
of Learning-Based Navigation Systems.” In 2021 58th ACM/IEEE Design
Automation Conference (DAC), 841–46. IEEE; IEEE. https://doi.org/10.1109/
dac18074.2021.9586116.

Wan, Zishen, Yiming Gan, Bo Yu, S Liu, A Raychowdhury, and Y Zhu. 2023.
“Vpp: The Vulnerability-Proportional Protection Paradigm Towards Reliable
Autonomous Machines.” In Proceedings of the 5th International Workshop on
Domain Specific System Architecture (DOSSA), 1–6.

Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. “SuperGLUE:
A Stickier Benchmark for General-Purpose Language Understanding Sys-
tems.” arXiv Preprint arXiv:1905.00537, May. http://arxiv.org/abs/1905.0
0537v3.

Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. 2018. “GLUE: A Multi-Task Benchmark and Analysis
Platform for Natural Language Understanding.” arXiv Preprint arXiv:1804.07461,
April. http://arxiv.org/abs/1804.07461v3.

https://ewastemonitor.info
https://doi.org/10.1109/tvlsi.2021.3061649
https://doi.org/10.1109/tvlsi.2021.3061649
http://arxiv.org/abs/1810.03548v1
https://doi.org/10.1109/tns.2010.2087355
https://doi.org/10.1109/tns.2010.2087355
https://www.hackster.io/dual//_boot/elephant-ai-ba71e9
https://www.hackster.io/dual//_boot/elephant-ai-ba71e9
https://doi.org/10.1038/s41467-019-14108-y
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.1002/ajim.4700110209
https://doi.org/10.1109/dac18074.2021.9586116
https://doi.org/10.1109/dac18074.2021.9586116
http://arxiv.org/abs/1905.00537v3
http://arxiv.org/abs/1905.00537v3
http://arxiv.org/abs/1804.07461v3

References 1672

Wang, Tianlu, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez.
2019. “Balanced Datasets Are Not Enough: Estimating and Mitigating
Gender Bias in Deep Image Representations.” In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), 5309–18. IEEE. https://doi.org/10.1
109/iccv.2019.00541.

Wang, Xin, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. 2018.
“SkipNet: Learning Dynamic Routing in Convolutional Networks.” In
Computer Vision – ECCV 2018, 420–36. Springer; Springer International
Publishing. https://doi.org/10.1007/978-3-030-01261-8/_25.

Wang, Yaqing, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2020. “Gen-
eralizing from a Few Examples: A Survey on Few-Shot Learning.” ACM
Computing Surveys 53 (3): 1–34. https://doi.org/10.1145/3386252.

Wang, Y., and P. Kanwar. 2019. “BFloat16: The Secret to High Performance on
Cloud TPUs.” Google Cloud Blog.

Wang, Yu Emma, Gu-Yeon Wei, and David Brooks. 2019. “Benchmarking TPU,
GPU, and CPU Platforms for Deep Learning.” arXiv Preprint arXiv:1907.10701,
July. http://arxiv.org/abs/1907.10701v4.

Warden, Pete. 2018. “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition.” arXiv Preprint arXiv:1804.03209, April. http://arxiv.
org/abs/1804.03209v1.

Weicker, Reinhold P. 1984. “Dhrystone: A Synthetic Systems Programming
Benchmark.” Communications of the ACM 27 (10): 1013–30. https://doi.org/
10.1145/358274.358283.

Werchniak, Andrew, Roberto Barra Chicote, Yuriy Mishchenko, Jasha Droppo,
Jeff Condal, Peng Liu, and Anish Shah. 2021. “Exploring the Application of
Synthetic Audio in Training Keyword Spotters.” In ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
7993–96. IEEE; IEEE. https://doi.org/10.1109/icassp39728.2021.9413448.

Wiener, Norbert. 1960. “Some Moral and Technical Consequences of Au-
tomation: As Machines Learn They May Develop Unforeseen Strategies
at Rates That BafÒe Their Programmers.” Science 131 (3410): 1355–58.
https://doi.org/10.1126/science.131.3410.1355.

Wilkening, Mark, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva Gurumurthi,
and David R. Kaeli. 2014. “Calculating Architectural Vulnerability Factors
for Spatial Multi-Bit Transient Faults.” In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 293–305. IEEE; IEEE. https:
//doi.org/10.1109/micro.2014.15.

Witten, Ian H., and Eibe Frank. 2002. “Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations.” ACM SIGMOD Record
31 (1): 76–77. https://doi.org/10.1145/507338.507355.

Wolpert, D. H., and W. G. Macready. 1997. “No Free Lunch Theorems for
Optimization.” IEEE Transactions on Evolutionary Computation 1 (1): 67–82.
https://doi.org/10.1109/4235.585893.

Wu, Bichen, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei
Sun, Yiming Wu, Yuandong Tian, Peter Vajda, and Yangqing Jia. 2019. “FB-
Net: Hardware-Aware EfÏcient ConvNet Design via Differentiable Neural
Architecture Search.” In 2019 IEEE/CVF Conference on Computer Vision and

https://doi.org/10.1109/iccv.2019.00541
https://doi.org/10.1109/iccv.2019.00541
https://doi.org/10.1007/978-3-030-01261-8/_25
https://doi.org/10.1145/3386252
http://arxiv.org/abs/1907.10701v4
http://arxiv.org/abs/1804.03209v1
http://arxiv.org/abs/1804.03209v1
https://doi.org/10.1145/358274.358283
https://doi.org/10.1145/358274.358283
https://doi.org/10.1109/icassp39728.2021.9413448
https://doi.org/10.1126/science.131.3410.1355
https://doi.org/10.1109/micro.2014.15
https://doi.org/10.1109/micro.2014.15
https://doi.org/10.1145/507338.507355
https://doi.org/10.1109/4235.585893

References 1673

Pattern Recognition (CVPR), 10726–34. IEEE. https://doi.org/10.1109/cvpr
.2019.01099.

Wu, Carole-Jean, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury,
Marat Dukhan, Kim Hazelwood, et al. 2019. “Machine Learning at Facebook:
Understanding Inference at the Edge.” In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 331–44. IEEE; IEEE. https:
//doi.org/10.1109/hpca.2019.00048.

Wu, Carole-Jean, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani,
Kiwan Maeng, Gloria Chang, et al. 2022. “Sustainable Ai: Environmen-
tal Implications, Challenges and Opportunities.” Proceedings of Machine
Learning and Systems 4: 795–813.

Wu, Hao, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevi-
cius. 2020. “Integer Quantization for Deep Learning Inference: Principles
and Empirical Evaluation.” arXiv Preprint arXiv:2004.09602 abs/2004.09602
(April). http://arxiv.org/abs/2004.09602v1.

Wu, Jian, Hao Cheng, and Yifan Zhang. 2019. “Fast Neural Networks: EfÏcient
and Adaptive Computation for Inference.” In Advances in Neural Information
Processing Systems.

Wu, Jiaxiang, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
“Quantized Convolutional Neural Networks for Mobile Devices.” In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4820–28.
IEEE. https://doi.org/10.1109/cvpr.2016.521.

Xin, Ji, Raphael Tang, Yaoliang Yu, and Jimmy Lin. 2021. “BERxiT: Early Ex-
iting for BERT with Better Fine-Tuning and Extension to Regression.” In
Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, edited by Paola Merlo, Jorg Tiede-
mann, and Reut Tsarfaty, 91–104. Online: Association for Computational
Linguistics. https://doi.org/10.18653/v1/2021.eacl-main.8.

Xingyu, Huang et al. 2019. “Addressing the Memory Bottleneck in AI Accelera-
tors.” IEEE Micro.

Xu, Ruijie, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. 2024. “Benchmarking
Benchmark Leakage in Large Language Models.” arXiv Preprint arXiv:2404.18824,
April. http://arxiv.org/abs/2404.18824v1.

