References
0003, Mu Li, David G. Andersen, Alexander J. Smola, and Kai Yu. 2014.
“Communication Efficient Distributed Machine Learning with the
Parameter Server.” In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, edited by Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, 19–27. https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html.
Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, et al. 2016. “TensorFlow: A System
for Large-Scale Machine Learning.” In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 265–83.
USENIX Association. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.
Abadi, Martin, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. 2016. “Deep Learning with
Differential Privacy.” In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 308–18. CCS
’16. New York, NY, USA: ACM. https://doi.org/10.1145/2976749.2978318.
Abdelkader, Ahmed, Michael J. Curry, Liam Fowl, Tom Goldstein, Avi
Schwarzschild, Manli Shu, Christoph Studer, and Chen Zhu. 2020.
“Headless Horseman: Adversarial Attacks on Transfer
Learning Models.” In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
3087–91. IEEE. https://doi.org/10.1109/icassp40776.2020.9053181.
Addepalli, Sravanti, B. S. Vivek, Arya Baburaj, Gaurang Sriramanan, and
R. Venkatesh Babu. 2020. “Towards Achieving Adversarial Robustness
by Enforcing Feature Consistency Across Bit Planes.” In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 1020–29. IEEE. https://doi.org/10.1109/cvpr42600.2020.00110.
Adolf, Robert, Saketh Rama, Brandon Reagen, Gu-yeon Wei, and David
Brooks. 2016. “Fathom: Reference Workloads for Modern
Deep Learning Methods.” In 2016 IEEE International Symposium
on Workload Characterization (IISWC), 1–10. IEEE; IEEE. https://doi.org/10.1109/iiswc.2016.7581275.
Agarwal, Alekh, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and
Hanna M. Wallach. 2018. “A Reductions Approach to Fair
Classification.” In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, edited by Jennifer G. Dy and Andreas
Krause, 80:60–69. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v80/agarwal18a.html.
Agnesina, Anthony, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta,
Austin Jiao, Ben Keller, Brucek Khailany, and Haoxing Ren. 2023.
“AutoDMP: Automated DREAMPlace-Based Macro
Placement.” In Proceedings of the 2023 International
Symposium on Physical Design, 149–57. ACM. https://doi.org/10.1145/3569052.3578923.
Agrawal, Dakshi, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. 2007. “Trojan Detection Using IC
Fingerprinting.” In 2007 IEEE Symposium on Security and
Privacy (SP ’07), 296–310. Springer; IEEE. https://doi.org/10.1109/sp.2007.36.
Ahmadilivani, Mohammad Hasan, Mahdi Taheri, Jaan Raik, Masoud
Daneshtalab, and Maksim Jenihhin. 2024. “A Systematic Literature
Review on Hardware Reliability Assessment Methods for Deep Neural
Networks.” ACM Comput. Surv. 56 (6): 1–39. https://doi.org/10.1145/3638242.
Akidau, Tyler, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, et al. 2015. “The
Dataflow Model: A Practical Approach to Balancing Correctness, Latency,
and Cost in Massive-Scale, Unbounded, Out-of-Order Data
Processing.” Proceedings of the VLDB Endowment 8 (12):
1792–1803. https://doi.org/10.14778/2824032.2824076.
Alghamdi, Wael, Hsiang Hsu, Haewon Jeong, Hao Wang, Peter Michalak,
Shahab Asoodeh, and Flavio Calmon. 2022. “Beyond Adult and
COMPAS: Fair Multi-Class Prediction via
Information Projection.” Adv. Neur. In. 35: 38747–60.
Altayeb, Moez, Marco Zennaro, and Marcelo Rovai. 2022.
“Classifying Mosquito Wingbeat Sound Using
TinyML.” In Proceedings of the 2022 ACM
Conference on Information Technology for Social Good, 132–37. ACM.
https://doi.org/10.1145/3524458.3547258.
Amershi, Saleema, Andrew Begel, Christian Bird, Rob DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. “Software Engineering for Machine Learning: A Case
Study.” Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, 291–300.
Amiel, Frederic, Christophe Clavier, and Michael Tunstall. 2006.
“Fault Analysis of DPA-Resistant Algorithms.” In Fault
Diagnosis and Tolerance in Cryptography, 223–36. Springer; Springer
Berlin Heidelberg. https://doi.org/10.1007/11889700\_20.
Ansel, Jason, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain,
Michael Voznesensky, Bin Bao, et al. 2024. “PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and
Graph Compilation.” In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, edited by Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily
B. Fox, and Roman Garnett, 929–47. ACM. https://doi.org/10.1145/3620665.3640366.
Anthony, Lasse F. Wolff, Benjamin Kanding, and Raghavendra Selvan. 2020.
ICML Workshop on Challenges in Deploying and monitoring Machine Learning
Systems.
Antol, Stanislaw, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C. Lawrence Zitnick, and Devi Parikh. 2015. “VQA: Visual
Question Answering.” In 2015 IEEE International Conference on
Computer Vision (ICCV), 2425–33. IEEE. https://doi.org/10.1109/iccv.2015.279.
Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, et al. 2017.
“Understanding the Mirai Botnet.” In 26th USENIX
Security Symposium (USENIX Security 17), 1093–1110.
Ardila, Rosana, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer,
Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and
Gregor Weber. 2020. “Common Voice: A Massively-Multilingual Speech
Corpus.” In Proceedings of the Twelfth Language Resources and
Evaluation Conference, 4218–22. Marseille, France: European
Language Resources Association. https://aclanthology.org/2020.lrec-1.520.
Arifeen, Tooba, Abdus Sami Hassan, and Jeong-A Lee. 2020.
“Approximate Triple Modular Redundancy: A
Survey.” #IEEE_O_ACC# 8: 139851–67. https://doi.org/10.1109/access.2020.3012673.
Asonov, D., and R. Agrawal. n.d. “Keyboard Acoustic
Emanations.” In IEEE Symposium on Security and Privacy, 2004.
Proceedings. 2004, 3–11. IEEE; IEEE. https://doi.org/10.1109/secpri.2004.1301311.
Ateniese, Giuseppe, Luigi V. Mancini, Angelo Spognardi, Antonio Villani,
Domenico Vitali, and Giovanni Felici. 2015. “Hacking Smart
Machines with Smarter Ones: How to Extract Meaningful Data from Machine
Learning Classifiers.” International Journal of Security and
Networks 10 (3): 137. https://doi.org/10.1504/ijsn.2015.071829.
