

 Machine Learning Systems

 Principles and Practices of Engineering Artificially Intelligent Systems

 Prof. Vijay Janapa Reddi

 October 20, 2025

Abstract

Machine Learning Systems presents a comprehensive approach to understanding and engineering machine learning (ML). While many resources focus on ML algorithms and model architectures, this book serves as a bridge between theoretical foundations and practical engineering. It emphasizes the systems context that engineers need to master when building AI solutions in the real world. The text progresses from foundational concepts to advanced system design, integrating topics such as data engineering, model optimization, hardware-aware training approaches, and inference acceleration strategies. Throughout the book, readers develop a principled understanding of ML systems engineering, learning to reason about system architectures and address critical challenges in areas including security, privacy, and reliability. While ML applications and tools evolve rapidly, the engineering principles for building ML systems remain largely consistent. This book distills these enduring concepts, making it a resource for anyone seeking to build flexible, efficient, and robust ML systems.

🎙 Listen to the AI Podcast, created using Google’s Notebook LM and inspired by insights drawn from our IEEE education viewpoint paper. This podcast provides an accessible overview of what this book is all about.

 Your reader does not support audio.

Table of Contents
	Abstract	Support Our Mission
	Why We Wrote This Book
	Listen to the AI Podcast
	Global Outreach
	Want to Help Out?

	Author’s Note
	About the Book	Overview	Purpose of the Book
	Context and Development
	What to Expect
	Pedagogical Philosophy: Foundations First

	Learning Goals	Key Learning Outcomes
	Learning Objectives
	AI Learning Companion

	How to Use This Book	Book Structure
	Suggested Reading Paths
	For Students with Different Backgrounds
	Modular Design

	Transparency and Collaboration
	Copyright and Licensing
	Join the Community

	Book Changelog	2025 Updates	📅 October 09
	📅 August 18
	📅 August 06
	📅 August 05
	📅 June 10
	📅 May 14
	📅 May 04
	📅 March 25
	📅 March 03
	📅 February 08
	📅 February 07
	📅 February 02
	📅 January 28
	📅 January 17
	📅 January 12
	📅 January 11
	📅 January 09
	📅 January 07
	📅 January 03
	📅 January 02
	📅 January 01

	2024	📅 November 19
	📅 November 16
	📅 November 15
	📅 September 20
	📅 September 12
	📅 September 06
	📅 September 04
	📅 September 02
	📅 August 29
	📅 August 27
	📅 August 22
	📅 August 21
	📅 August 15
	📅 August 07
	📅 August 06
	📅 June 25
	📅 June 20
	📅 June 19
	📅 June 11
	📅 June 02
	📅 June 01
	📅 May 26
	📅 March 21
	📅 March 13
	📅 March 12
	📅 February 03
	📅 February 02
	📅 January 02

	2023	📅 December 19
	📅 December 18
	📅 December 13
	📅 December 12
	📅 December 11
	📅 December 10
	📅 December 09
	📅 December 08
	📅 December 06
	📅 December 01
	📅 November 30
	📅 November 22
	📅 November 17
	📅 November 15
	📅 November 12
	📅 November 10
	📅 November 09
	📅 November 07
	📅 November 03
	📅 November 02
	📅 October 31
	📅 October 30
	📅 October 29
	📅 October 24
	📅 October 23
	📅 October 17
	📅 October 11
	📅 October 10
	📅 October 08
	📅 October 07
	📅 September 30
	📅 September 29
	📅 September 28
	📅 September 27
	📅 September 24

	Acknowledgements	Funding Agencies and Companies	Academic Support
	Non-Profit and Institutional Support
	Corporate Support

	Contributors

	SocratiQ AI	AI Learning Companion
	Quick Start Guide
	Button Overview
	Personalize Your Learning
	Learning with SocratiQ	Quizzes
	Example Learning Flow
	Getting Help with Concepts

	Tracking Your Progress	Performance Dashboard
	Achievement Badges

	Data Storage
	Technical Requirements
	Common Issues and Troubleshooting
	Providing Feedback

	Introduction	Purpose
	The Engineering Revolution in Artificial Intelligence
	From Artificial Intelligence Vision to Machine Learning Practice
	Defining ML Systems
	How ML Systems Differ from Traditional Software
	The Bitter Lesson: Why Systems Engineering Matters
	Historical Evolution of AI Paradigms	Symbolic AI Era
	Expert Systems Era
	Statistical Learning Era
	Shallow Learning Era
	Deep Learning Era

	Understanding ML System Lifecycle and Deployment	The ML Development Lifecycle
	The Deployment Spectrum
	How Deployment Shapes the Lifecycle

	Case Studies in Real-World ML Systems	Case Study: Autonomous Vehicles
	Contrasting Deployment Scenarios

	Core Engineering Challenges in ML Systems	Data Challenges
	Model Challenges
	System Challenges
	Ethical Considerations
	Understanding Challenge Interconnections

	Defining AI Engineering	The Five Engineering Disciplines
	Connecting Components, Lifecycle, and Disciplines
	Future Directions in ML Systems Engineering
	The Nature of Systems Knowledge
	How to Use This Textbook

	ML Systems	Purpose
	Deployment Paradigm Framework
	The Deployment Spectrum	Deployment Paradigm Foundations

	Cloud ML: Maximizing Computational Power	Cloud Infrastructure and Scale
	Cloud ML Trade-offs and Constraints
	Large-Scale Training and Inference

	Edge ML: Reducing Latency and Privacy Risk	Distributed Processing Architecture
	Edge ML Benefits and Deployment Challenges
	Real-Time Industrial and IoT Systems

	Mobile ML: Personal and Offline Intelligence	Battery and Thermal Constraints
	Mobile ML Benefits and Resource Constraints
	Personal Assistant and Media Processing

	Tiny ML: Ubiquitous Sensing at Scale	Extreme Resource Constraints
	TinyML Advantages and Operational Trade-offs
	Environmental and Health Monitoring

	Hybrid Architectures: Combining Paradigms	Multi-Tier Integration Patterns
	Production System Case Studies

	Shared Principles Across Deployment Paradigms
	Comparative Analysis and Selection Framework
	Decision Framework for Deployment Selection
	Fallacies and Pitfalls
	Summary

	DL Primer	Purpose
	Deep Learning Systems Engineering Foundation
	Evolution of ML Paradigms	Traditional Rule-Based Programming Limitations
	Classical Machine Learning
	Deep Learning: Automatic Pattern Discovery
	Computational Infrastructure Requirements

	From Biology to Silicon	Biological Neural Processing Principles
	Biological Neuron Structure
	Artificial Neural Network Design Principles
	Mathematical Translation of Neural Concepts
	Hardware and Software Requirements
	Evolution of Neural Network Computing

	Neural Network Fundamentals	Network Architecture Fundamentals
	Parameters and Connections
	Architecture Design

	Learning Process	Supervised Learning from Labeled Examples
	Forward Pass Computation
	Loss Functions
	Gradient Computation and Backpropagation
	Weight Update and Optimization

	Inference Pipeline	Production Deployment and Prediction Pipeline
	Data Preprocessing and Normalization
	Forward Pass Computation Pipeline
	Output Interpretation and Decision Making

	Case Study: USPS Digit Recognition	The Mail Sorting Challenge
	Engineering Process and Design Decisions
	Production System Architecture
	Performance Outcomes and Operational Impact
	Key Engineering Lessons and Design Principles

	Deep Learning and the AI Triangle
	Fallacies and Pitfalls
	Summary

	DNN Architectures	Purpose
	Architectural Principles and Engineering Trade-offs
	Multi-Layer Perceptrons: Dense Pattern Processing	Pattern Processing Needs
	Algorithmic Structure
	Computational Mapping
	System Implications

	CNNs: Spatial Pattern Processing	Pattern Processing Needs
	Algorithmic Structure
	Computational Mapping
	System Implications

	RNNs: Sequential Pattern Processing	Pattern Processing Needs
	Algorithmic Structure
	Computational Mapping
	System Implications

	Attention Mechanisms: Dynamic Pattern Processing	Pattern Processing Needs
	Basic Attention Mechanism
	Transformers: Attention-Only Architecture

	Architectural Building Blocks	Evolution from Perceptron to Multi-Layer Networks
	Evolution from Dense to Spatial Processing
	Evolution of Sequence Processing
	Modern Architectures: Synthesis and Unification

	System-Level Building Blocks	Core Computational Primitives
	Memory Access Primitives
	Data Movement Primitives
	System Design Impact

	Architecture Selection Framework	Data-to-Architecture Mapping
	Computational Complexity Considerations
	Architectural Comparison Summary
	Decision Framework

	Unified Framework: Inductive Biases
	Fallacies and Pitfalls
	Summary

	AI Workflow	Purpose
	Systematic Framework for ML Development
	Understanding the ML Lifecycle
	ML vs Traditional Software Development
	Six Core Lifecycle Stages	Case Study: Diabetic Retinopathy Screening System

	Problem Definition Stage	Balancing Competing Constraints
	Collaborative Problem Definition Process
	Adapting Definitions for Scale

	Data Collection & Preparation Stage	Bridging Laboratory and Real-World Data
	Data Infrastructure for Distributed Deployment
	Managing Data at Scale
	Quality Assurance and Validation

	Model Development & Training Stage	Balancing Performance and Deployment Constraints
	Constraint-Driven Development Process
	From Prototype to Production-Scale Development

	Deployment & Integration Stage	Technical and Operational Requirements
	Phased Rollout and Integration Process
	Multi-Site Deployment Challenges
	Ensuring Clinical-Grade Reliability

	Monitoring & Maintenance Stage	Production Monitoring for Dynamic Systems
	Continuous Improvement Through Feedback Loops
	Distributed System Monitoring at Scale
	Anticipating and Preventing System Degradation

	Integrating Systems Thinking Principles	How Decisions Cascade Through the System
	Orchestrating Feedback Across Multiple Timescales
	Understanding System-Level Behaviors
	Multi-Dimensional Resource Trade-offs
	Engineering Discipline for ML Systems

	Fallacies and Pitfalls
	Summary

	Data Engineering	Purpose
	Data Engineering as a Systems Discipline
	Four Pillars Framework	The Four Foundational Pillars
	Integrating the Pillars Through Systems Thinking
	Framework Application Across Data Lifecycle

	Data Cascades and the Need for Systematic Foundations	Establishing Governance Principles Early
	Structured Approach to Problem Definition
	Framework Application Through Keyword Spotting Case Study

	Data Pipeline Architecture	Quality Through Validation and Monitoring
	Reliability Through Graceful Degradation
	Scalability Patterns
	Governance Through Observability

	Strategic Data Acquisition	Data Source Evaluation and Selection
	Scalability and Cost Optimization
	Reliability Across Diverse Conditions
	Governance and Ethics in Sourcing
	Integrated Acquisition Strategy

	Data Ingestion	Batch vs. Streaming Ingestion Patterns
	ETL and ELT Comparison
	Multi-Source Integration Strategies
	Case Study: Selecting Ingestion Patterns for KWS

	Systematic Data Processing	Ensuring Training-Serving Consistency
	Building Idempotent Data Transformations
	Scaling Through Distributed Processing
	Tracking Data Transformation Lineage
	End-to-End Processing Pipeline Design

	Data Labeling	Label Types and Their System Requirements
	Achieving Label Accuracy and Consensus
	Building Reliable Labeling Platforms
	Scaling with AI-Assisted Labeling
	Ensuring Ethical and Fair Labeling
	Case Study: Automated Labeling in KWS Systems

	Strategic Storage Architecture	ML Storage Systems Architecture Options
	ML Storage Requirements and Performance
	Storage Across the ML Lifecycle
	Feature Stores: Bridging Training and Serving
	Case Study: Storage Architecture for KWS Systems

	Data Governance	Security and Access Control Architecture
	Technical Privacy Protection Methods
	Architecting for Regulatory Compliance
	Building Data Lineage Infrastructure
	Audit Infrastructure and Accountability

	Fallacies and Pitfalls
	Summary

	AI Frameworks	Purpose
	Framework Abstraction and Necessity
	Historical Development Trajectory	Chronological Framework Development
	Foundational Mathematical Computing Infrastructure
	Early Machine Learning Platform Development
	Deep Learning Computational Platform Innovation
	Hardware-Driven Framework Architecture Evolution

	Fundamental Concepts	Computational Graphs
	Automatic Differentiation
	Data Structures
	Programming and Execution Models
	Core Operations

	Framework Architecture	APIs and Abstractions

	Framework Ecosystem	Core Libraries
	Extensions and Plugins
	Integrated Development and Debugging Environment

	System Integration	Hardware Integration
	Framework Infrastructure Dependencies
	Production Environment Integration Requirements
	End-to-End Machine Learning Pipeline Management

	Major Framework Platform Analysis	TensorFlow Ecosystem
	PyTorch
	JAX
	Quantitative Platform Performance Analysis
	Framework Design Philosophy

	Deployment Environment-Specific Frameworks	Distributed Computing Platform Optimization
	Local Processing and Low-Latency Optimization
	Resource-Constrained Device Optimization
	Microcontroller and Embedded System Implementation
	Performance and Resource Optimization Platforms

	Systematic Framework Selection Methodology	Model Requirements
	Software Dependencies
	Hardware Constraints
	Production-Ready Evaluation Factors
	Development Support and Long-term Viability Assessment

	Systematic Framework Performance Assessment	Quantitative Multi-Dimensional Performance Analysis
	Standardized Benchmarking Protocols
	Real-World Operational Performance Considerations
	Structured Framework Selection Process

	Common Framework Selection Misconceptions
	Summary

	AI Training	Purpose
	Training Systems Evolution and Architecture
	Training Systems	Computing Architecture Evolution for ML Training
	Training Systems in the ML Development Lifecycle
	System Design Principles for Training Infrastructure

	Mathematical Foundations	Neural Network Computation
	Optimization Algorithms
	Backpropagation Mechanics
	Mathematical Foundations System Implications

	Pipeline Architecture	Architectural Overview
	Data Pipeline
	Forward Pass
	Backward Pass
	Parameter Updates and Optimizers

	Pipeline Optimizations	Systematic Optimization Framework
	Production Optimization Decision Framework
	Data Prefetching and Pipeline Overlapping
	Mixed-Precision Training
	Gradient Accumulation and Checkpointing
	Optimization Technique Comparison
	Multi-Machine Scaling Fundamentals

	Distributed Systems	Distributed Training Efficiency Metrics
	Data Parallelism
	Model Parallelism
	Hybrid Parallelism
	Parallelism Strategy Comparison
	Framework Integration

	Performance Optimization	Bottleneck Analysis
	System-Level Techniques
	Software-Level Techniques
	Scale-Up Strategies

	Hardware Acceleration	GPUs
	TPUs
	FPGAs
	ASICs

	Fallacies and Pitfalls
	Summary

	Efficient AI	Purpose
	The Efficiency Imperative
	Defining System Efficiency	Efficiency Interdependencies

	AI Scaling Laws	Empirical Evidence for Scaling Laws
	Compute-Optimal Resource Allocation
	Mathematical Foundations and Operational Regimes
	Practical Applications in System Design
	Sustainability and Cost Implications
	Scaling Law Breakdown Conditions
	Integrating Efficiency with Scaling

	The Efficiency Framework	Multi-Dimensional Efficiency Synergies
	Achieving Algorithmic Efficiency
	Compute Efficiency
	Data Efficiency

	Real-World Efficiency Strategies	Context-Specific Efficiency Requirements
	Scalability and Sustainability

	Efficiency Trade-offs and Challenges	Fundamental Sources of Efficiency Trade-offs
	Recurring Trade-off Patterns in Practice

	Strategic Trade-off Management	Environment-Driven Efficiency Priorities
	Dynamic Resource Allocation at Inference
	End-to-End Co-Design and Automated Optimization
	Measuring and Monitoring Efficiency Trade-offs

	Engineering Principles for Efficient AI	Holistic Pipeline Optimization
	Lifecycle and Environment Considerations

	Societal and Ethical Implications	Equity and Access
	Balancing Innovation with Efficiency Demands
	Optimization Limits

	Fallacies and Pitfalls
	Summary

	Model Optimizations	Purpose
	Model Optimization Fundamentals
	Optimization Framework
	Deployment Context	Practical Deployment
	Balancing Trade-offs

	Framework Application and Navigation	Mapping Constraints
	Navigation Strategies

	Optimization Dimensions	Model Representation
	Numerical Precision
	Architectural Efficiency
	Three-Dimensional Optimization Framework

	Structural Model Optimization Methods	Pruning
	Knowledge Distillation
	Structured Approximations
	Neural Architecture Search

	Quantization and Precision Optimization	Precision and Energy
	Numeric Encoding and Storage
	Numerical Format Comparison
	Precision Reduction Trade-offs
	Precision Reduction Strategies
	Extreme Quantization
	Multi-Technique Optimization Strategies

	Architectural Efficiency Techniques	Hardware-Aware Design
	Adaptive Computation Methods
	Sparsity Exploitation

	Implementation Strategy and Evaluation	Profiling and Opportunity Analysis
	Measuring Optimization Effectiveness
	Multi-Technique Integration Strategies

	AutoML and Automated Optimization Strategies	AutoML Optimizations
	Optimization Strategies
	AutoML Optimization Challenges

	Implementation Tools and Software Frameworks	Model Optimization APIs and Tools
	Hardware-Specific Optimization Libraries
	Optimization Process Visualization

	Technique Comparison
	Fallacies and Pitfalls
	Summary

	AI Acceleration	Purpose
	AI Hardware Acceleration Fundamentals
	Evolution of Hardware Specialization	Specialized Computing
	Parallel Computing and Graphics Processing
	Emergence of Domain-Specific Architectures
	Machine Learning Hardware Specialization

	AI Compute Primitives	Vector Operations
	Matrix Operations
	Special Function Units
	Compute Units and Execution Models
	Cost-Performance Analysis

	AI Memory Systems	Understanding the AI Memory Wall
	Memory Hierarchy
	Memory Bandwidth and Architectural Trade-offs
	Host-Accelerator Communication
	Model Memory Pressure
	ML Accelerators Implications

	Hardware Mapping Fundamentals for Neural Networks	Computation Placement
	Memory Allocation
	Combinatorial Complexity

	Dataflow Optimization Strategies	Building Blocks of Mapping Strategies
	Applying Mapping Strategies to Neural Networks
	Hybrid Mapping Strategies
	Hardware Implementations of Hybrid Strategies

	Compiler Support	Compiler Design Differences for ML Workloads
	ML Compilation Pipeline
	Graph Optimization
	Kernel Selection
	Memory Planning
	Computation Scheduling
	Compilation-Runtime Support

	Runtime Support	Runtime Architecture Differences for ML Systems
	Dynamic Kernel Execution
	Runtime Kernel Selection
	Kernel Scheduling and Utilization

	Multi-Chip AI Acceleration	Chiplet-Based Architectures
	Multi-GPU Systems
	TPU Pods
	Wafer-Scale AI
	AI Systems Scaling Trajectory
	Computation and Memory Scaling Changes
	Execution Models Adaptation
	Navigating Multi-Chip AI Complexities

	Heterogeneous SoC AI Acceleration	Mobile SoC Architecture Evolution
	Strategies for Dynamic Workload Distribution
	Power and Thermal Management
	Automotive Heterogeneous AI Systems
	Software Stack Challenges

	Fallacies and Pitfalls
	Summary

	Benchmarking AI	Purpose
	Machine Learning Benchmarking Framework
	Historical Context	Performance Benchmarks
	Energy Benchmarks
	Domain-Specific Benchmarks

	Machine Learning Benchmarks	ML Measurement Challenges
	Algorithmic Benchmarks
	System Benchmarks
	Data Benchmarks
	Community-Driven Standardization

	Benchmarking Granularity	Micro Benchmarks
	Macro Benchmarks
	End-to-End Benchmarks
	Granularity Trade-offs and Selection Criteria

	Benchmark Components	Problem Definition
	Standardized Datasets
	Model Selection
	Evaluation Metrics
	Benchmark Harness
	System Specifications
	Run Rules
	Result Interpretation
	Example Benchmark
	Compression Benchmarks
	Mobile and Edge Benchmarks

	Training vs. Inference Evaluation
	Training Benchmarks	Training Benchmark Motivation
	Training Metrics
	Training Performance Evaluation

	Inference Benchmarks	Inference Benchmark Motivation
	Inference Metrics
	Inference Performance Evaluation
	MLPerf Inference Benchmarks

	Power Measurement Techniques	Power Measurement Boundaries
	Computational Efficiency vs. Power Consumption
	Standardized Power Measurement
	MLPerf Power Case Study

	Benchmarking Limitations and Best Practices	Statistical & Methodological Issues
	Laboratory-to-Deployment Performance Gaps
	System Design Challenges
	Organizational & Strategic Issues
	MLPerf as Industry Standard

	Model and Data Benchmarking	Model Benchmarking
	Data Benchmarking
	Holistic System-Model-Data Evaluation

	Production Environment Evaluation
	Fallacies and Pitfalls
	Summary

	ML Operations	Purpose
	Introduction to Machine Learning Operations
	Historical Context	DevOps
	MLOps

	Technical Debt and System Complexity	Boundary Erosion
	Correction Cascades
	Interface and Dependency Challenges
	System Evolution Challenges
	Real-World Technical Debt Examples

	Development Infrastructure and Automation	Data Infrastructure and Preparation
	Continuous Pipelines and Automation
	Infrastructure Integration Summary

	Production Operations	Model Deployment and Serving
	Resource Management and Performance Monitoring
	Model Governance and Team Coordination
	Managing Hidden Technical Debt
	Summary

	Roles and Responsibilities	Roles
	Intersections and Handoffs
	Evolving Roles and Specializations

	System Design and Maturity Framework	Operational Maturity
	Maturity Levels
	System Design Implications
	Design Patterns and Anti-Patterns
	Contextualizing MLOps
	Future Operational Considerations
	Enterprise-Scale ML Systems
	Investment and Return on Investment

	Case Studies	Oura Ring Case Study
	Model Development and Evaluation
	Deployment and Iteration
	Key Operational Insights
	ClinAIOps Case Study

	Fallacies and Pitfalls
	Summary

	On-Device Learning	Purpose
	Distributed Learning Paradigm Shift
	Motivations and Benefits	On-Device Learning Benefits
	Alternative Approaches and Decision Criteria
	Real-World Application Domains
	Architectural Trade-offs: Centralized vs. Decentralized Training

	Design Constraints	Quantifying Training Overhead on Edge Devices
	Model Constraints
	Data Constraints
	Compute Constraints
	Edge Hardware Integration Challenges
	Holistic Resource Management Strategies

	Model Adaptation	Weight Freezing
	Structured Parameter Updates
	Sparse Updates

	Data Efficiency	Few-Shot Learning and Data Streaming
	Experience Replay
	Data Compression
	Data Efficiency Strategy Comparison

	Federated Learning	Privacy-Preserving Collaborative Learning
	Learning Protocols
	Large-Scale Device Orchestration

	Production Integration	MLOps Integration Challenges
	Bio-Inspired Learning Efficiency

	Systems Integration for Production Deployment
	Persistent Technical and Operational Challenges	Device and Data Heterogeneity Management
	Non-IID Data Distribution Challenges
	Distributed System Observability
	Resource Management
	Identifying and Preventing System Failures
	Production Deployment Risk Assessment
	Engineering Challenge Synthesis
	Foundations for Robust AI Systems

	Fallacies and Pitfalls
	Summary

	Security & Privacy	Purpose
	Security and Privacy in ML Systems
	Foundational Concepts and Definitions	Security Defined
	Privacy Defined
	Security versus Privacy
	Security-Privacy Interactions and Trade-offs

	Learning from Security Breaches	Supply Chain Compromise: Stuxnet
	Insufficient Isolation: Jeep Cherokee Hack
	Weaponized Endpoints: Mirai Botnet

	Systematic Threat Analysis and Risk Assessment	Threat Prioritization Framework

	Model-Specific Attack Vectors	Model Theft
	Data Poisoning
	Adversarial Attacks
	Case Study: Traffic Sign Attack

	Hardware-Level Security Vulnerabilities	Hardware Bugs
	Physical Attacks
	Fault Injection Attacks
	Side-Channel Attacks
	Leaky Interfaces
	Counterfeit Hardware
	Supply Chain Risks
	Case Study: Supermicro Controversy

	When ML Systems Become Attack Tools	Case Study: Deep Learning for SCA

	Comprehensive Defense Architectures	The Layered Defense Principle
	Privacy-Preserving Data Techniques
	Case Study: GPT-3 Data Extraction Attack
	Secure Model Design
	Secure Model Deployment
	Runtime System Monitoring
	Hardware Security Foundations

	Practical Implementation Roadmap	Phase 1: Foundation Security Controls
	Phase 2: Privacy Controls and Model Protection
	Phase 3: Advanced Threat Defense
	Implementation Considerations

	Fallacies and Pitfalls
	Summary

	Robust AI	Purpose
	Introduction to Robust AI Systems
	Real-World Robustness Failures	Cloud Infrastructure Failures
	Edge Device Vulnerabilities
	Embedded System Constraints

	A Unified Framework for Robust AI	Building on Previous Concepts
	From ML Performance to System Reliability
	The Three Pillars of Robust AI
	Common Robustness Principles
	Integration Across the ML Pipeline

	Hardware Faults	Hardware Fault Impact on ML Systems
	Transient Faults
	Permanent Faults
	Intermittent Faults
	Hardware Fault Detection and Mitigation
	Hardware Fault Summary

	Intentional Input Manipulation	Adversarial Attacks
	Data Poisoning Attacks
	Detection and Mitigation Strategies

	Environmental Shifts	Distribution Shift and Concept Drift
	Monitoring and Adaptation Strategies

	Robustness Evaluation Tools
	Input-Level Attacks and Model Robustness	Adversarial Attacks
	Data Poisoning
	Distribution Shifts
	Input Attack Detection and Defense

	Software Faults	Software Fault Properties
	Software Fault Propagation
	Software Fault Effects on ML
	Software Fault Detection and Prevention

	Fault Injection Tools and Frameworks	Fault and Error Models
	Hardware-Based Fault Injection
	Software-Based Fault Injection
	Bridging Hardware-Software Gap

	Fallacies and Pitfalls
	Summary

	Responsible AI	Purpose
	Introduction to Responsible AI
	Core Principles
	Integrating Principles Across the ML Lifecycle	Transparency and Explainability
	Fairness in Machine Learning
	Privacy and Data Governance
	Safety and Robustness
	Accountability and Governance

	Responsible AI Across Deployment Environments	System Explainability
	Fairness Constraints
	Privacy Architectures
	Safety and Robustness
	Governance Structures
	Design Tradeoffs

	Technical Foundations	Bias and Risk Detection Methods
	Risk Mitigation Techniques
	Validation Approaches

	Sociotechnical Dynamics	System Feedback Loops
	Human-AI Collaboration
	Normative Pluralism and Value Conflicts
	Transparency and Contestability
	Institutional Embedding of Responsibility

	Implementation Challenges	Organizational Structures and Incentives
	Data Constraints and Quality Gaps
	Balancing Competing Objectives
	Scalability and Maintenance
	Standardization and Evaluation Gaps
	Implementation Decision Framework

	AI Safety and Value Alignment	Autonomous Systems and Trust
	Economic Implications of AI Automation
	AI Literacy and Communication

	Fallacies and Pitfalls
	Summary

	Sustainable AI	Purpose
	Sustainable AI as an Engineering Discipline
	The Sustainability Crisis in AI	The Scale of Environmental Impact

	Part I: Environmental Impact and Ethical Foundations	Environmental Justice and Responsible Development
	Exponential Growth vs Physical Constraints
	Biological Intelligence as a Sustainability Model

	Part II: Measurement and Assessment	Carbon Footprint Analysis
	Case Study: DeepMind Energy Efficiency
	Data Center Energy Consumption Patterns
	Distributed Systems Energy Optimization
	Longitudinal Carbon Footprint Analysis
	Comprehensive Carbon Accounting Methodologies
	Training vs Inference Energy Analysis
	Resource Consumption and Ecosystem Effects
	Water Usage
	Hazardous Chemicals
	Resource Depletion
	Waste Generation
	Biodiversity Impact

	Hardware Lifecycle Environmental Assessment	Design Phase
	Manufacturing Phase
	Use Phase
	Disposal Phase

	Part III: Implementation and Solutions	Multi-Layer Mitigation Strategy Framework
	Lifecycle-Aware Development Methodologies
	Infrastructure Optimization
	Comprehensive Environmental Impact Mitigation
	Case Study: Google’s Framework
	Engineering Guidelines for Sustainable AI Development

	Embedded AI and E-Waste	Global Electronic Waste Acceleration
	Disposable Electronics
	AI Hardware Obsolescence

	Policy and Regulation	Regulatory Mechanisms and Global Coordination
	Measurement and Reporting
	Restriction Mechanisms
	Government Incentives
	Self-Regulation
	Global Impact

	Public Engagement	Public Understanding of AI Environmental Impact
	Communicating AI Sustainability Trade-offs
	Transparency and Trust
	Building Public Participation in AI Governance
	Environmental Justice and AI Access

	Future Challenges	Emerging Technical Research Directions
	Implementation Barriers and Standardization Needs
	Integrated Approaches for Sustainable AI Systems

	Fallacies and Pitfalls
	Summary

	AI for Good	Purpose
	Trustworthy AI Under Extreme Constraints
	Societal Challenges and AI Opportunities
	Real-World Deployment Paradigms	Agriculture
	Healthcare
	Disaster Response
	Environmental Conservation
	Cross-Domain Integration Challenges

	Sustainable Development Goals Framework
	Resource Constraints and Engineering Challenges	Model Compression for Extreme Resource Limits
	Resource Paradox
	Data Scarcity and Quality Constraints
	Development-to-Production Resource Gaps
	Long-Term Viability and Community Ownership
	System Resilience and Failure Recovery

	Design Pattern Framework	Pattern Selection Dimensions
	Pattern Overview
	Pattern Comparison Framework

	Design Patterns Implementation	Hierarchical Processing
	Progressive Enhancement
	Distributed Knowledge
	Adaptive Resource

	Theoretical Foundations for Constrained Learning	Statistical Learning Under Data Scarcity
	Learning Without Labeled Data
	Communication and Energy-Aware Learning

	Common Deployment Failures and Sociotechnical Pitfalls	Performance Metrics Versus Real-World Impact
	Hidden Dependencies on Basic Infrastructure
	Underestimating Social Integration Complexity
	Avoiding Extractive Technology Relationships
	Short-Term Success Versus Long-Term Viability

	Summary	Looking Forward

	AGI Systems	Purpose
	From Specialized AI to General Intelligence
	Defining AGI: Intelligence as a Systems Problem	The Scaling Hypothesis
	Hybrid Neurosymbolic Architectures
	Embodied Intelligence

	The Compound AI Systems Framework
	Building Blocks for Compound Intelligence	Data Engineering at Scale
	Dynamic Architectures for Compound Systems

	Alternative Architectures for AGI	State Space Models: Efficient Long-Context Processing
	Energy-Based Models: Learning Through Optimization
	World Models and Predictive Learning
	Hybrid Architecture Integration Strategies

	Training Methodologies for Compound Systems	Production Infrastructure for AGI-Scale Systems
	Integrated System Architecture Design

	Production Deployment of Compound AI Systems
	Remaining Technical Barriers	Memory and Context Limitations
	Energy Efficiency and Computational Scale
	Causal Reasoning and Planning Capabilities
	Symbol Grounding and Embodied Intelligence
	AI Alignment and Value Specification

	Emergent Intelligence Through Multi-Agent Coordination
	Engineering Pathways to AGI	Opportunity Landscape: Infrastructure to Apps
	Engineering Challenges in AGI Development
	Strategic Decision Framework for AGI Projects

	Implications for ML Systems Engineers	Career Paths and Required Capabilities
	Applying AGI Concepts to Current Practice

	AGI Through Systems Engineering Principles
	Core Design Principles for AGI Systems
	Integrated Development Framework for AGI	The Compound AI Systems Framework as Foundation
	Opportunities Aligned with Building Blocks
	Biological Principles as Cross-Cutting Insights
	Practical Framework Application Strategies
	Implementation Roadmap for AGI Projects

	Fallacies and Pitfalls	Biological Principles for System Design

	Summary

	Conclusion	Synthesizing ML Systems Engineering: From Components to Intelligence
	Systems Engineering Principles for ML
	Applying Principles Across Three Critical Domains	Building Technical Foundations

	Engineering for Performance at Scale	Model Architecture and Optimization
	Hardware Acceleration and System Performance

	Navigating Production Reality
	Future Directions and Emerging Opportunities	Applying Principles to Emerging Deployment Contexts
	Building Robust AI Systems
	AI for Societal Benefit
	The Path to AGI

	Your Journey Forward: Engineering Intelligence

	Getting Started	Why Embedded ML for ML Systems Education?
	Prerequisites and Preparation
	Laboratory Exercise Categories	Computer Vision Applications
	Audio and Temporal Data Processing

	Laboratory Platform Compatibility
	Core Data Modalities
	Getting Started	Next Steps

	Hardware Kits	Our Featured Platform
	System Requirements and Prerequisites
	Hardware Platform Overview
	Platform Comparison
	Platform Selection Guidelines
	Hardware Platform Specifications	XIAOML Kit (Seeed Studio)
	Arduino Nicla Vision
	Grove Vision AI V2
	Raspberry Pi (Models 4/5 and Zero 2W)

	Getting Started

	IDE Setup	Platform-Specific Software Installation	Arduino-Based Platforms (Nicla Vision, XIAOML Kit)
	Grove Vision AI V2 Platform
	Raspberry Pi Platform