Xu, Xiaolong, Fan Li, Wei Zhang, Liang He, and Ruidong Li. 2021. “Edge
Intelligence: Architectures, Challenges, and Applications.” IEEE Internet of
Things Journal 8 (6): 4229–49.

Yang, Le, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. 2020.
“Resolution Adaptive Networks for EfÏcient Inference.” In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2366–75. IEEE.
https://doi.org/10.1109/cvpr42600.2020.00244.

Yao, Zhewei, Amir Gholami, Sheng Shen, Kurt Keutzer, and Michael W. Ma-
honey. 2021. “HAWQ-V3: Dyadic Neural Network Quantization.” In
Proceedings of the 38th International Conference on Machine Learning (ICML),
11875–86. PMLR.

Yeh, Y. C. n.d. “Triple-Triple Redundant 777 Primary Flight Computer.” In 1996
IEEE Aerospace Applications Conference. Proceedings, 1:293–307. IEEE; IEEE.
https://doi.org/10.1109/aero.1996.495891.

https://doi.org/10.1109/cvpr.2019.01099
https://doi.org/10.1109/cvpr.2019.01099
https://doi.org/10.1109/hpca.2019.00048
https://doi.org/10.1109/hpca.2019.00048
http://arxiv.org/abs/2004.09602v1
https://doi.org/10.1109/cvpr.2016.521
https://doi.org/10.18653/v1/2021.eacl-main.8
http://arxiv.org/abs/2404.18824v1
https://doi.org/10.1109/cvpr42600.2020.00244
https://doi.org/10.1109/aero.1996.495891

References 1674

Yosinski, Jason, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. “How
Transferable Are Features in Deep Neural Networks?” Advances in Neural
Information Processing Systems 27.

You, Jie, Jae-Won Chung, and Mosharaf Chowdhury. 2023. “Zeus: Understand-
ing and Optimizing GPU Energy Consumption of DNN Training.” In 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
23), 119–39. Boston, MA: USENIX Association. https://www.usenix.org/c
onference/nsdi23/presentation/you.

Yu, Jun, Peng Li, and Zhenhua Wang. 2023. “EfÏcient Early Exiting Strategies
for Neural Network Acceleration.” IEEE Transactions on Neural Networks and
Learning Systems.

Zafrir, Ofir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. “Q8BERT:
Quantized 8Bit BERT.” In 2019 Fifth Workshop on Energy EfÏcient Machine
Learning and Cognitive Computing - NeurIPS Edition (EMC2-NIPS), 36–39.
IEEE; IEEE. https://doi.org/10.1109/emc2-nips53020.2019.00016.

Zaharia, Matei, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,
Andy Konwinski, Corey Murching, et al. 2018. “Accelerating the Machine
Learning Lifecycle with MLflow.” Databricks.

Zeghidour, Neil, Olivier Teboul, Félix de Chaumont Quitry, and Marco Tagliasac-
chi. 2021. “LEAF: A Learnable Frontend for Audio Classification.” arXiv
Preprint arXiv:2101.08596, January. http://arxiv.org/abs/2101.08596v1.

Zhan, Ruiting, Zachary Oldenburg, and Lei Pan. 2018. “Recovery of Active
Cathode Materials from Lithium-Ion Batteries Using Froth Flotation.” Sus-
tainable Materials and Technologies 17 (September): e00062. https://doi.org/
10.1016/j.susmat.2018.e00062.

Zhang, Chengliang, Minchen Yu, Wei Wang 0030, and Feng Yan 0001. 2019.
“MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving.” In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 1049–62. https://www.usenix.org/conference/atc19/
presentation/zhang-chengliang.

Zhang, Jeff Jun, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018. “Analyzing
and Mitigating the Impact of Permanent Faults on a Systolic Array Based
Neural Network Accelerator.” In 2018 IEEE 36th VLSI Test Symposium (VTS),
1–6. IEEE; IEEE. https://doi.org/10.1109/vts.2018.8368656.

Zhang, Jeff, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg. 2018.
“ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error
Resilience for Energy EfÏcient Deep Learning Accelerators.” In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), 1–6. IEEE. https:
//doi.org/10.1109/dac.2018.8465918.

Zhang, Qingxue, Dian Zhou, and Xuan Zeng. 2017. “Highly Wearable Cuff-Less
Blood Pressure and Heart Rate Monitoring with Single-Arm Electrocardio-
gram and Photoplethysmogram Signals.” BioMedical Engineering OnLine 16
(1): 23. https://doi.org/10.1186/s12938-017-0317-z.

Zhang, Xitong, Jialin Song, and Dacheng Tao. 2020. “EfÏcient Task-Specific
Adaptation for Deep Models.” In International Conference on Learning Repre-
sentations (ICLR).

Zhang, Yi, Jianlei Yang, Linghao Song, Yiyu Shi, Yu Wang, and Yuan Xie. 2021.
“Learning-Based EfÏcient Sparsity and Quantization for Neural Network

https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
https://doi.org/10.1109/emc2-nips53020.2019.00016
http://arxiv.org/abs/2101.08596v1
https://doi.org/10.1016/j.susmat.2018.e00062
https://doi.org/10.1016/j.susmat.2018.e00062
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://www.usenix.org/conference/atc19/presentation/zhang-chengliang
https://doi.org/10.1109/vts.2018.8368656
https://doi.org/10.1109/dac.2018.8465918
https://doi.org/10.1109/dac.2018.8465918
https://doi.org/10.1186/s12938-017-0317-z

References 1675

Compression.” IEEE Transactions on Neural Networks and Learning Systems 32
(9): 3980–94.

Zhang, Y., J. Li, and H. Ouyang. 2020. “Optimizing Memory Access for Deep
Learning Workloads.” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 39 (11): 2345–58.

Zhao, Jiawei, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandku-
mar, and Yuandong Tian. 2024. “GaLore: Memory-EfÏcient LLM Training
by Gradient Low-Rank Projection,” March. http://arxiv.org/abs/2403.035
07v2.

Zhao, Mark, and G. Edward Suh. 2018. “FPGA-Based Remote Power Side-
Channel Attacks.” In 2018 IEEE Symposium on Security and Privacy (SP),
229–44. IEEE; IEEE. https://doi.org/10.1109/sp.2018.00049.

Zhao, Yue, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. 2018. “Federated Learning with Non-IID Data.” CoRR abs/1806.00582
(June). http://arxiv.org/abs/1806.00582v2.

Zheng, Lianmin, Ziheng Jia, Yida Gao, Jiacheng Lin, Song Han, Xuehai Geng,
Eric Zhao, and Tianqi Wu. 2020. “Ansor: Generating High-Performance
Tensor Programs for Deep Learning.” USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 863–79.

Zhou, Aojun, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan,
Wenxiu Sun, and Hongsheng Li. 2021. “Learning n:m Fine-Grained Struc-
tured Sparse Neural Networks from Scratch,” February. http://arxiv.org/
abs/2102.04010v2.

Zhu, Chenzhuo, Song Han, Huizi Mao, and William J. Dally. 2017. “Trained
Ternary Quantization.” International Conference on Learning Representations
(ICLR).

Zoph, Barret, and Quoc V Le. 2017a. “Neural Architecture Search with Rein-
forcement Learning.” In International Conference on Learning Representations
(ICLR).

Zoph, Barret, and Quoc V. Le. 2017b. “Neural Architecture Search with Rein-
forcement Learning.” In International Conference on Learning Representations.

http://arxiv.org/abs/2403.03507v2
http://arxiv.org/abs/2403.03507v2
https://doi.org/10.1109/sp.2018.00049
http://arxiv.org/abs/1806.00582v2
http://arxiv.org/abs/2102.04010v2
http://arxiv.org/abs/2102.04010v2

	Preface
	Global Outreach
	Why We Wrote This Book
	Want to Help Out?
	What's Next?