Attia, Zachi I., Alan Sugrue, Samuel J. Asirvatham, Michael J. Ackerman,
Suraj Kapa, Paul A. Friedman, and Peter A. Noseworthy. 2018.
“Noninvasive Assessment of Dofetilide Plasma Concentration Using a
Deep Learning (Neural Network) Analysis of the Surface
Electrocardiogram: A Proof of Concept Study.” PLOS ONE
13 (8): e0201059. https://doi.org/10.1371/journal.pone.0201059.
Aygun, Sercan, Ece Olcay Gunes, and Christophe De Vleeschouwer. 2021.
“Efficient and Robust Bitstream Processing in Binarised Neural
Networks.” Electron. Lett. 57 (5): 219–22. https://doi.org/10.1049/ell2.12045.
Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016.
“Layer Normalization.” arXiv Preprint
arXiv:1607.06450, July. http://arxiv.org/abs/1607.06450v1.
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014. “Neural
Machine Translation by Jointly Learning to Align and Translate.”
arXiv Preprint arXiv:1409.0473, September. http://arxiv.org/abs/1409.0473v7.
Bai, Tao, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021.
“Recent Advances in Adversarial Training for Adversarial
Robustness.” arXiv Preprint arXiv:2102.01356.
Bains, Sunny. 2020. “The Business of Building Brains.”
Nature Electronics 3 (7): 348–51. https://doi.org/10.1038/s41928-020-0449-1.
Bamoumen, Hatim, Anas Temouden, Nabil Benamar, and Yousra Chtouki. 2022.
“How TinyML Can Be Leveraged to Solve Environmental
Problems: A Survey.” In 2022 International
Conference on Innovation and Intelligence for Informatics, Computing,
and Technologies (3ICT), 338–43. IEEE; IEEE. https://doi.org/10.1109/3ict56508.2022.9990661.
Banbury, Colby, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat
Jeffries, Csaba Kiraly, Pietro Montino, et al. 2021. “MLPerf Tiny
Benchmark.” arXiv Preprint arXiv:2106.07597, June. http://arxiv.org/abs/2106.07597v4.
Bannon, Pete, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes.
2019. “Computer and Redundancy Solution for the Full Self-Driving
Computer.” In 2019 IEEE Hot Chips 31 Symposium (HCS),
1–22. IEEE Computer Society; IEEE. https://doi.org/10.1109/hotchips.2019.8875645.
Barenghi, Alessandro, Guido M. Bertoni, Luca Breveglieri, Mauro
Pellicioli, and Gerardo Pelosi. 2010. “Low Voltage Fault Attacks
to AES.” In 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 7–12. IEEE; IEEE. https://doi.org/10.1109/hst.2010.5513121.
Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. 2019.
The Datacenter as a Computer: Designing Warehouse-Scale
Machines. Springer International Publishing. https://doi.org/10.1007/978-3-031-01761-2.
Bau, David, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. “Network Dissection: Quantifying
Interpretability of Deep Visual Representations.” In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
3319–27. IEEE. https://doi.org/10.1109/cvpr.2017.354.
Baydin, Atilim Gunes, Barak A. Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. 2017. “Automatic Differentiation in
Machine Learning: A Survey.” J. Mach. Learn. Res. 18:
153:1–43. https://jmlr.org/papers/v18/17-468.html.
Beaton, Albert E., and John W. Tukey. 1974. “The Fitting of Power
Series, Meaning Polynomials, Illustrated on Band-Spectroscopic
Data.” Technometrics 16 (2): 147. https://doi.org/10.2307/1267936.
Beck, Nathaniel, and Simon Jackman. 1998. “Beyond Linearity by
Default: Generalized Additive Models.” Am. J.
Polit. Sci. 42 (2): 596. https://doi.org/10.2307/2991772.
Berger, Vance W, and YanYan Zhou. 2014.
“Kolmogorovsmirnov Test:
Overview.” Wiley Statsref: Statistics Reference
Online.
Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. 2010. “Theano: A CPU and GPU Math Compiler in
Python.” In Proceedings of the 9th Python in Science
Conference, 4:18–24. 1. SciPy. https://doi.org/10.25080/majora-92bf1922-003.
Beyer, Lucas, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and
Aäron van den Oord. 2020. “Are We Done with ImageNet?”
ArXiv Preprint abs/2006.07159 (June). http://arxiv.org/abs/2006.07159v1.
Bhagoji, Arjun Nitin, Warren He, Bo Li, and Dawn Song. 2018.
“Practical Black-Box Attacks on Deep Neural Networks Using
Efficient Query Mechanisms.” In Proceedings of the European
Conference on Computer Vision (ECCV), 154–69.
Bhardwaj, Kshitij, Marton Havasi, Yuan Yao, David M. Brooks, José Miguel
Hernández-Lobato, and Gu-Yeon Wei. 2020. “A Comprehensive
Methodology to Determine Optimal Coherence Interfaces for
Many-Accelerator SoCs.” In Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and
Design, 145–50. ACM. https://doi.org/10.1145/3370748.3406564.
Bianco, Simone, Remi Cadene, Luigi Celona, and Paolo Napoletano. 2018.
“Benchmark Analysis of Representative Deep Neural Network
Architectures.” IEEE Access 6: 64270–77. https://doi.org/10.1109/access.2018.2877890.
Biega, Asia J., Peter Potash, Hal Daumé, Fernando Diaz, and Michèle
Finck. 2020. “Operationalizing the Legal Principle of Data
Minimization for Personalization.” In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, edited by Jimmy Huang, Yi Chang, Xueqi
Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, 399–408.
ACM. https://doi.org/10.1145/3397271.3401034.
Biggio, Battista, Blaine Nelson, and Pavel Laskov. 2012.
“Poisoning Attacks Against Support Vector Machines.” In
Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012. icml.cc / Omnipress. http://icml.cc/2012/papers/880.pdf.
Biggs, John, James Myers, Jedrzej Kufel, Emre Ozer, Simon Craske, Antony
Sou, Catherine Ramsdale, Ken Williamson, Richard Price, and Scott White.
2021. “A Natively Flexible 32-Bit Arm Microprocessor.”
Nature 595 (7868): 532–36. https://doi.org/10.1038/s41586-021-03625-w.
Binkert, Nathan, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, et al. 2011. “The Gem5
Simulator.” ACM SIGARCH Computer Architecture News 39
(2): 1–7. https://doi.org/10.1145/2024716.2024718.
Bishop, Christopher M. 2006. Pattern Recognition and Machine
Learning. Springer.