	Development Tool Configuration	Serial Communication Setup
	IDE Configuration

	Environment Verification	Hardware Detection Tests

	Common Setup Issues and Solutions
	Troubleshooting and Support
	Ready for Laboratory Exercises

	Overview	Pre-requisites
	Setup
	Exercises

	Setup	Overview
	Hardware	Two Parallel Cores
	Memory
	Sensors

	Arduino IDE Installation	Testing the Microphone
	Testing the IMU
	Testing the ToF (Time of Flight) Sensor
	Testing the Camera

	Installing the OpenMV IDE
	Connecting the Nicla Vision to Edge Impulse Studio
	Expanding the Nicla Vision Board (optional)
	Summary
	Resources

	Image Classification	Overview
	Computer Vision
	Image Classification Project Goal
	Data Collection	Collecting Dataset with OpenMV IDE

	Training the model with Edge Impulse Studio
	Dataset
	The Impulse Design	Image Pre-Processing
	Model Design

	Model Training
	Model Testing
	Deploying the model	Arduino Library
	OpenMV

	Image Classification (non-official) Benchmark
	Summary
	Resources

	Object Detection	Overview	Object Detection versus Image Classification
	An innovative solution for Object Detection: FOMO

	The Object Detection Project Goal
	Data Collection	Collecting Dataset with OpenMV IDE

	Edge Impulse Studio	Setup the project
	Uploading the unlabeled data
	Labeling the Dataset

	The Impulse Design	Preprocessing all dataset

	Model Design, Training, and Test	How FOMO works?
	Test model with “Live Classification”

	Deploying the Model
	Summary
	Resources

	Keyword Spotting (KWS)	Overview
	How does a voice assistant work?
	The KWS Hands-On Project	The Machine Learning workflow

	Dataset	Uploading the dataset to the Edge Impulse Studio
	Capturing additional Audio Data

	Creating Impulse (Pre-Process / Model definition)	Impulse Design
	Pre-Processing (MFCC)
	Going under the hood

	Model Design and Training	Going under the hood

	Testing	Live Classification

	Deploy and Inference
	Post-processing
	Summary
	Resources

	Motion Classification and Anomaly Detection	Overview
	IMU Installation and testing	Defining the Sampling frequency:

	The Case Study: Simulated Container Transportation
	Data Collection	Connecting the device to Edge Impulse
	Data Collection

	Impulse Design	Data Pre-Processing Overview
	EI Studio Spectral Features
	Generating features

	Models Training
	Testing
	Deploy	Inference
	Post-processing

	Summary	Case Applications
	Nicla 3D case

	Resources

	Overview	Pre-requisites
	Setup
	Exercises

	Setup	Overview	XIAO ESP32S3 Sense - Core Board Features
	Expansion Board Features
	Complete Kit Assembly

	Installing the XIAO ESP32S3 Sense on Arduino IDE
	Testing the board with BLINK
	Microphone Test
	Testing the Camera	Testing the camera with the SenseCraft AI Studio

	Testing WiFi	Installation of the antenna
	Simple WiFi Server (Turning LED ON/OFF)
	Using the CameraWebServer

	Testing the IMU Sensor (LSM6DS3TR-C)	Technical Specifications:
	Coordinate System:
	Required Libraries
	Test Code

	Testing the OLED Display (SSD1306)	Technical Specifications:
	Display Characteristics:
	Required Libraries
	Test Code
	OLED - Text Sizes and Positioning
	Shapes
	Coordinates
	Display Rotation
	Custom Characters:
	Text Measurements:

	Summary
	Resources

	Appendix	Heat Sink Considerations
	Installing the Heat Sink

	Image Classification	Overview
	Image Classification	Image Classification on the SenseCraft AI Workspace
	Post-Processing

	An Image Classification Project	The Goal
	Data Collection
	Training
	Test
	Deployment
	Saving the Model

	Image Classification Project from a Dataset
	Training the model with Edge Impulse Studio	Data Acquisition
	Impulse Design
	Pre-processing (Feature Generation)
	Model Design, Training, and Test

	Model Deployment	Model Deployment on the SenseCraft AI
	Model Deployment as an Arduino Library at EI Studio
	Inference
	Post-Processing

	Summary
	Resources

	Object Detection	Overview	Object Detection versus Image Classification
	An Innovative Solution for Object Detection: FOMO

	The Object Detection Project Goal
	Data Collection	Collecting Dataset with the XIAO ESP32S3

	Edge Impulse Studio	Setup the project
	Uploading the unlabeled data
	Labeling the Dataset
	Balancing the dataset and split Train/Test

	The Impulse Design	Preprocessing all dataset

	Model Design, Training, and Test	How FOMO works?
	Test model with “Live Classification”

	Deploying the Model (Arduino IDE)	Background
	Fruits
	Bugs

	Deploying the Model (SenseCraft-Web-Toolkit)
	Summary
	Resources

	Keyword Spotting (KWS)	Overview
	The KWS Project	How does a voice assistant work?
	The Inference Pipeline
	The Machine Learning workflow

	Dataset	Capturing (offline) Audio Data with the XIAO ESP32S3 Sense
	Save Recorded Sound Samples
	Capturing (offline) Audio Data Apps

	Training model with Edge Impulse Studio	Uploading the Data
	Creating Impulse (Pre-Process / Model definition)
	Pre-Processing (MFCC)
	Model Design and Training

	Testing
	Deploy and Inference
	Postprocessing	With LED
	With OLED Display

	Summary
	Resources

	Motion Classification and Anomaly Detection	Overview
	Installing the IMU	Setting Up the Hardware
	Testing the IMU Sensor

	The TinyML Motion Classification Project
	Data Collection	Preparing the Data Collection Code
	Connecting to Edge Impulse for Data Collection

	Data Collection at the Studio	Movement Simulation
	Data Acquisition

	Data Pre-Processing
	Model Design
	Impulse Design
	Generating features
	Training
	Testing
	Deploy
	Inference
	Post-Prossessing
	Summary
	Resources

	Overview	Pre-requisites
	Setup and No-Code Applications
	Exercises

	Setup and No-Code Applications	Introduction	Grove Vision AI Module (V2) Overview
	Camera Installation

	The SenseCraft AI Studio	The SenseCraft Web-Toolkit

	Exploring CV AI models	Object Detection
	Pose/Keypoint Detection
	Image Classification
	Exploring Other Models on SenseCraft AI Studio

	An Image Classification Project	The Goal
	Data Collection
	Training
	Test
	Deployment
	Saving the Model

	Summary
	Resources

	Image Classification	Introduction	Project Goal
	Data Collection
	Collecting Data with the SenseCraft AI Studio
	Uploading the dataset to the Edge Impulse Studio
	Impulse Design and Pre-Processing
	Pre-processing (Feature generation)
	Model Design, Training, and Test
	Model Deployment
	Deploy the model on the SenseCraft AI Studio
	Image Classification (non-official) Benchmark
	Postprocessing
	Optional: Post-processing on external devices

	Summary
	Resources

	Object Detection
	Overview	Pre-requisites
	Setup
	Exercises

	Setup	Overview	Key Features
	Raspberry Pi Models (covered in this book)
	Engineering Applications

	Hardware Overview	Raspberry Pi Zero 2W
	Raspberry Pi 5

	Installing the Operating System	The Operating System (OS)
	Installation
	Initial Configuration

	Remote Access	SSH Access
	To shut down the Raspi via terminal:
	Transfer Files between the Raspi and a computer

	Increasing SWAP Memory
	Installing a Camera	Installing a USB WebCam
	Installing a Camera Module on the CSI port

	Running the Raspi Desktop remotely
	Updating and Installing Software
	Model-Specific Considerations	Raspberry Pi Zero (Raspi-Zero)
	Raspberry Pi 4 or 5 (Raspi-4 or Raspi-5)

	Image Classification	Overview	Applications in Real-World Scenarios
	Advantages of Running Classification on Edge Devices like Raspberry Pi

	Setting Up the Environment	Updating the Raspberry Pi
	Installing Required Libraries
	Setting up a Virtual Environment (Optional but Recommended)
	Installing TensorFlow Lite
	Installing Additional Python Libraries
	Creating a working directory:
	Setting up Jupyter Notebook (Optional)
	Verifying the Setup

	Making inferences with Mobilenet V2	Define a general Image Classification function
	Testing with a model trained from scratch
	Installing Picamera2

	Image Classification Project	The Goal
	Data Collection

	Training the model with Edge Impulse Studio	Dataset

	The Impulse Design	Image Pre-Processing
	Model Design
	Model Training
	Trading off: Accuracy versus speed
	Model Testing
	Deploying the model

	Live Image Classification
	Summary:
	Resources

	Object Detection	Overview	Object Detection Fundamentals

	Pre-Trained Object Detection Models Overview	Setting Up the TFLite Environment
	Creating a Working Directory:
	Inference and Post-Processing
	EfficientDet

	Object Detection Project	The Goal
	Raw Data Collection
	Labeling Data

	Training an SSD MobileNet Model on Edge Impulse Studio	Uploading the annotated data
	The Impulse Design
	Preprocessing all dataset
	Model Design, Training, and Test
	Deploying the model
	Inference and Post-Processing

	Training a FOMO Model at Edge Impulse Studio	How FOMO works?
	Impulse Design, new Training and Testing
	Deploying the model
	Inference and Post-Processing

	Exploring a YOLO Model using Ultralitics	Talking about the YOLO Model
	Installation
	Testing the YOLO
	Export Model to NCNN format
	Exploring YOLO with Python
	Training YOLOv8 on a Customized Dataset
	Inference with the trained model, using the Raspi

	Object Detection on a live stream
	Summary
	Resources

	Small Language Models (SLM)	Overview
	Setup	Raspberry Pi Active Cooler

	Generative AI (GenAI)	Large Language Models (LLMs)
	Closed vs Open Models:
	Small Language Models (SLMs)

	Ollama	Installing Ollama
	Meta Llama 3.2 1B/3B
	Google Gemma 2 2B
	Microsoft Phi3.5 3.8B
	Multimodal Models
	Inspecting local resources

	Ollama Python Library	Function Calling
	1. Importing Libraries
	2. Defining Input and Model
	3. Defining the Response Data Structure
	4. Setting Up the OpenAI Client
	5. Generating the Response
	6. Calculating the Distance
	Adding images

	SLMs: Optimization Techniques
	RAG Implementation	A simple RAG project
	Going Further

	Summary
	Resources

	Vision-Language Models (VLM)	Introduction	Why Florence-2 at the Edge?
	Florence-2 Model Architecture

	Technical Overview	Architecture
	Training Dataset (FLD-5B)
	Key Capabilities
	Practical Applications
	Comparing Florence-2 with other VLMs

	Setup and Installation	Environment configuration
	Testing the installation
	Defining the Prompt
	Generating the Output

	Florence-2 Tasks	Object Detection (OD)
	Image Captioning
	Detailed Captioning
	Visual Grounding
	Segmentation
	Dense Region Captioning
	OCR with Region
	Phrase Grounding for Specific Expressions
	Open Vocabulary Object Detection

	Exploring computer vision and vision-language tasks	Caption
	Detailed Caption
	More Detailed Caption
	Object Detection
	Dense Region Caption
	Caption to Phrase Grounding
	Cascade Tasks
	Open Vocabulary Detection
	Referring expression segmentation
	Region to Segmentation
	Region to Texts
	OCR

	Latency Summary
	Fine-Tunning
	Summary	Key Advantages of Florence-2
	Trade-offs
	Best Use Cases

	Future Implications
	Resources

	Overview
	KWS Feature Engineering	Overview
	The KWS	Applications of KWS
	Differences from General Speech Recognition

	Overview to Audio Signals	Why Not Raw Audio?

	Overview to MFCCs	What are MFCCs?
	Why are MFCCs important?
	Computing MFCCs

	Hands-On using Python
	Summary	MFCCs are particularly strong for
	Spectrograms or MFEs are often more suitable for

	Resources

	DSP Spectral Features	Overview
	Extracting Features Review
	A TinyML Motion Classification project
	Data Pre-Processing	Edge Impulse - Spectral Analysis Block V.2 under the hood

	Time Domain Statistical features
	Spectral features
	Time-frequency domain	Wavelets
	Wavelet Analysis
	Feature Extraction

	Summary

	Glossary	3
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	About This Glossary

	References

 	
 Title Page

 	
 Cover

 	
 Table of Contents

Abstract

 Machine Learning Systems provides a systematic framework for understanding and engineering machine learning (ML) systems. This textbook bridges the gap between theoretical foundations and practical engineering, emphasizing the systems perspective required to build effective AI solutions. Unlike resources that focus primarily on algorithms and model architectures, this book highlights the broader context in which ML systems operate, including data engineering, model optimization, hardware-aware training, and inference acceleration. Readers will develop the ability to reason about ML system architectures and apply enduring engineering principles for building flexible, efficient, and robust machine learning systems.

 [image: Machine Learning Systems Book Cover]
 Early Access Preview

 Publisher: The MIT Press (2026)

 📖 Click here to download PDF

 ch002.xhtml

Author’s Note

AI is bound to transform the world in profound ways, much like computers and the Internet revolutionized every aspect of society in the 20th century. From systems that generate creative content like text and images to those driving breakthroughs in drug discovery and scientific research, AI is ushering in a new era—one that promises to be even more transformative in its scope and impact. But how do we make it accessible to everyone?

With its transformative power comes an equally great responsibility for those who access it or work with it. Just as we expect companies to wield their influence ethically, those of us in academia bear a parallel responsibility: to share our knowledge openly, so it benefits everyone—not just a select few. This conviction inspired the creation of this book—an open-source resource aimed at making AI education, particularly in AI engineering and systems, inclusive, and accessible to everyone from all walks of life.

My passion for creating, curating, and editing this content has been deeply influenced by landmark textbooks that have profoundly shaped both my academic and personal journey. Whether I studied them cover to cover or drew insights from key passages, these resources fundamentally shaped the way I think. I reflect on the books that guided my path: works by Turing Award winners such as David Patterson and John Hennessy—pioneers in computer architecture and system design—and foundational research papers by luminaries like Yann LeCun, Geoffrey Hinton, and Yoshua Bengio, who pioneered modern deep learning. In some small part, my hope is that this book will inspire students to chart their own unique paths.

I am optimistic about what lies ahead for AI. It has the potential to solve global challenges and unlock creativity in ways we have yet to imagine. To achieve this, however, we must train the next generation of AI engineers and practitioners—those who can transform novel AI algorithms into scalable, reliable systems that work in real-world environments. This book is a step toward curating the material needed to build the next generation of AI engineers who will transform today’s visions into tomorrow’s reality.

This book is a work in progress, but knowing that even one learner benefits from its content motivates me to continually refine and expand it. To that end, if there’s one thing I ask of readers, it’s this: please show your support by starring the GitHub repository here. Your star ⭐ reflects your belief in this mission—not just to me, but to the growing global community of learners, educators, and practitioners. This small act is more than symbolic—it amplifies the importance of making AI education accessible.

I am a student of my own writing, and every chapter of this book has taught me something new—thanks to the numerous people who have played, and continue to play, an important role in shaping this work. Professors, students, practitioners, and researchers contributed by offering suggestions, sharing expertise, identifying errors, and proposing improvements. Every interaction, from detailed critiques to simple corrections, has been a lesson in collaborative knowledge creation. These contributions have not only refined the material but also deepened my understanding of how knowledge grows through collaboration. This book is, therefore, not solely my work; it is a shared endeavor, reflecting the collective spirit of those dedicated to sharing their knowledge and effort.

This book is dedicated to the loving memory of my father. His passion for education, endless curiosity, generosity in sharing knowledge, and unwavering commitment to quality challenge me daily to strive for excellence in all I do. In his honor, I extend this dedication to teachers and mentors everywhere, whose efforts and guidance transform lives every day. Your selfless contributions remind me to persevere.

Last but certainly not least, this work would not be possible without the unwavering support of my wonderful wife and children. Their love, patience, and encouragement form the foundation that enables me to pursue my passion and bring this work to life. For this, and so much more, I am deeply grateful.

— Prof. Vijay Janapa Reddi

 ch003.xhtml

About the Book

Overview

This section provides essential background about the book’s purpose, development context, and what readers can expect from their learning journey.

Purpose of the Book

The goal of this book is to provide a resource for educators and learners seeking to understand the principles and practices of machine learning systems. This book is continually updated to incorporate the latest insights and effective teaching strategies. We intend that it remains a valuable resource in this fast-evolving field. So please check back often!

Context and Development

The book originated as a collaborative effort with contributions from students, researchers, and practitioners. While maintaining its academic rigor and real-world applicability, it continues to evolve through regular updates and careful curation to reflect the latest developments in machine learning systems.

What to Expect

This textbook follows a carefully designed pedagogical progression that mirrors how expert ML systems engineers develop their skills. The learning journey unfolds in five distinct phases:

Phase 1: Theory - Build your conceptual foundation through Foundations and Design Principles, establishing the mental models that underpin all effective systems work.

Phase 2: Performance - Master Performance Engineering to transform theoretical understanding into systems that run efficiently in resource-constrained real-world environments.

Phase 3: Practice - Navigate Robust Deployment challenges, learning how to make systems work reliably beyond the controlled environment of development.

Phase 4: Ethics - Explore Trustworthy Systems to ensure your systems serve society beneficially and sustainably.

Phase 5: Vision - Look toward ML Systems Frontiers to understand emerging paradigms and prepare for the next generation of challenges.

Laboratory exercises are strategically positioned after the core theoretical foundation, allowing you to apply concepts with hands-on experience across multiple embedded platforms. Throughout the book, quizzes provide quick self-checks to reinforce understanding at key learning milestones.

Pedagogical Philosophy: Foundations First

Machine learning systems represent inherently complex engineering challenges. However, they are constructed from fundamental building blocks that must be thoroughly understood before advancing to sophisticated implementations. This pedagogical approach parallels established educational progressions: students master basic algorithms before tackling distributed systems, or develop proficiency in linear algebra before engaging with advanced machine learning theory. ML systems similarly possess essential foundational components that serve as the basis for all subsequent learning.

Our curriculum emphasizes mastery of these core building blocks:

	The interaction between models and hardware

	Data flow patterns through systems

	Computational pattern emergence

	Optimization principles within individual systems

Through comprehensive understanding of these fundamentals, students develop the analytical framework necessary to reason effectively about complex scenarios including distributed training architectures, multi-device coordination protocols, and emerging technological paradigms.

This foundations-first methodology prioritizes conceptual depth over topical breadth. This approach enables students to construct robust mental models that will serve as enduring intellectual resources throughout their professional careers as machine learning systems continue to evolve.

Learning Goals

This section outlines the educational framework guiding the book’s design and the specific learning objectives readers will achieve.

Key Learning Outcomes

This book is structured with Bloom’s Taxonomy in mind (Figure 1), which defines six levels of learning, ranging from foundational knowledge to advanced creative thinking:

[image:]

Figure 1: Bloom’s Taxonomy (2021 edition).

	Remembering: Recalling basic facts and concepts.

	Understanding: Explaining ideas or processes.

	Applying: Using knowledge in new situations.

	Analyzing: Breaking down information into components.

	Evaluating: Making judgments based on criteria and standards.

	Creating: Producing original work or solutions.

Learning Objectives

This book supports readers in developing practical expertise across the ML systems lifecycle:

	Systems Thinking: Understand how ML systems differ from traditional software, and reason about hardware-software interactions.

	Workflow Engineering: Design end-to-end ML pipelines, from data engineering through deployment and maintenance.

	Performance Optimization: Apply systematic approaches to make systems faster, smaller, and more resource-efficient.

	Production Deployment: Address real-world challenges including reliability, security, privacy, and scalability.

	Responsible Development: Navigate ethical implications and implement sustainable, socially beneficial AI systems.

	Future-Ready Skills: Develop judgment to evaluate emerging technologies and adapt to evolving paradigms.

	Hands-On Implementation: Gain practical experience across diverse embedded platforms and resource constraints.

	Self-Directed Learning: Use integrated assessments and interactive tools to track progress and deepen understanding.

AI Learning Companion

Throughout this resource, you’ll find SocratiQ, an AI learning assistant designed to enhance your learning experience. Inspired by the Socratic method of teaching, SocratiQ combines interactive quizzes, personalized assistance, and real-time feedback to help you reinforce your understanding and create new connections. As part of our integration of Generative AI technologies, SocratiQ encourages critical thinking and active engagement with the material.

SocratiQ is still a work in progress, and we welcome your feedback to make it better. For more details about how SocratiQ works and how to get the most out of it, visit the AI Learning Companion page.

How to Use This Book

Book Structure

This book takes you from understanding ML systems conceptually to building and deploying them in practice. Each part develops specific capabilities:

Core Content:

	Foundations Master the fundamentals. Build intuition for how ML systems differ from traditional software, understand the hardware-software stack, and gain fluency with essential architectures and mathematical foundations.

	Design Principles Engineer complete workflows. Learn to design end-to-end ML pipelines, manage complex data engineering challenges, select appropriate frameworks, and orchestrate training at scale.

	Performance Engineering Optimize for real constraints. Develop skills to make systems faster, smaller, and more efficient through model optimization, hardware acceleration, and systematic performance analysis.

	Robust Deployment Build production-ready systems. Progress from individual device constraints through system-wide operations. Master on-device learning, security and privacy as systems scale, robustness against failures, and ML operations that orchestrate production deployment.

	Trustworthy Systems Design responsibly. Navigate the social and environmental implications of ML systems, implement responsible AI practices, and create technology that serves the public good.

	Frontiers of ML Systems Prepare for what’s next. Understand emerging paradigms, anticipate future challenges, and develop the judgment to evaluate new technologies as they emerge.

Hands-On Learning:

	Laboratory Exercises Implement everything you learn. Progress from microcontroller-based systems to edge computing platforms, experiencing the full spectrum of resource constraints and optimization challenges in embedded ML.

Suggested Reading Paths

	Beginners: Start with Foundations to build conceptual understanding, then progress through Design Principles and select relevant lab exercises for hands-on experience.

	Practitioners: Focus on Design Principles, Performance Engineering, and Robust Deployment for practical system design insights, complemented by platform-specific lab exercises.

	Researchers: Explore Performance Engineering, Trustworthy Systems, and ML Systems Frontiers for advanced topics, along with comparative analysis from the shared tools lab section.

	Hands-On Learners: Combine any core content parts with the comprehensive laboratory exercises across Arduino, Seeed, Grove Vision, and Raspberry Pi platforms for practical implementation experience.

For Students with Different Backgrounds

This textbook welcomes students from diverse academic backgrounds, whether you come from computer science, engineering, mathematics, or other fields. Understanding how ML systems connect to your existing knowledge helps bridge theoretical concepts to practical implementation:

Computer Science Students: ML systems extend familiar concepts into new domains. If you’ve worked with algorithms and data structures, think of ML as learning algorithms that automatically optimize themselves based on data patterns rather than following fixed instructions.

Your experience with system design, memory management, parallel processing, and distributed systems directly applies to ML deployment. The underlying computational complexity analysis still applies—we analyze time and space complexity for training and inference phases separately.

Electrical and Computer Engineering Students: ML systems represent a natural evolution of signal processing and control systems principles. Machine learning can be viewed as advanced signal processing where we extract meaningful patterns from noisy, high-dimensional signals.

Neural networks perform operations similar to filters—convolution layers in image processing are literally convolution operations you’ve studied. Your background in computer systems organization and architecture becomes essential for understanding how ML algorithms map to different hardware platforms, while your understanding of memory hierarchies helps optimize data movement in large-scale training systems.

Students from Other Backgrounds: Think of ML systems like a modern factory assembly line. Just as a factory transforms raw materials into finished products through coordinated stages, ML systems transform raw data into useful predictions through interconnected components.

The mathematics—linear algebra, probability, and calculus—are the “tools” of this factory, but you don’t need to be a tool expert to understand how the assembly line works. Most concepts become clear through concrete examples, like understanding how a recommendation system works by thinking about how a librarian might suggest books based on your reading history.

The key skill is systems thinking: understanding how data pipelines, training processes, and deployment infrastructure work together, much like how supply chains, manufacturing, and distribution must coordinate in any complex operation.

Modular Design

The book is designed for flexible learning, allowing readers to explore chapters independently or follow suggested sequences. Each chapter integrates:

	Interactive quizzes for self-assessment and knowledge reinforcement

	Practical exercises connecting theory to implementation

	Laboratory experiences providing hands-on platform-specific learning

We embrace an iterative approach to content development—sharing valuable insights as they become available rather than waiting for perfection. Your feedback helps us continuously improve and refine this resource.

We also build upon the excellent work of experts in the field, fostering a collaborative learning ecosystem where knowledge is shared, extended, and collectively advanced.

Transparency and Collaboration

This book began as a community-driven project shaped by the collective efforts of students in CS249r, colleagues at Harvard and beyond, and the broader ML systems community. Its content has evolved through open collaboration, thoughtful feedback, and modern editing tools—including both rule-based scripts and generative AI technologies. In a fitting twist, the very systems we study in this book have helped refine its pages, highlighting the interplay between human expertise and machine intelligence. Fortunately, they’re not quite ready to engineer the systems themselves—at least, not yet.

As the primary author, editor, and curator, I (Prof. Vijay Janapa Reddi) provide human-in-the-loop oversight to ensure the textbook material remains accurate, relevant, and of the highest quality. Still, no one is perfect—so errors may exist. Your feedback is welcome and encouraged. This collaborative model is essential for maintaining quality and ensuring that knowledge remains open, evolving, and globally accessible.

Copyright and Licensing

This book is open-source and developed collaboratively through GitHub. Unless otherwise stated, this work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Contributors retain copyright over their individual contributions, dedicated to the public domain or released under the same open license as the original project. For more information on authorship and contributions, visit the GitHub repository.

Join the Community

This textbook is more than just a resource—it’s an invitation to collaborate and learn together. Engage in community discussions to share insights, tackle challenges, and learn alongside fellow students, researchers, and practitioners.

Whether you’re a student starting your journey, a practitioner solving real-world challenges, or a researcher exploring advanced concepts, your contributions will enrich this learning community. Introduce yourself, share your goals, and let’s collectively build a deeper understanding of machine learning systems.

 ch004.xhtml

Book Changelog

This Machine Learning Systems textbook is constantly evolving. This changelog is intended to record all updates and improvements, helping you stay informed about what’s new and refined.

Automated Changelog

These changelog entries are automatically generated from our development process and should be mostly accurate. They track code changes, content updates, and improvements across the entire book. While the entries are comprehensive, they may occasionally contain minor inaccuracies or overly technical details.

2025 Updates

📅 October 09

📄 Frontmatter

	███░░ About: The book now features a reorganized Part IV for better understanding of AI systems and a refined pedagogical approach emphasizing foundational concepts

	███░░ Foreword: The foreword now includes refined content related to AI systems engineering concepts and practices

	██░░░ Index: The book now includes refined content on AI systems engineering and an updated “About the Book” link for easier navigation

	██░░░ SocratiQ: Improved the visibility and accessibility of SocratiQ content within the textbook

	██░░░ Changelog: Improved the visibility of certain content and updated how the changelog is displayed

	██░░░ Acknowledgements: The contributor list has been updated and the acknowledgements now include support from Netlify and Edge Impulse

📖 Chapters

	███░░ Chapter 8: AI Training: The Training chapter now features a smoother flow, practical examples using GPT-2, and improved callout formatting for better readability

	███░░ Chapter 12: Benchmarking AI: The Benchmarking chapter now has improved clarity, addresses reader critiques about power measurements with a corrected claim and citation, and includes a new TikZ figure for better visualization

	███░░ Chapter 1: Introduction: The introduction to machine learning systems engineering has been refined, and the textbook now includes considerations for energy efficiency in ML systems. Text clarity and consistency have also been improved throughout

	███░░ Chapter 14: On-Device Learning: The On-Device Learning chapter has been improved with new content and cross-references based on student feedback

	███░░ Chapter 13: ML Operations: The ML Operations chapter now includes a beginner-friendly explanation of Infrastructure as Code and incorporates three phases of student feedback for improvement. A new section on stakeholder communication has also been added

	███░░ Chapter 15: Security & Privacy: The Chapter on Privacy & Security now includes more practical examples and exercises to help readers understand key concepts better. It also delves deeper into ML deployment paradigms and constraints, providing a more comprehensive understanding of the topic. The chapter’s structure has been improved for better flow and learning, with added decision frameworks to guide readers through

	███░░ Chapter 16: Responsible AI: The Responsible AI chapter now features improved flow, clearer explanations, and a more engaging narrative

	███░░ Chapter 17: Sustainable AI: The Sustainable AI chapter now includes information about optical interconnects, and the Robust AI chapter has been revised for better flow and a stronger narrative

	███░░ Chapter 20: Conclusion: The Conclusion chapter now offers a more principled overview of the field, with updated definitions and clearer learning objectives

	███░░ Chapter 6: Data Engineering: The Data Engineering chapter now incorporates real-world production scenarios and a systems perspective. It also includes new equations, citations, a four pillars diagram, and improved narrative flow for better understanding

	███░░ Chapter 3: DL Primer: The Deep Learning Primer chapter now includes more historical and mathematical context, features clearer explanations and improved writing, and has a more refined flow and formatting

	███░░ Chapter 4: DNN Architectures: The DNN Architectures chapter now includes a decision framework quiz to help readers choose appropriate architectures and features improved flow with clearer explanations of the im2col technique

	███░░ Chapter 7: AI Frameworks: The Frameworks chapter now includes Patterson bandwidth specifications, introductory paragraphs for better flow, and a clearer explanation of how to select and compare ML frameworks

	███░░ Chapter: Frontiers: The Frontiers chapter now includes comprehensive citations and has been significantly improved with enhanced flow, coherence, and conceptual progression. Content refinements have also been made across all core chapters

	███░░ Chapter 2: ML Systems: The ML Systems chapter now includes a new figure for better visualization, improved writing clarity, and standardized figures for easier understanding

	███░░ Chapter 10: Model Optimizations: The Model Optimizations chapter now has improved flow and navigation, along with pedagogical enhancements to aid understanding. Formatting has also been standardized for better readability

	███░░ Chapter 5: AI Workflow: The AI Workflow chapter now has clearer learning objectives and a more focused structure. The chapter better explains how the workflow is used as a scaffold for understanding machine learning concepts, and the DR case study is presented as a more effective teaching tool

	███░░ Chapter 11: AI Acceleration: The AI Acceleration chapter now features a more detailed explanation of accelerator anatomy, improved introductions to key sections, and a refined discussion on memory allocation

	███░░ Glossary: The glossary now includes key terms related to Artificial General Intelligence (AGI) and has been refined by removing redundancies and standardizing cross-references for improved clarity

	███░░ Foundations: The Foundations chapter now includes new content such as concepts, examples, explanations, figures, and diagrams to enhance understanding

	███░░ Chapter: Generative Ai: The Generative AI chapter now flows more logically, ensuring a smoother learning experience by maintaining engineering insights while respecting the order of concepts. Accidental bold formatting has also been removed for improved readability

	███░░ Chapter: Emerging Topics: Concept maps are now available for all textbook chapters to aid comprehension. The review GUI is also functional again, allowing students to test their understanding through interactive quizzes

	██░░░ Chapter 19: AI for Good: The AI for Good chapter now has a smoother flow and better integration with the surrounding content. The theory section also received some minor improvements

	██░░░ Chapter 9: Efficient AI: Improved the visual presentation of code examples and added a new figure to enhance understanding of concepts in Chapter 9

	██░░░ Chapter 18: Robust AI: The Robust AI chapter now provides a clearer understanding of adversarial examples and dropout’s role in uncertainty estimation. A typo has also been corrected for improved accuracy

	█░░░░ Impact Outlook: IMPACT: █░░░░

🧑‍💻 Labs

	██░░░ Lab: Labs: Tables in the lab exercises are now formatted consistently for better readability

	██░░░ Lab: Arduino Object Detection: Images are now locally hosted and the chapter has been improved with expert feedback and formatting updates

	██░░░ Lab: Nicla Vision: This update enhances navigation and readability within the Nicla Vision lab

	██░░░ Lab: Raspi: Tables in the Raspi lab have been formatted for improved readability

	██░░░ Lab: Xiao Esp32S3: Improved clarity and user experience with updated section labels and enhanced CLI help

	██░░░ Lab: Kits: Tables in the Lab: Kits chapter have been formatted for improved readability

	██░░░ Lab: Arduino Object Detection: The Arduino Object Detection lab has been updated with expert feedback and formatting improvements for a better learning experience

	██░░░ Lab: Arduino Image Classification: Expert feedback has been incorporated to improve the clarity and accuracy of the content in this lab. Formatting fixes have also been applied for a better reading experience

	██░░░ Lab: Pi Large Language Models: The Ollama lab now uses the correct image paths, ensuring consistent display across all platforms including PDF output

	██░░░ Lab: Pi Vision Language Models: Expert feedback has been incorporated to improve the clarity and accuracy of the content in this lab

	██░░░ Lab: Arduino Image Classification: The Arduino Image Classification lab now uses locally downloaded images and includes minor text fixes and improvements for a better learning experience

	██░░░ Lab: Arduino Keyword Spotting: The Keyword Spotting lab has been updated with a new kit and includes minor text fixes and improvements for better clarity

	██░░░ Lab: Arduino Object Detection: Images in the lab are now sourced locally and have more descriptive filenames

	██░░░ Lab: Arduino Motion Classification: Scripts in the lab now have a more standardized naming convention, making them easier to understand and use

	██░░░ Lab: Arduino Setup: Images now have consistent filenames and references are updated for accuracy

	██░░░ Lab: Arduino Image Classification: Image filenames in the lab have been updated to lowercase for consistency and easier referencing

	██░░░ Lab: Setup And No Code Apps: Image filenames are now lowercase for consistency and easier referencing

	██░░░ Lab: Arduino Motion Classification: Image references in the lab are now consistent and accurate

	██░░░ Lab: Arduino Setup: The Arduino setup lab now includes a missing loop() function and updated links for better navigation

📅 August 18

📖 Chapters

	█████ Chapter 2: ML Systems: Improved writing clarity in the ML systems chapter and added a new TikZ figure for better visualization.