	FRONTMATTER
	Author's Note
	About the Book
	Overview
	Purpose of the Book
	Context and Development
	What to Expect

	Learning Goals
	Key Learning Outcomes
	Learning Objectives
	AI Learning Companion

	How to Use This Book
	Book Structure
	Suggested Reading Paths
	Modular Design

	Transparency and Collaboration
	Copyright and Licensing
	Join the Community

	Book Changelog
	Acknowledgements
	Funding Agencies and Companies
	Academic Support
	Non-Profit and Institutional Support
	Corporate Support

	Contributors

	SocratiQ AI
	AI Learning Companion
	Quick Start Guide
	Button Overview
	Personalize Your Learning
	Learning with SocratiQ
	Quizzes
	Example Learning Flow
	Getting Help with Concepts

	Tracking Your Progress
	Performance Dashboard
	 Achievement Badges

	Data Storage
	Technical Requirements
	Common Issues and Troubleshooting
	Providing Feedback

	MAIN
	Introduction
	AI Pervasiveness
	AI and ML Basics
	AI Evolution
	Symbolic AI Era
	Expert Systems Era
	Statistical Learning Era
	Shallow Learning Era
	Deep Learning Era

	ML Systems Engineering
	Defining ML Systems
	Lifecycle of ML Systems
	ML Systems in the Wild
	ML Systems Impact on Lifecycle
	Emerging Trends
	Application-Level Innovation
	System Architecture Evolution

	Practical Applications
	FarmBeats: ML in Agriculture
	Data Considerations
	Algorithmic Considerations
	Infrastructure Considerations
	Future Implications

	AlphaFold: Scientific ML
	Data Considerations
	Algorithmic Considerations
	Infrastructure Considerations
	Future Implications

	Autonomous Vehicles and ML
	Data Considerations
	Algorithmic Considerations
	Infrastructure Considerations
	Future Implications

	Challenges in ML Systems
	Data-Related Challenges
	Model-Related Challenges
	System-Related Challenges
	Ethical Considerations

	Looking Ahead
	Book Structure and Learning Path

	ML Systems
	Purpose
	Overview
	Cloud-Based Machine Learning
	Characteristics
	Benefits
	Challenges
	Use Cases

	Edge Machine Learning
	Characteristics
	Benefits
	Challenges
	Use Cases

	Mobile Machine Learning
	Characteristics
	Benefits
	Challenges
	Use Cases

	Tiny Machine Learning
	Characteristics
	Benefits
	Challenges
	Use Cases

	Hybrid Machine Learning
	Design Patterns
	Train-Serve Split
	Hierarchical Processing
	Progressive Deployment
	Federated Learning
	Collaborative Learning

	Real-World Integration

	Shared Principles
	Implementation Layer
	System Principles Layer
	System Considerations Layer
	Principles to Practice

	System Comparison
	Deployment Decision Framework
	Conclusion
	Resources

	DL Primer
	Purpose
	Overview
	The Evolution to Deep Learning
	Rule-Based Programming
	Classical Machine Learning
	Neural Networks and Representation Learning
	Neural System Implications
	Computation Patterns
	Memory Systems
	System Scaling

	Biological to Artificial Neurons
	Biological Intelligence
	Transition to Artificial Neurons
	Artificial Intelligence
	Computational Translation
	System Requirements
	Evolution and Impact

	Neural Network Fundamentals
	Basic Architecture
	Neurons and Activations
	Layers and Connections
	Data Flow and Transformations

	Weights and Biases
	Weight Matrices
	Connection Patterns
	Bias Terms
	Parameter Organization

	Network Topology
	Basic Structure
	Design Trade-offs
	Connection Patterns
	Parameter Considerations

	Learning Process
	Training Overview
	Forward Propagation
	Layer Computation
	Mathematical Representation
	Computational Process
	Practical Considerations

	Loss Functions
	Basic Concepts
	Classification Losses
	Loss Computation
	Training Implications

	Backward Propagation
	Gradient Flow
	Gradient Computation
	Implementation Aspects

	Optimization Process
	Gradient Descent Basics
	Batch Processing
	Training Loop
	Practical Considerations

	Prediction Phase
	Inference Basics
	Training vs Inference
	Basic Pipeline

	Pre-processing
	Inference
	Network Initialization
	Forward Pass Computation
	Resource Requirements
	Optimization Opportunities

	Post-processing

	Case Study: USPS Postal Service
	Real-world Problem
	System Development
	Complete Pipeline
	Results and Impact
	Key Takeaways

	Conclusion
	Resources

	DNN Architectures
	Purpose
	Overview
	Multi-Layer Perceptrons: Dense Pattern Processing
	Pattern Processing Needs
	Algorithmic Structure
	Computational Mapping
	System Implications
	Memory Requirements
	Computation Needs
	Data Movement

	Convolutional Neural Networks: Spatial Pattern Processing
	Pattern Processing Needs
	Algorithmic Structure
	Computational Mapping
	System Implications
	Memory Requirements
	Computation Needs
	Data Movement

	Recurrent Neural Networks: Sequential Pattern Processing
	Pattern Processing Needs
	Algorithmic Structure
	Computational Mapping
	System Implications
	Memory Requirements
	Computation Needs
	Data Movement

	Attention Mechanisms: Dynamic Pattern Processing
	Pattern Processing Needs
	Basic Attention Mechanism
	Algorithmic Structure
	Computational Mapping
	System Implications

	Transformers and Self-Attention
	Algorithmic Structure
	Computational Mapping
	System Implications

	Architectural Building Blocks
	From Perceptron to Multi-Layer Networks
	From Dense to Spatial Processing
	The Evolution of Sequence Processing
	Modern Architectures: Synthesis and Innovation

	System-Level Building Blocks
	Core Computational Primitives
	Memory Access Primitives
	Data Movement Primitives
	System Design Impact

	Conclusion
	Resources

	AI Workflow
	Purpose
	Overview
	Definition
	Traditional vs. AI Lifecycles

	Lifecycle Stages
	Problem Definition
	Requirements and System Impact
	Definition Workflow
	Scale and Distribution
	Systems Thinking
	Lifecycle Implications

	Data Collection
	Data Requirements and Impact
	Data Infrastructure
	Scale and Distribution
	Data Validation
	Systems Thinking
	Lifecycle Implications

	Model Development
	Model Requirements and Impact
	Development Workflow
	Scale and Distribution
	Systems Thinking
	Lifecycle Implications

	Deployment
	Deployment Requirements and Impact
	Deployment Workflow
	Scale and Distribution
	Robustness and Reliability
	Systems Thinking
	Lifecycle Implications

	Maintenance
	Monitoring Requirements and Impact
	Maintenance Workflow
	Scale and Distribution
	Proactive Maintenance
	Systems Thinking
	Lifecycle Implications

	AI Lifecycle Roles
	Collaboration in AI
	Role Interplay

	Conclusion
	Resources

	Data Engineering
	Purpose
	Overview
	Problem Definition
	Keyword Spotting Example

	Pipeline Basics
	Data Sources
	Existing Datasets
	Web Scraping
	Crowdsourcing
	Anonymization Techniques
	Synthetic Data Creation
	Continuing the KWS Example

	Data Ingestion
	Ingestion Patterns
	ETL and ELT Comparison
	Data Source Integration
	Validation Techniques
	Error Management
	Continuing the KWS Example

	Data Processing
	Cleaning Techniques
	Data Quality Assessment
	Transformation Techniques
	Feature Engineering
	Processing Pipeline Design
	Scalability Considerations
	Continuing the KWS Example