Blackwood, J, FC Wright, NJL Hong, and AR Gagliardi. n.d. “Quality
of DCIS Information on the Internet: A Content Analysis.”
Breast Cancer Research and Treatment 177 (2): 295–305. https://doi.org/10.1007/s10549-019-05315-8.
Bohr, Adam, and Kaveh Memarzadeh. 2020. “The Rise of Artificial
Intelligence in Healthcare Applications.” In Artificial
Intelligence in Healthcare, 25–60. Elsevier. https://doi.org/10.1016/b978-0-12-818438-7.00002-2.
Bolchini, Cristiana, Luca Cassano, Antonio Miele, and Alessandro Toschi.
2023. “Fast and Accurate Error Simulation for CNNs
Against Soft Errors.” IEEE Trans. Comput. 72 (4):
984–97. https://doi.org/10.1109/tc.2022.3184274.
Bondi, Elizabeth, Ashish Kapoor, Debadeepta Dey, James Piavis, Shital
Shah, Robert Hannaford, Arvind Iyer, Lucas Joppa, and Milind Tambe.
2018. “Near Real-Time Detection of Poachers from Drones in
AirSim.” In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, edited
by Jérôme Lang, 5814–16. International Joint Conferences on Artificial
Intelligence Organization. https://doi.org/10.24963/ijcai.2018/847.
Bourtoule, Lucas, Varun Chandrasekaran, Christopher A. Choquette-Choo,
Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas
Papernot. 2021. “Machine Unlearning.” In 2021 IEEE
Symposium on Security and Privacy (SP), 141–59. IEEE; IEEE. https://doi.org/10.1109/sp40001.2021.00019.
Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, et al. 2018. “JAX:
Composable Transformations of Python+NumPy Programs.” http://github.com/google/jax.
Breier, Jakub, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang
Liu. 2018. “DeepLaser: Practical Fault Attack on Deep Neural
Networks.” ArXiv Preprint abs/1806.05859 (June). http://arxiv.org/abs/1806.05859v2.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language
Models Are Few-Shot Learners.” In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
Virtual, edited by Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.
Brynjolfsson, Erik, and Andrew McAfee. 2014. The Second Machine Age:
Work, Progress, and Prosperity in a Time of Brilliant Technologies, 1st
Edition. W. W. Norton Company.
Buolamwini, Joy, and Timnit Gebru. 2018. “Gender Shades:
Intersectional Accuracy Disparities in Commercial Gender
Classification.” In Conference on Fairness, Accountability
and Transparency, 77–91. PMLR.
Burnet, David, and Richard Thomas. 1989. “Spycatcher: The
Commodification of Truth.” Journal of Law and Society 16
(2): 210. https://doi.org/10.2307/1410360.
Burr, Geoffrey W., Matthew J. BrightSky, Abu Sebastian, Huai-Yu Cheng,
Jau-Yi Wu, Sangbum Kim, Norma E. Sosa, et al. 2016. “Recent
Progress in Phase-Change?Pub _Newline ?Memory
Technology.” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 6 (2): 146–62. https://doi.org/10.1109/jetcas.2016.2547718.
Bushnell, Michael L, and Vishwani D Agrawal. 2002. “Built-in
Self-Test.” Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits, 489–548.
Buyya, Rajkumar, Anton Beloglazov, and Jemal Abawajy. 2010.
“Energy-Efficient Management of Data Center Resources for Cloud
Computing: A Vision, Architectural Elements, and Open
Challenges.” https://arxiv.org/abs/1006.0308.
Cai, Carrie J., Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel
Smilkov, Martin Wattenberg, et al. 2019. “Human-Centered Tools for
Coping with Imperfect Algorithms During Medical Decision-Making.”
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, edited by Jennifer G. Dy and Andreas Krause,
80:2673–82. Proceedings of Machine Learning Research. ACM. https://doi.org/10.1145/3290605.3300234.
Cai, Han, Chuang Gan, Ligeng Zhu, and Song Han 0003. 2020.
“TinyTL: Reduce Memory, Not Parameters for Efficient on-Device
Learning.” In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, Virtual, edited by Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html.
Cai, Han, Ligeng Zhu, and Song Han. 2019.
“ProxylessNAS: Direct Neural
Architecture Search on Target Task and Hardware.” In 7th
International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=HylVB3AqYm.
Calvo, Rafael A, Dorian Peters, Karina Vold, and Richard M Ryan. 2020.
“Supporting Human Autonomy in AI Systems:
A Framework for Ethical Enquiry.” Ethics of
Digital Well-Being: A Multidisciplinary Approach, 31–54.
Carlini, Nicolas, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash
Sehwag, Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace.
2023. “Extracting Training Data from Diffusion Models.” In
32nd USENIX Security Symposium (USENIX Security 23), 5253–70.
Carta, Salvatore, Alessandro Sebastian Podda, Diego Reforgiato Recupero,
and Roberto Saia. 2020. “A Local Feature Engineering Strategy to
Improve Network Anomaly Detection.” Future Internet 12
(10): 177. https://doi.org/10.3390/fi12100177.
Cavoukian, Ann. 2009. “Privacy by Design.” Office of
the Information and Privacy Commissioner.
Cenci, Marcelo Pilotto, Tatiana Scarazzato, Daniel Dotto Munchen, Paula
Cristina Dartora, Hugo Marcelo Veit, Andrea Moura Bernardes, and Pablo
R. Dias. 2021. “Eco-Friendly
ElectronicsA Comprehensive Review.”
Adv. Mater. Technol. 7 (2): 2001263. https://doi.org/10.1002/admt.202001263.
Challenge, WEF Net-Zero. 2021. “The Supply Chain
Opportunity.” In World Economic Forum: Geneva,
Switzerland.
Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2009. “Anomaly
Detection: A Survey.” ACM Comput. Surv. 41 (3): 1–58. https://doi.org/10.1145/1541880.1541882.
Chapelle, O., B. Scholkopf, and A. Zien Eds. 2009.
“Semi-Supervised Learning (Chapelle, o. Et Al., Eds.; 2006) [Book
Reviews].” IEEE Transactions on Neural Networks 20 (3):
542–42. https://doi.org/10.1109/tnn.2009.2015974.
Chen, Chaofan, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan Su. 2019. “This Looks Like That: Deep
Learning for Interpretable Image Recognition.” In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, edited by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, 8928–39. https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html.