	████░ Chapter 6: Data Engineering: Improved clarity of data governance figure and updated labels for the data engineering diagram.

	████░ Chapter 9: Efficient AI: Added a TikZ figure to enhance understanding of neural network architecture.

	████░ Chapter 12: Benchmarking AI: Added a new TikZ figure to illustrate a concept.

	███░░ Chapter 18: Robust AI: Clarifies dropout’s role in uncertainty estimation and elaborates on adversarial example detection.

	████░ Index: Updated the ‘About the Book’ link.

🧑‍💻 Labs

Seeed XIAO ESP32S3

	█████ Lab: XIAO Image Classification: Minor text improvements were made to enhance clarity within the Image Classification Lab.

	████░ Lab: XIAO Keyword Spotting: The KWS lab has been updated with new equipment instructions.

Raspberry Pi

	███░░ Lab: Pi Large Language Models: The Ollama lab now uses corrected image paths to display external images in PDF output.

Hands-on Labs

	██░░░ Lab: Kits: Updated links to ensure they are accurate.

📅 August 06

📖 Chapters

	████░ Index: Improved text wrapping around book cover images for better space utilization.

📅 August 05

📄 Frontmatter

	█████ About: Modernized About the Book section to reflect current organizational structure.

	██░░░ Changelog: Updated content

	████░ Acknowledgements: Updated content

	█████ SocratiQ: Added AI-powered figure caption improvement script.

📖 Chapters

	█████ Chapter 1: Introduction: Updated quizzes with new metadata and formatting enhancements.

	█████ Chapter 2: ML Systems: Added quizzes with answers to ML systems chapter and made quiz answer formatting consistent.

	█████ Chapter 3: DL Primer: Enhanced descriptions, clarified key concepts, and added new TikZ figures in chapters 3 through 6. Removed resources sections from chapters, updated section IDs and quiz JSON files, and renamed “Conclusion” sections to “Summary”.

	█████ Chapter 4: DNN Architectures: Updated content

	█████ Chapter 5: AI Workflow: Added quizzes to the AI Workflow chapter with automatic generation from JSON files.

	█████ Chapter 6: Data Engineering: Enhances data engineering section with descriptions and adds new TikZ figures in chapters 3 through 6.

	█████ Chapter 7: AI Frameworks: Added new TikZ figures illustrating framework concepts and enhanced descriptions for improved clarity.

	█████ Chapter 8: AI Training: Added TikZ figures to enhance visual understanding of concepts and improved clarity of explanations.

	█████ Chapter 9: Efficient AI: Added quizzes to the efficient AI chapter with self-check answers and updated quiz formatting.

	█████ Chapter 10: Model Optimizations: Added new TikZ figures to illustrate concepts and improved descriptions for enhanced clarity.

	█████ Chapter 11: AI Acceleration: Added quizzes to the efficient AI chapter.

	█████ Chapter 12: Benchmarking AI: Added new TikZ figures to illustrate concepts within the benchmarking chapter.

	█████ Chapter 13: ML Operations: Enhances descriptions and clarifies key concepts within ML operations.

	█████ Chapter 14: On-Device Learning: Enhances descriptions and clarifies key concepts in On-Device Learning.

	█████ Chapter 15: Security & Privacy: Improved clarity and context of figure captions related to security and privacy concepts.

	█████ Chapter 16: Responsible AI: Improved quiz insertion logic and answer extraction. Added section anchors for self-check answers.

	█████ Chapter 17: Sustainable AI: Updates table caption and column header. Added new TikZ figures in chapter 12.

	█████ Chapter 18: Robust AI: Improved quiz insertion logic and answer extraction, updated some figure captions with added context.

	█████ Chapter 19: AI for Good: Corrections were made to table captions, figure captions, and quiz answers for clarity.

	█████ Chapter 21: Conclusion: Renamed ‘Conclusion’ sections to ‘Summary’ and added section anchors for self-check answers.

	███░░ PhD Survival Guide: Quiz answers are now correctly inserted before part blocks when needed.

	█████ Index: Added clickable cover image with PDF download functionality and updated book card messaging to early access preview.

	███░░ 404: Updated content

	███░░ Chapter 20: Frontiers: Improved the main page layout by moving the abstract to the beginning, adding a changelog note, and preparing an announcement banner.

	██░░░ Best Practices: Added summaries for each part of the book.

	██░░░ Design Principles: Added book part organization.

	██░░░ Foundations: Added organization of book parts to improve navigation and understanding.

	██░░░ Impact Outlook: The book now includes part summaries which can help readers understand the main points of each section.

	█████ Kits: Updated labs documentation structure, added a lab compatibility matrix, and reordered platforms.

	███░░ Labs: Updated website links to reflect proper navigation between kits and labs.

🧑‍💻 Labs

Hands-on Labs

	████░ Lab: Labs Overview: Updated section headers using a script.

	████░ Lab: Lab Setup: Quiz answers are now inserted before part blocks as needed, and section headers have been updated.

	███░░ Lab: Nicla Vision: Corrects figure captions to adhere to style guide.

	█████ Lab: Ide Setup: Improved labs documentation with enhanced troubleshooting and platform guides.

	█████ Lab: Kits: Improved labs documentation with enhanced troubleshooting and platform guides.

	█████ Lab: Labs: Improved labs documentation with enhanced troubleshooting and platform guides.

	███░░ Lab: Raspi: Updated section ids and headers based on changes to the manager code.

	█████ Lab: Setup And No Code Apps: Updated section headers for improved readability.

	███░░ Lab: Xiao Esp32S3: Updated content

	████░ Lab: Dsp Spectral Features Block: Quiz answers now appear before part blocks when needed.

	████░ Lab: Kws Feature Eng: Updated content

	█░░░░ Lab: Shared: Updated content

Arduino

	█████ Lab: Arduino Setup: Updates documentation for XIAO ESP32S3 Sense and improves clarity through minor typo corrections.

	█████ Lab: Arduino Image Classification: Minor typos were corrected for improved clarity.

	████░ Lab: Arduino Object Detection: Corrected minor typos and improved clarity within the lab content.

	████░ Lab: Arduino Keyword Spotting: Updated content

	█████ Lab: Arduino Motion Classification: Fixed quiz answer insertion logic to appear before part blocks when needed.

Raspberry Pi

	█████ Lab: Raspberry Pi Setup: Updated section headers using a script for improved consistency.

	█████ Lab: Pi Image Classification: Updated section headers using the script.

	█████ Lab: Pi Object Detection: Updated section headers using a script and changed some section IDs to reflect recent code changes.

	█████ Lab: Pi Large Language Models: Updated content

	█████ Lab: Pi Vision Language Models: Updated section headers using a script and fixed quiz answer insertion order.

Seeed XIAO ESP32S3

	███░░ Lab: XIAO Setup: Updated section headers for improved readability.

	████░ Lab: XIAO Image Classification: Updated section headers using a script.

	████░ Lab: XIAO Object Detection: Updated section headers using a script to maintain consistency.

	████░ Lab: XIAO Keyword Spotting: Updated section headers using a script.

	████░ Lab: XIAO Motion Classification: Corrected typos, improved wording, and adjusted quiz answer placement within the motion classification lab.

Grove Vision

	███░░ Lab: Grove Vision Ai V2: Updated content

📅 June 10

📄 Frontmatter

	█░░░░ About: Updated SocratiQ page links

	█████ SocratiQ: Added documentation for SocratiQ AI learning companion and removed the SocratiQ AI feature.

📖 Chapters

	████░ Chapter 1: Introduction: Minor grammatical errors were corrected and the language was refined for improved clarity.

	███░░ Chapter 2: ML Systems: Added resource sections to core content and improved text processing in QMD files.

	█████ Chapter 3: DL Primer: Added resource sections to core content, clarified the difference between training and inference, and improved text processing in QMD files for better clarity.

	█████ Chapter 4: DNN Architectures: Refined explanations of deep learning architectures including CNNs, added figures to illustrate data movement patterns, and consolidated footnote definitions for clarity.

	███░░ Chapter 5: AI Workflow: Added resource sections to core content, improved text processing in QMD files, and enhanced clarity and consistency.

	█████ Chapter 6: Data Engineering: Added a data pipeline overview diagram and clarified figure references in the text.

	█████ Chapter 7: AI Frameworks: Added resource sections to core content. This update provides additional learning materials beyond the main text.

	█████ Chapter 8: AI Training: Added resource sections to the training content, clarified the activation checkpointing explanation, and improved text processing in QMD files. Figures were also added.

	█████ Chapter 9: Efficient AI: Added resource sections to the core content and clarified the trade-off between efficiency and latency. The scaling laws section was refined for improved clarity.

	█████ Chapter 10: Model Optimizations: Refined model optimization techniques documentation and clarified AutoML and NAS descriptions.

	█████ Chapter 11: AI Acceleration: Improved clarity and accuracy of explanations related to resource allocation in AI accelerators. Added figures and corrected a typo in a matrix multiplication example.

	███░░ Chapter 12: Benchmarking AI: Improved clarity and consistency of text related to benchmarking AI.

	█████ Chapter 13: ML Operations: Updated MLOps content for clarity and accuracy. The operations diagram and text were also updated.

	█████ Chapter 14: On-Device Learning: Added resource sections to the core content and clarified explanations of adaptation equations.

	█████ Chapter 15: Security & Privacy: Updated the chapter with expanded discussions on various security vulnerabilities like data poisoning, model theft, and adversarial attacks. Additional content includes a section on trustworthy ML systems and threat mitigation strategies.

	█████ Chapter 16: Responsible AI: Expanded discussions on safety and robustness, fairness, privacy, and data governance in AI. Added a section on design tradeoffs in responsible AI and clarified accountability considerations.

	████░ Chapter 17: Sustainable AI: Added resource sections to the core content and made minor corrections for grammatical errors.

	████░ Chapter 18: Robust AI: Improved clarity and readability of explanations about robust AI techniques.

	█████ Chapter 19: AI for Good: Refined AI for Good content to enhance clarity.

	█░░░░ Index: Corrected minor grammatical errors and content inconsistencies.

🧑‍💻 Labs

Hands-on Labs

	███░░ Lab: Labs Overview: Updated content

	███░░ Lab: Lab Setup: Updated content

	█████ Lab: Setup And No Code Apps: Improved documentation with corrected latency descriptions and enhanced clarity.

Arduino

	█████ Lab: Arduino Image Classification: Added Image Classification Lab to the documentation.

	██░░░ Lab: Arduino Object Detection: Added a new lab focusing on object detection using the Grove Vision AI v2 module.

Seeed XIAO ESP32S3

	█░░░░ Lab: XIAO Image Classification: Corrected a typo in the image classification lab instructions.

Grove Vision

	████░ Lab: Grove Vision Ai V2: Added a new lab focused on Grove Vision AI v2.

📅 May 14

📖 Chapters

	█████ Chapter 14: On-Device Learning: On-device learning content was restructured and clarified for improved understanding.

📅 May 04

📖 Chapters

	███░░ Chapter 1: Introduction: Updated content

	█████ Chapter 2: ML Systems: Corrected grammar in a footnote about GDPR/HIPAA compliance.

	█████ Chapter 3: DL Primer: Modified the explanation of dimension ordering for W^L.

	█████ Chapter 4: DNN Architectures: Improved clarity by finding any missing references.

	████░ Chapter 5: AI Workflow: Updated content

	████░ Chapter 6: Data Engineering: Updated content

	████░ Chapter 7: AI Frameworks: Updated content

	█████ Chapter 8: AI Training: Improved label checking for clearer understanding of training data requirements.

	████░ Chapter 9: Efficient AI: Updated content

	█████ Chapter 10: Model Optimizations: Updated content

	████░ Chapter 11: AI Acceleration: The discussion on hardware acceleration, specialization, and AI compute primitives has been refined for improved clarity.

	███░░ Chapter 12: Benchmarking AI: The benchmarking metrics and power measurements explanations have been clarified.

	█████ Chapter 13: ML Operations: Expanded core MLOps concepts and included additional case studies.

	█████ Chapter 14: On-Device Learning: Added definitions and guidance on on-device learning systems design. Expanded on security concerns, explained privacy in federated learning, and clarified adaptation processes. Included a conclusion, challenges section, tradeoffs summary table, and explorations of on-device learning with limited data and adaptation strategies.

	█░░░░ Chapter 15: Security & Privacy: Improved label checking for accuracy and consistency.

	███░░ Chapter 17: Sustainable AI: Improved visual representation of sustainable AI concepts with consolidated TikZ figure styling.

	███░░ Chapter 18: Robust AI: Improved label checking for accuracy.

	█░░░░ Chapter 19: AI for Good: Improved accuracy of the PlantVillage Nuru footnote.

🧑‍💻 Labs

Arduino

	████░ Lab: Arduino Setup: Instructions were updated for clarity and to correct typos.

	█████ Lab: Arduino Image Classification: Updated image classification lab instructions for improved clarity.

	████░ Lab: Arduino Object Detection: Improved object detection instructions for clarity.

	██░░░ Lab: Arduino Keyword Spotting: Updated content

	█░░░░ Lab: Arduino Motion Classification: Updated content

Raspberry Pi

	████░ Lab: Raspberry Pi Setup: Updated content

	█████ Lab: Pi Image Classification: Updated content

	█████ Lab: Pi Object Detection: Updated content

	█████ Lab: Pi Large Language Models: Updated content

	█████ Lab: Pi Vision Language Models: The VLM lab guide was restructured for improved clarity.

Seeed XIAO ESP32S3

	████░ Lab: XIAO Setup: Updated content

	████░ Lab: XIAO Image Classification: Updated content

	████░ Lab: XIAO Object Detection: Updated content

	████░ Lab: XIAO Keyword Spotting: Updated content

	████░ Lab: XIAO Motion Classification: Updated content

Hands-on Labs

	████░ Lab: Dsp Spectral Features Block: Updated content

	███░░ Lab: Kws Feature Eng: Updated content

	██░░░ Lab: Raspi: Updated content

	█░░░░ Lab: Xiao Esp32S3: Updated content

📅 March 25

📄 Frontmatter

	██░░░ Foreword: Updated content

	██░░░ About: Updated content

	████░ Acknowledgements: Updated contributor list.

	███░░ SocratiQ: Corrected broken links throughout the content.

📖 Chapters

	█████ Chapter 1: Introduction: Minor stylistic edits were made to improve readability.

	█████ Chapter 2: ML Systems: Improved footnote consistency and addressing missing references within the ML systems chapter.

	█████ Chapter 3: DL Primer: Improved footnote naming consistency throughout the chapter.

	████░ Chapter 4: DNN Architectures: Corrected hyphenation, improved Markdown styling, fixed broken links, and ensured figure references were accurate.

	█████ Chapter 5: AI Workflow: Added a definition to improve understanding of key concepts within the workflow.

	█████ Chapter 6: Data Engineering: Fixed broken links and made minor text edits to improve clarity.

	█████ Chapter 7: AI Frameworks: Improved figure formatting, ensured consistent footnote naming, and fixed callout formatting for a cleaner presentation of content.

	█████ Chapter 8: AI Training: Improved consistency of footnote naming conventions within the section.

	█████ Chapter 9: Efficient AI: Added a new section on scaling laws and made minor improvements to the existing text.

	█████ Chapter 10: Model Optimizations: Improved clarity of markdown styles and fixed references to figures and tables.

	█████ Chapter 11: AI Acceleration: Improved footnote naming consistency and fixed redundant figure references.

	█████ Chapter 12: Benchmarking AI: Fixed broken links and improved section header clarity.

	█████ Chapter 13: ML Operations: Updated MLOps key components section with narrative structure and restructured core components into groups. Case studies were revised for clarity.

	█████ Chapter 14: On-Device Learning: Fixed broken links within the chapter.

	█████ Chapter 15: Security & Privacy: Fixed broken links.

	████░ Chapter 16: Responsible AI: Fixed broken links within the Responsible AI chapter.

	█████ Chapter 17: Sustainable AI: Added a discussion about Jevon’s paradox and its plot to illustrate the concept.

	█████ Chapter 18: Robust AI: Updated chapter content with new text about robust AI concepts including introductions to poisoning attacks, transient faults and permanent faults. The overview was also improved.

	█████ Chapter 19: AI for Good: Fixed broken links for improved navigational clarity within the chapter.

	████░ Chapter 21: Conclusion: Removed extraneous sections from the conclusion.

	█░░░░ Chapter: Generative Ai: Updated content

	█████ Chapter: Old Sus Ai: Updated content

🧑‍💻 Labs

Arduino

	███░░ Lab: Arduino Setup: Corrected broken links within setup instructions.

	███░░ Lab: Arduino Image Classification: Improved Markdown styles for better readability.

	██░░░ Lab: Arduino Keyword Spotting: Updated Markdown styling for improved readability.

	████░ Lab: Arduino Motion Classification: Corrected broken links within the motion classification documentation.

Raspberry Pi

	█░░░░ Lab: Raspberry Pi Setup: Spelling errors were corrected in the Raspberry Pi setup instructions.

	███░░ Lab: Pi Object Detection: Fixed broken links within the Markdown file.

	████░ Lab: Pi Large Language Models: Improved Markdown styles within the document.

	███░░ Lab: Pi Vision Language Models: Fixed broken links within the text.

Seeed XIAO ESP32S3

	█░░░░ Lab: XIAO Image Classification: Spelling mistakes were corrected for improved clarity.

	███░░ Lab: XIAO Keyword Spotting: Corrected Markdown styling inconsistencies for improved readability.

	█░░░░ Lab: XIAO Motion Classification: Improved Markdown formatting styles for better readability.

Hands-on Labs

	███░░ Lab: Dsp Spectral Features Block: Improved Markdown style consistency.

	████░ Lab: Kws Feature Eng: Improved Markdown styling for better readability.

📚 Appendix

	██░░░ PhD Survival Guide: Spelling errors were corrected and all broken links were fixed.

📅 March 03

📄 Frontmatter

	█░░░░ About: Updated content

	████░ Acknowledgements: Updated contributors list.

	███░░ SocratiQ: Fixed formatting inconsistencies in callout titles.

📖 Chapters

	████░ Chapter 1: Introduction: Fixed formatting issues within callout titles.

	████░ Chapter 2: ML Systems: Corrected markdown formatting issues within the ML Systems chapter.

	█████ Chapter 3: DL Primer: Fixed callout title formatting.

	███░░ Chapter 4: DNN Architectures: Fixed formatting issues with callout titles and applied linting fixes to improve QMD file consistency.

	████░ Chapter 5: AI Workflow: Improved text clarity and corrected grammatical errors.

	█████ Chapter 6: Data Engineering: Fixed formatting issues within the data engineering chapter.

	█████ Chapter 7: AI Frameworks: Improved clarity of AI framework descriptions with better formatting and removed redundant information.

	█████ Chapter 8: AI Training: Added descriptions of single and multi GPU systems and removed redundant definitions.

	████░ Chapter 9: Efficient AI: Removed redundant definitions for better clarity.

	█████ Chapter 10: Model Optimizations: Added structured optimization explanations, figures illustrating sparsity and KD, and an LTH + iterative pruning + calibration section. The conclusion was also added.

	█████ Chapter 11: AI Acceleration: Added a section on NVSwitch for multi-GPU setups, included a figure about TPU and updated text with information about models vs. memory bandwidth.

	█████ Chapter 12: Benchmarking AI: Removed an exercise, updated image, and fixed a reference.

	████░ Chapter 13: ML Operations: Fixed formatting of callout titles and addressed QMD linting issues.

	████░ Chapter 14: On-Device Learning: Fixed formatting issues with callouts and improved code readability by removing redundant definitions.

	████░ Chapter 15: Security & Privacy: Fixed formatting inconsistencies in callout titles and improved overall markdown structure.

	███░░ Chapter 16: Responsible AI: Fixed formatting issues in callout titles within the Responsible AI chapter.

	████░ Chapter 17: Sustainable AI: Callout title formatting was fixed for improved clarity.

	████░ Chapter 18: Robust AI: Improved formatting and readability of callout titles and overall text.

	████░ Chapter 19: AI for Good: Improved formatting of callout titles within the AI for Good chapter.

🧑‍💻 Labs

Hands-on Labs

	██░░░ Lab: Labs Overview: Updated content

	█░░░░ Lab: Nicla Vision: Updated content

	███░░ Lab: Kws Feature Eng: Fixed markdown formatting issues in the KWS Feature Engineering documentation.

Arduino

	████░ Lab: Arduino Setup: Updated content

	█████ Lab: Arduino Image Classification: Updated the Arduino/Nicla Vision LABS part.

	████░ Lab: Arduino Object Detection: Updated content

	████░ Lab: Arduino Keyword Spotting: Updated content

	████░ Lab: Arduino Motion Classification: Linting improved header spacing consistency.

Raspberry Pi

	███░░ Lab: Pi Vision Language Models: Fixed markdown formatting issues in QMD files to ensure proper rendering.

📅 February 08

📄 Frontmatter

	███░░ Acknowledgements: Updated acknowledgements.qmd with contributor information.

	█░░░░ SocratiQ: Updated content

📅 February 07

📄 Frontmatter

	████░ About: Updated content

	█████ Changelog: Updated content

	█████ Acknowledgements: Updated content

	███░░ SocratiQ: The precheck function now only runs on .qmd and .bib files.

	███░░ Index: Pre-commit checks are now limited to qmd and bib files.

📖 Chapters

	████░ Chapter 1: Introduction: The precheck function now only operates on .qmd and .bib files.

	█████ Chapter 2: ML Systems: The precheck script now runs only on qmd and bib files.

	███░░ Chapter 3: DL Primer: The precheck script now only runs on .qmd and .bib files.

	████░ Chapter 4: DNN Architectures: Updated content

	█████ Chapter 5: AI Workflow: The precheck now only runs on .qmd and .bib files.

	████░ Chapter 6: Data Engineering: The precheck now specifically runs on .qmd and .bib files.

	████░ Chapter 7: AI Frameworks: The precheck script now only runs on .qmd and .bib files.

	█████ Chapter 8: AI Training: Improved diagram clarity and formatting.

	█████ Chapter 9: Efficient AI: Added R code for debugging and visualization, addressing feedback regarding existing content.

	███░░ Chapter 10: Model Optimizations: The precheck process now specifically targets qmd and bib files.

	████░ Chapter 11: AI Acceleration: Precheck function now focuses specifically on .qmd and .bib files, potentially improving efficiency during document processing.

	█████ Chapter 12: Benchmarking AI: Added new visualizations showcasing power trends in MLPerf benchmarks. The benchmarking challenges chapter now includes a plot demonstrating power ranges and graphs to motivate benchmarking efforts.

	███░░ Chapter 13: ML Operations: Precheck now specifically targets qmd and bib files for analysis.

	███░░ Chapter 14: On-Device Learning: Updated precheck to focus on qmd and bib files for improved learning resource validation.

	███░░ Chapter 15: Security & Privacy: Updated content

	████░ Chapter 16: Responsible AI: Prechecks now focus exclusively on .qmd and .bib files.

	██░░░ Chapter 17: Sustainable AI: Prechecks now focus specifically on .qmd and .bib files.

	███░░ Chapter 18: Robust AI: The precheck functionality now selectively operates on qmd and bib files.

	█████ Chapter 19: AI for Good: Updated the chapter with improvements to precheck functionality.

	█░░░░ Chapter 21: Conclusion: Updated content

🧑‍💻 Labs

Hands-on Labs

	█░░░░ Lab: Labs Overview: The precheck script now only runs on qmd and bib files.

	███░░ Lab: Lab Setup: The precheck now only runs on qmd and bib files.

	██░░░ Lab: Raspi: The precheck script now only runs on qmd and bib files.

	██░░░ Lab: Dsp Spectral Features Block: The precheck now only runs on .qmd and .bib files.

	█░░░░ Lab: Kws Feature Eng: The precheck now only runs on .qmd and .bib files.

	█░░░░ Lab: Shared: The precheck now only runs on qmd and bib files.

Arduino

	██░░░ Lab: Arduino Setup: The precheck now runs only on .qmd and .bib files.

	███░░ Lab: Arduino Image Classification: The precheck now only runs on .qmd and .bib files.

	███░░ Lab: Arduino Keyword Spotting: The precheck script now focuses on validating .qmd and .bib files only.

	███░░ Lab: Arduino Motion Classification: The precheck script now only runs on .qmd and .bib files.

Raspberry Pi

	████░ Lab: Raspberry Pi Setup: Precheck now focuses solely on .qmd and .bib files.

	█████ Lab: Pi Image Classification: Precheck now only runs on qmd and bib files.

	█████ Lab: Pi Object Detection: The precheck script now only runs on .qmd and .bib files.

	█████ Lab: Pi Large Language Models: The precheck script now only runs on qmd and bib files.

	█████ Lab: Pi Vision Language Models: The precheck now runs only on qmd and bib files.

Seeed XIAO ESP32S3

	█░░░░ Lab: XIAO Setup: The precheck script now only runs on .qmd and .bib files.

	███░░ Lab: XIAO Image Classification: The precheck now only runs on qmd and bib files.

	███░░ Lab: XIAO Object Detection: The precheck function now only runs on .qmd and .bib files.

	████░ Lab: XIAO Keyword Spotting: The precheck now focuses solely on .qmd and .bib files.

	███░░ Lab: XIAO Motion Classification: The precheck function now only runs on .qmd and .bib files.

📚 Appendix

	███░░ PhD Survival Guide: Updated content

📅 February 02

📄 Frontmatter

	█████ Acknowledgements: Updated content

📖 Chapters

	███░░ Chapter 1: Introduction: Callout titles throughout the introduction are now presented in a consistent title block format.

	███░░ Chapter 2: ML Systems: Callout titles within ###* sections have been updated to a new title block format.

	█░░░░ Chapter 3: DL Primer: Callout titles have been updated to use a title block format for improved visual organization.

	██░░░ Chapter 4: DNN Architectures: Updated callout titles to a consistent block format.

	██░░░ Chapter 5: AI Workflow: Callout titles within the AI Workflow section now use a consistent title block format for improved visual clarity.

	█░░░░ Chapter 6: Data Engineering: Updated callout titles to use a title block format for improved readability.

	█░░░░ Chapter 7: AI Frameworks: Improved clarity of TikZ figure usage related to AI frameworks.

	█████ Chapter 8: AI Training: Added several diagrams to enhance understanding of AI training concepts.

	█████ Chapter 9: Efficient AI: Updated callout titles to a title block format and corrected a bibliographic entry.

	█░░░░ Chapter 10: Model Optimizations: Callout titles are now formatted as title blocks.

	█░░░░ Chapter 11: AI Acceleration: Callout titles are now formatted within title blocks for improved visual organization.

	█████ Chapter 12: Benchmarking AI: Improved the learning objectives and benchmark definition. Updated the content with additional figures, case studies, and metrics information.

	█░░░░ Chapter 13: ML Operations: Updated callout titles to use a more consistent title block format.

	█░░░░ Chapter 14: On-Device Learning: Callout titles within the chapter are now formatted using title blocks.

	█░░░░ Chapter 15: Security & Privacy: Callout titles within the chapter are now formatted using title blocks.

	█░░░░ Chapter 16: Responsible AI: Updated callout titles using a title block format for improved visual clarity.

	█░░░░ Chapter 17: Sustainable AI: Callout ###* titles were changed to a title block format for improved visual consistency.

	█░░░░ Chapter 18: Robust AI: Callout titles throughout the chapter have been updated to use a title block format.

	█░░░░ Chapter 19: AI for Good: Callout ###* titles are now formatted using title blocks.

📅 January 28

📄 Frontmatter

	█████ Acknowledgements: Updated content

📖 Chapters

	██░░░ Chapter 1: Introduction: Removed a redundant case study.

	████░ Chapter 2: ML Systems: Added radar plots to visualize various ML system aspects.

	███░░ Chapter 4: DNN Architectures: Wording improvements were made to enhance clarity.

	███░░ Chapter 5: AI Workflow: Added a new section explaining prompt engineering techniques for optimizing AI model outputs.

	████░ Chapter 6: Data Engineering: Added new content to the data engineering section with citations and edits to later sections. Keyword research is also underway.

	█████ Chapter 7: AI Frameworks: Added figures to illustrate different types of chips.

	█████ Chapter 8: AI Training: Improved training chapter content with added figures, definitions, explanations about evolution and a conclusion section.

	█████ Chapter 9: Efficient AI: Added learning objectives and made improvements to figures and content.

	██░░░ Chapter 10: Model Optimizations: Updated content

	█░░░░ Chapter 11: AI Acceleration: Updated content

	█████ Chapter 19: AI for Good: Updated learning objectives and added spotlight use cases to demonstrate AI for Good applications.

🧑‍💻 Labs

Raspberry Pi

	█░░░░ Lab: Pi Image Classification: Updated content

	█░░░░ Lab: Pi Object Detection: Updated content

📚 Appendix

	████░ PhD Survival Guide: Added links to helpful resources.

📅 January 17

📄 Frontmatter

	█░░░░ About: Updated content

	████░ Acknowledgements: Updated content

	███░░ SocratiQ: Updated content

📖 Chapters

	██░░░ Chapter 1: Introduction: Addresses feedback regarding content clarity.

	████░ Chapter 2: ML Systems: Updated content

	█████ Chapter 3: DL Primer: Added explanations of different types of neural networks and clarified the concept of model training.

	█████ Chapter 4: DNN Architectures: Added clarification to parameter storage bound for RNNs.

	███░░ Chapter 6: Data Engineering: Updated content

	█████ Chapter 7: AI Frameworks: Added framework overview, historical context, computational graph section, and updated learning objectives.

	█░░░░ Chapter 12: Benchmarking AI: Updated content

🧑‍💻 Labs

Raspberry Pi

	█░░░░ Lab: Pi Large Language Models: Corrected minor copyediting errors.

	██░░░ Lab: Pi Vision Language Models: Updated content

📅 January 12

📄 Frontmatter

	█████ Acknowledgements: Added contributors to acknowledgements.

📖 Chapters

	███░░ Chapter 1: Introduction: Fixed an issue with code rendering that was introduced from PDF enhancements.

	████░ Chapter 2: ML Systems: Added a decision playbook framework and definitions to each section.

	███░░ Chapter 5: AI Workflow: Updated content

	█████ Chapter 6: Data Engineering: Updated data labeling section with fixes and improvements.

📅 January 11

📄 Frontmatter

	███░░ About: Updated content

	█████ Acknowledgements: Contributors were added to the acknowledgements file.

	████░ SocratiQ: Updated content

📖 Chapters

	████░ Chapter 1: Introduction: Updated the introduction with footnotes.

	████░ Chapter 2: ML Systems: Added a decision playbook framework and provided definitions for each section in the ML Systems chapter.

	█░░░░ Chapter 5: AI Workflow: Updated content

	█████ Chapter 6: Data Engineering: Updated synthetic data generation methods and clarified explanations about web scraping techniques.

📅 January 09

📄 Frontmatter

	███░░ Acknowledgements: Updated acknowledgements with contributor information.

📖 Chapters

	███░░ Chapter 1: Introduction: Updated content

	█░░░░ Chapter 5: AI Workflow: Updated content

	█░░░░ Chapter 6: Data Engineering: Updated content

	█░░░░ Chapter 7: AI Frameworks: Updated content

	█░░░░ Chapter 8: AI Training: Updated content

	██░░░ Chapter 11: AI Acceleration: Updated content

	█░░░░ Chapter 16: Responsible AI: Fixed errors in feedback provided by Bravo.

📅 January 07

📄 Frontmatter

	█░░░░ Foreword: Tweaked wording for improved clarity.

	████░ Acknowledgements: Updated acknowledgements.qmd with contributors.

📖 Chapters

	███░░ Chapter 1: Introduction: Improved the explanation of the differences between AI and ML.

	████░ Chapter 3: DL Primer: Added images and code to illustrate the training loop and inference process, including specific examples for training in version 3.5 and inference in version 3.6.

	███░░ Chapter 4: DNN Architectures: Added visualization figures and tools to illustrate DNN architectures.

📅 January 03

📄 Frontmatter

	████░ Acknowledgements: Updated acknowledgements.qmd with contributors.

	██░░░ SocratiQ: Updated content

📖 Chapters

	█░░░░ Chapter 1: Introduction: Updated content

	█░░░░ Chapter 2: ML Systems: Updated content

	█░░░░ Chapter 4: DNN Architectures: Updated content

	█░░░░ Chapter 6: Data Engineering: Updated content

	█░░░░ Chapter 21: Conclusion: Updated content

	█░░░░ Index: Fixed mathematical notation errors and improved code examples.

📅 January 02

📄 Frontmatter

	████░ Acknowledgements: Updated acknowledgements with contributor information.

📖 Chapters

	███░░ Chapter 4: DNN Architectures: Removed unnecessary commented text.

	███░░ Chapter 21: Conclusion: Updated content

	███░░ Index: Added HTML tags to enhance the build process.

	██░░░ Chapter: Generative Ai: Updated content

📅 January 01

📄 Frontmatter

	████░ Foreword: Updated content

	█████ About: Modified the About section to include Bloom’s Taxonomy concepts and reorganized the content based on feedback.