	Data Labeling
	Types of Labels
	Annotation Techniques
	Label Quality Assessment
	AI in Annotation
	Labeling Challenges
	Continuing the KWS Example

	Data Storage
	Storage System Types
	Storage Considerations
	Performance Factors
	Storage in ML Lifecycle
	Development Phase
	Training Phase
	Deployment Phase
	Maintenance Phase

	Feature Storage
	Caching Techniques
	Data Access Patterns
	Continuing the KWS Example

	Data Governance
	Conclusion
	Resources

	AI Frameworks
	Purpose
	Overview
	Evolution History
	Evolution Timeline
	Early Numerical Libraries
	First-Generation Frameworks
	Emergence of Deep Learning Frameworks
	Hardware Impact on Design

	Fundamental Concepts
	Computational Graphs
	Basic Concepts
	Static Graphs
	Dynamic Graphs
	System Consequences

	Automatic Differentiation
	Computational Methods
	Integration with Frameworks
	Memory Consequences
	System Considerations
	Summary

	Data Structures
	Tensors
	Specialized Structures

	Programming Models
	Symbolic Programming
	Imperative Programming
	System Implementation Considerations

	Execution Models
	Eager Execution
	Graph Execution
	Just-In-Time Compilation
	Distributed Execution

	Core Operations
	Hardware Abstraction Operations
	Basic Numerical Operations
	System-Level Operations

	Framework Components
	APIs and Abstractions
	Core Libraries
	Extensions and Plugins
	Development Tools

	System Integration
	Hardware Integration
	Software Stack
	Deployment Considerations
	Workflow Orchestration

	Major Frameworks
	TensorFlow Ecosystem
	PyTorch
	JAX
	Framework Comparison

	Framework Specialization
	Cloud-Based Frameworks
	Edge-Based Frameworks
	Mobile-Based Frameworks
	TinyML Frameworks

	Framework Selection
	Model Requirements
	Software Dependencies
	Hardware Constraints
	Additional Selection Factors
	Performance Optimization
	Deployment Scalability

	Conclusion
	Resources

	AI Training
	Purpose
	Overview
	Training Systems
	System Evolution
	System Role
	Systems Thinking

	Mathematical Foundations
	Neural Network Computation
	Core Operations
	Matrix Operations
	Activation Functions

	Optimization Algorithms
	Classical Methods
	Advanced Optimization Algorithms
	System Implications

	Backpropagation Mechanics
	Basic Mechanics
	Backpropagation Mechanics
	Memory Requirements
	Memory-Computation Trade-offs

	System Implications

	Pipeline Architecture
	Architectural Overview
	Data Pipeline
	Training Loop
	Evaluation Pipeline
	Component Integration

	Data Pipeline
	Core Components
	Preprocessing
	System Implications
	Data Flows
	Practical Architectures

	Forward Pass
	Compute Operations
	Memory Management

	Backward Pass
	Compute Operations
	Memory Operations
	Real-World Considerations

	Parameter Updates and Optimizers
	Memory Requirements
	Computational Load
	Batch Size and Parameter Updates

	Pipeline Optimizations
	Prefetching and Overlapping
	Mechanics
	Benefits
	Use Cases
	Challenges and Trade-offs

	Mixed-Precision Training
	FP16 Computation
	FP32 Accumulation
	Loss Scaling
	Benefits
	Use Cases
	Challenges and Trade-offs

	Gradient Accumulation and Checkpointing
	Mechanics
	Benefits
	Use Cases
	Challenges and Trade-offs

	Comparison

	Distributed Systems
	Data Parallelism
	Mechanics
	Benefits
	Challenges

	Model Parallelism
	Mechanics
	Benefits
	Challenges

	Hybrid Parallelism
	Mechanics
	Benefits
	Challenges

	Comparison

	Optimization Techniques
	Identifying Bottlenecks
	System-Level Optimizations
	Software-Level Optimizations
	Scaling Techniques

	Specialized Hardware Training
	GPUs
	TPUs
	FPGAs
	ASICs

	Conclusion
	Resources

	Efficient AI
	Purpose
	Overview
	AI Scaling Laws
	Fundamental Principles
	Empirical Scaling Laws
	Scaling Regimes
	System Design
	Scaling vs. Efficiency
	Scaling Breakdown
	Toward Efficient Scaling

	The Pillars of AI Efficiency
	Algorithmic Efficiency
	Early Efficiency
	Deep Learning Era
	Modern Efficiency
	Efficiency in Design

	Compute Efficiency
	General-Purpose Computing Era
	Accelerated Computing Era
	Sustainable Computing Era
	Compute Efficiency's Role

	Data Efficiency
	Data Scarcity Era
	Big Data Era
	Modern Data Efficiency Era
	Data Efficiency's Role

	System Efficiency
	Defining System Efficiency
	Efficiency Interdependencies
	Algorithmic Efficiency Aids Compute and Data
	Compute Efficiency Supports Model and Data
	Data Efficiency Strengthens Model and Compute
	Efficiency Trade-offs
	Progression and Takeaways

	Scalability and Sustainability
	Efficiency-Scalability Relationship
	Scalability-Sustainability Relationship
	Sustainability-Efficiency Relationship

	Efficiency Trade-offs and Challenges
	Trade-offs Source
	Efficiency and Compute Requirements
	Efficiency and Real-Time Needs
	Efficiency and Model Generalization
	Summary

	Common Trade-offs
	Complexity vs. Resources
	Energy vs. Performance
	Data Size vs. Generalization
	Summary

	Managing Trade-offs
	Contextual Prioritization
	Test-Time Compute
	Co-Design
	Automation
	Summary

	Efficiency-First Mindset
	End-to-End Perspective
	Scenarios
	Prototypes vs. Production
	Cloud Apps vs. Constrained Systems
	Frequent Retraining vs. Stability

	Summary

	Broader Challenges
	Optimization Limits
	Moore's Law Case Study
	ML Optimization Parallels

	Equity Concerns
	Uneven Access
	Low-Resource Challenges
	Efficiency for Accessibility
	Democratization Pathways

	Balancing Innovation and Efficiency
	Stability vs. Experimentation
	Resource-Intensive Innovation
	Efficiency-Creativity Constraint
	Striking a Balance

	Conclusion
	Resources

	Model Optimizations
	Purpose
	Overview
	Real-World Models
	Practical Models
	Accuracy-Efficiency Balance
	Optimization System Constraints

	Model Optimization Dimensions
	Model Representation
	Numerical Precision
	Architectural Efficiency
	Tripartite Framework

	Model Representation Optimization
	Pruning
	Distillation Mathematics
	Target Structures
	Unstructured Pruning
	Structured Pruning
	Dynamic Pruning
	Pruning Trade-offs
	Pruning Strategies
	Lottery Ticket Hypothesis
	Pruning Practice

	Knowledge Distillation
	Distillation Theory
	Distillation Mathematics
	Distillation Intuition
	Efficiency Gains
	Trade-offs

	Structured Approximations
	Low-Rank Factorization
	Tensor Decomposition

	Neural Architecture Search
	Model Efficiency Encoding
	Search Space Definition
	Search Space Exploration
	Candidate Architecture Evaluation
	NAS-Discovered Architecture Examples

	Numerical Precision Optimization
	Efficiency Numerical Precision
	Numerical Precision Energy Costs
	Quantization Performance Gains
	Numerical Precision Reduction Trade-offs

	Numeric Encoding and Storage
	Numerical Precision Format Comparison
	Precision Reduction Trade-offs
	Precision Reduction Strategies
	Post-Training Quantization
	Quantization-Aware Training
	PTQ and QAT Strategies
	PTQ vs. QAT

	Extreme Precision Reduction
	Binarization
	Ternarization
	Computation Challenges and Limitations