Chen, Emma, Shvetank Prakash, Vijay Janapa Reddi, David Kim, and Pranav
Rajpurkar. 2023. “A Framework for Integrating Artificial
Intelligence for Clinical Care with Continuous Therapeutic
Monitoring.” Nature Biomedical Engineering, November. https://doi.org/10.1038/s41551-023-01115-0.
Chen, H.-W. 2006. “Gallium, Indium, and Arsenic Pollution of
Groundwater from a Semiconductor Manufacturing Area of
Taiwan.” B. Environ. Contam. Tox. 77 (2):
289–96. https://doi.org/10.1007/s00128-006-1062-3.
Chen, Tianqi, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, et al. 2018. “TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning.” In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), 578–94.
Chen, Tianqi, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
“Training Deep Nets with Sublinear Memory Cost.” ArXiv
Preprint abs/1604.06174 (April). http://arxiv.org/abs/1604.06174v2.
Chen, Zhiyong, and Shugong Xu. 2023. “Learning
Domain-Heterogeneous Speaker Recognition Systems with Personalized
Continual Federated Learning.” EURASIP Journal on Audio,
Speech, and Music Processing 2023 (1): 33. https://doi.org/10.1186/s13636-023-00299-2.
Chen, Zitao, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben.
2019. “iBinFI/i: An Efficient Fault
Injector for Safety-Critical Machine Learning Systems.” In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’19. New York, NY,
USA: ACM. https://doi.org/10.1145/3295500.3356177.
Chen, Zitao, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik
Pattabiraman, and Nathan DeBardeleben. 2020.
“TensorFI: A Flexible Fault Injection
Framework for TensorFlow Applications.” In 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE), 426–35. IEEE; IEEE. https://doi.org/10.1109/issre5003.2020.00047.
Cheng, Eric, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher,
Hyungmin Cho, Kevin Skadron, Mircea R. Stan, et al. 2016. “Clear:
uC/u Ross u-l/u Ayer uE/u Xploration for uA/u Rchitecting uR/u Esilience
- Combining Hardware and Software Techniques to Tolerate Soft Errors in
Processor Cores.” In Proceedings of the 53rd Annual Design
Automation Conference, 1–6. ACM. https://doi.org/10.1145/2897937.2897996.
Cheng, Yu, Duo Wang, Pan Zhou, and Tao Zhang. 2018. “Model
Compression and Acceleration for Deep Neural Networks: The
Principles, Progress, and Challenges.” IEEE Signal Process
Mag. 35 (1): 126–36. https://doi.org/10.1109/msp.2017.2765695.
Chi, Ping, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu,
Yu Wang, and Yuan Xie. 2016. “Prime: A Novel Processing-in-Memory
Architecture for Neural Network Computation in ReRAM-Based Main
Memory.” ACM SIGARCH Computer Architecture News 44 (3):
27–39. https://doi.org/10.1145/3007787.3001140.
Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. 2014. “On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches.” In Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-8),
103–11. Association for Computational Linguistics.
Chollet, François et al. 2015. “Keras.” GitHub
Repository. https://github.com/fchollet/keras.
Chollet, François. 2018. “Introduction to Keras.” March
9th.
Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg,
and Dario Amodei. 2017. “Deep Reinforcement Learning from Human
Preferences.” In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, edited by Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S.
V. N. Vishwanathan, and Roman Garnett, 4299–4307. https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.
Chu, Grace, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton,
Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew
Howard. 2021. “Discovering Multi-Hardware Mobile Models via
Architecture Search.” In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 3022–31. IEEE. https://doi.org/10.1109/cvprw53098.2021.00337.
Chua, L. 1971. “Memristor-the Missing Circuit Element.”
#IEEE_J_CT# 18 (5): 507–19. https://doi.org/10.1109/tct.1971.1083337.
Chung, Jae-Won, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, and
Mosharaf Chowdhury. 2023. “Perseus: Removing Energy
Bloat from Large Model Training.” ArXiv Preprint
abs/2312.06902. https://arxiv.org/abs/2312.06902.
Cohen, Maxime C., Ruben Lobel, and Georgia Perakis. 2016. “The
Impact of Demand Uncertainty on Consumer Subsidies for Green Technology
Adoption.” Manage. Sci. 62 (5): 1235–58. https://doi.org/10.1287/mnsc.2015.2173.
Coleman, Cody, Edward Chou, Julian Katz-Samuels, Sean Culatana, Peter
Bailis, Alexander C. Berg, Robert Nowak, Roshan Sumbaly, Matei Zaharia,
and I. Zeki Yalniz. 2022. “Similarity Search for Efficient Active
Learning and Search of Rare Concepts.” Proceedings of the
AAAI Conference on Artificial Intelligence 36 (6): 6402–10. https://doi.org/10.1609/aaai.v36i6.20591.
Coleman, Cody, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao,
Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia.
2019. “Analysis of DAWNBench, a Time-to-Accuracy Machine Learning
Performance Benchmark.” ACM SIGOPS Operating Systems
Review 53 (1): 14–25. https://doi.org/10.1145/3352020.3352024.
Constantinescu, Cristian. 2008. “Intermittent Faults and Effects
on Reliability of Integrated Circuits.” In 2008 Annual
Reliability and Maintainability Symposium, 370–74. IEEE; IEEE. https://doi.org/10.1109/rams.2008.4925824.
Cooper, Tom, Suzanne Fallender, Joyann Pafumi, Jon Dettling, Sebastien
Humbert, and Lindsay Lessard. 2011. “A Semiconductor Company’s
Examination of Its Water Footprint Approach.” In Proceedings
of the 2011 IEEE International Symposium on Sustainable Systems and
Technology, 1–6. IEEE; IEEE. https://doi.org/10.1109/issst.2011.5936865.
Cope, Gord. 2009. “Pure Water, Semiconductors and the
Recession.” Global Water Intelligence 10 (10).
Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. “Binarized Neural Networks:
Training Deep Neural Networks with Weights and Activations
Constrained to+ 1 or-1.” arXiv Preprint
arXiv:1602.02830.
Crankshaw, Daniel, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E
Gonzalez, and Ion Stoica. 2017. “Clipper: A {Low-Latency} Online Prediction Serving System.”
In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), 613–27.
Cybenko, G. 1992. “Approximation by Superpositions of a Sigmoidal
Function.” Mathematics of Control, Signals, and Systems
5 (4): 455–55. https://doi.org/10.1007/bf02134016.
D’ignazio, Catherine, and Lauren F Klein. 2023. Data Feminism.
MIT press.
Darvish Rouhani, Bita, Azalia Mirhoseini, and Farinaz Koushanfar. 2017.