	█████ Acknowledgements: Updated content

	████░ SocratiQ: Fixed broken links in learning materials and corrected typos.

📖 Chapters

	███░░ Chapter 1: Introduction: Changed header formats.

	█████ Chapter 2: ML Systems: Expanded Chapter 2 to include a mobile ML section, hybrid ML systems, and an example system.

	█████ Chapter 3: DL Primer: Updated the purpose of the DL Primer chapter.

	█████ Chapter 4: DNN Architectures: Added transformer architecture section with explanations of OG attention and self-attention mechanisms. Updated RNN conclusion and included notes on CNN architectures.

	█████ Chapter 5: AI Workflow: Improved clarity of feedback loops with a new figure and revised explanations.

	██░░░ Chapter 6: Data Engineering: Updated content

	███░░ Chapter 7: AI Frameworks: Updated the purpose of Chapter 7: AI Frameworks.

	██░░░ Chapter 8: AI Training: Updated content

	██░░░ Chapter 9: Efficient AI: Updated the purpose statement for the chapter.

	██░░░ Chapter 10: Model Optimizations: Updated content

	██░░░ Chapter 11: AI Acceleration: Updated content

	██░░░ Chapter 12: Benchmarking AI: Updated purpose statement for benchmarking AI concepts.

	██░░░ Chapter 13: ML Operations: Updated content

	██░░░ Chapter 14: On-Device Learning: Updated the purpose statement for Chapter 14.

	███░░ Chapter 15: Security & Privacy: Removed a duplicate case study from the security chapter.

	██░░░ Chapter 16: Responsible AI: Updated purpose statement.

	██░░░ Chapter 17: Sustainable AI: Purpose statement was updated.

	████░ Chapter 18: Robust AI: Improved clarity of discussions on BNNs and fault tolerance mechanisms. Refined examples to focus specifically on ML faults and related SDC scenarios.

	██░░░ Chapter 19: AI for Good: Updated the purpose statement for this chapter.

	███░░ Chapter 21: Conclusion: Wording was adjusted in Chapter 20 and a reference to Chapter 4 was included.

	████░ Index: Minor updates were made to clarify the book’s motivation.

	█████ Chapter: Dl Architectures: Updated learning objectives to align with a focus on ML systems and added Colab exercises.

🧑‍💻 Labs

Hands-on Labs

	███░░ Lab: Labs Overview: Added VLM to the main table.

	███░░ Lab: Raspi: Added a new lab related to VLM.

Raspberry Pi

	█████ Lab: Pi Vision Language Models: Added new Lab - VLMs

2024

📅 November 19

📖 Chapters

	████░ Chapter 15: Security & Privacy: Improved the explanation of power consumption attacks with clearer figures and less repetitive language. Also added a new federated case study.

	███░░ Chapter 16: Responsible AI: Improved the presentation of policies discussed in the chapter by adjusting figure placement and refining the figure explanation.

	███░░ Chapter 17: Sustainable AI: Added a new figure illustrating the water footprint of AI models and updated the Life Cycle Assessment (LCA) section with new information.

	███░░ Chapter 19: AI for Good: The introduction to TinyML was revised to better explain its motivations.

	█████ Acknowledgements: Updated content

	█████ SocratiQ: Added AI podcast

📅 November 16

📖 Chapters

	██░░░ Chapter 1: Introduction: Improved formatting consistency for definitions.

	█░░░░ Chapter 2: ML Systems: Changed the Introduction to an Overview section.

	█░░░░ Chapter 3: DL Primer: The introduction was renamed to ‘Overview’

	█░░░░ Chapter 5: AI Workflow: Updated content

	█░░░░ Chapter 6: Data Engineering: The Introduction section was renamed to Overview.

	█░░░░ Chapter 7: AI Frameworks: The introduction section was changed to an overview section.

	█░░░░ Chapter 8: AI Training: The Introduction was renamed to Overview.

	█░░░░ Chapter 9: Efficient AI: Replaced the Introduction section with an Overview section to provide a more focused introduction to the topic.

	█░░░░ Chapter 10: Model Optimizations: The Introduction was renamed to Overview.

	█░░░░ Chapter 11: AI Acceleration: The introduction section was renamed to ‘Overview’ for clarity.

	█░░░░ Chapter 12: Benchmarking AI: Renamed ‘Introduction’ to ‘Overview’ for conciseness.

	████░ Chapter 13: ML Operations: Improved organization of ML Operations concepts by grouping related topics, streamlining the data management section, and revising the introduction to an overview format.

	█░░░░ Chapter 14: On-Device Learning: The introduction to On-Device Learning has been revised to an overview.

	█░░░░ Chapter 15: Security & Privacy: Changed the Introduction section to an Overview section for better clarity.

	████░ Chapter 16: Responsible AI: Improved clarity of table definitions and reorganized introductory content into an Overview section.

	█░░░░ Chapter 17: Sustainable AI: Renamed the introduction section to ‘Overview’ for clarity.

	█░░░░ Chapter 18: Robust AI: The Introduction was changed to an Overview.

	█░░░░ Chapter 19: AI for Good: The Introduction section was renamed to Overview.

	█░░░░ Chapter 21: Conclusion: Revised Introduction to an Overview as there is one main introduction to the material.

	███░░ About: Updated content

	█████ Acknowledgements: Updated acknowledgements.

	███░░ Index: Revised preface material for improved organization.

	█████ Contributors: Contributors list was updated.

	███░░ Copyright: Updated content

	██░░░ Dedication: Reorganized preface material.

🧑‍💻 Labs

Arduino

	█░░░░ Lab: Arduino Setup: Replaced the Introduction section with an Overview section.

	█░░░░ Lab: Arduino Image Classification: The Introduction section was renamed to Overview.

	█░░░░ Lab: Arduino Object Detection: Changed Introduction to Overview as it was the only real introduction present.

	█░░░░ Lab: Arduino Keyword Spotting: The Introduction section was renamed to Overview.

	█░░░░ Lab: Arduino Motion Classification: The Introduction section was renamed to Overview for clarity.

Raspberry Pi

	█░░░░ Lab: Raspberry Pi Setup: Replaced the Introduction section with an Overview section for clarity.

	█░░░░ Lab: Pi Image Classification: The introduction section was renamed to ‘Overview’.

	█░░░░ Lab: Pi Object Detection: The introduction was renamed to ‘Overview’ for clarity.

	█░░░░ Lab: Pi Large Language Models: Changed the Introduction to Overview as there is only one real introduction.

Seeed XIAO ESP32S3

	█░░░░ Lab: XIAO Setup: Renamed ‘Introduction’ to ‘Overview’ for improved clarity.

	█░░░░ Lab: XIAO Image Classification: The Introduction section was renamed to Overview for clarity.

	█░░░░ Lab: XIAO Object Detection: The Introduction section was renamed to Overview for better clarity.

	█░░░░ Lab: XIAO Keyword Spotting: The Introduction was renamed to Overview for improved clarity.

	█░░░░ Lab: XIAO Motion Classification: Changed the section title from ‘Introduction’ to ‘Overview’ for clarity.

Hands-on Labs

	█░░░░ Lab: Dsp Spectral Features Block: Changed Introduction to Overview as there is one true introduction.

	██░░░ Lab: Kws Feature Eng: Replaced the ‘Introduction’ section with an ‘Overview’ section to provide a concise summary of the key concepts.

📅 November 15

📖 Chapters

	█████ Chapter 1: Introduction: Updated introductory text, clarified definitions, added case studies with video/image links, and incorporated feedback to improve the overall flow and content.

	████░ Chapter 2: ML Systems: Revised introduction to encompass a broader scope beyond embedded systems. Updated learning objectives.

	████░ Chapter 3: DL Primer: The introduction was renamed to ‘Overview’ and labs were removed from the chapter.

	███░░ Chapter 5: AI Workflow: Removed labs content from the workflow chapter.

	███░░ Chapter 6: Data Engineering: The Introduction was changed to an Overview and the labs portion was removed from the chapter.

	████░ Chapter 7: AI Frameworks: Removed labs section from the chapter.

	██░░░ Chapter 8: AI Training: The chapter introduction was renamed to an overview. Labs were removed from this section.

	███░░ Chapter 9: Efficient AI: Revised chapter introduction to an overview and removed labs section from the main content.

	████░ Chapter 10: Model Optimizations: Updated content related to model optimizations.

	███░░ Chapter 11: AI Acceleration: The introduction was revised to an overview and the labs portion of the chapter was removed.

	█████ Chapter 12: Benchmarking AI: Updated benchmarking content with a new section for energy measurements in historical context, reworked examples, and streamlined descriptions of metrics.

	████░ Chapter 13: ML Operations: Revised Chapter 13 with reorganized topics, a clearer introduction, and updates to the data management section based on feedback.

	████░ Chapter 14: On-Device Learning: The On-Device Learning chapter now provides a clearer distinction between on-device learning and federated learning. Explanations about pruning and IID were improved for better understanding. Lifelong learning advantages are now presented in their own subsection.

	█████ Chapter 15: Security & Privacy: Enhanced the TEE section with additional explanations.

	███░░ Chapter 16: Responsible AI: Revised the chapter introduction to an overview and removed lab components.

	███░░ Chapter 17: Sustainable AI: Updated content about sustainable AI practices.

	███░░ Chapter 18: Robust AI: Removed labs content from the chapter. Updated robustAI content.

	███░░ Chapter 19: AI for Good: The chapter introduction was revised to an overview and the labs portion was removed.

	█░░░░ Chapter 21: Conclusion: Revised the Introduction to be an Overview as it is the sole introductory section.

	████░ About: The introduction was moved to the about chapter.

	█░░░░ Acknowledgements: Updated content

	████░ SocratiQ: Updated content

	█████ Contributors: Updated content

	██░░░ Index: Removed a link to conventions as it is not currently needed.

	███░░ Conventions: Updated content

🧑‍💻 Labs

Hands-on Labs

	████░ Lab: Labs Overview: Updated content

	█░░░░ Lab: Dsp Spectral Features Block: Changed the Introduction section to Overview as there is only one primary introduction.

	██░░░ Lab: Kws Feature Eng: The Introduction section was renamed to Overview.

	████░ Lab: Labs: Improved documentation and formatting within the labs.

	██░░░ Lab: Nicla Vision: Corrected formatting of colons in markdown text.

	███░░ Lab: Raspi: Fixed inconsistent formatting of text elements.

	███░░ Lab: Xiao Esp32S3: Fixed formatting issues with colon usage for better readability.

Arduino

	█░░░░ Lab: Arduino Setup: Changed Introduction to Overview because there is only one real introduction.

	█░░░░ Lab: Arduino Image Classification: Changed Introduction section to Overview for better clarity.

	█░░░░ Lab: Arduino Object Detection: The introduction was renamed to Overview.

	██░░░ Lab: Arduino Keyword Spotting: The Introduction section was renamed to Overview.

	█░░░░ Lab: Arduino Motion Classification: The introduction section was renamed to ‘Overview’.

Raspberry Pi

	████░ Lab: Raspberry Pi Setup: Updated introduction to be more concise and informative.

	████░ Lab: Pi Image Classification: Updated introduction section to be more concise and informative.

	██░░░ Lab: Pi Object Detection: Changed Introduction to Overview to reflect there is only one introduction section.

	█████ Lab: Pi Large Language Models: Changed the section name from ‘Introduction’ to ‘Overview’.

Seeed XIAO ESP32S3

	███░░ Lab: XIAO Setup: Updated the introduction to be more concise and clearly labelled as an overview.

	█░░░░ Lab: XIAO Image Classification: Changed the section heading from ‘Introduction’ to ‘Overview’.

	█░░░░ Lab: XIAO Object Detection: The introduction was renamed to ‘Overview’ for better clarity.

	██░░░ Lab: XIAO Keyword Spotting: The introduction section was renamed to Overview for clarity.

	█░░░░ Lab: XIAO Motion Classification: The Introduction section was renamed to Overview.

📅 September 20

📖 Chapters

	████░ Chapter 1: Introduction: Fixed broken figure references.

	████░ Chapter 2: ML Systems: Updated content

	████░ Chapter 3: DL Primer: Fixed broken links within the chapter.

	████░ Chapter 5: AI Workflow: Updated content

	█████ Chapter 6: Data Engineering: Fixed inconsistent quotation marks for improved readability.

	█████ Chapter 7: AI Frameworks: Updated content

	█████ Chapter 8: AI Training: Fixed character formatting issue.

	████░ Chapter 9: Efficient AI: Fixed figure references to ensure accuracy.

	█████ Chapter 10: Model Optimizations: Fixed character formatting inconsistencies.

	█████ Chapter 11: AI Acceleration: Updated content

	████░ Chapter 12: Benchmarking AI: Removed unnecessary figures from the chapter.

	█████ Chapter 13: ML Operations: Updated content

	████░ Chapter 14: On-Device Learning: Updated content

	█████ Chapter 15: Security & Privacy: Updated content

	████░ Chapter 17: Sustainable AI: Proofreading of the sustainability section corrected typos.

	███░░ Chapter 19: AI for Good: Fixed broken figure references.

	███░░ About: Updated learning objectives

	█████ Contributors: Updated content

🧑‍💻 Labs

Hands-on Labs

	███░░ Lab: Lab Setup: Updated content

	███░░ Lab: Raspi: Updated content

Seeed XIAO ESP32S3

	██░░░ Lab: XIAO Setup: Updated content

	███░░ Lab: XIAO Image Classification: Updated content

	██░░░ Lab: XIAO Object Detection: Updated content

	██░░░ Lab: XIAO Keyword Spotting: Updated content

	███░░ Lab: XIAO Motion Classification: Fixed an image issue.

Raspberry Pi

	█████ Lab: Raspberry Pi Setup: Corrected character formatting for improved readability.

	█████ Lab: Pi Image Classification: Corrected typographical errors.

	████░ Lab: Pi Object Detection: Corrected typos for improved clarity.

Arduino

	████░ Lab: Arduino Object Detection: Updated content

	███░░ Lab: Arduino Motion Classification: Updated content

📅 September 12

📖 Chapters

	█░░░░ Chapter 13: ML Operations: Updated content

	███░░ Chapter 17: Sustainable AI: Formatting and stylistic improvements were made to ensure readability.

	███░░ Chapter 18: Robust AI: Fixed recommended issues within the Robust AI chapter.

	██░░░ Chapter 19: AI for Good: Updated content

	██░░░ Chapter 21: Conclusion: Updated content

	█████ Contributors: Updated content

🧑‍💻 Labs

Raspberry Pi

	███░░ Lab: Pi Image Classification: Corrected a link and typos for improved clarity.

	█████ Lab: Pi Object Detection: Uploaded the Object Detection Lab

📅 September 06

📖 Chapters

	███░░ Chapter 16: Responsible AI: Corrected bibliographic information and text formatting.

	████░ Contributors: Updated contributor list.

📅 September 04

📖 Chapters

	█░░░░ Chapter 1: Introduction: Fixed captions to ensure accuracy on even-numbered pages.

	█░░░░ Chapter 2: ML Systems: Updated content

	██░░░ Chapter 3: DL Primer: Grammar fixes throughout the chapter.

	█░░░░ Chapter 6: Data Engineering: Updated content

	█░░░░ Chapter 7: AI Frameworks: Updated content

	██░░░ Chapter 8: AI Training: Grammar fixes throughout the chapter

	█░░░░ Chapter 9: Efficient AI: Improved explanations for efficient AI concepts.

	██░░░ Chapter 10: Model Optimizations: Updated content

	███░░ Chapter 11: AI Acceleration: Improved explanations of AI acceleration techniques.

	██░░░ Chapter 12: Benchmarking AI: Updated content

	██░░░ Chapter 13: ML Operations: Updated content

	█░░░░ Chapter 14: On-Device Learning: Updated content

	███░░ Chapter 15: Security & Privacy: Grammar fixes were made to improve clarity.

	█░░░░ Chapter 16: Responsible AI: Grammar fixes were made throughout the chapter.

	██░░░ Chapter 17: Sustainable AI: Grammar fixes

	██░░░ Chapter 18: Robust AI: Grammar fixes

	█░░░░ Chapter 19: AI for Good: Grammar fixes were applied to improve clarity and readability.

	█░░░░ Chapter 21: Conclusion: Grammar fixes

	█████ Contributors: Updated content

🧑‍💻 Labs

Arduino

	█░░░░ Lab: Arduino Image Classification: Updated content

Hands-on Labs

	█░░░░ Lab: Kws Feature Eng: Updated content

📅 September 02

📖 Chapters

	█░░░░ Chapter 2: ML Systems: Improved sentence flow and clarity.

	████░ Chapter 11: AI Acceleration: Explanations of hardware design principles are now more student-focused.

	████░ Chapter 13: ML Operations: Added a section on model serving within ML Operations.

	████░ Contributors: Updated content

🧑‍💻 Labs

Raspberry Pi

	████░ Lab: Raspberry Pi Setup: Updated content

	███░░ Lab: Pi Image Classification: Updated content

📅 August 29

📖 Chapters

	███░░ Chapter 13: ML Operations: Updated content

	███░░ Chapter 14: On-Device Learning: On-device learning content was updated based on feedback.

	████░ Contributors: Updated contributors list.

	█░░░░ Index: Updated content

	██░░░ Tools: Updated content

🧑‍💻 Labs

Raspberry Pi

	█████ Lab: Pi Image Classification: Updated content

Hands-on Labs

	███░░ Lab: Labs: Resolved an issue with table merging within the labs content.

	█░░░░ Lab: Kws Feature Eng: Updated content

📅 August 27

📖 Chapters

	███░░ Chapter 7: AI Frameworks: Fixed broken links in the hardware acceleration section.

	███░░ Chapter 9: Efficient AI: Improved explanations of structure importance methods and corrected an error in figure references.

	█████ Chapter 10: Model Optimizations: Improved explanations of knowledge distillation and adjusted challenges to be more informative.

	███░░ Chapter 11: AI Acceleration: Fixed broken links and a duplicate title in the chapter.

	███░░ Chapter 12: Benchmarking AI: Updated content

	██░░░ Chapter 13: ML Operations: Updated content

	███░░ Chapter 15: Security & Privacy: The Power Attack and Side-Channel Attack sections were edited. Broken links were fixed.

	█░░░░ Chapter 17: Sustainable AI: Fixed broken links within the chapter content.

	████░ Contributors: Updated content

	█░░░░ Index: Minor writing style changes for improved clarity.

🧑‍💻 Labs

Hands-on Labs

	███░░ Lab: Xiao Esp32S3: Improved the formatting of grid tables for better readability.

📅 August 22

📖 Chapters

	█░░░░ Chapter 11: AI Acceleration: Improved clarity and accuracy of subscript usage examples

	█░░░░ Chapter 17: Sustainable AI: Added a section on using subscript notation for mathematical expressions

	█░░░░ Chapter 19: AI for Good: Added usage of subscript formatting.

	████░ Contributors: Updated content

🧑‍💻 Labs

Raspberry Pi

	█░░░░ Lab: Raspberry Pi Setup: Updated content

Hands-on Labs

	███░░ Lab: Labs: Updated content

	█░░░░ Lab: Raspi: Updated content

📅 August 21

📖 Chapters

	██░░░ Chapter 1: Introduction: Updated content

	██░░░ Chapter 2: ML Systems: Updated content

	███░░ Chapter 3: DL Primer: Updated content

	██░░░ Chapter 5: AI Workflow: Updated content

	███░░ Chapter 6: Data Engineering: Updated content

	███░░ Chapter 7: AI Frameworks: Updated content

	████░ Chapter 8: AI Training: Improved table formatting in the chapter.

	██░░░ Chapter 9: Efficient AI: Updated content

	███░░ Chapter 10: Model Optimizations: Updated content

	████░ Chapter 11: AI Acceleration: Updated table formatting for improved readability.

	███░░ Chapter 12: Benchmarking AI: Updated content

	███░░ Chapter 13: ML Operations: Improved table formatting with striping and hover effects.

	███░░ Chapter 14: On-Device Learning: Improved clarity and formatting of on-device learning concepts with a grid table.

	████░ Chapter 15: Security & Privacy: Improved table display with styling updates.

	███░░ Chapter 16: Responsible AI: Updated to a grid table for improved presentation.

	██░░░ Chapter 17: Sustainable AI: Updated content

	███░░ Chapter 18: Robust AI: Improved table formatting with styling enhancements.

	█░░░░ Chapter 19: AI for Good: Updated content

	█████ Lab: Arduino Image Classification: Removed unnecessary code.

	█░░░░ About: Updated content

	█████ Contributors: Updated content

	█████ Dsp Spectral Features Block: Updated content

	█░░░░ Zoo Datasets: Added Wake Vision dataset to zoo_datasets.qmd.

	█░░░░ Conventions: Updated content

🧑‍💻 Labs

Raspberry Pi

	███░░ Lab: Lab Setup: Initial setup information added for a Raspberry Pi lab.

	█████ Lab: Raspberry Pi Setup: Initial version of rasPi setup instructions was created.

	██░░░ Lab: Pi Image Classification: Initial version of rasPi image classification lab provided.

	█░░░░ Lab: Pi Object Detection: Initial version of rasPi object detection lab introduced.

	██░░░ Lab: Pi Large Language Models: Initial version of rasPi

	███░░ Lab: Labs: The initial version of rasPi labs was created.

	███░░ Lab: Raspi: Initial version of rasPi content was created.

Seeed XIAO ESP32S3

	█░░░░ Lab: XIAO Image Classification: Updated content

	█░░░░ Lab: XIAO Keyword Spotting: Updated content

📅 August 15

📖 Chapters

	██░░░ Chapter 1: Introduction: Updated content

	██░░░ Chapter 2: ML Systems: Updated content

	███░░ Chapter 3: DL Primer: Updated content

	██░░░ Chapter 5: AI Workflow: Updated content

	███░░ Chapter 6: Data Engineering: Updated content

	███░░ Chapter 7: AI Frameworks: Addressing typos found in the AI Frameworks section.

	█████ Chapter 8: AI Training: Updated table formatting and made improvements to regularization and hyperparameter search explanations.

	███░░ Chapter 9: Efficient AI: Updated content

	███░░ Chapter 10: Model Optimizations: Updated content

	████░ Chapter 11: AI Acceleration: Updated tables to grid tables for improved visual clarity.

	███░░ Chapter 12: Benchmarking AI: Updated content

	███░░ Chapter 13: ML Operations: Improved table presentation with styling enhancements.

	███░░ Chapter 14: On-Device Learning: Improved clarity of on-device learning concepts by utilizing a grid table.

	████░ Chapter 15: Security & Privacy: Updated content

	███░░ Chapter 16: Responsible AI: Updated table format to grid style.

	██░░░ Chapter 17: Sustainable AI: Updated content

	███░░ Chapter 18: Robust AI: Improved table styling with added .striped and .hover classes.

	█░░░░ Chapter 19: AI for Good: Updated content

	█░░░░ Lab: Arduino Image Classification: Updated content

	█░░░░ About: Updated content

	█████ Contributors: Updated content

	█░░░░ Conventions: Updated content

🧑‍💻 Labs

Seeed XIAO ESP32S3

	█░░░░ Lab: XIAO Image Classification: Updated content

	█░░░░ Lab: XIAO Keyword Spotting: Updated content

📅 August 07

📖 Chapters

	████░ Contributors: Updated contributors list.

📅 August 06

📖 Chapters

	█░░░░ Chapter 1: Introduction: Added HTML + PDF build functionality

	████░ Chapter 2: ML Systems: Improved the formatting and visual presentation of grid tables in the ML Systems chapter.

	████░ Chapter 3: DL Primer: Corrected broken links to PDFs and videos within the chapter.

	████░ Chapter 5: AI Workflow: Updated tables to use grid formatting for improved readability.

	█████ Chapter 6: Data Engineering: Added a grid table exercise and updated exercises to include ‘Wake Vision Colab’.

	█████ Chapter 7: AI Frameworks: Made improvements to AI framework descriptions and reduced the focus on federated learning. Added tensor explanations and refined table formatting for improved readability.

	████░ Chapter 8: AI Training: Fixed broken URL links and adjusted table formatting to enhance readability.

	████░ Chapter 9: Efficient AI: Updated table formatting and image references for consistency.

	████░ Chapter 10: Model Optimizations: Improved the formatting of grid tables for better readability.

	███░░ Chapter 11: AI Acceleration: Fixed broken URL links and improved formatting consistency for source citations.

	██░░░ Chapter 12: Benchmarking AI: Improved formatting style for consistency.

	████░ Chapter 13: ML Operations: Improved table formatting consistency and fixed broken links within the content.

	████░ Chapter 14: On-Device Learning: Fixed broken URL links related to PDFs and videos.

	████░ Chapter 15: Security & Privacy: Fixed broken links within the privacy and security section.

	██░░░ Chapter 16: Responsible AI: Updated sources to be consistent with the text and fixed formatting issues.

	███░░ Chapter 17: Sustainable AI: Updated source attribution style for consistency.

	████░ Chapter 18: Robust AI: Improved formatting consistency for tables with markdown, updated source citations and credit style.

	██░░░ Chapter 19: AI for Good: Improved formatting consistency and added HTML + PDF build functionality.

	████░ Lab: Arduino Image Classification: Fixed image width issues for PDF rendering to ensure accurate visual representation in printed documents.

	█████ Contributors: Updated content

	███░░ Dsp Spectral Features Block: Fixed image width issues to ensure correct PDF rendering.

	██░░░ Tools: Improved readability of tools tables with left alignment.

🧑‍💻 Labs

Arduino

	███░░ Lab: Arduino Setup: Corrected image width to ensure proper rendering in PDF format.

	███░░ Lab: Arduino Object Detection: Resolved issues affecting PDF rendering of images and fixed broken video links within object detection tutorials.

	███░░ Lab: Arduino Keyword Spotting: Fixed issues with image width and URL links to improve rendering and navigation.

	███░░ Lab: Arduino Motion Classification: Fixed image rendering issues to ensure proper display of motion classification visualizations in PDFs.

Seeed XIAO ESP32S3

	██░░░ Lab: XIAO Setup: Fixed image rendering issues to ensure consistent display across PDF viewers.

	█░░░░ Lab: XIAO Image Classification: Fixed image width issues to ensure proper display and readability in PDF rendering.

	█░░░░ Lab: XIAO Object Detection: Fixed image width issues to ensure proper rendering of object detection visualizations in PDF format.

	█░░░░ Lab: XIAO Keyword Spotting: Fixed image rendering issues to ensure correct display of visual content.

	█░░░░ Lab: XIAO Motion Classification: Fixed image width issues to ensure proper PDF rendering of motion classification diagrams.

Hands-on Labs

	███░░ Lab: Dsp Spectral Features Block: Fixed image width issues for PDF rendering

	███░░ Lab: Kws Feature Eng: Fixed image width issues to ensure proper rendering in PDF documents.

	█░░░░ Lab: Nicla Vision: Improved table formatting for better readability.

	█░░░░ Lab: Shared: Improved table readability by aligning text to the left.

	█░░░░ Lab: Xiao Esp32S3: Updated source attribution and improved formatting consistency.

📅 June 25

📖 Chapters

	█░░░░ Chapter 3: DL Primer: Fixed the link to video 3.1.

	███░░ Contributors: Updated contributors list.

	███░░ Index: The banner was added back to the index.

📅 June 20

📖 Chapters

	██░░░ Chapter 2: ML Systems: Updated content

	███░░ Index: The index now includes a banner section with GitHub stars.

	███░░ Contributors: Updated contributor list.

🧑‍💻 Labs

Hands-on Labs

	█░░░░ Lab: Shared: Fixed broken links within educational content.

📅 June 19

📖 Chapters

	████░ Chapter 1: Introduction: Improved introduction material based on feedback.

	████░ Chapter 2: ML Systems: Improved explanations of ML systems concepts based on feedback from the Data review team.

	███░░ Chapter 3: DL Primer: Fixed formatting and typos to improve readability and clarity.

	███░░ Chapter 5: AI Workflow: Updated content

	███░░ Chapter 6: Data Engineering: Citation formatting was updated from () to [] for improved consistency.

	███░░ Chapter 7: AI Frameworks: Updated content

	████░ Chapter 8: AI Training: Typographical errors and formatting inconsistencies were corrected.

	███░░ Chapter 9: Efficient AI: Added a reference to videos at the relevant link.

	███░░ Chapter 10: Model Optimizations: Corrected citation formatting from parentheses to brackets.

	███░░ Chapter 11: AI Acceleration: Added a link to Google’s Edge TPU website.

	█████ Chapter 12: Benchmarking AI: Added a figure illustrating training progress based on MLPerf benchmarks and made minor text updates.

	███░░ Chapter 13: ML Operations: Updated content

	███░░ Chapter 14: On-Device Learning: Updated content

	███░░ Chapter 15: Security & Privacy: Updated content

	████░ Chapter 16: Responsible AI: Updated content

	███░░ Chapter 17: Sustainable AI: Updated content

	████░ Chapter 18: Robust AI: Fixed citation formatting for improved readability.

	███░░ Chapter 19: AI for Good: Updated content

	██░░░ Chapter 21: Conclusion: Updated content

	█████ Lab: Arduino Image Classification: Improved image classification lab integration and added necessary files.

	████░ Foreword: Updated content

	███░░ About: Disabling comments on certain pages.

	██░░░ Acknowledgements: Updated content

	██░░░ Index: The index now includes a banner and links to the GitHub repository.

	█████ Contributors: Updated content

	███░░ Ethics: Updated content

	██░░░ Taxonomy: Updated content

	████░ Toc: Updated content

	█░░░░ Learning Resources: Updated content

	██░░░ Dsp Spectral Features Block: Minor change in title.

	█████ Object Detection Fomo: Updated content

	█░░░░ Copyright: Updated content

	█░░░░ Dedication: Updated content

	██░░░ Generative Ai: Updated content

	██░░░ Labs: Updated content

🧑‍💻 Labs

Hands-on Labs

	████░ Lab: Lab Setup: Added getting started content to the Lab Setup guide.

	████░ Lab: Nicla Vision: Improved the introduction text and added credit for an image.

	█████ Lab: Kws Feature Eng: Updated content

	███░░ Lab: Xiao Esp32S3: Improved introductory text for better clarity.

	████░ Lab: Labs: Updated the overview section of the Labs, and made wording tweaks throughout.

	█████ Lab: Dsp Spectral Features Block: Updated content

	██░░░ Lab: Shared: Added Shared Labs overview

Arduino

	███░░ Lab: Arduino Setup: Grammar was corrected and resources were updated.

	███░░ Lab: Arduino Object Detection: Improved object detection lab integration within existing course content.

	████░ Lab: Arduino Keyword Spotting: Fixed grammar errors and improved resource links within the Arduino Keyword Spotting lab.

	████░ Lab: Arduino Motion Classification: Improved grammar and syntax within the motion classification lab instructions.

Seeed XIAO ESP32S3

	█████ Lab: XIAO Setup: Importing SEEED labs and integrating them into existing lab material.

	█████ Lab: XIAO Image Classification: Imported SEEED labs content and integrated it into the image classification section.

	█████ Lab: XIAO Object Detection: Imported materials related to SEEED labs.

	█████ Lab: XIAO Keyword Spotting: Improved readability of lab documentation with grammar corrections and updated link formatting.

	█████ Lab: XIAO Motion Classification: Improved link titles, grammar, and added a link to internal documentation.

📅 June 11

📖 Chapters

	███░░ Chapter 2: ML Systems: Improved visual presentation of exercise callouts within the section.

	███░░ Chapter 3: DL Primer: Added video callouts and resources at the end of the section.

	██░░░ Chapter 5: AI Workflow: Added video callouts and resources at the end of the section.

	███░░ Chapter 6: Data Engineering: Restructured exercise callouts within the chapter for improved visual presentation.

	███░░ Chapter 7: AI Frameworks: Improved the visual presentation of exercise callouts within the section.

	████░ Chapter 8: AI Training: Improved the visual presentation of exercise callouts within the training section.

	██░░░ Chapter 9: Efficient AI: Added video callouts and end-of-section resources.

	███░░ Chapter 10: Model Optimizations: Added video callouts and end of section resources. Improved formatting of exercise callout blocks.

	███░░ Chapter 11: AI Acceleration: Added video callouts to enhance section engagement and included end-of-section resources.

	███░░ Chapter 12: Benchmarking AI: Improved visual layout of exercise callout blocks.

	███░░ Chapter 13: ML Operations: Video callouts were added to the section and exercise callout blocks were reorganized for improved visual appeal.

	███░░ Chapter 14: On-Device Learning: Improved the visual presentation of exercise callouts within the section.

	███░░ Chapter 15: Security & Privacy: Improved the visual layout of exercise callouts in the section.

	███░░ Chapter 16: Responsible AI: Added video callouts and end-of-section resources.

	███░░ Chapter 17: Sustainable AI: The chapter now includes video callouts and end-of-section resources. Exercise callout blocks were also reorganized for improved visual appeal.

	███░░ Chapter 18: Robust AI: Added video callouts and end-of-section resources. Exercise callout blocks were reorganized for improved visual presentation.

	███░░ Chapter 19: AI for Good: Improved visual presentation of exercise callouts within the section.

	█████ Contributors: Updated content

	███░░ Generative Ai: Added text about generative AI coming soon.

📅 June 02

📖 Chapters

	████░ Contributors: Updated content

📅 June 01

📖 Chapters

	███░░ Chapter 1: Introduction: The introduction section now has improved grammar and readability.

	███░░ Chapter 2: ML Systems: Corrected bullet formatting errors and updated slides to ensure proper rendering in PDF.