	Quantization vs. Model Representation

	Architectural Efficiency Optimization
	Hardware-Aware Design
	Efficient Design Principles
	Scaling Optimization
	Computation Reduction
	Memory Optimization

	Dynamic Computation and Adaptation
	Dynamic Schemes
	Computation Challenges and Limitations

	Sparsity Exploitation
	Sparsity Types
	Sparsity Exploitation Techniques
	Sparsity Hardware Support
	Common Structured Sparsity Patterns
	Sparsity Challenges and Limitations
	Sparsity and Other Optimizations

	AutoML and Model Optimization
	AutoML Optimizations
	Optimization Strategies
	AutoML Challenges and Considerations

	Software and Framework Support
	Optimization APIs
	Hardware Optimization Libraries
	Optimization Visualization
	Quantization Visualization
	Sparsity Visualization

	Conclusion
	Resources

	AI Acceleration
	Purpose
	Overview
	Hardware Evolution
	Specialized Computing
	Specialized Computing Expansion
	Domain-Specific Architectures
	ML in Computational Domains
	Application-Specific Accelerators

	AI Compute Primitives
	Vector Operations
	Framework-Hardware Execution
	Sequential Scalar Execution
	Parallel Vector Execution
	Vector Processing History

	Matrix Operations
	Matrix Operations in NNs
	Matrix Computation Types in NNs
	Matrix Operations Hardware Acceleration
	Historical Foundations of Matrix Computation

	Special Function Units
	Non-Linear Functions
	Non-Linear Functions Implementation
	Hardware Acceleration
	SFUs History

	Compute Units and Execution Models
	Primitive-Execution Unit Mapping
	SIMD to SIMT Transition
	Tensor Cores
	Processing Elements
	Systolic Arrays
	Numerics in AI Acceleration
	Architectural Integration

	AI Memory Systems
	AI Memory Wall
	Compute-Memory Imbalance
	Memory-Intensive ML Workloads
	Irregular Memory Access

	Memory Hierarchy
	On-Chip Memory
	Off-Chip Memory

	Host-Accelerator Communication
	Data Transfer Patterns
	Data Transfer Mechanisms
	Data Transfer Overheads

	Model Memory Pressure
	Multilayer Perceptrons
	Convolutional Neural Networks
	Transformer Networks

	ML Accelerators Implications

	Neural Networks Mapping
	Computation Placement
	Computation Placement Definition
	Computation Placement Importance
	Effective Computation Placement

	Memory Allocation
	Memory Allocation Definition
	Memory Allocation Importance
	Effective Memory Allocation

	Combinatorial Complexity
	Configuration Space Mapping
	Computation and Execution Ordering
	Processing Elements Parallelization
	Memory Placement and Data Movement
	Mapping Search Space

	Optimization Strategies
	Mapping Strategies Building Blocks
	Data Movement Patterns
	Memory-Aware Tensor Layouts
	Kernel Fusion
	Tiling for Memory Efficiency

	Mapping Strategies Application
	Convolutional Neural Networks
	Transformer Architectures
	Multi-Layer Perceptrons

	Hybrid Mapping Strategies
	Layer-Specific Mapping

	Hybrid Strategies Hardware Implementations

	Compiler Support
	ML vs Traditional Compilers
	ML Compilation Pipeline
	Graph Optimization
	Computation Graph Optimization
	AI Compilers Implementation
	Graph Optimization Importance

	Kernel Selection
	Kernel Selection in AI Compilers
	Kernel Selection Importance

	Memory Planning
	Memory Planning in AI Compilers
	Memory Planning Importance

	Computation Scheduling
	Computation Scheduling in AI Compilers
	Computation Scheduling Importance
	Code Generation

	Compilation-Runtime Support

	Runtime Support
	ML vs Traditional Runtimes
	Dynamic Kernel Execution
	Runtime Kernel Selection
	Kernel Scheduling and Utilization

	Multi-Chip AI Acceleration
	Chiplet-Based Architectures
	Multi-GPU Systems
	TPU Pods
	Wafer-Scale AI
	AI Systems Scaling Trajectory
	Computation and Memory Scaling Changes
	Multi-chip Execution Mapping
	Distributed Access Memory Allocation
	Data Movement Constraints
	Compilers and Runtimes Adaptation

	Execution Models Adaptation
	Cross-Accelerator Scheduling
	Cross-Accelerator Coordination
	Cross-Accelerator Execution Management
	Computation Placement Adaptation

	Navigating Multi-Chip AI Complexities

	Conclusion
	Resources

	Benchmarking AI
	Purpose
	Overview
	Historical Context
	Performance Benchmarks
	Energy Benchmarks
	Domain-Specific Benchmarks

	AI Benchmarks
	Algorithmic Benchmarks
	System Benchmarks
	Data Benchmarks
	Community Consensus

	Benchmark Components
	Problem Definition
	Standardized Datasets
	Model Selection
	Evaluation Metrics
	Benchmark Harness
	System Specifications
	Run Rules
	Result Interpretation
	Example Benchmark

	Benchmarking Granularity
	Micro Benchmarks
	Macro Benchmarks
	End-to-End Benchmarks
	Trade-offs

	Training Benchmarks
	Motivation
	Importance of Training Benchmarks
	Hardware & Software Optimization
	Scalability & Efficiency
	Cost & Energy Factors
	Fair ML Systems Comparison

	Metrics
	Time and Throughput
	Scalability & Parallelism
	Resource Utilization
	Energy Efficiency & Cost
	Fault Tolerance & Robustness
	Reproducibility & Standardization

	Training Performance Evaluation
	Training Benchmark Pitfalls
	Final Thoughts

	Inference Benchmarks
	Motivation
	Importance of Inference Benchmarks
	Hardware & Software Optimization
	Scalability & Efficiency
	Cost & Energy Factors
	Fair ML Systems Comparison

	Metrics
	Latency & Tail Latency
	Throughput & Batch Processing Efficiency
	Precision & Accuracy Trade-offs
	Memory Footprint & Model Size
	Cold-Start & Model Load Time
	Scalability & Dynamic Workload Handling
	Power Consumption & Energy Efficiency

	Inference Performance Evaluation
	Inference Systems Considerations
	Inference Benchmark Pitfalls
	Final Thoughts

	MLPerf Inference Benchmarks
	MLPerf Inference
	MLPerf Mobile
	MLPerf Client
	MLPerf Tiny
	Continued Expansion

	Energy Efficiency Measurement
	Power Measurement Boundaries
	Performance vs Energy Efficiency
	Standardized Power Measurement
	MLPerf Power Case Study

	Challenges & Limitations
	Environmental Conditions
	Hardware Lottery
	Benchmark Engineering
	Bias & Over-Optimization
	Benchmark Evolution
	MLPerf's Role

	Beyond System Benchmarking
	Model Benchmarking
	Data Benchmarking
	Benchmarking Trifecta

	Conclusion
	Resources

	ML Operations
	Purpose
	Overview
	Historical Context
	DevOps
	MLOps

	MLOps Key Components
	Data Infrastructure and Preparation
	Data Management
	Feature Stores
	Versioning and Lineage

	Continuous Pipelines and Automation
	CI/CD Pipelines
	Training Pipelines
	Model Validation

	Model Deployment and Serving
	Model Deployment
	Inference Serving

	Infrastructure and Observability
	Infrastructure Management
	Monitoring Systems

	Governance and Collaboration
	Model Governance
	Cross-Functional Collaboration

	Hidden Technical Debt
	Boundary Erosion
	Correction Cascades
	Undeclared Consumers
	Data Dependency Debt
	Feedback Loops
	Pipeline Debt
	Configuration Debt
	Early-Stage Debt
	Real-World Examples
	YouTube's Recommendation System and Feedback Loops
	Zillow's ``Zestimate'' and Correction Cascades
	Tesla Autopilot and Undeclared Consumers
	Facebook's News Feed and Configuration Debt