“TinyDL: Just-in-Time Deep Learning Solution for Constrained
Embedded Systems.” In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 1–4. IEEE. https://doi.org/10.1109/iscas.2017.8050343.
Davarzani, Samaneh, David Saucier, Purva Talegaonkar, Erin Parker, Alana
Turner, Carver Middleton, Will Carroll, et al. 2023. “Closing the
Wearable Gap: Footankle
Kinematic Modeling via Deep Learning Models Based on a Smart Sock
Wearable.” Wearable Technologies 4. https://doi.org/10.1017/wtc.2023.3.
David, Robert, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat
Jeffries, Jian Li, Nick Kreeger, et al. 2021. “Tensorflow Lite
Micro: Embedded Machine Learning for Tinyml Systems.”
Proceedings of Machine Learning and Systems 3: 800–811.
Davies, Emma. 2011. “Endangered Elements: Critical
Thinking.” https://www.rsc.org/images/Endangered\%20Elements\%20-\%20Critical\%20Thinking\_tcm18-196054.pdf.
Davies, Mike, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, et al. 2018.
“Loihi: A Neuromorphic Manycore Processor with
on-Chip Learning.” IEEE Micro 38 (1): 82–99. https://doi.org/10.1109/mm.2018.112130359.
Davies, Mike, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya,
Gabriel A. Fonseca Guerra, Prasad Joshi, Philipp Plank, and Sumedh R.
Risbud. 2021. “Advancing Neuromorphic Computing with Loihi:
A Survey of Results and Outlook.” Proc.
IEEE 109 (5): 911–34. https://doi.org/10.1109/jproc.2021.3067593.
Davis, Jacqueline, Daniel Bizo, Andy Lawrence, Owen Rogers, and Max
Smolaks. 2022. “Uptime Institute Global Data Center Survey
2022.” Uptime Institute.
Dayarathna, Miyuru, Yonggang Wen, and Rui Fan. 2016. “Data Center
Energy Consumption Modeling: A Survey.” IEEE
Communications Surveys &Amp; Tutorials 18 (1): 732–94. https://doi.org/10.1109/comst.2015.2481183.
Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen 0010, Matthieu Devin,
Quoc V. Le, Mark Z. Mao, et al. 2012. “Large Scale Distributed
Deep Networks.” In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake
Tahoe, Nevada, United States, edited by Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, 1232–40. https://proceedings.neurips.cc/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html.
Desai, Tanvi, Felix Ritchie, Richard Welpton, et al. 2016. “Five
Safes: Designing Data Access for Research.” Economics Working
Paper Series 1601: 28.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
“None.” In Proceedings of the 2019 Conference of the
North, 4171–86. Minneapolis, Minnesota: Association for
Computational Linguistics. https://doi.org/10.18653/v1/n19-1423.
Dhar, Sauptik, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh
Kurup, and Mohak Shah. 2021. “A Survey of on-Device Machine
Learning: An Algorithms and Learning Theory Perspective.” ACM
Transactions on Internet of Things 2 (3): 1–49. https://doi.org/10.1145/3450494.
Domingos, Pedro. 2016. “The Master Algorithm: How the Quest for
the Ultimate Learning Machine Will Remake Our World.” Choice
Reviews Online 53 (07): 53–3100. https://doi.org/10.5860/choice.194685.
Dong, Xin, Barbara De Salvo, Meng Li, Chiao Liu, Zhongnan Qu, H. T.
Kung, and Ziyun Li. 2022. “SplitNets:
Designing Neural Architectures for Efficient Distributed
Computing on Head-Mounted Systems.” In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
12549–59. IEEE. https://doi.org/10.1109/cvpr52688.2022.01223.
Dongarra, Jack J. 2009. “The Evolution of High Performance
Computing on System z.” IBM J. Res. Dev. 53: 3–4.
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al.
2021. “An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” International Conference on Learning
Representations.
Duarte, Javier, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi,
Shvetank Prakash, and Vijay Janapa Reddi. 2022.
“FastML Science Benchmarks: Accelerating
Real-Time Scientific Edge Machine Learning.” ArXiv
Preprint abs/2207.07958. https://arxiv.org/abs/2207.07958.
Duchi, John C., Elad Hazan, and Yoram Singer. 2010. “Adaptive
Subgradient Methods for Online Learning and Stochastic
Optimization.” In COLT 2010 - the 23rd Conference on Learning
Theory, Haifa, Israel, June 27-29, 2010, edited by Adam Tauman
Kalai and Mehryar Mohri, 257–69. Omnipress. http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265.
Duisterhof, Bardienus P, Srivatsan Krishnan, Jonathan J Cruz, Colby R
Banbury, William Fu, Aleksandra Faust, Guido CHE de Croon, and Vijay
Janapa Reddi. 2019. “Learning to Seek: Autonomous
Source Seeking with Deep Reinforcement Learning Onboard a Nano Drone
Microcontroller.” ArXiv Preprint abs/1909.11236. https://arxiv.org/abs/1909.11236.
Duisterhof, Bardienus P., Shushuai Li, Javier Burgues, Vijay Janapa
Reddi, and Guido C. H. E. de Croon. 2021. “Sniffy Bug:
A Fully Autonomous Swarm of Gas-Seeking Nano Quadcopters in
Cluttered Environments.” In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 9099–9106.
IEEE; IEEE. https://doi.org/10.1109/iros51168.2021.9636217.
Dürr, Marc, Gunnar Nissen, Kurt-Wolfram Sühs, Philipp Schwenkenbecher,
Christian Geis, Marius Ringelstein, Hans-Peter Hartung, et al. 2021.
“CSF Findings in Acute NMDAR and LGI1 Antibody–Associated
Autoimmune Encephalitis.” Neurology Neuroimmunology &Amp;
Neuroinflammation 8 (6). https://doi.org/10.1212/nxi.0000000000001086.
Dwork, Cynthia. n.d. “Differential Privacy: A Survey of
Results.” In Theory and Applications of Models of
Computation, 1–19. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79228-4\_1.
Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006.
“Calibrating Noise to Sensitivity in Private Data
Analysis.” In Theory of Cryptography, edited by Shai
Halevi and Tal Rabin, 265–84. Berlin, Heidelberg: Springer Berlin
Heidelberg. https://doi.org/10.1007/11681878\_14.
Dwork, Cynthia, and Aaron Roth. 2013. “The Algorithmic Foundations
of Differential Privacy.” Foundations and Trends® in
Theoretical Computer Science 9 (3-4): 211–407. https://doi.org/10.1561/0400000042.