	████░ Chapter 3: DL Primer: Slides now use a default note style for better PDF rendering. Lab/exercise slides have formatting improvements.

	███░░ Chapter 5: AI Workflow: Formatting adjustments were made to labs/exercises/slides for improved PDF rendering.

	████░ Chapter 6: Data Engineering: Fixed an issue with text and URL highlighting in the Data Engineering chapter.

	████░ Chapter 7: AI Frameworks: The ‘coming soon’ section now uses bullets and slide formatting was adjusted for better PDF rendering.

	████░ Chapter 8: AI Training: Colab badges are functioning correctly and slides now render well in PDF.

	███░░ Chapter 9: Efficient AI: Formatting adjustments were made to labs/exercises/slides for improved PDF rendering.

	████░ Chapter 10: Model Optimizations: Minor formatting updates were made to labs, exercises, and slides for improved PDF rendering.

	███░░ Chapter 11: AI Acceleration: Updated slide presentation with bullet points and adjusted formatting for better PDF rendering.

	████░ Chapter 12: Benchmarking AI: Improved formatting of slides and labs/exercises to enhance readability in PDF.

	███░░ Chapter 13: ML Operations: Updated coming soon section to have bullets for improved readability.

	████░ Chapter 14: On-Device Learning: Updated slide note formatting for better PDF rendering and improved visual presentation of coming soon sections.

	████░ Chapter 15: Security & Privacy: Improved formatting of slides and labs/exercises to enhance readability in PDF.

	███░░ Chapter 16: Responsible AI: The coming soon section was updated with bullets for improved readability. Slides now use a default note style to ensure proper rendering in PDF.

	████░ Chapter 17: Sustainable AI: Slides now use the default note format for improved PDF rendering. Lab/exercise slides were also formatted for consistency.

	████░ Chapter 18: Robust AI: Fixed rendering issues to ensure slides display correctly in PDF format.

	████░ Chapter 19: AI for Good: Updated slides to use a default note style for better PDF rendering and made formatting changes to lab exercises.

	████░ Contributors: Updated content

	██░░░ Case Studies: Fixed rendering issues to ensure all content displays correctly.

	██░░░ Ethics: Fixed rendering issues to ensure all content displays correctly.

	██░░░ Generative Ai: Fixed rendering issues to ensure content displays correctly.

	█░░░░ Conventions: Improved formatting in labs, exercises, and slides.

	█░░░░ Labs: Formatting changes were made to slides within the labs exercises.

	█░░░░ Learning Resources: Updated content

	█░░░░ Tools: Updated content

📅 May 26

📖 Chapters

	████░ Chapter 1: Introduction: Added a cover image for the introduction chapter and an image related to Mark’s article. A reference section was added to the introduction chapter.

	█████ Chapter 2: ML Systems: Added section headers for cross-referencing, updated figure captions and references, corrected grammar, improved clarity of table captions, and changed wording in a few instances.

	█████ Chapter 3: DL Primer: Added section headers for cross-referencing, captions to tables and videos, improved text clarity, and updated resources. Grammar and punctuation were also corrected.

	████░ Chapter 5: AI Workflow: Added section headers for easier cross-referencing and fixed an error in the bib file header.

	█████ Chapter 6: Data Engineering: Added section headers for cross-referencing and captions to all tables. Fixed figure captions and references.

	█████ Chapter 7: AI Frameworks: Improved figure captions and references and added captions to all tables.

	█████ Chapter 8: AI Training: Added section headers for cross-referencing, captions to all tables and short captions for videos. Grammar and punctuation were also checked and fixed.

	████░ Chapter 9: Efficient AI: Added section headers for cross-referencing, corrected figure captions and references, and made punctuation edits.

	█████ Chapter 10: Model Optimizations: Added captions to all tables, short captions for the videos, and added more slides.

	█████ Chapter 11: AI Acceleration: Added short captions for videos and updated hw_acceleration.qmd file with stylistic and link fixes.

	█████ Chapter 12: Benchmarking AI: Updated punctuation, grammar, and styling for improved readability.

	█████ Chapter 13: ML Operations: Added short captions for videos.

	█████ Chapter 14: On-Device Learning: Added captions to all tables and videos, updated the conclusion section, and added exercises.

	█████ Chapter 15: Security & Privacy: Added captions to tables and short captions for videos in the privacy and security section.

	█████ Chapter 16: Responsible AI: Added captions to videos, improved link accuracy, and made minor stylistic changes to enhance readability.

	█████ Chapter 17: Sustainable AI: Added section headers for cross-referencing, improved figure captions and references, and made stylistic changes to improve readability.

	█████ Chapter 18: Robust AI: Added a resources section to the chapter and incorporated feedback from a contributor. Minor text fixes, grammar corrections, punctuation edits, and table formatting adjustments were also made.

	████░ Chapter 19: AI for Good: Added short captions for videos, improved punctuation, and made stylistic changes to text formatting.

	█████ Chapter 21: Conclusion: Made minor grammar and wording improvements to the conclusion section.

	███░░ Lab: Arduino Image Classification: Improved punctuation throughout the document for clarity.

	████░ Foreword: Made punctuation edits to improve clarity throughout the foreword.

	███░░ Acknowledgements: Initial draft of the acknowledgements section.

	█████ Contributors: Updated content

	███░░ Index: Added a content transparency statement to clarify information sources.

	██░░░ Copyright: Updated license file

	█░░░░ Dedication: Added section headers to aid cross-referencing within the dedication.

	█░░░░ Case Studies: Added section headers for easier navigation and cross-referencing within case studies.

	█░░░░ Community: Added section headers to facilitate cross-referencing within the community content.

	█░░░░ Ethics: Improved readability by adding section headers for cross-referencing and adjusting the styling of ‘Coming soon’ text.

	█░░░░ Generative Ai: Added section headers for improved cross-referencing within the document.

	█░░░░ Learning Resources: Added section headers for easier navigation and cross-referencing within learning materials.

	█░░░░ Zoo Datasets: Added section headers for easier navigation and cross-referencing within the document.

	███░░ Conventions: Corrected punctuation for improved readability.

	██░░░ Dsp Spectral Features Block: Fixed punctuation errors for improved clarity.

	███░░ Kws Feature Eng: Punctuation was corrected.

	███░░ Motion Classify Ad: Punctuation was fixed for improved readability.

	██░░░ Niclav Sys: Fixed punctuation inconsistencies for improved readability.

	████░ Toc: Corrected punctuation inconsistencies throughout the document.

	█░░░░ Labs: Updated ‘tinyML’ references to ‘TinyML’.

	█████ Embedded Ml: Set collapse=false to control chapter visibility.

	██░░░ Embedded Sys: Added more slides to enhance visual learning.

📅 March 21

📖 Chapters

	████░ Chapter 3: DL Primer: Added a Resources section to each part of the DL Primer with introductory text and collapsed functionality. Additional slides were also incorporated.

	███░░ Chapter 5: AI Workflow: The Resources section now includes introductory text for each part and can be collapsed. Slides have been moved to the end of the page.

	████░ Chapter 6: Data Engineering: Added a ‘Resources’ section to all QMDs with collapsible intro text for each part.

	████░ Chapter 7: AI Frameworks: Added a section with introductory text and enabled collapsible sections within the Resources.

	████░ Chapter 8: AI Training: Added a Resources section at the end of the chapter with introductory text and enabled collapsing functionality for better organization.

	███░░ Chapter 9: Efficient AI: Added more slides and an ‘Resources’ section with introductory text that can be collapsed.

	████░ Chapter 10: Model Optimizations: Added an empty ‘Resources’ section at the end of each QMD file to allow for future material additions.

	███░░ Chapter 11: AI Acceleration: Added introductory text for each section within the Resources part and enabled collapsible sections.

	███░░ Chapter 12: Benchmarking AI: Added an ‘Resources’ section at the end of all QMDs with intro text and enabled collapsing.

	████░ Chapter 13: ML Operations: Added a Resources section at the end of each QMD with introductory text for each part and enabled collapsing.

	████░ Chapter 14: On-Device Learning: Resources section added to the end of all QMDs, with collapsible intro text and space for learning materials.

	███░░ Chapter 15: Security & Privacy: Added a ‘Resources’ section with intro text and enabled collapsing at the end of all QMDs.

	███░░ Chapter 16: Responsible AI: Added a Resources section to the end of the Responsible AI chapter with collapsible sections for each resource category.

	███░░ Chapter 17: Sustainable AI: Added an empty “Resources” section to the end of the QMD with headers.

	███░░ Chapter 19: AI for Good: Added an empty ‘Resources’ section to the end of the QMD with headers and updated the page by moving slides to the end.

	█████ Contributors: Updated content

	██░░░ Labs: Added a Labs QMD file to provide information and recognition for Marcelo’s contributions.

	████░ Embedded Sys: Added a Resources section to QMD files with intro text for each part and enabled collapsing.

	████░ Embedded Ml: Added a Resources section with introductory text and collapsible features to each part.

📅 March 13

📖 Chapters

	███░░ Contributors: Updated content

📅 March 12

📖 Chapters

	█░░░░ Chapter 1: Introduction: Updated content

	███░░ Chapter 3: DL Primer: Added more slides.

	███░░ Chapter 5: AI Workflow: Added more slides and fixed notes from last week.

	████░ Chapter 6: Data Engineering: Updated the Data Engineering chapter with Colab notebooks, added more slides, and included a web scraping exercise in both the subsection and as a separate Exercises part.

	████░ Chapter 7: AI Frameworks: Added Colab notebooks to provide hands-on experience with AI frameworks covered in the chapter.

	███░░ Chapter 8: AI Training: Improved the visual presentation of AI training content.

	██░░░ Chapter 9: Efficient AI: Improved correctness of non-ASCII character handling scripts.

	████░ Chapter 10: Model Optimizations: Updated content

	███░░ Chapter 11: AI Acceleration: Removed a figure reference and mermaid section from the text.

	███░░ Chapter 12: Benchmarking AI: Added additional slides to enhance the presentation of benchmarking concepts.

	████░ Chapter 13: ML Operations: Added more slides about ML Operations.

	███░░ Chapter 14: On-Device Learning: Added more slides.

	███░░ Chapter 15: Security & Privacy: Added more slides to enhance visual learning.

	███░░ Chapter 16: Responsible AI: Improved visual styling of slides for better presentation

	████░ Chapter 17: Sustainable AI: Added more slides to enhance presentation coverage of sustainable AI topics.

	███░░ Chapter 19: AI for Good: Added more slides.

	█░░░░ Acknowledgements: Updated content

	████░ Contributors: Updated content

	██░░░ Niclav Sys: Fixed incorrect links.

	████░ Embedded Ml: Added slides with arrow capabilities, custom callouts, and more content.

	███░░ Embedded Sys: Added more slides about embedded systems concepts.

	██░░░ Tools: Non-ASCII checker scripts were added and existing ones were fixed.

📅 February 03

📖 Chapters

	█░░░░ Chapter 3: DL Primer: Fixed video rendering issues.

	██░░░ Chapter 11: AI Acceleration: Fixed video rendering for improved visual demonstration of AI acceleration techniques.

	██░░░ Chapter 12: Benchmarking AI: Improved the visual consistency of the benchmarking section’s list items.

	█░░░░ Chapter 13: ML Operations: Added an MCU example for smartwatch implementation and included a relevant reference.

	██░░░ Chapter 14: On-Device Learning: Fixed rendering of itemized lists for improved readability.

	██░░░ Chapter 15: Security & Privacy: Improved clarity and added hyperlinking to relevant sections for GDPR and CCPA compliance guidelines.

	███░░ Chapter 17: Sustainable AI: Improved formatting of list items and cited a reference for an OECD blueprint paper.

	██░░░ Chapter 19: AI for Good: Fixed video rendering issues and resolved YouTube shortened URL resolution problems.

	███░░ Contributors: Updated content

📅 February 02

📖 Chapters

	██░░░ Chapter 3: DL Primer: Updated image format for PDF builds to PNG.

	███░░ Chapter 6: Data Engineering: Added a web scraping exercise using Google Colab.

	███░░ Chapter 8: AI Training: Updated content

	███░░ Chapter 10: Model Optimizations: Improved illustration of sparsity matrix filter.

	████░ Chapter 11: AI Acceleration: Fixed several broken image references within the chapter.

	███░░ Chapter 12: Benchmarking AI: Fixed rendering of references within the benchmarking chapter.

	███░░ Chapter 13: ML Operations: Fixed rendering issues with a figure.

	███░░ Chapter 14: On-Device Learning: Updated formatting and removed a broken image reference.

	████░ Chapter 15: Security & Privacy: Security section content now renders correctly with fixed image references and video URLs.

	███░░ Chapter 16: Responsible AI: Fixed an issue with citations using the ‘@’ symbol for consistency.

	████░ Chapter 17: Sustainable AI: Fixed several broken image references and links within the chapter.

	██░░░ Chapter 19: AI for Good: Fixed broken image references to ensure all figures are displayed correctly.

	████░ Contributors: Updated content

	█░░░░ Embedded Sys: Bibtex references are now updated automatically.

	█░░░░ Embedded Ml: Updated content

📅 January 02

📖 Chapters

	█░░░░ Chapter 7: AI Frameworks: Minor syntax errors were corrected in callout-tip elements.

	████░ Contributors: Updated content

	█░░░░ Niclav Sys: Corrected a typo in the instructions for installing the OpenMV IDE.

2023

📅 December 19

📖 Chapters

	█████ Chapter 10: Model Optimizations: Added figures to illustrate model optimization concepts and corrected formatting errors.

	███░░ Contributors: Updated contributor list

📅 December 18

📖 Chapters

	█░░░░ Chapter 7: AI Frameworks: Updated Colab notebooks for AI frameworks examples.

	██░░░ Chapter 10: Model Optimizations: Updated content

	█░░░░ Chapter 12: Benchmarking AI: Content about benchmarking has been moved to a new section within the benchmarks/leaderboards area. The display of references has also been improved.

	███░░ Chapter 17: Sustainable AI: Improved wording about power draw and fixed a citation issue.

	████░ Learning Resources: Improved readability by removing line wraps.

📅 December 13

📖 Chapters

	█░░░░ Chapter 7: AI Frameworks: Colab notebooks for frameworks were updated.

	█░░░░ Chapter 8: AI Training: Updated content

	█░░░░ Chapter 9: Efficient AI: Fixed a broken URL link.

	█░░░░ Chapter 10: Model Optimizations: Updated a missing reference to an attention paper for further reading.

	█░░░░ Chapter 12: Benchmarking AI: Updated content

	██░░░ Learning Resources: Removed an invalid learning resource.

	███░░ Index: Added a section on how to cite the book to the preface.

📅 December 12

📖 Chapters

	███░░ Chapter 1: Introduction: The introduction paragraph was updated to explain scholarly paper links.

	██░░░ Chapter 3: DL Primer: Removed the DL primer activation function explanation and moved the computation graph discussion to the training section.

	█░░░░ Chapter 5: AI Workflow: The name “tinyML” was updated to be consistently written as “TinyML” throughout the workflow documentation.

	██░░░ Chapter 6: Data Engineering: Updated ‘tinyML’ instances to be consistently written as ‘TinyML’.

	██░░░ Chapter 7: AI Frameworks: Ensured consistent terminology by updating ‘tinyML’ to ‘TinyML’.

	██░░░ Chapter 8: AI Training: Removed the discussion of activation function from the deep learning primer and moved the computation graph description to the training section.

	██░░░ Chapter 10: Model Optimizations: Minor language edits for consistency.

	██░░░ Chapter 11: AI Acceleration: Consistently used ‘TinyML’ throughout the text.

	███░░ Chapter 12: Benchmarking AI: Updated “tinyML” terminology to be consistently written as “TinyML”.

	█░░░░ Chapter 14: On-Device Learning: Updated content

	███░░ Chapter 16: Responsible AI: Ensured consistent terminology by changing ‘tinyML’ to ‘TinyML’.

	███░░ Chapter 18: Robust AI: Updated content

	█░░░░ Lab: Arduino Image Classification: Updated content

	███░░ Index: Added a ‘How to Cite This Book’ section to the preface.

	███░░ Generative Ai: Updated content

	█░░░░ Embedded Ml: Updated content

	██░░░ Embedded Sys: Updated terminology to be consistent with current industry standards.

	█░░░░ Kws Nicla: Updated terminology for consistency.

	█░░░░ Tools: Ensured consistent terminology by replacing instances of ‘tinyML’ with ‘TinyML’.

	█░░░░ Zoo Datasets: Ensured consistent terminology by changing ‘tinyML’ to ‘TinyML’ throughout.

📅 December 11

📖 Chapters

	███░░ Chapter 1: Introduction: The introductory paragraph now explains the purpose of links to scholarly papers.

	███░░ Chapter 3: DL Primer: Updated content

	██░░░ Chapter 5: AI Workflow: Updated content

	███░░ Chapter 6: Data Engineering: Updated content

	███░░ Chapter 7: AI Frameworks: Updated content

	███░░ Chapter 8: AI Training: Moved computation graph implementation to training section.

	███░░ Chapter 9: Efficient AI: Added references to mentioned datasets and ResNet-SE and ResNeXt papers in the efficient AI chapter.

	████░ Chapter 10: Model Optimizations: Removed duplicate information about the lottery ticket hypothesis.

	████░ Chapter 11: AI Acceleration: Added references for Machine Learning/Reinforcement Learning algorithms in hardware design applications such as architecture design exploration, floorplanning, and logic synthesis.

	███░░ Chapter 12: Benchmarking AI: Updated content

	███░░ Chapter 13: ML Operations: Updated content

	███░░ Chapter 14: On-Device Learning: Updated content

	████░ Chapter 15: Security & Privacy: Updated content

	███░░ Chapter 16: Responsible AI: Updated content

	███░░ Chapter 17: Sustainable AI: Updated content

	███░░ Chapter 18: Robust AI: Updated content

	██░░░ Chapter 19: AI for Good: Updated content

	████░ Lab: Arduino Image Classification: Organized image files by type to enhance clarity.

	███░░ Generative Ai: Updated content

	███░░ Embedded Ml: Organized images into subfolders based on file type for easier navigation.

	███░░ Embedded Sys: The embedded systems documentation now uses consistent terminology throughout and includes separate reference files for each chapter.

	████░ Kws Nicla: Updated content

	█░░░░ Tools: Updated terminology to be consistent throughout.

	█░░░░ Zoo Datasets: Updated language consistency regarding TinyML.

	██░░░ Index: Consistency was improved by updating references to ‘TinyML’ throughout the text.

	████░ Dsp Spectral Features Block: Updated content

	███░░ Kws Feature Eng: Updated content

	████░ Motion Classify Ad: Updated content

	████░ Niclav Sys: Updated content

	████░ Object Detection Fomo: Updated content

	████░ Contributors: Updated content

📅 December 10

📖 Chapters

	████░ Chapter 1: Introduction: Updated content

	█░░░░ Chapter 3: DL Primer: Updated content

	██░░░ Chapter 5: AI Workflow: Updated content

	███░░ Chapter 6: Data Engineering: Updated content

	███░░ Chapter 7: AI Frameworks: Updated content

	███░░ Chapter 8: AI Training: Updated content

	██░░░ Chapter 9: Efficient AI: Updated content

	████░ Chapter 10: Model Optimizations: Updated content

	███░░ Chapter 11: AI Acceleration: Updated content

	███░░ Chapter 12: Benchmarking AI: Updated content

	███░░ Chapter 13: ML Operations: Updated content

	███░░ Chapter 14: On-Device Learning: Updated content

	████░ Chapter 15: Security & Privacy: Updated content

	███░░ Chapter 16: Responsible AI: Updated content

	███░░ Chapter 17: Sustainable AI: Updated content

	█░░░░ Chapter 19: AI for Good: Updated content

	████░ Lab: Arduino Image Classification: Updated content

	████░ Contributors: Updated content

	██░░░ Index: Fixed broken links and updated contact information.

	████░ Dsp Spectral Features Block: Updated content

	███░░ Embedded Ml: Updated content

	██░░░ Embedded Sys: Updated content

	█░░░░ Generative Ai: Updated content

	███░░ Kws Feature Eng: Updated content

	████░ Kws Nicla: Updated content

	████░ Motion Classify Ad: Updated content

	████░ Niclav Sys: Updated content

	████░ Object Detection Fomo: Updated content

📅 December 09

📖 Chapters

	█░░░░ Chapter 6: Data Engineering: Minor improvements were made to references within the chapter.

	███░░ Chapter 11: AI Acceleration: Added references and fixes related to CPU and GPU acceleration techniques.

	███░░ Contributors: Updated the list of contributors to the project.

📅 December 08

📖 Chapters

	█░░░░ Chapter 5: AI Workflow: Fixed figure reference for improved visual clarity.

	██░░░ Chapter 6: Data Engineering: Updated content

	█████ Chapter 7: AI Frameworks: Added exercises to the AI Frameworks chapter and included new figures illustrating key concepts.

	███░░ Chapter 8: AI Training: Updated content

	██░░░ Chapter 9: Efficient AI: Fixed spelling errors throughout the chapter.

	██░░░ Chapter 10: Model Optimizations: Changed the list format from effective to bulleted.

	████░ Chapter 17: Sustainable AI: Added a reference to nuclear data centers and made minor formatting updates to sustainable_ai.qmd.

	█████ Contributors: Updated content

	█████ Motion Classif Anomaly Detect: Including exercises on Framework

	███░░ Motion Classify Ad: Added exercises on Framework

	███░░ Embedded Ml: Fixed figure reference for improved visual clarity.

📅 December 06

📖 Chapters

	█░░░░ Chapter 1: Introduction: Updated content

	████░ Chapter 3: DL Primer: Added exercises focusing on deep learning frameworks.

	███░░ Chapter 5: AI Workflow: Updated content

	████░ Chapter 6: Data Engineering: Added figures to illustrate embedded_ai, ai_workflow, and data engineering concepts.

	█████ Chapter 7: AI Frameworks: Fixed markdown formatting issues.

	█████ Chapter 8: AI Training: Updated the training parallelization section, improved the optimizations section, added details to activation functions, and made weight initialization connections clearer.

	███░░ Chapter 9: Efficient AI: Added visualizations to enhance understanding of concepts.

	████░ Chapter 10: Model Optimizations: Updated content

	█████ Chapter 11: AI Acceleration: Updated content

	████░ Chapter 12: Benchmarking AI: Updated content

	████░ Chapter 13: ML Operations: Updated content

	████░ Chapter 14: On-Device Learning: Corrected a typo to ensure consistency in terminology.

	████░ Chapter 15: Security & Privacy: Updated content

	█████ Chapter 16: Responsible AI: Updated sections on autonomous systems, AI safety and value alignment, interpretable models, bias and privacy. Added a cover image, learning objectives, and revised the introduction.

	█████ Chapter 17: Sustainable AI: Added citations and images to the chapter on Sustainable AI. Content was also updated with a first draft of the chapter.

	███░░ Chapter 19: AI for Good: Updated content

	█░░░░ Lab: Arduino Image Classification: Exercises now include cover images for improved visual appeal and context.

	█░░░░ Acknowledgements: Updated content

	███░░ Embedded Ml: Added figures to illustrate embedded ML concepts related to cloud ML.

	██░░░ Index: Corrected typos in the index file.

	█████ Contributors: Updated content

	█████ Motion Classif Anomaly Detect: Added new exercises with cover images to enhance visual appeal and engagement.

	█░░░░ Dsp Spectral Features Block: Updated content

	█░░░░ Kws Feature Eng: Exercises now include cover images to provide visual context.

	█░░░░ Kws Nicla: Added cover images to exercises.

	████░ Learning Resources: Exercises now include cover images.

	█░░░░ Niclav Sys: Added exercises covering frameworks and deep learning primer concepts.

	█░░░░ Object Detection Fomo: Added cover images to exercises for enhanced visual appeal and engagement.

	█░░░░ Zoo Models: Updated content

	█░░░░ Zoo Datasets: Updated content

	█░░░░ Tools: Updated content

	█░░░░ Test: Updated content

	███░░ Generative Ai: Updated content

	████░ Embedded Sys: Updated content

	█░░░░ Copyright: Updated content

	██░░░ Community: Updated content

	█░░░░ Case Studies: Updated content

📅 December 01

📖 Chapters

	███░░ Chapter 6: Data Engineering: Updated figures and tables within the data engineering section for improved clarity.

	████░ Chapter 8: AI Training: Improved the clarity and accuracy of the hyperparameter section.

	████░ Chapter 15: Security & Privacy: Minor updates were made to enhance clarity and accuracy of information regarding privacy and security concepts.

	█████ Contributors: Updated content

📅 November 30

📖 Chapters

	███░░ Chapter 6: Data Engineering: Updated image descriptions with copyright attribution and added five visuals to enhance learning.

	███░░ Chapter 8: AI Training: The algorithms section was expanded with additional information and references.

	██░░░ Chapter 9: Efficient AI: Made table formatting consistent.

	███░░ Chapter 10: Model Optimizations: Updated content

	██░░░ Chapter 11: AI Acceleration: Updated content

	█░░░░ Chapter 13: ML Operations: Removed duplicate references to ensure clarity and accuracy.

	██░░░ Chapter 14: On-Device Learning: Improved the visual consistency of tables.

	█████ Chapter 15: Security & Privacy: Updated the chapter with corrections to references and formatting.

	█████ Contributors: Updated content

	██░░░ Index: Updated content

📅 November 22

📖 Chapters

	████░ Chapter 8: AI Training: Updated backpropagation explanation.

	████░ Chapter 13: ML Operations: Incorporated feedback to improve clarity and accuracy of ML Operations content.

	█████ Chapter 15: Security & Privacy: Added a cover image, learning objectives, and a draft chapter on security and privacy.

	█████ Contributors: Updated content

	██░░░ Embedded Sys: Added images to illustrate the difference between microcontrollers and microprocessors.

📅 November 17

📖 Chapters

	███░░ Chapter 5: AI Workflow: Updated text to align with an image illustrating the traditional machine learning workflow and added a corresponding image to the chapter.

	████░ Chapter 8: AI Training: Added training data content and an overview of neural networks.

	███░░ Chapter 11: AI Acceleration: Added a link to Neuromorphic Computing within the chapter.

	███░░ Chapter 12: Benchmarking AI: Added a section link to Neuromorphic Computing.

	████░ Chapter 13: ML Operations: Updated acronyms used throughout Chapter 13.

	█████ Contributors: Updated content

	█░░░░ Index: The introduction was made more general.

📅 November 15

📖 Chapters

	█████ Chapter 8: AI Training: Added training data content, an introduction to neural networks, and placeholders for additional sections.

	████░ Chapter 11: AI Acceleration: Fixed spelling errors and improved figure accuracy.

	█████ Chapter 13: ML Operations: Added an overview paragraph and a page dedicated to AIOps.

	█████ Contributors: Updated content

📅 November 12

📖 Chapters

	█████ Contributors: Fixed a broken link to a book listed in the contributors.

📅 November 10

📖 Chapters

	████░ Chapter 12: Benchmarking AI: Updated content

	████░ Contributors: Updated contributor list.

📅 November 09

📖 Chapters

	███░░ Chapter 9: Efficient AI: Updated content

	█████ Chapter 11: AI Acceleration: Added sections on Software for AI hardware and Benchmarking AI Hardware. Also included a co-design section with references. Content was added on emerging technologies, an introduction to hardware accelerators, types of hardware accelerators, and background information.

	█░░░░ Chapter 13: ML Operations: Updated the image for better visualization.

	████░ Chapter 14: On-Device Learning: Updated the advantages and limitations section based on feedback and revised the transfer learning section to address comments.

	█████ Contributors: Updated content

	█████ Dsp Spectral Features Block: Updated content

📅 November 07

📖 Chapters

	███░░ Chapter 9: Efficient AI: Added learning objectives section to guide student understanding.

	█████ Chapter 11: AI Acceleration: Added sections on software for AI hardware, benchmarking AI hardware, co-design considerations, and emerging technologies in AI acceleration. Included background information, types of hardware accelerators, and references.

	█░░░░ Chapter 13: ML Operations: Updated image for improved visual clarity.

	████░ Chapter 14: On-Device Learning: Updated the advantages and limitations section of on-device learning with additional information based on feedback.

	███░░ Chapter 19: AI for Good: Added a medical example to illustrate AI applications within the ‘AI for Good’ chapter.

	████░ Contributors: Updated content

	█████ Dsp Spectral Features Block: Updated content

📅 November 03

📖 Chapters

	█░░░░ Object Detection Fomo: Added Exercise Motion/Anomaly Detection

	███░░ Contributors: Updated contributor list.

📅 November 02

📖 Chapters

	█░░░░ Chapter 5: AI Workflow: Updated content

	█░░░░ Chapter 6: Data Engineering: Updated content

	████░ Chapter 10: Model Optimizations: Added an overview paragraph about the chapter.

	█░░░░ Chapter 11: AI Acceleration: Updated the figure illustrating AI acceleration concepts.

	█░░░░ Chapter 13: ML Operations: Updated content

	█████ Chapter 14: On-Device Learning: Added learning objectives and citation links to the Transfer Learning section.

	█░░░░ Chapter 17: Sustainable AI: Added a cover image for Chapter 17.

	█░░░░ Chapter 19: AI for Good: Updated cover image.

	█████ Contributors: Updated content

📅 October 31

📖 Chapters

	█░░░░ Chapter 3: DL Primer: Notes within the chapter no longer use collapsible sections.

	█░░░░ Chapter 5: AI Workflow: Notes section no longer collapses by default.

	█░░░░ Chapter 6: Data Engineering: Improved readability by removing unnecessary collapsing on notes.

	█░░░░ Chapter 7: AI Frameworks: Improved note section readability by removing collapsed sections.

	█░░░░ Chapter 8: AI Training: Notes within the chapter no longer have an automatic collapse.

	█░░░░ Chapter 9: Efficient AI: Notes within the chapter no longer collapse by default.

	█████ Chapter 10: Model Optimizations: Fixed mathematical notation errors and improved code examples for model optimizations.

	█░░░░ Chapter 11: AI Acceleration: Updated content

	█░░░░ Chapter 12: Benchmarking AI: Minor formatting adjustments were made to improve readability of notes.

	█░░░░ Chapter 13: ML Operations: Improved readability by removing unnecessary collapse functionality on notes.

	█░░░░ Chapter 14: On-Device Learning: Improved readability by removing the collapse functionality from note sections.

	█░░░░ Chapter 15: Security & Privacy: Updated content

	█░░░░ Chapter 16: Responsible AI: Removed collapse on notes

	█░░░░ Chapter 18: Robust AI: Removed unnecessary collapse on notes.

	█░░░░ Chapter 19: AI for Good: Removed collapsing on notes for improved readability.

	████░ Contributors: Updated content

	█░░░░ Case Studies: Updated content

	█░░░░ Embedded Ml: Removed collapsing functionality on notes.

	█░░░░ Embedded Sys: Removed the collapsible feature from notes sections.

	█░░░░ Ethics: Updated content

	█░░░░ Generative Ai: Removed collapse functionality from notes section.

📅 October 30

📖 Chapters

	█░░░░ Chapter 3: DL Primer: Added DALLE3 figures to enhance visual understanding of concepts.

	█░░░░ Chapter 5: AI Workflow: Added DALLE3 figures to enhance visual understanding of concepts.

	█░░░░ Chapter 6: Data Engineering: Added DALLE3 figures to enhance visual learning.

	██░░░ Chapter 7: AI Frameworks: Updated framework cover image.

	█░░░░ Chapter 8: AI Training: Notes within collapsed sections are now visible.

	█░░░░ Chapter 9: Efficient AI: Removed unnecessary collapse from notes.

	█░░░░ Chapter 10: Model Optimizations: Updated content

	█░░░░ Chapter 11: AI Acceleration: Updated content

	█████ Chapter 12: Benchmarking AI: Updated chapter structure with a conclusion, learning objectives, and introduction material. Added images related to benchmarking and references.

	█░░░░ Chapter 13: ML Operations: Improved clarity of notes by removing collapsed sections.

	█░░░░ Chapter 14: On-Device Learning: Notes no longer collapse automatically.

	█░░░░ Chapter 15: Security & Privacy: Updated content

	█░░░░ Chapter 16: Responsible AI: Removed collapse functionality from notes section

	█░░░░ Chapter 18: Robust AI: Removed the collapsing functionality on notes.

	█░░░░ Chapter 19: AI for Good: Notes section no longer uses collapsible elements.

	█░░░░ Case Studies: Notes no longer collapse automatically.

	██░░░ Embedded Ml: Added visual explanations using DALLE3 figures to enhance understanding of some concepts.

	██░░░ Embedded Sys: Added visuals of DALLE3 figures to several chapters.

	█░░░░ Ethics: Notes no longer collapse automatically.

	█░░░░ Generative Ai: The collapse functionality has been removed from notes.

	████░ Contributors: Updated content

	████░ Kws Nicla: Updated content

📅 October 29

📖 Chapters

	█████ Chapter 7: AI Frameworks: Learning objectives were updated.

	██░░░ Chapter 9: Efficient AI: Updated content

	█████ Chapter 12: Benchmarking AI: Updated content

	█████ Lab: Arduino Image Classification: Added Hands-On Exercises

	████░ Contributors: Updated content

	█████ Kws Nicla: Added Hands-On Exercises to enhance practical understanding.

	█░░░░ Embedded Ml: Added Hands-On Exercises

	█████ Embedded Ml Exercise: Added Hands-On Exercises

	█░░░░ Embedded Sys: Added Hands-On Exercises

	█████ Embedded Sys Exercise: Added Hands-On Exercises

	████░ Kws Feature Eng: Added Hands-On Exercises to enhance practical understanding of concepts.