	Managing Hidden Technical Debt
	Summary

	Roles and Responsibilities
	Roles
	Data Engineers
	Data Scientists
	ML Engineers
	DevOps Engineers
	Project Managers
	Responsible AI Lead
	Security and Privacy Engineer

	Intersections and Handoffs
	Evolving Roles and Specializations

	Operational System Design
	Operational Maturity
	Maturity Levels
	System Design Implications
	Patterns and Anti-Patterns
	Contextualizing MLOps
	Looking Ahead

	Case Studies
	Oura Ring Case Study
	Context and Motivation
	Data Acquisition and Preprocessing

	Model Development and Evaluation
	Deployment and Iteration
	Lessons from MLOps Practice
	ClinAIOps Case Study
	Feedback Loops
	Hypertension Case Example
	MLOps vs. ClinAIOps Comparison

	Conclusion
	Resources

	On-Device Learning
	Purpose
	Overview
	Deployment Drivers
	On-Device Learning Benefits
	Application Domains
	Training Paradigms

	Design Constraints
	Model Constraints
	Data Constraints
	Compute Constraints

	Model Adaptation
	Weight Freezing
	Residual and Low-Rank Updates
	Adapter-Based Adaptation
	Low-Rank Techniques
	Edge Personalization
	Tradeoffs

	Sparse Updates
	Sparse Update Design
	Layer Selection
	Code Fragment: Selective Layer Updating (PyTorch)
	TinyTrain Personalization
	Tradeoffs
	Adaptation Strategy Comparison

	Data Efficiency
	Few-Shot and Streaming
	Experience Replay
	Data Compression
	Tradeoffs Summary

	Federated Learning
	Federated Learning Motivation
	Learning Protocols
	Local Training
	Protocols Overview
	Client Scheduling
	Efficient Communication
	Federated Personalization
	Federated Privacy

	Practical System Design
	Challenges
	Heterogeneity
	Data Fragmentation
	Monitoring and Validation
	Resource Management
	Deployment Risks
	Challenges Summary

	Conclusion
	Resources

	Security & Privacy
	Purpose
	Overview
	Definitions and Distinctions
	Security Defined
	Privacy Defined
	Security versus Privacy
	Interactions and Trade-offs

	Historical Incidents
	Stuxnet
	Jeep Cherokee Hack
	Mirai Botnet

	Secure Design Priorities
	Device-Level Security
	System-Level Isolation
	Large-Scale Network Exploitation
	Toward Secure Design

	Threats to ML Models
	Model Theft
	Exact Model Theft
	Approximate Model Theft
	Case Study: Tesla IP Theft

	Data Poisoning
	Adversarial Attacks
	Case Study: Traffic Sign Detection Model Trickery

	Threats to ML Hardware
	Hardware Bugs
	Physical Attacks
	Fault Injection Attacks
	Side-Channel Attacks
	Leaky Interfaces
	Counterfeit Hardware
	Supply Chain Risks
	Case Study: The Supermicro Hardware Security Controversy

	Defensive Strategies
	Data Privacy Techniques
	Differential Privacy
	Federated Learning
	Synthetic Data Generation
	Comparative Properties

	Secure Model Design
	Secure Model Deployment
	System-level Monitoring
	Input Validation
	Output Monitoring
	Integrity Checks
	Response and Rollback

	Hardware-based Security
	Trusted Execution Environments
	Secure Boot
	Hardware Security Modules
	Physical Unclonable Functions
	Mechanisms Comparison

	Toward Trustworthy Systems

	Offensive Capabilities
	Case Study: Deep Learning for SCA

	Conclusion
	Resources

	Responsible AI
	Purpose
	Overview
	Core Principles
	Princples in Practice
	Transparency and Explainability
	Fairness in Machine Learning
	Demographic Parity
	Equalized Odds
	Equality of Opportunity

	Privacy and Data Governance
	Designing for Safety and Robustness
	Accountability and Governance

	Deployment Contexts
	System Explainability
	Fairness Constraints
	Privacy Architectures
	Safety and Robustness
	Governance Structures
	Design Tradeoffs

	Technical Foundations
	Bias Detection and Mitigation
	Privacy Preservation
	Machine Unlearning
	Adversarial Robustness
	Explainability and Interpretability
	Model Performance Monitoring

	Sociotechnical and Ethical Systems Considerations
	System Feedback Loops
	Human-AI Collaboration and Oversight
	Normative Pluralism and Value Conflicts
	Transparency and Contestability
	Institutional Embedding of Responsibility

	Implementation Challenges
	Organizational Structures and Incentives
	Data Constraints and Quality Gaps
	Balancing Competing Objectives
	Scalability and Maintenance
	Standardization and Evaluation Gaps

	AI Safety and Value Alignment
	Autonomous Systems and Trust
	AIs Economic Impact
	AI Literacy and Communication

	Conclusion
	Resources

	Sustainable AI
	Purpose
	Overview
	Ethical Responsibility
	Long-Term Viability
	Ethical Issues
	Case Study: DeepMind's Energy Efficiency

	AI Carbon Footprint
	Emissions & Consumption
	Energy Demands in Data Centers
	AI vs. Other Industries

	Updated Analysis
	Carbon Emission Scopes
	Scope 1
	Scope 2
	Scope 3

	Training vs. Inference Impact
	Training Energy Demands
	Inference Energy Costs
	Edge AI Impact

	Beyond Carbon
	Water Usage
	Hazardous Chemicals
	Resource Depletion
	Waste Generation
	Biodiversity Impact

	Semiconductor Life Cycle
	Design Phase
	Manufacturing Phase
	Fabrication Materials
	Manufacturing Energy Consumption
	Hazardous Waste and Water Usage in Fabs
	Sustainable Initiatives

	Use Phase
	Disposal Phase

	Mitigating Environmental Impact
	Sustainable Development
	Energy-Efficient Design
	Lifecycle-Aware Systems
	Policy and Incentives

	Infrastructure Optimization
	Green Data Centers
	Carbon-Aware Scheduling
	AI-Driven Thermal Optimization

	Addressing Full Environmental Footprint
	Revisiting Life Cycle Impact
	Mitigating Supply Chain Impact
	Reducing Water and Resource Consumption
	Systemic Sustainability Approaches

	Case Study: Google's Framework

	Embedded AI and E-Waste
	E-Waste Crisis
	Disposable Electronics
	Non-Replaceable Batteries Cost
	Recycling Challenges
	Need for Sustainable Design

	AI Hardware Obsolescence
	Lock-In and Proprietary Components
	Environmental Cost
	Extending Hardware Lifespan

	Policy and Regulation
	Measurement and Reporting
	Restriction Mechanisms
	Government Incentives
	Self-Regulation
	Global Impact

	Public Engagement
	AI Awareness
	Messaging and Discourse
	Transparency and Trust
	Engagement and Awareness
	Equitable AI Access

	Future Challenges
	Future Directions
	Challenges
	Towards Sustainable AI

	Conclusion
	Resources

	Robust AI
	Purpose
	Overview
	Real-World Applications
	Cloud
	Edge
	Embedded

	Hardware Faults
	Transient Faults
	Characteristics
	Causes
	Mechanisms
	Impact on ML

	Permanent Faults
	Characteristics
	Causes
	Mechanisms
	Impact on ML

	Intermittent Faults
	Characteristics
	Causes
	Mechanisms
	Impact on ML

	Detection and Mitigation
	Detection Techniques

	Summary

	Model Robustness
	Adversarial Attacks
	Mechanisms
	Impact on ML

	Data Poisoning
	Characteristics
	Mechanisms
	Impact on ML
	Case Study: Art Protection via Poisoning

	Distribution Shifts
	Characteristics
	Mechanisms
	Impact on ML
	Summary of Distribution Shifts and System Implications