Ebrahimi, Khosrow, Gerard F. Jones, and Amy S. Fleischer. 2014. “A
Review of Data Center Cooling Technology, Operating Conditions and the
Corresponding Low-Grade Waste Heat Recovery Opportunities.”
Renewable Sustainable Energy Rev. 31 (March): 622–38. https://doi.org/10.1016/j.rser.2013.12.007.
Egwutuoha, Ifeanyi P., David Levy, Bran Selic, and Shiping Chen. 2013.
“A Survey of Fault Tolerance Mechanisms and Checkpoint/Restart
Implementations for High Performance Computing Systems.” The
Journal of Supercomputing 65 (3): 1302–26. https://doi.org/10.1007/s11227-013-0884-0.
Eisenman, Assaf, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and
Murali Annavaram. 2022. “Check-n-Run: A Checkpointing
System for Training Deep Learning Recommendation Models.” In
19th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 929–43.
Eldan, Ronen, and Mark Russinovich. 2023. “Who’s Harry Potter?
Approximate Unlearning in LLMs.” ArXiv Preprint
abs/2310.02238 (October). http://arxiv.org/abs/2310.02238v2.
Elman, Jeffrey L. 2002. “Finding Structure in Time.” In
Cognitive Modeling, 14:257–88. 2. The MIT Press. https://doi.org/10.7551/mitpress/1888.003.0015.
El-Rayis, A. O. 2014. “Reconfigurable Architectures for the Next
Generation of Mobile Device Telecommunications Systems.” :
https://www.researchgate.net/publication/292608967.
Eshraghian, Jason K., Max Ward, Emre O. Neftci, Xinxin Wang, Gregor
Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
2023. “Training Spiking Neural Networks Using Lessons from Deep
Learning.” Proc. IEEE 111 (9): 1016–54. https://doi.org/10.1109/jproc.2023.3308088.
Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. 2017.
“Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18. https://doi.org/10.1038/nature21056.
Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2017.
“Robust Physical-World Attacks on Deep Learning Models.”
ArXiv Preprint abs/1707.08945. https://arxiv.org/abs/1707.08945.
Fahim, Farah, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo
Jindariani, Nhan Tran, Luca P. Carloni, et al. 2021. “Hls4ml:
An Open-Source Codesign Workflow to Empower Scientific
Low-Power Machine Learning Devices.” https://arxiv.org/abs/2103.05579.
Farah, Martha J. 2005. “Neuroethics: The Practical
and the Philosophical.” Trends Cogn. Sci. 9 (1): 34–40.
https://doi.org/10.1016/j.tics.2004.12.001.
Farwell, James P., and Rafal Rohozinski. 2011. “Stuxnet and the
Future of Cyber War.” Survival 53 (1): 23–40. https://doi.org/10.1080/00396338.2011.555586.
Fowers, Jeremy, Kalin Ovtcharov, Michael Papamichael, Todd Massengill,
Ming Liu, Daniel Lo, Shlomi Alkalay, et al. 2018. “A Configurable
Cloud-Scale DNN Processor for Real-Time
AI.” In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 1–14. IEEE; IEEE. https://doi.org/10.1109/isca.2018.00012.
Francalanza, Adrian, Luca Aceto, Antonis Achilleos, Duncan Paul Attard,
Ian Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017. “A
Foundation for Runtime Monitoring.” In International
Conference on Runtime Verification, 8–29. Springer.
Frankle, Jonathan, and Michael Carbin. 2019. “The Lottery Ticket
Hypothesis: Finding Sparse, Trainable Neural
Networks.” In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. https://openreview.net/forum?id=rJl-b3RcF7.
Friedman, Batya. 1996. “Value-Sensitive Design.”
Interactions 3 (6): 16–23. https://doi.org/10.1145/242485.242493.
Furber, Steve. 2016. “Large-Scale Neuromorphic Computing
Systems.” J. Neural Eng. 13 (5): 051001. https://doi.org/10.1088/1741-2560/13/5/051001.
Fursov, Ivan, Matvey Morozov, Nina Kaploukhaya, Elizaveta Kovtun,
Rodrigo Rivera-Castro, Gleb Gusev, Dmitry Babaev, Ivan Kireev, Alexey
Zaytsev, and Evgeny Burnaev. 2021. “Adversarial Attacks on Deep
Models for Financial Transaction Records.” In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery &Amp; Data
Mining, 2868–78. ACM. https://doi.org/10.1145/3447548.3467145.
Gale, Trevor, Erich Elsen, and Sara Hooker. 2019. “The State of
Sparsity in Deep Neural Networks.” ArXiv Preprint
abs/1902.09574. https://arxiv.org/abs/1902.09574.
Gandolfi, Karine, Christophe Mourtel, and Francis Olivier. 2001.
“Electromagnetic Analysis: Concrete Results.” In
Cryptographic Hardware and Embedded Systems — CHES 2001,
251–61. Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44709-1\_21.
Gannot, G., and M. Ligthart. 1994. “Verilog HDL Based
FPGA Design.” In International Verilog HDL
Conference, 86–92. IEEE. https://doi.org/10.1109/ivc.1994.323743.
Gao, Yansong, Said F. Al-Sarawi, and Derek Abbott. 2020. “Physical
Unclonable Functions.” Nature Electronics 3 (2): 81–91.
https://doi.org/10.1038/s41928-020-0372-5.
Gates, Byron D. 2009. “Flexible Electronics.”
Science 323 (5921): 1566–67. https://doi.org/10.1126/science.1171230.
Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021.
“Datasheets for Datasets.” Communications of the
ACM 64 (12): 86–92. https://doi.org/10.1145/3458723.
Geiger, Atticus, Hanson Lu, Thomas Icard, and Christopher Potts. 2021.
“Causal Abstractions of Neural Networks.” In Advances
in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 9574–86. https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html.
Gholami, Dong Kim, Mahoney Yao, and Keutzer. 2021. “A Survey of
Quantization Methods for Efficient Neural Network Inference).”
ArXiv Preprint. https://arxiv.org/abs/2103.13630.
Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the
Difficulty of Training Deep Feedforward Neural Networks.” In
Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–56. http://proceedings.mlr.press/v9/glorot10a.html.
Gnad, Dennis R. E., Fabian Oboril, and Mehdi B. Tahoori. 2017.
“Voltage Drop-Based Fault Attacks on FPGAs Using Valid
Bitstreams.” In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), 1–7. IEEE; IEEE. https://doi.org/10.23919/fpl.2017.8056840.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020.