	█████ Niclav Sys: Added Hands-On Exercises

	█████ Object Detection Fomo: Added Hands-On Exercises

	██░░░ Community: Added a link to the TinyML Edu webpage.

📅 October 24

📖 Chapters

	█████ Chapter 7: AI Frameworks: Added headings and fixed image formatting in sections 7.1 and 7.2.

	███░░ Contributors: Updated content

📅 October 23

📖 Chapters

	████░ Chapter 7: AI Frameworks: Added links to frameworks when they are first introduced.

	█████ Chapter 10: Model Optimizations: Added a section on efficient hardware implementation with corresponding images.

	███░░ Chapter 18: Robust AI: Added a placeholder for content related to Robust AI.

	███░░ Contributors: Updated content

📅 October 17

📖 Chapters

	█████ Chapter 7: AI Frameworks: Updated formatting for ml-frameworks sections.

	███░░ Chapter 18: Robust AI: Added a placeholder section for discussing the robustness of AI systems.

	████░ Chapter 19: AI for Good: Added first draft of the AI for Good chapter content.

	███░░ Contributors: Updated content

📅 October 11

📖 Chapters

	█░░░░ Chapter 3: DL Primer: Replaced callout-note with callout-tip for learning objectives.

	█░░░░ Chapter 5: AI Workflow: Replaced callout-note with callout-tip to enhance the visual clarity of learning objectives.

	████░ Chapter 6: Data Engineering: Added learning objectives for the chapter.

	█░░░░ Chapter 7: AI Frameworks: Replaced callout-note with callout-tip for learning objectives.

	█░░░░ Chapter 8: AI Training: Changed callout style from ‘callout-note’ to ‘callout-tip’ for learning objectives.

	█░░░░ Chapter 9: Efficient AI: Updated callouts for learning objects to be more informative.

	█░░░░ Chapter 10: Model Optimizations: Changed callout note style to callout tip for learning objectives.

	█░░░░ Chapter 11: AI Acceleration: Replaced callout-note with callout-tip for learning objects.

	█░░░░ Chapter 12: Benchmarking AI: Changed ‘callout-note’ to ‘callout-tip’ for learning objectives.

	█░░░░ Chapter 13: ML Operations: Changed callout notes to callout tips for learning objectives.

	█░░░░ Chapter 14: On-Device Learning: Changed the type of callout used for learning objects from ‘callout-note’ to ‘callout-tip’.

	█░░░░ Chapter 15: Security & Privacy: Changed callout notes to callout tips for improved visual guidance of learning objectives.

	█░░░░ Chapter 16: Responsible AI: Learning object callouts were updated from ‘callout-note’ to ‘callout-tip’.

	█░░░░ Chapter 19: AI for Good: Learning objective callouts have been changed from ‘callout-note’ to ‘callout-tip’.

	███░░ Contributors: Updated content

	█░░░░ Case Studies: Replaced ‘callout-note’ with ‘callout-tip’ for learning objectives.

	█░░░░ Embedded Ml: Updated callout notes to ‘callout-tip’ for learning objectives.

	█░░░░ Embedded Sys: Changed callout notes to callout tips for learning objectives.

	█░░░░ Ethics: Updated callout style from ‘callout-note’ to ‘callout-tip’ for learning objectives.

	█░░░░ Generative Ai: Changed callout note style to callout tip for learning objects.

📅 October 10

📖 Chapters

	█████ Chapter 6: Data Engineering: Added sections on data storage, version control, licensing, and a conclusion. Updated Data Processing and Data Sourcing sections based on feedback. Added a paragraph about Data Cascades and helpful references.

	███░░ Contributors: Updated content

	█░░░░ Front: Updated content

📅 October 08

📖 Chapters

	██░░░ Chapter 3: DL Primer: The chapter introduction was enhanced with learning objectives.

	██░░░ Chapter 5: AI Workflow: Updated content

	█░░░░ Chapter 9: Efficient AI: Fixed a broken reference.

	█░░░░ Chapter 11: AI Acceleration: Fixed a broken reference.

	███░░ Contributors: Updated content

	███░░ Embedded Ml: Added learning objectives.

	█░░░░ Front: Minor formatting adjustments were made to the navigation bar.

	██░░░ Embedded Ml Exercise: Updated content

	██░░░ Embedded Sys Exercise: Updated content

📅 October 07

📖 Chapters

	██░░░ Chapter 1: Introduction: Minor text refinements were made.

	██░░░ Chapter 3: DL Primer: Added placeholder for learning objectives.

	██░░░ Chapter 5: AI Workflow: Added a placeholder for the learning objectives of this chapter.

	██░░░ Chapter 6: Data Engineering: Added placeholder for learning objectives.

	██░░░ Chapter 7: AI Frameworks: Added a placeholder section for learning objectives.

	██░░░ Chapter 8: AI Training: Added placeholder for learning objectives.

	██░░░ Chapter 9: Efficient AI: Added placeholder for learning objectives

	██░░░ Chapter 10: Model Optimizations: Added placeholder for learning objectives

	██░░░ Chapter 11: AI Acceleration: Added placeholder for learning objectives

	██░░░ Chapter 12: Benchmarking AI: Added placeholder for learning objectives

	██░░░ Chapter 13: ML Operations: Added placeholder for learning objectives.

	██░░░ Chapter 14: On-Device Learning: Added placeholder for learning objectives.

	██░░░ Chapter 15: Security & Privacy: Added placeholder for learning objectives.

	██░░░ Chapter 16: Responsible AI: Added a placeholder for learning objectives.

	██░░░ Chapter 19: AI for Good: Added placeholder for learning objectives.

	███░░ Contributors: Updated content

	███░░ Embedded Ml: Added exercises to reinforce learning concepts and included placeholders for specified learning objectives.

	███░░ Embedded Sys: Added exercises based on feedback and included placeholders for learning objectives.

	█████ Embedded Ml Exercise: Updated content

	█████ Embedded Sys Exercise: Updated content

	█░░░░ Test: Updated content

	█████ ** Embedded Ml Exercise**: Updated content

	██░░░ Case Studies: Added placeholder for learning objectives

	██░░░ Ethics: Added placeholder for learning objectives.

	██░░░ Generative Ai: Added a placeholder for learning objectives.

📅 September 30

📖 Chapters

	██░░░ Chapter 9: Efficient AI: Updated content

	██░░░ Chapter 10: Model Optimizations: Added section headers for improved readability.

	█░░░░ Chapter 11: AI Acceleration: Added section headers for improved readability.

	██░░░ Contributors: Updated contributor list.

📅 September 29

📖 Chapters

	████░ Chapter 9: Efficient AI: Added a draft overview section for the efficient AI chapter.

	██░░░ Chapter 11: AI Acceleration: Added an initial draft of the AI acceleration section with a focus on providing an overview of the topic.

	█░░░░ Chapter 17: Sustainable AI: Updated content

	██░░░ Contributors: Updated content

📅 September 28

📖 Chapters

	██░░░ Chapter 1: Introduction: Added a section on AI for social good with examples in healthcare and education.

	████░ Ai Social Good: Outlined the structure for an AI for social good section.

	██░░░ Contributors: Updated the list of contributors.

	█░░░░ Index: Added section on AI for social good with examples of applications in healthcare, education, and environmental sustainability.

📅 September 27

📖 Chapters

	██░░░ Chapter 1: Introduction: Added a section discussing how AI can be used for social good.

	███░░ Chapter 7: AI Frameworks: Updated the frameworks section outline.

	███░░ Chapter 11: AI Acceleration: Improved chapter organization by folding a skeleton section on emerging hardware into the existing AI acceleration chapter.

	████░ Ai Social Good: Added an outline for the AI for social good section.

	███░░ Contributors: Updated content

	█░░░░ Index: Added AI for social good section with examples of applications in healthcare and education.

📅 September 24

📖 Chapters

	███░░ Chapter 3: DL Primer: Resolved instances where references were unintentionally removed during copyediting.

	██░░░ Chapter 12: Benchmarking AI: Placeholder for talking about data benchmarking

	██░░░ Contributors: Updated content

	█░░░░ Embedded Sys: Updated content

 ch005.xhtml

Acknowledgements

This book is inspired by the TinyML edX course and CS294r at Harvard University. It represents years of collaboration with students, researchers, and practitioners who have shaped its development. We are deeply indebted to the folks whose groundbreaking work laid its foundation.

Through this collaboration, our understanding of machine learning systems deepened, and we realized that fundamental principles apply across scales, from tiny embedded systems to large-scale deployments. This realization shaped the book’s expansion beyond TinyML to provide foundations applicable across all scales of machine learning systems implementation.

Funding Agencies and Companies

Academic Support

We are grateful for the academic support that has made it possible to hire teaching assistants to help improve instructional material and quality:

[image:]

[image:]

[image:]

Non-Profit and Institutional Support

We gratefully acknowledge the support of the following non-profit organizations and institutions that have contributed to educational outreach efforts, provided scholarship funds to students in developing countries, and organized workshops to teach using the material:

[image:]

[image:]

Corporate Support

The following companies contributed hardware kits used for the labs in this book, supported the development of hands-on educational materials, provided technical tooling and debugging assistance, or provided infrastructure and hosting services:

[image:]

[image:]

[image:]

[image:]

[image:]

Contributors

We express our sincere gratitude to the open-source community of learners, educators, and contributors. Each contribution, whether a chapter section or a single-word correction, has significantly enhanced the quality of this resource. We also acknowledge those who have shared insights, identified issues, and provided valuable feedback behind the scenes.

A comprehensive list of all GitHub contributors is available below, reflecting the collaborative nature of this open-source project. For those interested in contributing further, please consult our GitHub page for more information.

	
[image: Vijay Janapa Reddi]
Vijay Janapa Reddi

	
[image: Zeljko Hrcek]
Zeljko Hrcek

	
[image: Marcelo Rovai]
Marcelo Rovai

	
[image: Jason Jabbour]
Jason Jabbour

	
[image: Ikechukwu Uchendu]
Ikechukwu Uchendu

	
[image: Kai Kleinbard]
Kai Kleinbard

	
[image: Naeem Khoshnevis]
Naeem Khoshnevis

	
[image: Sara Khosravi]
Sara Khosravi

	
[image: Douwe den Blanken]
Douwe den Blanken

	
[image: Jeffrey Ma]
Jeffrey Ma

	
[image: shanzehbatool]
shanzehbatool

	
[image: Elias]
Elias

	
[image: Jared Ping]
Jared Ping

	
[image: Itai Shapira]
Itai Shapira

	
[image: Maximilian Lam]
Maximilian Lam

	
[image: Jayson Lin]
Jayson Lin

	
[image: Sophia Cho]
Sophia Cho

	
[image: Andrea]
Andrea

	
[image: Alex Rodriguez]
Alex Rodriguez

	
[image: Korneel Van den Berghe]
Korneel Van den Berghe

	
[image: Colby Banbury]
Colby Banbury

	
[image: Zishen Wan]
Zishen Wan

	
[image: Mark Mazumder]
Mark Mazumder

	
[image: Divya Amirtharaj]
Divya Amirtharaj

	
[image: Abdulrahman Mahmoud]
Abdulrahman Mahmoud

	
[image: Srivatsan Krishnan]
Srivatsan Krishnan

	
[image: Haoran Qiu]
Haoran Qiu

	
[image: Aghyad Deeb]
Aghyad Deeb

	
[image: marin-llobet]
marin-llobet

	
[image: Jared Ni]
Jared Ni

	
[image: oishib]
oishib

	
[image: Michael Schnebly]
Michael Schnebly

	
[image: ELSuitorHarvard]
ELSuitorHarvard

	
[image: Emil Njor]
Emil Njor

	
[image: Thuong Duong]
Thuong Duong

	
[image: Aditi Raju]
Aditi Raju

	
[image: Jae-Won Chung]
Jae-Won Chung

	
[image: Yu-Shun Hsiao]
Yu-Shun Hsiao

	
[image: Henry Bae]
Henry Bae

	
[image: Shvetank Prakash]
Shvetank Prakash

	
[image: Emeka Ezike]
Emeka Ezike

	
[image: Andrew Bass]
Andrew Bass

	
[image: Jennifer Zhou]
Jennifer Zhou

	
[image: Arya Tschand]
Arya Tschand

	
[image: Pong Trairatvorakul]
Pong Trairatvorakul

	
[image: Matthew Stewart]
Matthew Stewart

	
[image: Marco Zennaro]
Marco Zennaro

	
[image: Eura Nofshin]
Eura Nofshin

	
[image: Bruno Scaglione]
Bruno Scaglione

	
[image: Tauno Erik]
Tauno Erik

	
[image: Alex Oesterling]
Alex Oesterling

	
[image: gnodipac886]
gnodipac886

	
[image: Gauri Jain]
Gauri Jain

	
[image: Allen-Kuang]
Allen-Kuang

	
[image: TheHiddenLayer]
TheHiddenLayer

	
[image: Fin Amin]
Fin Amin

	
[image: Fatima Shah]
Fatima Shah

	
[image: Sercan Aygün]
Sercan Aygün

	
[image: The Random DIY]
The Random DIY

	
[image: Baldassarre Cesarano]
Baldassarre Cesarano

	
[image: Yang Zhou]
Yang Zhou

	
[image: yanjingl]
yanjingl

	
[image: Abenezer Angamo]
Abenezer Angamo

	
[image: Jason Yik]
Jason Yik

	
[image: अरनव शुक्ला | Arnav Shukla]
अरनव शुक्ला | Arnav Shukla

	
[image: Aritra Ghosh]
Aritra Ghosh

	
[image: happyappledog]
happyappledog

	
[image: abigailswallow]
abigailswallow

	
[image: Bilge Acun]
Bilge Acun

	
[image: Andy Cheng]
Andy Cheng

	
[image: Cursor Agent]
Cursor Agent

	
[image: Emmanuel Rassou]
Emmanuel Rassou

	
[image: Jessica Quaye]
Jessica Quaye

	
[image: Vijay Edupuganti]
Vijay Edupuganti

	
[image: Shreya Johri]
Shreya Johri

	
[image: Sonia Murthy]
Sonia Murthy

	
[image: Costin-Andrei Oncescu]
Costin-Andrei Oncescu

	
[image: formlsysbookissue]
formlsysbookissue

	
[image: Annie Laurie Cook]
Annie Laurie Cook

	
[image: Jothi Ramaswamy]
Jothi Ramaswamy

	
[image: Batur Arslan]
Batur Arslan

	
[image: Curren Iyer]
Curren Iyer

	
[image: Fatima Shah]
Fatima Shah

	
[image: Edward Jin]
Edward Jin

	
[image: a-saraf]
a-saraf

	
[image: songhan]
songhan

	
[image: jvijay]
jvijay

	
[image: Zishen]
Zishen

 ch006.xhtml

SocratiQ AI

AI Learning Companion

Welcome to SocratiQ (pronounced ``Socratic’’), an AI learning assistant seamlessly integrated throughout this resource. Inspired by the Socratic method of teaching—emphasizing thoughtful questions and answers to stimulate critical thinking—SocratiQ is part of our experiment with what we call as Generative Learning. By combining interactive quizzes, personalized assistance, and real-time feedback, SocratiQ is meant to reinforce your understanding and help you create new connections. SocratiQ is still a work in progress, and we welcome your feedback.

Learn more: Read our research paper on SocratiQ’s design and pedagogy here.

Listen to this AI-generated podcast about SocratiQ.

 ch007.xhtml

Introduction

DALL·E 3 Prompt: A detailed, rectangular, flat 2D illustration depicting a roadmap of a book’s chapters on machine learning systems, set on a crisp, clean white background. The image features a winding road traveling through various symbolic landmarks. Each landmark represents a chapter topic: Introduction, ML Systems, Deep Learning, AI Workflow, Data Engineering, AI Frameworks, AI Training, Efficient AI, Model Optimizations, AI Acceleration, Benchmarking AI, On-Device Learning, Embedded AIOps, Security & Privacy, Responsible AI, Sustainable AI, AI for Good, Robust AI, Generative AI. The style is clean, modern, and flat, suitable for a technical book, with each landmark clearly labeled with its chapter title.

 [image:]

Purpose

Why must we master the engineering principles that govern systems capable of learning, adapting, and operating at massive scale?

Machine learning represents the most significant transformation in computing since programmable computers, enabling systems whose behavior emerges from data rather than explicit instructions. This transformation requires new engineering foundations because traditional software engineering principles cannot address systems that learn and adapt based on experience. Every major technological challenge, from climate modeling and medical diagnosis to autonomous transportation, requires systems that process vast amounts of data and operate reliably despite uncertainty. Understanding ML systems engineering determines our ability to solve complex problems that exceed human cognitive capacity. This discipline provides the foundation for building systems that can scale across deployment environments, from massive data centers to resource-constrained edge devices, establishing the technical groundwork for technological progress in the 21st century.

Learning Objectives

	Define machine learning systems as integrated computing systems comprising data, algorithms, and infrastructure

	Distinguish ML systems engineering from traditional software engineering through failure pattern analysis

	Explain the AI Triangle framework and analyze interdependencies between data, algorithms, and computing infrastructure

	Trace the historical evolution of AI paradigms from symbolic systems through statistical learning to deep learning

	Evaluate the implications of Sutton’s “Bitter Lesson” for modern ML systems engineering priorities

	Compare silent performance degradation in ML systems with traditional software failure modes

	Analyze the ML system lifecycle phases and contrast them with traditional software development

	Classify real-world challenges in ML systems across data, model, system, and ethical categories

	Apply the five-pillar engineering framework to analyze ML system architectures and their interdependencies

The Engineering Revolution in Artificial Intelligence

Engineering practice today stands at an inflection point comparable to the most transformative periods in technological history. The Industrial Revolution established mechanical engineering as a discipline for managing physical forces, while the Digital Revolution formalized computational engineering to handle algorithmic complexity. Today, artificial intelligence systems require a new engineering paradigm for systems that exhibit learned behaviors, autonomous adaptation, and operational scales that exceed conventional software engineering methodologies.

This shift reconceptualizes the nature of engineered systems. Traditional deterministic software architectures operate according to explicitly programmed instructions, yielding predictable outputs for given inputs. In contrast, machine learning systems are probabilistic architectures whose behaviors emerge from statistical patterns extracted from training data. This transformation introduces engineering challenges that define the discipline of machine learning systems engineering: ensuring reliability in systems whose behaviors are learned rather than programmed, achieving scalability for systems processing petabyte-scale1 datasets while serving billions of concurrent users, and maintaining robustness when operational data distributions diverge from training distributions.

These questions establish the theoretical and practical foundations of ML systems engineering as a distinct academic discipline. This chapter provides the conceptual foundation for understanding both the historical evolution that created this field and the engineering principles that differentiate machine learning systems from traditional software architectures. The analysis synthesizes perspectives from computer science, systems engineering, and statistical learning theory to establish a framework for the systematic study of intelligent systems.

Our investigation begins with the relationship between artificial intelligence as a research objective and machine learning as the computational methodology for achieving intelligent behavior. We then establish what constitutes a machine learning system, the integrated computing systems comprising data, algorithms, and infrastructure that this discipline builds. Through historical analysis, we trace the evolution of AI paradigms from symbolic reasoning systems through statistical learning approaches to contemporary deep learning architectures, demonstrating how each transition required new engineering solutions. This progression illuminates Sutton’s “bitter lesson” of AI research: that domain-general computational methods ultimately supersede hand-crafted knowledge representations, positioning systems engineering as central to AI advancement.

This historical and technical foundation enables us to formally define this discipline. Following the pattern established by Computer Engineering’s emergence from Electrical Engineering and Computer Science, we establish it as a field focused on building reliable, efficient, and scalable machine learning systems across computational platforms. This formal definition addresses both the nomenclature used in practice and the technical scope of what practitioners actually build.

Building upon this foundation, we introduce the theoretical frameworks that structure the analysis of ML systems throughout this text. The AI Triangle provides a conceptual model for understanding the interdependencies among data, algorithms, and computational infrastructure. We examine the machine learning system lifecycle, contrasting it with traditional software development methodologies to highlight the unique phases of problem formulation, data curation, model development, validation, deployment, and continuous maintenance that characterize ML system engineering.

These theoretical frameworks are substantiated through examination of representative deployment scenarios that demonstrate the diversity of engineering requirements across application domains. From autonomous vehicles operating under stringent latency constraints at the network edge to recommendation systems serving billions of users through cloud infrastructure, these case studies illustrate how deployment context shapes system architecture and engineering trade-offs.

The analysis culminates by identifying the core challenges that establish ML systems engineering as both a necessary and complex discipline: silent performance degradation patterns that require specialized monitoring approaches, data quality issues and distribution shifts that compromise model validity, requirements for model robustness and interpretability in high-stakes applications, infrastructure scalability demands that exceed conventional distributed systems, and ethical considerations that impose new categories of system requirements. These challenges provide the foundation for the five-pillar organizational framework that structures this text, partitioning ML systems engineering into interconnected sub-disciplines that enable the development of robust, scalable, and responsible artificial intelligence systems.

This chapter establishes the theoretical foundation for Part I: Systems Foundations, introducing the principles that underlie all subsequent analysis of ML systems engineering. The conceptual frameworks introduced here provide the analytical tools that will be refined and applied throughout subsequent chapters, culminating in a methodology for engineering systems capable of reliably delivering artificial intelligence capabilities in production environments.

From Artificial Intelligence Vision to Machine Learning Practice

Having established AI’s transformative impact across society, a question emerges: How do we actually create these intelligent capabilities? Understanding the relationship between Artificial Intelligence and Machine Learning provides the key to answering this question and is central to everything that follows in this book.

AI represents the broad goal of creating systems that can perform tasks requiring human-like intelligence: recognizing images, understanding language, making decisions, and solving problems. AI is the what, the vision of intelligent machines that can learn, reason, and adapt.

Machine Learning (ML) represents the methodological approach and practical discipline for creating systems that demonstrate intelligent behavior. Rather than implementing intelligence through predetermined rules, machine learning provides the computational techniques to automatically discover patterns in data through mathematical processes. This methodology transforms AI’s theoretical insights into functioning systems.

Consider the evolution of chess-playing systems as an example of this shift. The AI goal remains constant: “Create a system that can play chess like a human.” However, the approaches differ:

	Symbolic AI Approach (Pre-ML): Program the computer with all chess rules and hand-craft strategies like “control the center” and “protect the king.” This requires expert programmers to encode thousands of chess principles, creating brittle systems that struggle with novel positions.

	Machine Learning Approach: Have the computer analyze millions of chess games to learn winning strategies automatically from data. Rather than programming specific moves, the system discovers patterns that lead to victory through statistical analysis of game outcomes.

This transformation illustrates why ML has become the dominant approach: data-driven systems adapt to situations that programmers never anticipated, while rule-based systems remain constrained by their original programming.

Object recognition in machine learning systems parallels human visual learning, requiring exposure to numerous examples to develop robust recognition capabilities. Similarly, natural language processing systems acquire linguistic capabilities through extensive analysis of textual data, demonstrating how ML operationalizes AI’s understanding of intelligence. These learning approaches build on mathematical foundations that we establish systematically.

This distinction between AI as vision and ML as methodology matters because modern ML’s data-driven approach requires systems to collect, process, and learn from data at massive scale. Machine learning emerged as a practical approach to artificial intelligence through extensive research and major paradigm shifts2, transforming AI’s theoretical insights into functioning systems that form the algorithmic foundation of today’s intelligent capabilities.

 ch008.xhtml

ML Systems

DALL·E 3 Prompt: Illustration in a rectangular format depicting the merger of embedded systems with Embedded AI. The left half of the image portrays traditional embedded systems, including microcontrollers and processors, detailed and precise. The right half showcases the world of artificial intelligence, with abstract representations of machine learning models, neurons, and data flow. The two halves are distinctly separated, emphasizing the individual significance of embedded tech and AI, but they come together in harmony at the center.

 [image:]

Purpose

How do the environments where machine learning operates shape the nature of these systems, and what drives their widespread deployment across computing platforms?

Machine learning systems must adapt to radically different computational environments, each imposing distinct constraints and opportunities. Cloud deployments leverage massive computational resources but face network latency, while mobile devices offer user proximity but operate under severe power limitations. Embedded systems minimize latency through local processing but constrain model complexity, and tiny devices enable widespread sensing while restricting memory to kilobytes. These deployment contexts fundamentally determine system architecture, algorithmic choices, and performance trade-offs. Understanding environment-specific requirements establishes the foundation for engineering decisions in machine learning systems. This knowledge enables engineers to select appropriate deployment paradigms and design architectures that balance performance, efficiency, and practicality across computing platforms.

Learning Objectives

	Explain the physical constraints (speed of light, power wall, memory wall) that necessitate diverse ML deployment paradigms

	Distinguish between Cloud ML, Edge ML, Mobile ML, and Tiny ML paradigms based on their resource profiles, constraints, and optimal use cases

	Analyze resource trade-offs (computational power, latency, privacy, energy efficiency) to determine appropriate deployment strategies for specific applications

	Apply the systematic deployment decision framework to evaluate privacy, latency, computational, and cost requirements for ML applications

	Design hybrid ML architectures by integrating multiple paradigms using established patterns (Train-Serve Split, Hierarchical Processing, Progressive Deployment, Federated Learning)

	Evaluate real-world ML systems to identify which deployment paradigms are being used and assess their effectiveness

	Critique common deployment fallacies and misconceptions to avoid poor architectural decisions in ML systems design

	Synthesize universal design principles to create ML systems that effectively balance performance, efficiency, and practicality across deployment contexts

Deployment Paradigm Framework

The preceding introduction established machine learning systems as comprising three fundamental components: data, algorithms, and computing infrastructure. While this triadic framework provides a theoretical foundation, the transition from conceptual understanding to practical implementation introduces a critical dimension that fundamentally governs system design: the deployment environment. This chapter analyzes how computational context shapes architectural decisions in machine learning systems, establishing the theoretical basis for deployment-driven design principles.

Contemporary machine learning applications demonstrate remarkable architectural diversity driven by deployment constraints. Consider the domain of computer vision1: a convolutional neural network trained for image classification manifests as distinctly different systems when deployed across environments. In cloud-based medical imaging, the system exploits virtually unlimited computational resources to implement ensemble methods2 and sophisticated preprocessing pipelines. When deployed on mobile devices for real-time object detection, the same fundamental algorithm undergoes architectural transformation to satisfy stringent latency requirements while preserving acceptable accuracy. Factory automation applications further constrain the design space, prioritizing power efficiency and deterministic response times over model complexity. These variations represent distinctly different architectural solutions to the same computational problem, shaped by environmental constraints rather than algorithmic considerations.

This chapter presents a systematic taxonomy of machine learning deployment paradigms, analyzing four primary categories that span the computational spectrum from cloud data centers to microcontroller-based embedded systems. Each paradigm emerges from distinct operational requirements: computational resource availability, power consumption constraints, latency specifications, privacy requirements, and network connectivity assumptions. The theoretical framework developed here provides the analytical foundation for making informed architectural decisions in production machine learning systems.

Modern deployment strategies transcend traditional dichotomies between centralized and distributed processing. Contemporary applications increasingly implement hybrid architectures that strategically allocate computational tasks across multiple paradigms to optimize system-wide performance. Voice recognition systems exemplify this architectural sophistication: wake-word detection operates on ultra-low-power embedded processors to enable continuous monitoring, speech-to-text conversion utilizes mobile processors to maintain privacy and minimize latency, while semantic understanding leverages cloud infrastructure for complex natural language processing. This multi-paradigm approach reflects the engineering reality that optimal machine learning systems require architectural heterogeneity.

The deployment paradigm space exhibits clear dimensional structure. Cloud machine learning maximizes computational capabilities while accepting network-induced latency constraints. Edge computing positions inference computation proximate to data sources when latency requirements preclude cloud-based processing. Mobile machine learning extends computational capabilities to personal devices where user proximity and offline operation represent critical requirements. Tiny machine learning enables distributed intelligence on severely resource-constrained devices where energy efficiency supersedes computational sophistication.

Through comprehensive analysis of these deployment paradigms, this chapter develops the systems engineering perspective necessary for designing machine learning architectures that effectively balance algorithmic capabilities with operational constraints. This systems-oriented approach provides essential methodological foundations for translating theoretical machine learning advances into production systems that demonstrate reliable performance at scale. The analysis culminates with paradigm integration strategies for hybrid architectures and identification of core design principles that govern all machine learning deployment contexts.

Figure 2.1 illustrates how computational resources, latency requirements, and deployment constraints create this deployment spectrum. While Chapter 7 explores the software tools that enable ML across these paradigms, and Chapter 11 examines the specialized hardware that powers them, this chapter focuses on the fundamental deployment trade-offs that govern system architecture decisions. The subsequent analysis addresses each paradigm systematically, building toward an understanding of how they integrate into modern ML systems.

The Deployment Spectrum

The deployment spectrum from cloud to embedded systems exists not by choice, but by necessity imposed by physical laws that govern computing systems. These immutable constraints create hard boundaries that no engineering advancement can overcome, forcing the evolution of specialized deployment paradigms optimized for different operational contexts.

The speed of light establishes absolute minimum latencies that constrain real-time applications. Light traveling through optical fiber covers approximately 200,000 kilometers per second, creating a theoretical minimum 40ms round-trip time between California and Virginia. Internet routing, DNS resolution, and processing overhead typically add another 60-460ms, resulting in total latencies of 100-500ms for cloud services. This physics-imposed delay makes cloud deployment impossible for safety-critical applications requiring sub-10ms response times, such as autonomous vehicle emergency braking or industrial robotics precision control.

The power wall, resulting from the breakdown of Dennard scaling around 2005, transformed computing economics. Transistor shrinking no longer reduces power density, meaning chips cannot be made arbitrarily fast without proportional increases in power consumption and heat generation. This constraint forces trade-offs between computational performance and energy efficiency, directly driving the need for specialized low-power architectures in mobile and embedded systems. Data centers now dedicate 30-40% of their power budget to cooling, while mobile devices must implement thermal throttling to prevent component damage.

The memory wall represents the growing gap between processor speed and memory bandwidth. While computational capacity scales linearly through additional processing units, memory bandwidth scales approximately as the square root of chip area due to physical routing constraints. This creates an increasingly severe bottleneck where processors become data-starved, spending more time waiting for memory transfers than performing calculations. Large machine learning models exacerbate this problem, requiring parameter datasets that exceed available memory bandwidth by orders of magnitude.

Economics of scale create significant cost-per-unit differences that justify different deployment approaches. A cloud server costing $50,000 can support thousands of users through virtualization, achieving per-user costs under $50. However, applications requiring guaranteed response times or private data processing cannot share resources, eliminating this economic advantage. Meanwhile, embedded processors costing $5-50 enable deployment at billions of endpoints where individual cloud connections would be economically infeasible.

These physical constraints are not temporary engineering challenges but permanent limitations that shape the computational landscape. Understanding these boundaries explains why the deployment spectrum exists and provides the theoretical foundation for making informed architectural decisions in machine learning systems.

[image:]

Figure 2.1: Distributed Intelligence Spectrum: Machine learning system design involves trade-offs between computational resources, latency, and connectivity, resulting in a spectrum of deployment options ranging from centralized cloud infrastructure to resource-constrained edge and TinyML devices. This figure maps these options, highlighting how each approach balances processing location with device capability and network dependence. Source: (A. Research 2024).

Deployment Paradigm Foundations

The deployment spectrum illustrated in Figure 2.1 exists not through design preference, but from necessity driven by immutable physical and hardware constraints. Understanding these limitations reveals why ML systems cannot adopt uniform approaches and must instead span the complete deployment spectrum from cloud to embedded devices.

Chapter 1 established the three foundational components of ML systems (data, algorithms, and infrastructure) as a unified framework that these deployment paradigms now optimize differently based on physical constraints. Cloud ML prioritizes algorithmic complexity through abundant infrastructure, while Mobile ML emphasizes data locality with constrained infrastructure, and Tiny ML maximizes algorithmic efficiency under extreme infrastructure limitations.

The most critical bottleneck in modern computing stems from memory bandwidth scaling differently than computational capacity. While compute power scales linearly through additional processing units, memory bandwidth scales approximately as the square root of chip area due to physical routing constraints. This creates a progressively worsening bottleneck where processors become data-starved. In practice, this manifests as ML models spending more time awaiting memory transfers than performing calculations, particularly problematic for large models3 that require more data than can be efficiently transferred.

Compounding these memory challenges, the breakdown of Dennard scaling4 transformed computing constraints around 2005, when transistor shrinking stopped reducing power density. Power dissipation per unit area now remains constant or increases with each technology generation, creating hard limits on computational density. For mobile devices, this translates to thermal throttling that reduces performance when sustained computation generates excessive heat. Data centers face similar constraints at scale, requiring extensive cooling infrastructure that can consume 30-40% of total power budget. These power density limits directly drive the need for specialized low-power architectures in mobile and embedded contexts, and explain why edge deployment becomes necessary when power budgets are constrained.

Beyond power considerations, physical limits impose minimum latencies that no engineering optimization can overcome. The speed of light establishes an inherent 80ms round-trip time between California and Virginia, while internet routing, DNS resolution, and processing overhead typically contribute another 20-420ms. This 100-500ms total latency renders real-time applications infeasible with pure cloud deployment. Network bandwidth faces physical constraints: fiber optic cables have theoretical limits, and wireless communication remains bounded by spectrum availability and signal propagation physics. These communication constraints create hard boundaries that necessitate local processing for latency-sensitive applications and drive edge deployment decisions.