	Detection and Mitigation
	Adversarial Attacks
	Data Poisoning
	Distribution Shifts

	Software Faults
	Characteristics
	Mechanisms
	Impact on ML
	Detection and Mitigation

	Tools and Frameworks
	Fault and Error Models
	Hardware-Based Fault Injection
	Methods
	Limitations

	Software-Based Fault Injection
	Advantages and Trade-offs
	Limitations
	Tool Types
	Domain-Specific Examples

	Bridging Hardware-Software Gap
	Fidelity
	Capturing Hardware Behavior

	Conclusion
	Resources

	AI for Good
	Purpose
	Overview
	Global Challenges
	Key AI Applications
	Agriculture
	Healthcare
	Disaster Response
	Environmental Conservation
	AI's Holistic Impact

	Global Development Perspective
	Engineering Challenges
	Resource Paradox
	Data Dilemma
	Scale Challenge
	Sustainability Challenge

	Design Patterns
	Hierarchical Processing
	Google's Flood Forecasting
	Structure
	Modern Adaptations
	System Implications
	Limitations

	Progressive Enhancement
	PlantVillage Nuru
	Structure
	Modern Adaptations
	System Implications
	Limitations

	Distributed Knowledge
	Wildlife Insights
	Structure
	Modern Adaptations
	System Implications
	Limitations

	Adaptive Resource
	Case Studies
	Structure
	Modern Adaptations
	System Implications
	Limitations

	Selection Framework
	Selection Dimensions
	Implementation Guidance
	Comparison Analysis

	Conclusion
	Resources

	Conclusion
	Overview
	ML Dataset Importance
	AI Framework Navigation
	ML Training Basics
	AI System Efficiency
	ML Architecture Optimization
	AI Hardware Advancements
	On-Device Learning
	ML Operation Streamlining
	Security and Privacy
	Ethical Considerations
	Sustainability
	Robustness and Resiliency
	Future of ML Systems
	AI for Good
	Congratulations

	LABS
	Overview
	Learning Objectives
	Target Audience
	Supported Devices
	Lab Structure
	Recommended Lab Sequence
	Troubleshooting and Support
	Credits

	Getting Started
	Hardware Requirements
	Software Requirements
	Network Connectivity
	Conclusion

	Nicla Vision
	Pre-requisites
	Setup
	Exercises
	Setup
	Overview
	Hardware
	Two Parallel Cores
	Memory
	Sensors

	Arduino IDE Installation
	Testing the Microphone
	Testing the IMU
	Testing the ToF (Time of Flight) Sensor
	Testing the Camera

	Installing the OpenMV IDE
	Updating the Bootloader
	Installing the Firmware
	Testing the Camera

	Connecting the Nicla Vision to Edge Impulse Studio
	Expanding the Nicla Vision Board (optional)
	Conclusion
	Resources

	Image Classification
	Overview
	Computer Vision
	Image Classification Project Goal
	Data Collection
	Collecting Dataset with OpenMV IDE

	Training the model with Edge Impulse Studio
	Dataset
	The Impulse Design
	Image Pre-Processing
	Model Design

	Model Training
	Model Testing
	Deploying the model
	Arduino Library
	OpenMV
	Changing the Code to add labels
	Post-Processing with LEDs

	Image Classification (non-official) Benchmark
	Conclusion
	Resources

	Object Detection
	Overview
	Object Detection versus Image Classification
	An innovative solution for Object Detection: FOMO

	The Object Detection Project Goal
	Data Collection
	Collecting Dataset with OpenMV IDE

	Edge Impulse Studio
	Setup the project
	Uploading the unlabeled data
	Labeling the Dataset

	The Impulse Design
	Preprocessing all dataset

	Model Design, Training, and Test
	How FOMO works?
	Test model with ``Live Classification''

	Deploying the Model
	Conclusion
	Resources

	Keyword Spotting (KWS)
	Overview
	How does a voice assistant work?
	The KWS Hands-On Project
	The Machine Learning workflow

	Dataset
	Uploading the dataset to the Edge Impulse Studio
	Capturing additional Audio Data
	Using the NiclaV and the Edge Impulse Studio
	Using a smartphone and the EI Studio

	Creating Impulse (Pre-Process / Model definition)
	Impulse Design
	Pre-Processing (MFCC)
	Going under the hood

	Model Design and Training
	Going under the hood

	Testing
	Live Classification

	Deploy and Inference
	Post-processing
	Conclusion
	Resources

	Motion Classification and Anomaly Detection
	Overview
	IMU Installation and testing
	Defining the Sampling frequency:

	The Case Study: Simulated Container Transportation
	Data Collection
	Connecting the device to Edge Impulse
	Data Collection

	Impulse Design
	Data Pre-Processing Overview
	EI Studio Spectral Features
	Generating features

	Models Training
	Testing
	Deploy
	Inference
	Post-processing

	Conclusion
	Case Applications
	Industrial and Manufacturing
	Healthcare
	Consumer Electronics
	Transportation and Logistics
	Smart Cities and Infrastructure
	Security and Surveillance
	Agriculture
	Environmental Monitoring

	Nicla 3D case

	Resources

	XIAO ESP32S3
	Pre-requisites
	Setup
	Exercises
	Setup
	Overview
	Installing the XIAO ESP32S3 Sense on Arduino IDE
	Testing the board with BLINK
	Connecting Sense module (Expansion Board)
	Microphone Test
	Testing the Camera
	Testing WiFi
	Conclusion
	Resources

	Image Classification
	Overview
	A TinyML Image Classification Project – Fruits versus Veggies
	Training the model with Edge Impulse Studio
	Data Acquisition
	Impulse Design
	Pre-processing (Feature Generation)
	Model Design

	Training
	Deployment

	Testing the Model (Inference)
	Testing with a Bigger Model
	Running inference on the SenseCraft-Web-Toolkit
	Conclusion
	Resources

	Object Detection
	Overview
	Object Detection versus Image Classification
	An Innovative Solution for Object Detection: FOMO

	The Object Detection Project Goal
	Data Collection
	Collecting Dataset with the XIAO ESP32S3

	Edge Impulse Studio
	Setup the project
	Uploading the unlabeled data
	Labeling the Dataset
	Balancing the dataset and split Train/Test

	The Impulse Design
	Preprocessing all dataset

	Model Design, Training, and Test
	How FOMO works?
	Test model with ``Live Classification''

	Deploying the Model (Arduino IDE)
	Background
	Fruits
	Bugs

	Deploying the Model (SenseCraft-Web-Toolkit)
	Conclusion
	Resources

	Keyword Spotting (KWS)
	Overview
	How does a voice assistant work?
	The KWS Project
	The Machine Learning workflow

	Dataset
	Capturing (offline) Audio Data with the XIAO ESP32S3 Sense
	Save recorded sound samples (dataset) as .wav audio files to a microSD card
	Capturing (offline) Audio Data Apps

	Training model with Edge Impulse Studio
	Uploading the Data
	Creating Impulse (Pre-Process / Model definition)
	Pre-Processing (MFCC)
	Model Design and Training

	Testing
	Deploy and Inference
	Postprocessing
	Conclusion
	Resources

	Motion Classification and Anomaly Detection
	Overview
	Installing the IMU
	The TinyML Motion Classification Project
	Connecting the device to Edge Impulse
	Data Collection
	Data Pre-Processing
	Model Design
	Impulse Design
	Generating features
	Training
	Testing
	Deploy
	Inference
	Conclusion
	Resources

	Grove Vision AI V2
	Pre-requisites
	Setup and No-Code Applications
	Exercises
	Setup and No-Code Applications
	Introduction
	Grove Vision AI Module (V2) Overview
	Camera Installation