“Generative Adversarial Networks.” Commun. ACM 63
(11): 139–44. https://doi.org/10.1145/3422622.
Gordon, Ariel, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang,
and Edward Choi. 2018. “MorphNet: Fast
&Amp; Simple Resource-Constrained Structure Learning of Deep
Networks.” In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1586–95. IEEE. https://doi.org/10.1109/cvpr.2018.00171.
Gräfe, Ralf, Qutub Syed Sha, Florian Geissler, and Michael Paulitsch.
2023. “Large-Scale Application of Fault Injection into
PyTorch Models -an Extension to PyTorchFI for
Validation Efficiency.” In 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks -
Supplemental Volume (DSN-s), 56–62. IEEE; IEEE. https://doi.org/10.1109/dsn-s58398.2023.00025.
Greengard, Samuel. 2021. The Internet of Things. The MIT Press.
https://doi.org/10.7551/mitpress/13937.001.0001.
Grossman, Elizabeth. 2007. High Tech Trash: Digital
Devices, Hidden Toxics, and Human Health. Island press.
Gruslys, Audrunas, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex
Graves. 2016. “Memory-Efficient Backpropagation Through
Time.” In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, edited by Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
4125–33. https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html.
Gu, Ivy. 2023. “Deep Learning Model Compression (Ii) by Ivy Gu
Medium.” https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453.
Gudivada, Venkat N., Dhana Rao Rao, et al. 2017. “Data Quality
Considerations for Big Data and Machine Learning: Going Beyond Data
Cleaning and Transformations.” IEEE Transactions on Knowledge
and Data Engineering.
Gujarati, Arpan, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. 2020. “Serving DNNs Like
Clockwork: Performance Predictability from the Bottom Up.” In
14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 443–62. https://www.usenix.org/conference/osdi20/presentation/gujarati.
Gulshan, Varun, Lily Peng, Marc Coram, Markus C Stumpe, Derek Wu,
Arunachalam Narayanaswamy, Subhashini Venugopalan, et al. 2016.
“Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs.”
JAMA 316 (22): 2402–10. https://doi.org/10.1001/jama.2016.17216.
Guo, Yutao, Hao Wang, Hui Zhang, Tong Liu, Zhaoguang Liang, Yunlong Xia,
Li Yan, et al. 2019. “Mobile Photoplethysmographic Technology to
Detect Atrial Fibrillation.” Journal of the American College
of Cardiology 74 (19): 2365–75. https://doi.org/10.1016/j.jacc.2019.08.019.
Gupta, Maanak, Charankumar Akiri, Kshitiz Aryal, Eli Parker, and
Lopamudra Praharaj. 2023. “From ChatGPT to ThreatGPT: Impact of
Generative AI in Cybersecurity and Privacy.” IEEE Access
11: 80218–45. https://doi.org/10.1109/access.2023.3300381.
Gupta, Maya, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin
Canini, Alexander Mangylov, Wojciech Moczydlowski, and Alexander Van
Esbroeck. 2016. “Monotonic Calibrated Interpolated Look-up
Tables.” The Journal of Machine Learning Research 17
(1): 3790–3836.
Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee,
David Brooks, and Carole-Jean Wu. 2022. “Act: Designing
Sustainable Computer Systems with an Architectural Carbon Modeling
Tool.” In Proceedings of the 49th Annual International
Symposium on Computer Architecture, 784–99. ACM. https://doi.org/10.1145/3470496.3527408.
Gwennap, Linley. n.d. “Certus-NX Innovates
General-Purpose FPGAs.”
Haensch, Wilfried, Tayfun Gokmen, and Ruchir Puri. 2019. “The Next
Generation of Deep Learning Hardware: Analog
Computing.” Proc. IEEE 107 (1): 108–22. https://doi.org/10.1109/jproc.2018.2871057.
Hamming, R. W. 1950. “Error Detecting and Error Correcting
Codes.” Bell Syst. Tech. J. 29 (2): 147–60. https://doi.org/10.1002/j.1538-7305.1950.tb00463.x.
Han, Song, Huizi Mao, and William J Dally. 2015. “Deep
Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding.” arXiv Preprint
arXiv:1510.00149.
Han, Song, Huizi Mao, and William J. Dally. 2016. “Deep
Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding.” https://arxiv.org/abs/1510.00149.
Handlin, Oscar. 1965. “Science and Technology in Popular
Culture.” Daedalus-Us., 156–70.
Hardt, Moritz, Eric Price, and Nati Srebro. 2016. “Equality of
Opportunity in Supervised Learning.” In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, edited by Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, 3315–23. https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html.
Hawks, Benjamin, Javier Duarte, Nicholas J. Fraser, Alessandro
Pappalardo, Nhan Tran, and Yaman Umuroglu. 2021. “Ps and Qs: Quantization-aware Pruning for Efficient Low
Latency Neural Network Inference.” Frontiers in Artificial
Intelligence 4 (July). https://doi.org/10.3389/frai.2021.676564.
Hazan, Avi, and Elishai Ezra Tsur. 2021. “Neuromorphic Analog
Implementation of Neural Engineering Framework-Inspired Spiking Neuron
for High-Dimensional Representation.” Front. Neurosci.
15 (February): 627221. https://doi.org/10.3389/fnins.2021.627221.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
“Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification.” In 2015 IEEE International
Conference on Computer Vision (ICCV), 1026–34. IEEE. https://doi.org/10.1109/iccv.2015.123.
———. 2016. “Deep Residual Learning for Image Recognition.”
In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–78. IEEE. https://doi.org/10.1109/cvpr.2016.90.
He, Yi, Prasanna Balaprakash, and Yanjing Li. 2020.
“FIdelity: Efficient Resilience Analysis
Framework for Deep Learning Accelerators.” In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 270–81. IEEE; IEEE. https://doi.org/10.1109/micro50266.2020.00033.
He, Yi, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju,
Nishant Patil, and Yanjing Li. 2023. “Understanding and Mitigating
Hardware Failures in Deep Learning Training Systems.” In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, 1–16. IEEE; ACM. https://doi.org/10.1145/3579371.3589105.
Hébert-Johnson, Úrsula, Michael P. Kim, Omer Reingold, and Guy N.
Rothblum. 2018. “Multicalibration: Calibration for
the (Computationally-Identifiable) Masses.” In
Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018, edited by Jennifer G. Dy and Andreas Krause, 80:1944–53.
Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v80/hebert-johnson18a.html.