Heat dissipation emerges as an additional limiting factor as computational density increases. Mobile devices must throttle performance to prevent component damage and maintain user comfort, while data centers require extensive cooling systems that limit placement options and increase operational costs. Thermal constraints create cascading effects: elevated temperatures reduce semiconductor reliability, increase error rates, and accelerate component aging. These thermal realities necessitate trade-offs between computational performance and sustainable operation, driving specialized cooling solutions in cloud environments and ultra-low-power designs in embedded systems.

These fundamental constraints drove the evolution of the four distinct deployment paradigms outlined in this overview (Section 2.2). Understanding these core constraints proves essential for selecting appropriate deployment paradigms and establishing realistic performance expectations.

These theoretical constraints manifest in concrete hardware differences across the deployment spectrum. To understand the practical implications of these physical limitations, Table 2.1 provides representative hardware platforms for each category. These examples demonstrate the range of computational resources, power requirements, and cost considerations5 across the ML systems spectrum, illustrating the practical implications of each deployment approach.6

These quantitative thresholds reflect essential relationships between computational requirements, energy consumption, and deployment feasibility. These scaling relationships determine when distributed cloud deployment becomes advantageous relative to edge or mobile alternatives. Understanding these quantitative trade-offs enables informed deployment decisions across the spectrum of ML systems.

Figure 2.2 illustrates the differences between Cloud ML, Edge ML, Mobile ML, and Tiny ML in terms of hardware specifications, latency characteristics, connectivity requirements, power consumption, and model complexity constraints. As systems transition from Cloud to Edge to Tiny ML, available resources decrease dramatically, presenting significant challenges for machine learning model deployment. This resource disparity becomes particularly evident when deploying ML models on microcontrollers, the primary hardware platform for Tiny ML. These devices possess severely constrained memory and storage capacities that prove insufficient for conventional complex ML models.

Table 2.1: Hardware Spectrum: Machine learning system design necessitates trade-offs between computational resources, power consumption, and cost, as exemplified by the diverse hardware platforms suitable for cloud, edge, mobile, and TinyML deployments. This table quantifies those trade-offs, revealing how device capabilities, from high-end GPUs in cloud servers to low-power microcontrollers in embedded systems, shape the types of models and tasks each platform can effectively support. The quantitative thresholds provide specific decision criteria to help practitioners determine the most appropriate deployment paradigm for their applications.

	Category
	Example Device
	Processor
	Memory
	Storage
	Power
	Price Range
	Example Models/Tasks
	Quantitative Thresholds

	Cloud ML
	NVIDIA DGX A100
	8x NVIDIA A100 GPUs (40GB or 80GB per GPU)
	1 TB System RAM
	15 TB NVMe SSD
	6.5 kW
	$200 K+
	Large language models,
	>1000 TFLOPS compute, real-time video processing, >100GB/s memory bandwidth, PUE 1.1-1.3, 100-500ms latency

	
	Google TPU v4 Pod
	4096 TPU v4 chips
	128 TB+
	Networked storage
	~1-2 MW
	Pay-per-use
	Training foundation models, large-scale ML research
	>1000 TFLOPS compute, >100GB/s memory bandwidth, PUE 1.1-1.3, 100-500ms latency

	Edge ML
	NVIDIA Jetson AGX Orin
	12-core Arm® Cortex®-A78AE, NVIDIA Ampere GPU
	32 GB LPDDR5
	64GB eMMC
	15-60 W
	$999
	Computer vision, robotics, autonomous systems
	1-100 TOPS compute, <10W sustained power, <100ms latency requirements

	
	Intel NUC 12 Pro
	Intel Core i7-1260P, Intel Iris Xe
	32 GB DDR4
	1 TB SSD
	up to 28W TDP
	$750
	Edge AI servers, industrial automation
	1-100 TOPS compute, <10W sustained power, <100ms latency requirements

	Mobile ML
	iPhone 15 Pro
	A17 Pro (6-core CPU, 6-core GPU)
	8 GB RAM
	128 GB-1 TB
	3-5 W
	$999+
	Face ID, computational photography, voice recognition
	1-10 TOPS compute, <2W sustained power, <50ms UI response

	Tiny ML
	Arduino Nano 33 BLE Sense
	Arm Cortex-M4 @ 64 MHz
	256 KB RAM
	1 MB Flash
	0.02-0.04 W
	$35
	Gesture recognition, voice detection
	<1 TOPS compute, <1mW power, microsecond response times

	
	ESP32-CAM
	Dual-core @ 240MHz
	520 KB RAM
	4 MB Flash
	0.05-0.25 W
	$10
	Image classification, motion detection
	<1 TOPS compute, <1mW power, microsecond response times

[image:]

Figure 2.2: Device Memory Constraints: AI model deployment spans a wide range of devices with drastically different memory capacities, from cloud servers with 16 GB to microcontroller-based systems with only 320 kb. This progression necessitates specialized optimization techniques and efficient architectures to enable on-device intelligence with limited resources. Source: (Ji Lin, Zhu, et al. 2023).

Cloud ML: Maximizing Computational Power

Having established the constraints and evolutionary progression that shape ML deployment paradigms, this analysis addresses each paradigm systematically, beginning with Cloud ML, the foundation from which other paradigms emerged. This approach maximizes computational resources while accepting latency constraints, providing the optimal choice when computational power matters more than response time. Cloud deployments prove ideal for complex training tasks and inference workloads that can tolerate network delays.

Cloud Machine Learning leverages the scalability and power of centralized infrastructures7 to handle computationally intensive tasks: large-scale data processing, collaborative model development, and advanced analytics. Cloud data centers utilize distributed architectures and specialized resources to train complex models and support diverse applications, from recommendation systems to natural language processing8. The subsequent analysis addresses the deployment characteristics that make cloud ML systems effective for large-scale applications.

 ch009.xhtml

DL Primer

DALL·E 3 Prompt: A rectangular illustration divided into two halves on a clean white background. The left side features a detailed and colorful depiction of a biological neural network, showing interconnected neurons with glowing synapses and dendrites. The right side displays a sleek and modern artificial neural network, represented by a grid of interconnected nodes and edges resembling a digital circuit. The transition between the two sides is distinct but harmonious, with each half clearly illustrating its respective theme: biological on the left and artificial on the right.

 [image:]

Purpose

Why do deep learning systems engineers need deep mathematical understanding of neural network operations rather than treating them as black-box components?

Modern deep learning systems rely on neural networks as their core computational engine, but successful engineering requires understanding the mathematics that governs their behavior. Neural network mathematics determines memory requirements, computational complexity, and optimization landscapes that directly impact system design decisions. Without grasping concepts like gradient flow, activation functions, and backpropagation mechanics, engineers cannot predict system behavior, diagnose training failures, or optimize resource allocation. Each mathematical operation translates to specific hardware requirements: matrix multiplication demands gigabytes per second of memory bandwidth, while activation function choices determine mobile processor compatibility. Understanding these operations transforms neural networks from opaque components into predictable, engineerable systems.

Learning Objectives

	Trace the evolution of AI paradigms from rule-based systems through classical machine learning to neural networks, identifying the systems engineering challenges that drove each transition

	Analyze the mathematical operations underlying neural network computation, including matrix multiplications, activation functions, and gradient calculations, and their implications for hardware requirements

	Design neural network architectures by selecting appropriate layer configurations, activation functions, and connection patterns based on computational constraints and task requirements

	Implement forward propagation through multi-layer networks, computing weighted sums and applying activation functions to transform raw inputs into hierarchical feature representations

	Execute backpropagation algorithms to compute gradients and update network weights, demonstrating how prediction errors propagate backward through network layers

	Compare training and inference operational phases, analyzing their distinct computational demands, resource requirements, and optimization strategies for different deployment scenarios

	Evaluate loss functions and optimization algorithms, explaining how these choices affect training dynamics, convergence behavior, and final model performance

	Assess the complete deep learning pipeline from data preprocessing through neural computation to post-processing, identifying bottlenecks and optimization opportunities at each stage

Deep Learning Systems Engineering Foundation

Consider the seemingly simple task of identifying cats in photographs. Using traditional programming, you would need to write explicit rules: look for triangular ears, check for whiskers, verify the presence of four legs, examine fur patterns, and handle countless variations in lighting, angles, poses, and breeds. Each edge case demands additional rules, creating increasingly complex decision trees that still fail when encountering unexpected variations. This limitation, the impossibility of manually encoding all patterns for complex real-world problems, drove the evolution from rule-based programming to machine learning.

Deep learning represents the culmination of this evolution, solving the cat identification problem by learning directly from millions of cat and non-cat images. Instead of programming rules, we provide examples and let the system discover patterns automatically. This shift from explicit programming to learned representations has implications for how we design and engineer computational systems.

Deep learning systems present an engineering challenge that distinguishes them from conventional software. While traditional systems execute deterministic algorithms based on explicit rules, deep learning systems operate through mathematical processes that learn data representations. This shift requires understanding the mathematical operations underlying these systems for engineers responsible for their design, implementation, and maintenance.

The engineering implications of this mathematical complexity are important. When production systems exhibit degraded performance characteristics, conventional debugging methodologies prove inadequate. Performance anomalies may originate from gradient instabilities1 during optimization, numerical precision limitations in activation computations, or memory access patterns inherent to tensor operations2. Without foundational mathematical literacy, systems engineers cannot effectively differentiate between implementation failures and algorithmic constraints, accurately predict computational resource requirements, or systematically optimize performance bottlenecks that emerge from the underlying mathematical operations.

 ch010.xhtml

DNN Architectures

DALL·E 3 Prompt: A visually striking rectangular image illustrating the interplay between deep learning algorithms like CNNs, RNNs, and Attention Networks, interconnected with machine learning systems. The composition features neural network diagrams blending seamlessly with representations of computational systems such as processors, graphs, and data streams. Bright neon tones contrast against a dark futuristic background, symbolizing cutting-edge technology and intricate system complexity.

 [image:]

Purpose

Why do architectural choices in neural networks affect system design decisions that determine computational feasibility, hardware requirements, and deployment constraints?

Neural network architectures represent engineering decisions that directly determine system performance and deployment viability. Each architectural choice creates cascading effects throughout the system stack: memory bandwidth demands, computational complexity patterns, parallelization opportunities, and hardware acceleration compatibility. Understanding these architectural implications enables engineers to make informed trade-offs between model capability and system constraints, predict computational bottlenecks before they occur, and select appropriate hardware platforms. Architectural decisions determine whether machine learning systems meet performance requirements within available computational resources. This understanding proves essential for building scalable AI systems that can be deployed effectively across diverse environments.

Learning Objectives

	Distinguish the computational characteristics and inductive biases of the four main neural network architectural families (MLPs, CNNs, RNNs, Transformers).

	Analyze how architectural design choices determine computational complexity, memory requirements, and parallelization opportunities.

	Evaluate the system-level implications of architectural patterns on hardware utilization, memory bandwidth, and deployment constraints.

	Apply the architecture selection framework to match data characteristics with appropriate neural network designs for specific applications.

	Assess computational and memory trade-offs between different architectural approaches using complexity analysis.

	Examine how fundamental computational primitives (matrix multiplication, convolution, attention) map to hardware acceleration opportunities.

	Critique common architectural selection fallacies and their impact on system performance and deployment success.

	Synthesize the unified inductive bias framework to explain why different architectures succeed on different data types and problem domains.

Architectural Principles and Engineering Trade-offs

The systematic organization of neural computations into effective architectures represents one of the most consequential developments in contemporary machine learning systems. Building on the mathematical foundations of neural computation established in Chapter 3, this chapter investigates the architectural principles that govern how operations (matrix multiplications, nonlinear activations, and gradient-based optimization) are structured to address complex computational problems. This architectural perspective bridges the gap between mathematical theory and practical systems implementation, examining how design choices at the network level determine system-wide performance characteristics.

This chapter centers on an engineering trade-off that permeates machine learning systems design. While mathematical theory, particularly universal approximation results, establishes that neural networks possess remarkable representational flexibility, practical deployment necessitates computational efficiency achievable only through judicious architectural specialization. This tension manifests across multiple dimensions: theoretical universality versus computational tractability, representational completeness versus memory efficiency, and mathematical generality versus domain-specific optimization. The resolution of these tensions through architectural innovation constitutes a primary driver of progress in machine learning systems.

Contemporary neural architectures emerge from systematic responses to specific computational challenges encountered when deploying general mathematical frameworks on structured data. Each architectural paradigm embodies distinct inductive biases (implicit assumptions about data structure and relationships) that enable efficient learning while constraining the hypothesis space in domain-appropriate ways. These architectural innovations represent engineering solutions to the challenge of organizing computational primitives into patterns that achieve optimal balance between representational capacity and computational efficiency.

This chapter examines four architectural families that collectively define the conceptual landscape of modern neural computation. Multi-Layer Perceptrons serve as the canonical implementation of universal approximation theory, demonstrating how dense connectivity enables general pattern recognition while illustrating the computational costs of architectural generality. Convolutional Neural Networks introduce the paradigm of spatial architectural specialization, exploiting translational invariance and local connectivity to achieve significant efficiency gains while preserving representational power for spatial data. Recurrent Neural Networks extend architectural specialization to temporal domains, incorporating explicit memory mechanisms that enable sequential processing capabilities absent from feedforward architectures. Attention mechanisms and Transformer architectures represent the current evolutionary frontier, replacing fixed structural assumptions with dynamic, content-dependent computation that achieves remarkable capability while maintaining computational efficiency through parallelizable operations.

The systems engineering significance of these architectural patterns extends beyond mere algorithmic considerations. Each architectural choice creates distinct computational signatures that propagate through every level of the implementation stack, determining memory access patterns, parallelization strategies, hardware utilization characteristics, and ultimately system feasibility within resource constraints. Understanding these architectural implications proves essential for engineers responsible for system design, resource allocation, and performance optimization in production environments.

This chapter adopts a systems-oriented analytical framework that illuminates the relationships between architectural abstractions and concrete implementation requirements. For each architectural family, we systematically examine the computational primitives that determine hardware resource demands, the organizational principles that enable efficient algorithmic implementation, the memory hierarchy implications that affect system scalability, and the trade-offs between architectural sophistication and computational overhead.

The analytical approach builds systematically upon the neural network foundations established in Chapter 3, extending core concepts of forward propagation, backpropagation, and gradient-based optimization by examining how architectural specialization organizes these operations to exploit problem-specific structure. Understanding the evolutionary relationships connecting these architectural paradigms and their distinct computational characteristics, practitioners develop the conceptual tools necessary for principled decision-making regarding architectural selection, resource planning, and system optimization in complex deployment scenarios.

Multi-Layer Perceptrons: Dense Pattern Processing

Multi-Layer Perceptrons (MLPs) represent the fully-connected architectures introduced in Chapter 3, now examined through the lens of architectural choice and systems trade-offs. MLPs embody an inductive bias: they assume no prior structure in the data, allowing any input to relate to any output. This architectural choice enables maximum flexibility by treating all input relationships as equally plausible, making MLPs versatile but computationally intensive compared to specialized alternatives. Their computational power was established theoretically by the Universal Approximation Theorem (UAT)1 (Cybenko 1989; Hornik, Stinchcombe, and White 1989), which we encountered as a footnote in Chapter 3. This theorem states that a sufficiently large MLP with non-linear activation functions can approximate any continuous function on a compact domain, given suitable weights and biases.

 ch011.xhtml

AI Workflow

DALL·E 3 Prompt: Create a rectangular illustration of a stylized flowchart representing the AI workflow/pipeline. From left to right, depict the stages as follows: ‘Data Collection’ with a database icon, ‘Data Preprocessing’ with a filter icon, ‘Model Design’ with a brain icon, ‘Training’ with a weight icon, ‘Evaluation’ with a checkmark, and ‘Deployment’ with a rocket. Connect each stage with arrows to guide the viewer horizontally through the AI processes, emphasizing these steps’ sequential and interconnected nature.

 [image:]

Purpose

What systematic framework guides the engineering of machine learning systems from initial development through production deployment?

Production machine learning systems require systematic thinking and structured frameworks. Workflows organize ML development into standardized stages: data collection, model development, validation, and deployment. These structured processes manage data quality and consistency, coordinate model training and experimentation, automate optimization pipelines, and orchestrate deployment across environments. These systematic approaches transform experimental intuition into engineering discipline, establishing the mental framework for ML systems. This disciplined foundation enables reproducible system development, quality standard maintenance, and informed decision-making across the entire ML lifecycle.

Learning Objectives

	Compare ML lifecycle stages to traditional software development processes, identifying at least three fundamental differences.

	Analyze the six core ML lifecycle stages (problem definition through maintenance) and their interconnected feedback relationships.

	Apply systems thinking principles to trace how constraint propagation affects decisions across multiple lifecycle stages.

	Evaluate trade-offs between model performance and deployment constraints using specific quantitative metrics.

	Design data collection strategies that account for real-world deployment environments and operational requirements.

	Implement monitoring frameworks that capture multi-scale feedback loops from production ML systems.

	Assess the impact of problem definition decisions on subsequent model development and deployment choices.

	Construct deployment architectures that balance computational efficiency with performance requirements in resource-constrained environments.

Systematic Framework for ML Development

Building upon Part I’s foundational principles (system characteristics, deployment environments, mathematical frameworks, and architectural patterns), this chapter advances from component-level analysis to system-level engineering. The transition from theoretical understanding to operational implementation requires a systematic framework governing production machine learning system development.

This chapter introduces the machine learning workflow as the governing methodology for systematic ML system development. Traditional software engineering proceeds through deterministic requirement-to-implementation pathways, while machine learning systems development exhibits fundamentally different characteristics. ML systems evolve through iterative experimentation1 where models extract patterns from data, performance metrics undergo statistical validation, and deployment constraints create feedback mechanisms that inform earlier development phases. This empirical, data-centric approach requires specialized workflow methodologies that accommodate uncertainty, coordinate parallel development streams, and establish continuous improvement mechanisms.

The systematic framework presented here establishes the theoretical foundation for understanding Part II’s design principles. This workflow perspective clarifies the rationale for specialized data engineering pipelines (Chapter 6), the role of software frameworks in enabling iterative methodologies (Chapter 7), and the integration of model training within comprehensive system lifecycles (Chapter 8). Without this conceptual scaffolding, subsequent technical components appear as disparate tools rather than integrated elements within a coherent engineering discipline.

The chapter employs diabetic retinopathy screening system development as a pedagogical case study, demonstrating how workflow principles bridge laboratory research and clinical deployment. This example illustrates the intricate interdependencies among data acquisition strategies, architectural design decisions, deployment constraint management, and operational requirement fulfillment that characterize production-scale ML systems. These systematic patterns generalize beyond medical applications, exemplifying the engineering discipline required for reliable machine learning system operation across diverse domains.

Understanding the ML Lifecycle

The machine learning lifecycle is a structured, iterative process that guides the development, evaluation, and improvement of machine learning systems. This approach integrates systematic experimentation, evaluation, and adaptation over time (Amershi et al. 2019), building upon decades of structured development approaches (Chapman et al. 2000)2 while addressing the unique challenges of data-driven systems.

Understanding this lifecycle requires a systems thinking3 approach recognizing four fundamental patterns: constraint propagation (how decisions in one stage influence all others), multi-scale feedback loops (how systems adapt across different timescales), emergent complexity (how system-wide behaviors differ from component behaviors), and resource optimization (how trade-offs create interdependencies). These patterns, explored throughout our diabetic retinopathy case study, provide the analytical framework for understanding why ML systems demand integrated engineering approaches rather than sequential component optimization.

 ch012.xhtml

Data Engineering

DALL·E 3 Prompt: Create a rectangular illustration visualizing the concept of data engineering. Include elements such as raw data sources, data processing pipelines, storage systems, and refined datasets. Show how raw data is transformed through cleaning, processing, and storage to become valuable information that can be analyzed and used for decision-making.

 [image:]

Purpose

Why does data quality serve as the foundation that determines whether machine learning systems succeed or fail in production environments?

Machine learning systems depend on data quality: no algorithm can overcome poor data, but excellent data engineering enables even simple models to achieve remarkable results. Unlike traditional software where logic is explicit, ML systems derive behavior from data patterns, making quality the primary determinant of system trustworthiness. Understanding data engineering principles provides the foundation for building ML systems that operate consistently across diverse production environments, maintain performance over time, and scale effectively as data volumes and complexity increase.

Learning Objectives

	Apply the four pillars framework (Quality, Reliability, Scalability, Governance) to evaluate data engineering decisions systematically.

	Calculate infrastructure requirements for ML systems including storage capacity, processing throughput, and labeling costs.

	Design data pipelines that maintain training-serving consistency to prevent the primary cause of production ML failures.

	Evaluate acquisition strategies (existing datasets, web scraping, crowdsourcing, synthetic data) based on quality-cost-scale trade-offs.

	Architect storage systems (databases, data warehouses, data lakes, feature stores) appropriate for different ML workload patterns.

	Implement data governance practices including lineage tracking, privacy protection, and bias mitigation throughout the data lifecycle.

Data Engineering as a Systems Discipline

The systematic methodologies examined in the previous chapter establish the procedural foundations of machine learning development, yet underlying each phase of these workflows exists a fundamental prerequisite: robust data infrastructure. In traditional software, computational logic is defined by code. In machine learning, system behavior is defined by data. This paradigm shift makes data a first-class citizen in the engineering process, akin to source code, requiring a new discipline, data engineering, to manage it with the same rigor we apply to code.

While workflow methodologies provide the organizational framework for constructing ML systems, data engineering provides the technical substrate that enables effective implementation of these methodologies. Advanced modeling techniques and rigorous validation procedures cannot compensate for deficient data infrastructure, whereas well-engineered data systems enable even conventional approaches to achieve substantial performance gains.

This chapter examines data engineering as a systematic engineering discipline focused on the design, construction, and maintenance of infrastructure that transforms heterogeneous raw information into reliable, high-quality datasets suitable for machine learning applications. In contrast to traditional software systems where computational logic remains explicit and deterministic, machine learning systems derive their behavioral characteristics from underlying data patterns, establishing data infrastructure quality as the principal determinant of system efficacy. Consequently, architectural decisions concerning data acquisition, processing, storage, and governance influence whether ML systems achieve expected performance in production environments.

 ch013.xhtml

AI Frameworks

DALL·E 3 Prompt: Illustration in a rectangular format, designed for a professional textbook, where the content spans the entire width. The vibrant chart represents training and inference frameworks for ML. Icons for TensorFlow, Keras, PyTorch, ONNX, and TensorRT are spread out, filling the entire horizontal space, and aligned vertically. Each icon is accompanied by brief annotations detailing their features. The lively colors like blues, greens, and oranges highlight the icons and sections against a soft gradient background. The distinction between training and inference frameworks is accentuated through color-coded sections, with clean lines and modern typography maintaining clarity and focus.

 [image:]

Purpose

Why do machine learning frameworks represent the critical abstraction layer that determines system scalability, development velocity, and architectural flexibility in production AI systems?

Machine learning frameworks serve as the critical abstraction layer that bridges theoretical concepts and practical implementation, transforming abstract mathematical concepts into efficient, executable code while providing standardized interfaces for hardware acceleration, distributed computing, and model deployment. Without frameworks, every ML project would require reimplementing core operations like automatic differentiation and parallel computation, making large-scale development economically infeasible. This abstraction layer enables two crucial capabilities: development acceleration through pre-optimized implementations and hardware portability across CPUs, GPUs, and specialized accelerators. Framework selection becomes one of the most consequential engineering decisions, determining system architecture constraints, performance characteristics, and deployment flexibility throughout the development lifecycle.

Learning Objectives

	Trace the evolutionary progression of ML frameworks from numerical computing libraries through deep learning platforms to specialized deployment variants

	Explain the architecture and implementation of computational graphs, automatic differentiation, and tensor operations in modern frameworks

	Compare static and dynamic execution models by analyzing their trade-offs in development flexibility, debugging capabilities, and production optimization

	Analyze the design philosophies underlying major frameworks (research-first, production-first, functional programming) and their impact on system architecture

	Evaluate framework selection criteria by systematically assessing model requirements, hardware constraints, and deployment contexts

	Implement equivalent machine learning operations across multiple frameworks to demonstrate abstraction layer differences

	Design framework selection strategies for specific deployment scenarios including cloud, edge, mobile, and microcontroller environments

	Critique common framework selection fallacies and assess their impact on system performance and maintainability

Framework Abstraction and Necessity

The transformation of raw computational primitives into machine learning systems represents one of the most significant engineering challenges in modern computer science. Building upon the data pipelines established in the previous chapter, this chapter examines the software infrastructure that enables the efficient implementation of machine learning algorithms across diverse computational architectures. While the mathematical foundations of machine learning (linear algebra operations, optimization algorithms, and gradient computations) are well-established, their efficient realization in production systems demands software abstractions that bridge theoretical formulations with practical implementation constraints.

The computational complexity of modern machine learning algorithms illustrates the necessity of these abstractions. Training a contemporary language model involves orchestrating billions of floating-point operations across distributed hardware configurations, requiring precise coordination of memory hierarchies, communication protocols, and numerical precision management. Each algorithmic component, from forward propagation through backpropagation, must be decomposed into elementary operations that can be mapped to heterogeneous processing units while maintaining numerical stability and computational reproducibility. The engineering complexity of implementing these systems from basic computational primitives would render large-scale machine learning development economically prohibitive for most organizations.

This complexity becomes immediately apparent when considering specific implementation challenges. Implementing backpropagation for a simple 3-layer multilayer perceptron manually requires hundreds of lines of careful calculus and matrix manipulation code. A modern framework accomplishes this in a single line: loss.backward(). Frameworks don’t just make machine learning easier; they make modern deep learning possible by managing the complexity of gradient computation, hardware optimization, and distributed execution across millions of parameters.

Machine learning frameworks constitute the essential software infrastructure that mediates between high-level algorithmic specifications and low-level computational implementations. These platforms address the core abstraction problem in computational machine learning: enabling algorithmic expressiveness while maintaining computational efficiency across diverse hardware architectures. By providing standardized computational graphs, automatic differentiation engines, and optimized operator libraries, frameworks enable researchers and practitioners to focus on algorithmic innovation rather than implementation details. This abstraction layer has proven instrumental in accelerating both research discovery and industrial deployment of machine learning systems.

 ch014.xhtml

AI Training

DALL·E 3 Prompt: An illustration for AI training, depicting a neural network with neurons that are being repaired and firing. The scene includes a vast network of neurons, each glowing and firing to represent activity and learning. Among these neurons, small figures resembling engineers and scientists are actively working, repairing and tweaking the neurons. These miniature workers symbolize the process of training the network, adjusting weights and biases to achieve convergence. The entire scene is a visual metaphor for the intricate and collaborative effort involved in AI training, with the workers representing the continuous optimization and learning within a neural network. The background is a complex array of interconnected neurons, creating a sense of depth and complexity.

 [image:]

Purpose

Why do modern machine learning problems require new approaches to distributed computing and system architecture?

Machine learning training creates computational demands that exceed single machine capabilities, requiring distributed systems that coordinate computation across multiple devices and data centers. Training workloads have unique characteristics: massive datasets that cannot fit in memory, models with billions of parameters requiring coordinated updates, and iterative algorithms requiring continuous synchronization across distributed resources. These scale requirements create systems challenges in memory management, communication efficiency, fault tolerance, and resource scheduling that traditional systems were not designed to handle. As model complexity grows exponentially, understanding distributed training systems becomes necessary for any machine learning application of practical significance. The systems engineering principles developed for training at scale directly influence deployment architectures, cost structures, and feasibility of solutions across industries.

Learning Objectives

	Explain how mathematical operations in neural networks (matrix multiplications, activation functions, backpropagation) translate to computational and memory system requirements

	Analyze performance bottlenecks in training pipelines including data loading, memory bandwidth limitations, and compute utilization patterns

	Design training pipeline architectures that integrate data preprocessing, forward/backward passes, and parameter updates efficiently

	Apply single-machine optimization techniques including mixed-precision training, gradient accumulation, and activation checkpointing to maximize resource utilization

	Compare distributed training strategies (data parallelism, model parallelism, pipeline parallelism) and select appropriate approaches based on model characteristics and hardware constraints

	Evaluate specialized hardware platforms (GPUs, TPUs, FPGAs, ASICs) for training workloads and optimize code for specific architectural features

	Implement optimization algorithms (SGD, Adam, AdamW) within training frameworks while understanding their memory and computational implications

	Critique common training system design decisions to avoid performance pitfalls and scaling bottlenecks

Training Systems Evolution and Architecture

Training represents the most demanding phase in machine learning systems, where theoretical constructs become practical reality through computational optimization. Building upon the system design methodologies established in Chapter 2, data pipeline architectures explored in Chapter 6, and computational frameworks examined in Chapter 7, this chapter examines how algorithmic theory, data processing, and hardware architecture converge in the iterative refinement of intelligent systems.

Training constitutes the most computationally demanding phase in the machine learning systems lifecycle, requiring careful orchestration of mathematical optimization processes with distributed systems engineering principles. Contemporary training workloads impose computational requirements that exceed conventional computing paradigms: models with billions of parameters demand terabytes of memory capacity, training corpora span petabyte-scale storage systems, and gradient-based optimization algorithms require synchronized computation across thousands of processing units. These computational scales create systems engineering challenges in memory hierarchy management, inter-node communication efficiency, and resource allocation strategies that distinguish training infrastructure from general-purpose computing architectures.

The design methodologies established in preceding chapters serve as architectural foundations during the training phase. The modular system architectures from Chapter 2 enable distributed training orchestration, the engineered data pipelines from Chapter 6 provide continuous training sample streams, and the computational frameworks from Chapter 7 supply necessary algorithmic abstractions. Training systems integration represents where theoretical design principles meet performance engineering constraints, establishing the computational foundation for the optimization techniques investigated in Part III.

This chapter develops systems engineering foundations for scalable training infrastructure. We examine the translation of mathematical operations in parametric models into concrete computational requirements, analyze performance bottlenecks within training pipelines including memory bandwidth limitations and computational throughput constraints, and architect systems that achieve high efficiency while maintaining fault tolerance guarantees. Through exploration of single-node optimization strategies, distributed training methodologies, and specialized hardware utilization patterns, this chapter develops the systems engineering perspective needed for constructing training infrastructure capable of scaling from experimental prototypes to production-grade deployments.

Lighthouse Example: Training GPT-2

This chapter uses training GPT-2 (1.5 billion parameters) as a consistent reference point to ground abstract concepts in concrete reality. GPT-2 represents an ideal teaching example because it:

	Spans the scale spectrum: Large enough to require serious optimization, small enough to train without massive infrastructure

	Has well-documented architecture: 48 transformer layers, 1280 hidden dimensions, 20 attention heads

	Exhibits all key training challenges: Memory pressure, computational intensity, data pipeline complexity

	Represents modern ML systems: Transformer-based models dominate contemporary machine learning

Transformer Architecture Primer:

GPT-2 uses a transformer architecture (detailed in Chapter 4) that processes text through self-attention mechanisms. Understanding these key computational patterns provides essential context for the training examples throughout this chapter:

	Self-attention: Computes relationships between all words in a sequence through matrix operations (Query × Key^T), producing attention scores that weight how much each word should influence others

	Multi-head attention: Parallelizes attention across multiple “heads” (GPT-2 uses 20), each learning different relationship patterns

	Transformer layers: Stack attention with feed-forward networks (GPT-2 has 48 layers), enabling hierarchical feature learning

	Key computational pattern: Dominated by large matrix multiplications (attention score calculation, feed-forward networks) that benefit from GPU parallelization

This architecture’s heavy reliance on matrix multiplication and sequential dependencies creates the specific training system challenges we explore: massive activation memory requirements, communication bottlenecks in distributed training, and opportunities for mixed-precision optimization.

Key GPT-2 Specifications:

	Parameters: 1.542B (1,558,214,656 exact count)

	Training Data: OpenWebText (~40GB text, ~9B tokens)

	Batch Configuration: Typically 512 effective batch size across 8-32 GPUs

	Memory Footprint: ~3GB parameters (FP16: 16-bit floating point, using 2 bytes per value vs 4 bytes for FP32), ~18GB activations (batch_size=32)

	Training Time: ~2 weeks on 32 V100 GPUs

Note on precision formats: Throughout this chapter, we reference FP32 (32-bit) and FP16 (16-bit) floating-point formats. FP16 halves memory requirements and enables faster computation on modern GPUs with Tensor Cores. Mixed-precision training (detailed in Section 8.5.4) strategically combines FP16 for most operations with FP32 for numerical stability, achieving 2× memory savings and 2-3× speedups while maintaining accuracy.

🔄 GPT-2 Example Markers appear at strategic points where this specific model illuminates the concept under discussion. Each example provides quantitative specifications, performance tradeoffs, and concrete implementation decisions encountered in training this model.

Training Systems

The development of modern machine learning models relies on specialized computational frameworks that manage the complex process of iterative optimization. These systems differ from traditional computing infrastructures, requiring careful orchestration of data processing, gradient computation, parameter updates, and distributed coordination across potentially thousands of devices. Understanding what constitutes a training system and how it differs from general-purpose computing provides the foundation for the architectural decisions and optimization strategies that follow.

 ch015.xhtml

Efficient AI

DALL·E 3 Prompt: A conceptual illustration depicting efficiency in artificial intelligence using a shipyard analogy. The scene shows a bustling shipyard where containers represent bits or bytes of data. These containers are being moved around efficiently by cranes and vehicles, symbolizing the streamlined and rapid information processing in AI systems. The shipyard is meticulously organized, illustrating the concept of optimal performance within the constraints of limited resources. In the background, ships are docked, representing different platforms and scenarios where AI is applied. The atmosphere should convey advanced technology with an underlying theme of sustainability and wide applicability.