	The SenseCraft AI Studio
	The SenseCraft Web-Toolkit

	Exploring CV AI models
	Object Detection
	Pose/Keypoint Detection
	Image Classification
	Power Consumption

	Exploring Other Models on SenseCraft AI Studio

	An Image Classification Project
	The Goal
	Data Collection
	Training
	Test
	Deployment
	Saving the Model

	Conclusion
	Resources

	Image Classification
	Introduction
	Project Goal
	Data Collection
	Collecting Data with the SenseCraft AI Studio
	Image Collection

	Uploading the dataset to the Edge Impulse Studio
	Impulse Design and Pre-Processing
	Pre-processing (Feature generation)
	Model Design, Training, and Test
	Model Deployment
	Deploy the model on the SenseCraft AI Studio
	Image Classification (non-official) Benchmark
	Postprocessing
	Getting the Video Stream
	Getting the Inference Result
	Postprocessing with LED

	Optional: Post-processing on external devices

	Conclusion
	Resources

	Object Detection

	Raspberry Pi
	Pre-requisites
	Setup
	Exercises
	Setup
	Overview
	Key Features
	Raspberry Pi Models (covered in this book)
	Engineering Applications

	Hardware Overview
	Raspberry Pi Zero 2W
	Raspberry Pi 5

	Installing the Operating System
	The Operating System (OS)
	Installation
	Initial Configuration

	Remote Access
	SSH Access
	To shut down the Raspi via terminal:
	Transfer Files between the Raspi and a computer
	Using Secure Copy Protocol (scp):
	Transferring files using FTP

	Increasing SWAP Memory
	Installing a Camera
	Installing a USB WebCam
	Video Streaming

	Installing a Camera Module on the CSI port

	Running the Raspi Desktop remotely
	Updating and Installing Software
	Model-Specific Considerations
	Raspberry Pi Zero (Raspi-Zero)
	Raspberry Pi 4 or 5 (Raspi-4 or Raspi-5)

	Image Classification
	Overview
	Applications in Real-World Scenarios
	Advantages of Running Classification on Edge Devices like Raspberry Pi

	Setting Up the Environment
	Updating the Raspberry Pi
	Installing Required Libraries
	Setting up a Virtual Environment (Optional but Recommended)
	Installing TensorFlow Lite
	Installing Additional Python Libraries
	Creating a working directory:
	Setting up Jupyter Notebook (Optional)
	Verifying the Setup

	Making inferences with Mobilenet V2
	Define a general Image Classification function
	Testing with a model trained from scratch
	Installing Picamera2

	Image Classification Project
	The Goal
	Data Collection
	Key Features:
	Main Components:
	Key Functions:
	Usage Flow:
	Technical Notes:
	Customization Possibilities:
	Number of samples on Dataset:

	Training the model with Edge Impulse Studio
	Dataset

	The Impulse Design
	Image Pre-Processing
	Model Design
	Model Training
	Trading off: Accuracy versus speed
	Model Testing
	Deploying the model

	Live Image Classification
	Key Components:
	Main Features:
	Code Structure:
	Key Concepts:
	Usage:

	Conclusion:
	Resources

	Object Detection
	Overview
	Object Detection Fundamentals
	Image Classification vs. Object Detection
	Key Components of Object Detection
	Challenges in Object Detection
	Approaches to Object Detection
	Evaluation Metrics

	Pre-Trained Object Detection Models Overview
	Setting Up the TFLite Environment
	Creating a Working Directory:
	Inference and Post-Processing
	EfficientDet

	Object Detection Project
	The Goal
	Raw Data Collection
	Labeling Data
	Annotate
	Data Pre-Processing

	Training an SSD MobileNet Model on Edge Impulse Studio
	Uploading the annotated data
	The Impulse Design
	Preprocessing all dataset
	Model Design, Training, and Test
	Deploying the model
	Inference and Post-Processing

	Training a FOMO Model at Edge Impulse Studio
	How FOMO works?
	Impulse Design, new Training and Testing
	Deploying the model
	Inference and Post-Processing

	Exploring a YOLO Model using Ultralitics
	Talking about the YOLO Model
	Key Features:

	Installation
	Testing the YOLO
	Export Model to NCNN format
	Exploring YOLO with Python
	Training YOLOv8 on a Customized Dataset
	Critical points on the Notebook:

	Inference with the trained model, using the Raspi

	Object Detection on a live stream
	Conclusion
	Resources

	Small Language Models (SLM)
	Overview
	Setup
	Raspberry Pi Active Cooler

	Generative AI (GenAI)
	Large Language Models (LLMs)
	Closed vs Open Models:
	Small Language Models (SLMs)

	Ollama
	Installing Ollama
	Meta Llama 3.2 1B/3B
	Google Gemma 2 2B
	Microsoft Phi3.5 3.8B
	Multimodal Models
	Inspecting local resources

	Ollama Python Library
	Function Calling
	But what exactly is ``function calling''?
	Let's create a project.

	1. Importing Libraries
	2. Defining Input and Model
	3. Defining the Response Data Structure
	4. Setting Up the OpenAI Client
	5. Generating the Response
	6. Calculating the Distance
	Adding images

	SLMs: Optimization Techniques
	RAG Implementation
	A simple RAG project
	Going Further

	Conclusion
	Resources

	Vision-Language Models (VLM)
	Introduction
	Why Florence-2 at the Edge?
	Florence-2 Model Architecture

	Technical Overview
	Architecture
	Training Dataset (FLD-5B)
	Key Capabilities
	Zero-shot Performance
	Fine-tuned Performance

	Practical Applications
	Comparing Florence-2 with other VLMs

	Setup and Installation
	Environment configuration
	Testing the installation
	Importing Required Libraries
	Determining the Device and Data Type
	Loading the Model and Processor

	Defining the Prompt
	Downloading and Loading the Image
	Processing Inputs

	Generating the Output
	Decoding the Generated Text
	Post-processing the Generation
	Printing the Output
	Result

	Florence-2 Tasks
	Object Detection (OD)
	Image Captioning
	Detailed Captioning
	Visual Grounding
	Segmentation
	Dense Region Captioning
	OCR with Region
	Phrase Grounding for Specific Expressions
	Open Vocabulary Object Detection

	Exploring computer vision and vision-language tasks
	Caption
	DETAILED_CAPTION
	MORE_DETAILED_CAPTION
	OD - Object Detection
	DENSE_REGION_CAPTION
	CAPTION_TO_PHRASE_GROUNDING
	Cascade Tasks
	OPEN_VOCABULARY_DETECTION
	Referring expression segmentation
	Region to Segmentation
	Region to Texts
	OCR

	Latency Summary
	Fine-Tunning
	Conclusion
	Key Advantages of Florence-2
	Trade-offs
	Best Use Cases

	Future Implications
	Resources

	Shared Labs
	KWS Feature Engineering
	Overview
	The KWS
	Applications of KWS
	Differences from General Speech Recognition

	Overview to Audio Signals
	Why Not Raw Audio?

	Overview to MFCCs
	What are MFCCs?
	Why are MFCCs important?
	Computing MFCCs

	Hands-On using Python
	Conclusion
	MFCCs are particularly strong for
	Spectrograms or MFEs are often more suitable for

	Resources

	DSP Spectral Features
	Overview
	Extracting Features Review
	A TinyML Motion Classification project
	Data Pre-Processing
	Edge Impulse - Spectral Analysis Block V.2 under the hood

	Time Domain Statistical features
	Spectral features
	Time-frequency domain
	Wavelets
	Wavelet Analysis
	Feature Extraction

	Conclusion

	APPENDIX
	PhD Survival Guide
	Career Advice
	On Research Careers and Productivity
	On Reading and Learning
	On Time Management and Productivity
	On Oral Presentation Advice
	On Writing and Communicating Science
	Video Resources

	REFERENCES
	References