 [image:]

Purpose

What key trade-offs shape the pursuit of efficiency in machine learning systems, and why must engineers balance competing objectives?

Machine learning system efficiency requires balancing trade-offs across algorithmic complexity, computational resources, and data utilization. Improvements in one dimension often degrade performance in others, creating engineering tensions that require systematic approaches. Understanding these interdependent relationships enables engineers to design systems achieving maximum performance within practical constraints of time, energy, and cost.

Learning Objectives

	Analyze scaling law relationships to determine optimal resource allocation strategies for computational budget, model size, and dataset requirements

	Compare and contrast algorithmic, compute, and data efficiency trade-offs across cloud, edge, mobile, and TinyML deployment contexts

	Evaluate machine learning systems using efficiency metrics including throughput, latency, energy consumption, and resource utilization

	Apply compression techniques such as pruning, quantization, and knowledge distillation to optimize model performance within resource constraints

	Design context-aware efficiency strategies by prioritizing optimization dimensions based on deployment requirements and operational constraints

	Critique scaling-based approaches by identifying breakdown points and proposing alternative efficiency-driven solutions

	Assess the environmental and accessibility implications of efficiency choices in machine learning system design

The Efficiency Imperative

Machine learning efficiency has evolved from an afterthought to a fundamental discipline as models transitioned from simple statistical approaches to complex, resource-intensive architectures. The gap between theoretical capabilities and practical deployment has widened significantly, creating efficiency constraints that fundamentally affect system feasibility and scalability.

Large-scale language models exemplify this challenge. GPT-3 required training costs estimated at $4.6 million (Lambda Labs estimate) and energy consumption of 1,287 MWh (D. Patterson et al. 2021b). The operational requirements, including memory footprints exceeding 700GB for inference (350GB for half-precision), create deployment barriers in resource-constrained environments. These constraints reveal a tension between model expressiveness and system practicality that requires rigorous analysis and optimization strategies.

Efficiency research extends beyond resource optimization to encompass the theoretical foundations of learning system design. Engineers must understand how algorithmic complexity, computational architectures, and data utilization strategies interact to determine system viability. These interdependencies create multi-objective optimization problems where improvements in one dimension may degrade performance in others.

This chapter establishes the framework for analyzing efficiency in machine learning systems within Part III’s performance engineering curriculum. The efficiency principles here inform the optimization techniques in Chapter 10, where quantization and pruning methods realize algorithmic efficiency goals, the hardware acceleration strategies in Chapter 11 that maximize compute efficiency, and the measurement methodologies in Chapter 12 for validating efficiency improvements.

Defining System Efficiency

Consider building a photo search application for a smartphone. You face three competing pressures: the model must be small enough to fit in memory (an algorithmic challenge), it must run fast enough on the phone’s processor without draining the battery (a compute challenge), and it must learn from a user’s personal photos without requiring millions of examples (a data challenge). Efficient AI is the discipline of navigating these interconnected trade-offs.

Addressing these efficiency challenges requires coordinated optimization across three interconnected dimensions that determine system viability.

 ch016.xhtml

Model Optimizations

DALL·E 3 Prompt: Illustration of a neural network model represented as a busy construction site, with a diverse group of construction workers, both male and female, of various ethnicities, labeled as ‘pruning’, ‘quantization’, and ‘sparsity’. They are working together to make the neural network more efficient and smaller, while maintaining high accuracy. The ‘pruning’ worker, a Hispanic female, is cutting unnecessary connections from the middle of the network. The ‘quantization’ worker, a Caucasian male, is adjusting or tweaking the weights all over the place. The ‘sparsity’ worker, an African female, is removing unnecessary nodes to shrink the model. Construction trucks and cranes are in the background, assisting the workers in their tasks. The neural network is visually transforming from a complex and large structure to a more streamlined and smaller one.

 [image:]

Purpose

How does the mismatch between research-optimized models and production deployment constraints create critical engineering challenges in machine learning systems?

Machine learning research prioritizes accuracy above all considerations, producing models with remarkable performance that cannot deploy where needed most: resource-constrained mobile devices, cost-sensitive cloud environments, or latency-critical edge applications. Model optimization bridges theoretical capability and practical deployment, transforming computationally intensive research models into efficient systems preserving performance while meeting stringent constraints on memory, energy, latency, and cost. Without systematic optimization techniques, advanced AI capabilities remain trapped in research laboratories. Understanding optimization principles enables engineers to democratize AI capabilities by making sophisticated models accessible across diverse deployment contexts, from billion-parameter language models running on mobile devices to embedded sensors.

Learning Objectives

	Compare model optimization techniques including pruning, quantization, knowledge distillation, and neural architecture search in terms of their mechanisms and applications

	Evaluate trade-offs between numerical precision levels and their effects on model accuracy, energy consumption, and hardware compatibility

	Apply the tripartite optimization framework (model representation, numerical precision, architectural efficiency) to design deployment strategies for specific hardware constraints

	Analyze how hardware-aware design principles influence model architecture decisions and computational efficiency across different deployment platforms

	Implement sparsity exploitation and dynamic computation techniques to improve inference performance while managing accuracy preservation

	Design integrated optimization pipelines that combine multiple techniques to achieve specific deployment objectives within resource constraints

	Assess automated optimization approaches and their role in discovering novel optimization strategies beyond manual tuning

Model Optimization Fundamentals

Successful deployment of machine learning systems requires addressing the tension between model sophistication and computational feasibility. Contemporary research in machine learning has produced increasingly powerful models whose resource demands often exceed the practical constraints of real-world deployment environments. This represents the classic engineering challenge of translating theoretical advances into viable systems, affecting the accessibility and scalability of machine learning applications.

The magnitude of this resource gap is substantial and multifaceted. State-of-the-art language models may require several hundred gigabytes of memory for full-precision parameter storage (T. B. Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Saxena, et al. 2020; Chowdhery et al. 2022), while target deployment platforms such as mobile devices typically provide only a few gigabytes of available memory. This disparity extends beyond memory constraints to encompass computational throughput, energy consumption, and latency requirements. The challenge is further compounded by the heterogeneous nature of deployment environments, each imposing distinct constraints and performance requirements.

Production machine learning systems operate within a complex optimization landscape characterized by multiple, often conflicting, performance objectives. Real-time applications impose strict latency bounds, mobile deployments require energy efficiency to preserve battery life, embedded systems must operate within thermal constraints, and cloud services demand cost-effective resource utilization at scale. These constraints collectively define a multi-objective optimization problem that requires systematic approaches to achieve satisfactory solutions across all relevant performance dimensions.

 ch017.xhtml

AI Acceleration

DALL·E 3 Prompt: Create an intricate and colorful representation of a System on Chip (SoC) design in a rectangular format. Showcase a variety of specialized machine learning accelerators and chiplets, all integrated into the processor. Provide a detailed view inside the chip, highlighting the rapid movement of electrons. Each accelerator and chiplet should be designed to interact with neural network neurons, layers, and activations, emphasizing their processing speed. Depict the neural networks as a network of interconnected nodes, with vibrant data streams flowing between the accelerator pieces, showcasing the enhanced computation speed.

 [image:]

Purpose

What makes specialized hardware acceleration not just beneficial but essential for practical machine learning deployment, and why does this represent a fundamental shift in how we approach computational system design?

Practical machine learning systems depend entirely on hardware acceleration. Without specialized processors, computational demands remain economically and physically infeasible. General-purpose CPUs achieve only 100 GFLOPS1 for neural network operations (Sze et al. 2017a), while modern training workloads require trillions of operations per second, creating a performance gap that traditional scaling cannot bridge. Hardware acceleration transforms computationally impossible tasks into practical deployments, enabling entirely new application categories. Engineers working with modern AI systems must understand acceleration principles to harness 100-1000×\times performance improvements that make real-time inference, large-scale training, and edge deployment economically viable.

Learning Objectives

	Trace the evolution of hardware acceleration from floating-point coprocessors to modern AI accelerators and explain the architectural principles driving this progression

	Classify AI compute primitives (vector operations, matrix multiplication, systolic arrays) and analyze their implementation in contemporary accelerators

	Evaluate memory hierarchy designs for AI accelerators and predict their impact on performance bottlenecks using bandwidth and energy consumption metrics

	Design mapping strategies for neural network layers onto specialized hardware architectures, considering dataflow patterns and resource utilization trade-offs

	Apply compiler optimization techniques (graph optimization, kernel fusion, memory planning) to transform high-level ML models into efficient hardware execution plans

	Compare multi-chip scaling approaches (chiplets, multi-GPU, distributed systems) and assess their suitability for different AI workload characteristics

	Critique common misconceptions about hardware acceleration and identify potential pitfalls in accelerator selection and deployment strategies

AI Hardware Acceleration Fundamentals

Modern machine learning systems challenge the architectural assumptions underlying general-purpose processors. While software optimization techniques examined in the preceding chapter provide systematic approaches to algorithmic efficiency through precision reduction, structural pruning, and execution refinements, they operate within the constraints of existing computational substrates. Conventional CPUs achieve utilization rates of merely 5-10% when executing typical machine learning workloads (Gholami et al. 2024), due to architectural misalignments between sequential processing models and the highly parallel, data-intensive nature of neural network computations.

This performance gap has driven a shift toward domain-specific hardware acceleration within computer architecture. Hardware acceleration complements software optimization, addressing efficiency limitations through architectural redesign rather than algorithmic modification. The co-evolution of machine learning algorithms and specialized computing architectures has enabled the transition from computationally prohibitive research conducted on high-performance computing systems to ubiquitous deployment across diverse computing environments, from hyperscale data centers to resource-constrained edge devices.

Hardware acceleration for machine learning systems sits at the intersection of computer systems engineering, computer architecture, and applied machine learning. For practitioners developing production systems, architectural selection decisions regarding accelerator technologies encompassing graphics processing units, tensor processing units, and neuromorphic processors directly determine system-level performance characteristics, energy efficiency profiles, and implementation complexity. Deployed systems in domains such as natural language processing, computer vision, and autonomous systems demonstrate performance improvements spanning two to three orders of magnitude relative to general-purpose implementations.

This chapter examines hardware acceleration principles and methodologies for machine learning systems. The analysis begins with the historical evolution of domain-specific computing architectures, showing how design patterns from floating-point coprocessors to graphics processing units inform contemporary AI acceleration strategies. We then address the computational primitives that characterize machine learning workloads, including matrix multiplication, vector operations, and nonlinear activation functions, and analyze the architectural mechanisms through which specialized hardware optimizes these operations via innovations such as systolic array architectures and tensor processing cores.

Memory hierarchy design plays a critical role in acceleration effectiveness, given that data movement energy costs typically exceed computational energy by more than two orders of magnitude. This analysis covers memory architecture design principles, from on-chip SRAM buffer optimization to high-bandwidth memory interfaces, and examines approaches to minimizing energy-intensive data movement patterns. We also address compiler optimization and runtime system support, which determine the extent to which theoretical hardware capabilities translate into measurable system performance.

The chapter concludes with scaling methodologies for systems requiring computational capacity beyond single-chip implementations. Multi-chip architectures, ranging from chiplet-based integration to distributed warehouse-scale systems, introduce trade-offs between computational parallelism and inter-chip communication overhead. Through detailed analysis of contemporary systems including NVIDIA GPU architectures, Google Tensor Processing Units, and emerging neuromorphic computing platforms, we establish the theoretical foundations and practical considerations necessary for effective deployment of AI acceleration across diverse system contexts.

Evolution of Hardware Specialization

Computing architectures follow a recurring pattern: as computational workloads grow in complexity, general-purpose processors become increasingly inefficient, prompting the development of specialized hardware accelerators. The need for higher computational efficiency, reduced energy consumption, and optimized execution of domain-specific workloads drives this transition. Machine learning acceleration represents the latest stage in this ongoing evolution, following a trajectory observed in prior domains such as floating-point arithmetic, graphics processing, and digital signal processing.

This evolutionary progression provides context for understanding how modern ML accelerators including GPUs with tensor cores (specialized units that accelerate matrix operations), Google’s TPUs2, and Apple’s Neural Engine emerged from established architectural principles. These technologies enable widely deployed applications such as real-time language translation, image recognition, and personalized recommendations. The architectural strategies enabling such capabilities derive from decades of hardware specialization research and development.

Hardware specialization forms the foundation of this transition, enhancing performance and efficiency by optimizing frequently executed computational patterns through dedicated circuit implementations. While this approach yields significant gains, it introduces trade-offs in flexibility, silicon area utilization, and programming complexity. As computing demands continue to evolve, specialized accelerators must balance these factors to deliver sustained improvements in efficiency and performance.

The evolution of hardware specialization provides perspective for understanding modern machine learning accelerators. Many principles that shaped the development of early floating-point and graphics accelerators now inform the design of AI-specific hardware. Examining these past trends offers a framework for analyzing contemporary approaches to AI acceleration and anticipating future developments in specialized computing.

Specialized Computing

The transition toward specialized computing architectures stems from the limitations of general-purpose processors. Early computing systems relied on central processing units (CPUs) to execute all computational tasks sequentially, following a one-size-fits-all approach. As computing workloads diversified and grew in complexity, certain operations, especially floating-point arithmetic, emerged as performance bottlenecks that could not be efficiently handled by CPUs alone. These inefficiencies prompted the development of specialized hardware architectures designed to accelerate specific computational patterns (Flynn 1966).

One of the earliest examples of hardware specialization was the Intel 8087 mathematics coprocessor3, introduced in 1980. This floating-point unit (FPU) was designed to offload arithmetic-intensive computations from the main CPU, dramatically improving performance for scientific and engineering applications. The 8087 demonstrated unprecedented efficiency, achieving performance gains of up to 100× for floating-point operations compared to software-based implementations on general-purpose processors (Fisher 1981). This milestone established a principle in computer architecture: carefully designed hardware specialization could provide order-of-magnitude improvements for well-defined, computationally intensive tasks.

The success of floating-point coprocessors4 led to their eventual integration into mainstream processors. The Intel 486DX, released in 1989, incorporated an on-chip floating-point unit, eliminating the requirement for an external coprocessor. This integration improved processing efficiency and established a recurring pattern in computer architecture: successful specialized functions become standard features in subsequent generations of general-purpose processors (David A. Patterson and Hennessy 2021c).

Early floating-point acceleration established principles that continue to influence modern hardware specialization:

	Identification of computational bottlenecks through workload analysis

	Development of specialized circuits for frequent operations

	Creation of efficient hardware-software interfaces

	Progressive integration of proven specialized functions

This progression from domain-specific specialization to general-purpose integration has shaped modern computing architectures. As computational workloads expanded beyond arithmetic operations, these core principles were applied to new domains, such as graphics processing, digital signal processing, and ultimately, machine learning acceleration. Each domain introduced specialized architectures tailored to their unique computational requirements, establishing hardware specialization as an approach for advancing computing performance and efficiency in increasingly complex workloads.

The evolution of specialized computing hardware follows a consistent trajectory, wherein architectural innovations are introduced to address emerging computational bottlenecks and are subsequently incorporated into mainstream computing platforms. As illustrated in Figure 11.1, each computing era produced accelerators that addressed the dominant workload characteristics of the period. These developments have advanced architectural efficiency and shaped the foundation upon which contemporary machine learning systems operate. The computational capabilities required for tasks such as real-time language translation, personalized recommendations, and on-device inference depend on foundational principles and architectural innovations established in earlier domains, including floating-point computation, graphics processing, and digital signal processing.

[image:]

Figure 11.1: Hardware Specialization Trajectory: Computing architectures progressively incorporate specialized accelerators to address emerging performance bottlenecks and workload demands, mirroring a historical pattern from floating-point units to graphics processors and, ultimately, machine learning accelerators. This evolution reflects a strategy for improving computational efficiency by tailoring hardware to specific task characteristics and advancing increasingly complex applications.

Parallel Computing and Graphics Processing

The principles established through floating-point acceleration provided a blueprint for addressing emerging computational challenges. As computing applications diversified, new computational patterns emerged that exceeded the capabilities of general-purpose processors. This expansion of specialized computing manifested across multiple domains, each contributing unique insights to hardware acceleration strategies.

Graphics processing emerged as a primary driver of hardware specialization in the 1990s. Early graphics accelerators focused on specific operations like bitmap transfers and polygon filling. The introduction of programmable graphics pipelines with NVIDIA’s GeForce 256 in 1999 represented a significant advancement in specialized computing. Graphics Processing Units (GPUs) demonstrated how parallel processing architectures could efficiently handle data-parallel workloads, achieving 50-100×\times speedups in 3D rendering tasks like texture mapping and vertex transformation. By 2004, high-end GPUs could process over 100 million polygons per second (Owens et al. 2008).

Concurrently, Digital Signal Processing (DSP) processors established parallel data path architectures with specialized multiply-accumulate units and circular buffers optimized for filtering and transform operations. Texas Instruments’ TMS32010 (1983) demonstrated how domain-specific instruction sets could dramatically improve performance for signal processing applications (Lyons 2011).

Network processing introduced additional patterns of specialization. Network processors developed unique architectures to handle packet processing at line rate, incorporating multiple processing cores, specialized packet manipulation units, and sophisticated memory management systems. Intel’s IXP2800 network processor demonstrated how multiple levels of hardware specialization could be combined to address complex processing requirements.

These diverse domains of specialization exhibit several common characteristics:

	Identification of domain-specific computational patterns

	Development of specialized processing elements and memory hierarchies

	Creation of domain-specific programming models

	Progressive evolution toward more flexible architectures

This period of expanding specialization demonstrated that hardware acceleration strategies could address diverse computational requirements across multiple domains. The GPU’s success in parallelizing 3D graphics pipelines enabled its subsequent adoption for training deep neural networks, exemplified by AlexNet5 in 2012, which executed on consumer-grade NVIDIA GPUs. DSP innovations in low-power signal processing facilitated real-time inference on edge devices, including voice assistants and wearables. These domains informed ML hardware designs and established that accelerators could be deployed across both cloud and embedded contexts, principles that continue to influence contemporary AI ecosystem development.

Emergence of Domain-Specific Architectures

The emergence of domain-specific architectures (DSA)6 marks a shift in computer system design, driven by two factors: the breakdown of traditional scaling laws and the increasing computational demands of specialized workloads. The slowdown of Moore’s Law7, which previously ensured predictable enhancements in transistor density every 18 to 24 months, and the end of Dennard scaling8, which permitted frequency increases without corresponding power increases, created a performance and efficiency bottleneck in general-purpose computing. As John Hennessy and David Patterson noted in their 2017 Turing Lecture (Hennessy and Patterson 2019), these limitations signaled the onset of a new era in computer architecture, one centered on domain-specific solutions that optimize hardware for specialized workloads.

Historically, improvements in processor performance depended on semiconductor process scaling and increasing clock speeds. However, as power density limitations restricted further frequency scaling, and as transistor miniaturization encountered increasing physical and economic constraints, architects explored alternative approaches to sustain computational growth. This resulted in a shift toward domain-specific architectures, which dedicate silicon resources to optimize computation for specific application domains, trading flexibility for efficiency.

Domain-specific architectures achieve superior performance and energy efficiency through several key principles:

	Customized datapaths: Design processing paths specifically optimized for target application patterns, enabling direct hardware execution of common operations. For example, matrix multiplication units in AI accelerators implement systolic arrays—grid-like networks of processing elements that rhythmically compute and pass data through neighboring units—tailored for neural network computations.

	Specialized memory hierarchies: Optimize memory systems around domain-specific access patterns and data reuse characteristics. This includes custom cache configurations, prefetching logic, and memory controllers tuned for expected workloads.

	Reduced instruction overhead: Implement domain-specific instruction sets that minimize decode and dispatch complexity by encoding common operation sequences into single instructions. This improves both performance and energy efficiency.

	Direct hardware implementation: Create dedicated circuit blocks that natively execute frequently used operations without software intervention. This eliminates instruction processing overhead and maximizes throughput.

These principles achieve compelling demonstration in modern smartphones. Modern smartphones can decode 4K video at 60 frames per second while consuming only a few watts of power, despite video processing requiring billions of operations per second. This efficiency is achieved through dedicated hardware video codecs that implement industry standards such as H.264/AVC (introduced in 2003) and H.265/HEVC (finalized in 2013) (Sullivan et al. 2012). These specialized circuits provide 100–1000×\times improvements in both performance and power efficiency compared to software-based decoding on general-purpose processors.

The trend toward specialization continues to accelerate, with new architectures emerging for an expanding range of domains. Genomics processing benefits from custom accelerators that optimize sequence alignment and variant calling, reducing the time required for DNA analysis (Shang, Wang, and Liu 2018). Similarly, blockchain computation has produced application-specific integrated circuits (ASICs)9 optimized for cryptographic hashing, substantially increasing the efficiency of mining operations (Bedford Taylor 2017). These examples demonstrate that domain-specific architecture represents a fundamental transformation in computing systems, offering tailored solutions that address the growing complexity and diversity of modern computational workloads.

Machine Learning Hardware Specialization

Machine learning constitutes a computational domain with unique characteristics that have driven the development of specialized hardware architectures. Unlike traditional computing workloads that exhibit irregular memory access patterns and diverse instruction streams, neural networks are characterized by predictable patterns: dense matrix multiplications, regular data flow, and tolerance for reduced precision. These characteristics enable specialized hardware optimizations that would be ineffective for general-purpose computing but provide substantial speedups for ML workloads.

 ch018.xhtml

Benchmarking AI

DALL·E 3 Prompt: Photo of a podium set against a tech-themed backdrop. On each tier of the podium, there are AI chips with intricate designs. The top chip has a gold medal hanging from it, the second one has a silver medal, and the third has a bronze medal. Banners with ‘AI Olympics’ are displayed prominently in the background.

 [image:]

Purpose

Why does systematic measurement form the foundation of engineering progress in machine learning systems, and how does standardized benchmarking enable scientific advancement in this emerging field?

Engineering disciplines advance through measurement and comparison, establishing benchmarking as essential to machine learning systems development. Without systematic evaluation frameworks, optimization claims lack scientific rigor, hardware investments proceed without evidence, and system improvements cannot be verified or reproduced. Benchmarking transforms subjective impressions into objective data, enabling engineers to distinguish genuine advances from implementation artifacts. This measurement discipline is essential because ML systems involve complex interactions between algorithms, hardware, and data that defy intuitive performance prediction. Standardized benchmarks establish shared baselines allowing meaningful comparison across research groups, enable cumulative progress through reproducible results, and provide empirical foundations necessary for engineering decision-making. Understanding benchmarking principles enables systematic evaluation driving continuous improvement and establishes machine learning systems engineering as rigorous scientific discipline.

Learning Objectives

	Analyze the evolution from traditional computing benchmarks to modern ML evaluation frameworks and explain how lessons from benchmark gaming inform current ML benchmarking design

	Distinguish between the three dimensions of ML benchmarking (algorithmic, systems, and data) and evaluate how each dimension contributes to comprehensive system assessment

	Compare training and inference benchmarking methodologies, identifying specific metrics and evaluation protocols appropriate for each phase of the ML lifecycle

	Apply MLPerf benchmarking standards to evaluate competing hardware and software solutions, interpreting results to guide system optimization decisions

	Design statistically rigorous experimental protocols that account for ML system variability, including appropriate sample sizes and confidence interval reporting

	Critique existing benchmark results for common fallacies and pitfalls, distinguishing between benchmark performance and real-world deployment effectiveness

	Implement production monitoring strategies that extend benchmarking principles to operational environments, including A/B testing and continuous model validation

	Evaluate multidimensional performance trade-offs across accuracy, latency, energy consumption, and fairness metrics to optimize ML systems for specific deployment contexts

Machine Learning Benchmarking Framework

The systematic evaluation of machine learning systems presents a critical methodological challenge within the broader discipline of performance engineering. While previous chapters have established comprehensive optimization frameworks, particularly hardware acceleration strategies (Chapter 11), the validation of these approaches requires rigorous measurement methodologies that extend beyond traditional computational benchmarking.

Consider the challenge facing engineers evaluating competing AI hardware solutions. A vendor might demonstrate impressive performance gains on carefully selected benchmarks, yet fail to deliver similar improvements in production workloads. Without comprehensive evaluation frameworks, distinguishing genuine advances from implementation artifacts becomes nearly impossible. This challenge illustrates why systematic measurement forms the foundation of engineering progress in machine learning systems.

This chapter examines benchmarking as an essential empirical discipline that enables quantitative assessment of machine learning system performance across diverse operational contexts. Benchmarking establishes the methodological foundation for evidence-based engineering decisions, providing systematic evaluation frameworks that allow practitioners to compare competing approaches, validate optimization strategies, and ensure reproducible performance claims in both research and production environments.

Machine learning benchmarking presents unique challenges that distinguish it from conventional systems evaluation. The probabilistic nature of machine learning algorithms introduces inherent performance variability that traditional deterministic benchmarks cannot adequately characterize. ML system performance exhibits complex dependencies on data characteristics, model architectures, and computational resources, creating multidimensional evaluation spaces that require specialized measurement approaches.

Contemporary machine learning systems demand evaluation frameworks that accommodate multiple, often competing, performance objectives. Beyond computational efficiency, these systems must be assessed across dimensions including predictive accuracy, convergence properties, energy consumption, fairness, and robustness. This multi-objective evaluation paradigm necessitates sophisticated benchmarking methodologies that can characterize trade-offs and guide system design decisions within specific operational constraints.

The field has evolved to address these challenges through comprehensive evaluation approaches that operate across three core dimensions:

 ch019.xhtml

ML Operations

DALL·E 3 Prompt: Create a detailed, wide rectangular illustration of an AI workflow. The image should showcase the process across six stages, with a flow from left to right: 1. Data collection, with diverse individuals of different genders and descents using a variety of devices like laptops, smartphones, and sensors to gather data. 2. Data processing, displaying a data center with active servers and databases with glowing lights. 3. Model training, represented by a computer screen with code, neural network diagrams, and progress indicators. 4. Model evaluation, featuring people examining data analytics on large monitors. 5. Deployment, where the AI is integrated into robotics, mobile apps, and industrial equipment. 6. Monitoring, showing professionals tracking AI performance metrics on dashboards to check for accuracy and concept drift over time. Each stage should be distinctly marked and the style should be clean, sleek, and modern with a dynamic and informative color scheme.

 [image:]

Purpose

Why do machine learning prototypes that work perfectly in development often fail catastrophically when deployed to production environments?

The transition from prototype models to reliable production systems presents significant engineering challenges. Research models trained on clean datasets encounter production environments with shifting data distributions, evolving user behaviors, and unexpected system failures. Unlike traditional software that executes deterministic logic, machine learning systems exhibit probabilistic behavior that degrades silently as real-world conditions diverge from training assumptions. This instability requires operational practices that detect performance degradation before affecting users, automatically retrain models as data evolves, and maintain system reliability despite prediction uncertainty. Success demands engineering disciplines that bridge experimental validation and production reliability, enabling organizations to deploy models that remain effective throughout their operational lifespan.

Learning Objectives

	Differentiate between traditional software failures and ML system silent failures to explain why MLOps emerged as a distinct engineering discipline

	Analyze technical debt patterns (boundary erosion, correction cascades, data dependencies) in ML systems and propose systematic engineering solutions

	Design CI/CD pipelines that address ML-specific challenges including model validation, data versioning, and automated retraining workflows

	Evaluate monitoring strategies for production ML systems that detect both traditional system metrics and ML-specific indicators like data drift and prediction confidence

	Implement deployment patterns for diverse environments including cloud services, edge devices, and federated learning systems

	Assess organizational maturity levels and recommend role structures needed to support effective MLOps practices

	Compare MLOps adaptations across domains by analyzing how specialized requirements (healthcare, embedded systems) reshape operational frameworks

	Create governance frameworks that ensure model reproducibility, auditability, and compliance in regulated environments

Introduction to Machine Learning Operations

Traditional software fails loudly with error messages and stack traces; machine learning systems fail silently. As introduced in Chapter 1, the Silent Failure Problem is a defining characteristic of ML systems: performance degrades gradually as data distributions shift, user behaviors evolve, and model assumptions become outdated, all without raising any alarms. MLOps is the engineering discipline designed to make those silent failures visible and manageable. It provides the monitoring, automation, and governance required to ensure that data-driven systems remain reliable in production, even as the world around them changes.

Machine learning systems require more than algorithmic innovation; they need systematic engineering practices for reliable production deployment. While Chapter 14 explored distributed learning under resource constraints and Chapter 16 established fault tolerance methodologies, the security framework from Chapter 15 becomes essential for production deployment. Machine Learning Operations (MLOps)1 provides the disciplinary framework that synthesizes these specialized capabilities into coherent production architectures. This operational discipline addresses the challenge of translating experimental success into sustainable system performance, integrating adaptive learning, security protocols, and resilience mechanisms within complex production ecosystems.

MLOps (Section 13.2.2) systematically integrates machine learning methodologies, data science practices, and software engineering principles to enable automated, end-to-end lifecycle management. This operational paradigm bridges experimental validation and production deployment, ensuring that validated models maintain their performance characteristics while adapting to real-world operational environments.

Consider deploying a demand prediction system for ridesharing services. While controlled experimental validation may demonstrate superior accuracy and latency characteristics, production deployment introduces challenges that extend beyond algorithmic performance. Data streams exhibit varying quality, temporal patterns undergo seasonal variations, and prediction services must satisfy strict availability requirements while maintaining real-time response capabilities. MLOps provides the framework needed to address these operational complexities.

As an engineering discipline, MLOps establishes standardized protocols, tools, and workflows that facilitate the transition of validated models from experimental environments to production systems. The discipline promotes collaboration by formalizing interfaces and defining responsibilities across traditionally isolated domains, including data science, machine learning engineering, and systems operations2. This approach enables continuous integration and deployment practices adapted for machine learning contexts, supporting iterative model refinement, validation, and deployment while preserving system stability and operational reliability.

Building on these operational foundations, mature MLOps methodologies transform how organizations manage machine learning systems through automation and monitoring frameworks. These practices enable continuous model retraining as new data becomes available, evaluation of alternative architectures against production baselines, controlled deployment of experimental modifications through graduated rollout strategies, and real-time performance assessment without compromising operational continuity. This operational flexibility ensures sustained model relevance while maintaining system reliability standards.

Beyond operational efficiency, MLOps encompasses governance frameworks and accountability mechanisms that become critical as systems scale. MLOps standardizes the tracking of model versions, data lineage documentation, and configuration parameter management, establishing reproducible and auditable artifact trails. This rigor proves essential in regulated domains where model interpretability and operational provenance constitute compliance requirements.

The practical benefits of this methodological rigor become evident in organizational outcomes. Evidence demonstrates that organizations adopting mature MLOps methodologies achieve significant improvements in deployment reliability, accelerated time-to-market cycles, and enhanced system maintainability3. The disciplinary framework enables sustainable scaling of machine learning systems while preserving the performance characteristics validated during benchmarking phases, ensuring operational fidelity to experimental results.

This methodology of machine learning operations provides the pathway for transforming theoretical innovations into sustainable production capabilities. This chapter establishes the engineering foundations needed to bridge the gap between experimentally validated systems and operationally reliable production deployments. The analysis focuses particularly on centralized cloud computing environments, where monitoring infrastructure and management capabilities enable the implementation of mature operational practices for large-scale machine learning systems.

While Chapter 10 and Chapter 9 establish optimization foundations, this chapter extends these techniques to production contexts requiring continuous maintenance and monitoring. The empirical benchmarking approaches established in Chapter 12 provide the methodological foundation for production performance assessment, while system reliability patterns emerge as critical determinants of operational availability. MLOps integrates these diverse technical foundations into unified operational workflows, systematically addressing the fundamental challenge of transitioning from model development to sustainable production deployment.

This chapter examines the theoretical foundations and practical motivations underlying MLOps, traces its disciplinary evolution from DevOps methodologies, and identifies the principal challenges and established practices that inform its adoption in contemporary machine learning system architectures.

Historical Context

Understanding this evolution from DevOps to MLOps clarifies why traditional operational practices require adaptation for machine learning systems. The following examination of this historical development reveals the specific challenges that motivated MLOps as a distinct discipline.

MLOps has its roots in DevOps, a set of practices that combines software development (Dev) and IT operations (Ops) to shorten the development lifecycle and support the continuous delivery of high-quality software. DevOps and MLOps both emphasize automation, collaboration, and iterative improvement. However, while DevOps emerged to address challenges in software deployment and operational management, MLOps evolved in response to the unique complexities of machine learning workflows, especially those involving data-driven components (Breck et al. 2017b). Understanding this evolution is important for appreciating the motivations and structure of modern ML systems.

DevOps

The term DevOps was coined in 2009 by Patrick Debois, a consultant and Agile practitioner who organized the first DevOpsDays conference in Ghent, Belgium. DevOps extended the principles of the Agile movement, that emphasized close collaboration among development teams and rapid, iterative releases, by bringing IT operations into the fold.

This innovation addressed a core problem in traditional software pipelines, where development and operations teams worked in silos, creating inefficiencies, delays, and misaligned priorities. DevOps emerged as a response, advocating shared ownership, infrastructure as code4, and automation to streamline deployment pipelines.

To support these principles, tools such as Jenkins5, Docker, and Kubernetes67 became foundational for implementing continuous integration and continuous delivery (CI/CD) practices.

Through automation and feedback loops, DevOps promotes collaboration while reducing time-to-release and improving software reliability. This success established the cultural and technical groundwork for extending similar principles to the ML domain.

MLOps

While DevOps achieved considerable success in traditional software deployment, machine learning systems introduced new challenges that required further adaptation. MLOps builds on the DevOps foundation but addresses the specific demands of ML system development and deployment. Where DevOps focuses on integrating and