Hegde, Sumant. 2023. “An Introduction to Separable Convolutions -
Analytics Vidhya.” https://www.analyticsvidhya.com/blog/2021/11/an-introduction-to-separable-convolutions/.
Henderson, Peter, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky,
and Joelle Pineau. 2020. “Towards the Systematic Reporting of the
Energy and Carbon Footprints of Machine Learning.” The
Journal of Machine Learning Research 21 (1): 10039–81.
Hendrycks, Dan, and Thomas Dietterich. 2019. “Benchmarking Neural
Network Robustness to Common Corruptions and Perturbations.”
arXiv Preprint arXiv:1903.12261.
Hendrycks, Dan, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn
Song. 2021. “Natural Adversarial Examples.” In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 15257–66. IEEE. https://doi.org/10.1109/cvpr46437.2021.01501.
Hennessy, John L., and David A. Patterson. 2019. “A New Golden Age
for Computer Architecture.” Commun. ACM 62 (2): 48–60.
https://doi.org/10.1145/3282307.
Heyndrickx, Wouter, Lewis Mervin, Tobias Morawietz, Noé Sturm, Lukas
Friedrich, Adam Zalewski, Anastasia Pentina, et al. 2023.
“Melloddy: Cross-Pharma Federated Learning at Unprecedented Scale
Unlocks Benefits in Qsar Without Compromising Proprietary
Information.” Journal of Chemical Information and
Modeling 64 (7): 2331–44. https://pubs.acs.org/doi/10.1021/acs.jcim.3c00799.
Himmelstein, Gracie, David Bates, and Li Zhou. 2022. “Examination
of Stigmatizing Language in the Electronic Health Record.”
JAMA Network Open 5 (1): e2144967. https://doi.org/10.1001/jamanetworkopen.2021.44967.
Hinton, Geoffrey. 2005. “Van Nostrand’s Scientific Encyclopedia.” Wiley.
https://doi.org/10.1002/0471743984.vse0673.
———. 2017. “Overview of Minibatch Gradient Descent.”
University of Toronto; University Lecture.
Ho Yoon, Jung, Hyung-Suk Jung, Min Hwan Lee, Gun Hwan Kim, Seul Ji Song,
Jun Yeong Seok, Kyung Jean Yoon, et al. 2012. “Frontiers in
Electronic Materials.” Wiley. https://doi.org/10.1002/9783527667703.ch67.
Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term
Memory.” Neural Computation 9 (8): 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.
Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandra Peste. 2021. “Sparsity in Deep Learning: Pruning and
Growth for Efficient Inference and Training in Neural Networks,”
January. http://arxiv.org/abs/2102.00554v1.
Hong, Sanghyun, Nicholas Carlini, and Alexey Kurakin. 2023.
“Publishing Efficient on-Device Models Increases Adversarial
Vulnerability.” In 2023 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), abs 1603 5279:271–90. IEEE;
IEEE. https://doi.org/10.1109/satml54575.2023.00026.
Hooker, Sara. 2021. “The Hardware Lottery.”
Communications of the ACM 64 (12): 58–65. https://doi.org/10.1145/3467017.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989.
“Multilayer Feedforward Networks Are Universal
Approximators.” Neural Networks 2 (5): 359–66. https://doi.org/10.1016/0893-6080(89)90020-8.
Hosseini, Hossein, Sreeram Kannan, Baosen Zhang, and Radha Poovendran.
2017. “Deceiving Google’s Perspective Api Built for Detecting
Toxic Comments.” ArXiv Preprint abs/1702.08138. https://arxiv.org/abs/1702.08138.
Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017.
“MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications.” ArXiv
Preprint. https://arxiv.org/abs/1704.04861.
Howard, Jeremy, and Sylvain Gugger. 2020. “Fastai: A Layered API
for Deep Learning.” Information 11 (2): 108. https://doi.org/10.3390/info11020108.
Hsiao, Yu-Shun, Zishen Wan, Tianyu Jia, Radhika Ghosal, Abdulrahman
Mahmoud, Arijit Raychowdhury, David Brooks, Gu-Yeon Wei, and Vijay
Janapa Reddi. 2023. “MAVFI: An
End-to-End Fault Analysis Framework with Anomaly Detection and Recovery
for Micro Aerial Vehicles.” In 2023 Design, Automation
&Amp; Test in Europe Conference &Amp; Exhibition (DATE),
1–6. IEEE; IEEE. https://doi.org/10.23919/date56975.2023.10137246.
Hsu, Liang-Ching, Ching-Yi Huang, Yen-Hsun Chuang, Ho-Wen Chen, Ya-Ting
Chan, Heng Yi Teah, Tsan-Yao Chen, Chiung-Fen Chang, Yu-Ting Liu, and
Yu-Min Tzou. 2016. “Accumulation of Heavy Metals and Trace
Elements in Fluvial Sediments Received Effluents from Traditional and
Semiconductor Industries.” Scientific Reports 6 (1):
34250. https://doi.org/10.1038/srep34250.
Hu, Jie, Li Shen, and Gang Sun. 2018. “Squeeze-and-Excitation
Networks.” In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7132–41. IEEE. https://doi.org/10.1109/cvpr.2018.00745.
Hu, Yang, Jie Jiang, Lifu Zhang, Yunfeng Shi, and Jian Shi. 2023.
“Halide Perovskite Semiconductors.” Wiley. https://doi.org/10.1002/9783527829026.ch13.
Huang, Tsung-Ching, Kenjiro Fukuda, Chun-Ming Lo, Yung-Hui Yeh, Tsuyoshi
Sekitani, Takao Someya, and Kwang-Ting Cheng. 2011.
“Pseudo-CMOS: A Design Style for
Low-Cost and Robust Flexible Electronics.” IEEE Trans.
Electron Devices 58 (1): 141–50. https://doi.org/10.1109/ted.2010.2088127.
Hutter, Michael, Jorn-Marc Schmidt, and Thomas Plos. 2009.
“Contact-Based Fault Injections and Power Analysis on RFID
Tags.” In 2009 European Conference on Circuit Theory and
Design, 409–12. IEEE; IEEE. https://doi.org/10.1109/ecctd.2009.5275012.
Iandola, Forrest N, Song Han, Matthew W Moskewicz, Khalid Ashraf,
William J Dally, and Kurt Keutzer. 2016. “SqueezeNet:
Alexnet-level Accuracy with 50x Fewer
Parameters and 0.5 MB Model Size.” ArXiv
Preprint abs/1602.07360. https://arxiv.org/abs/1602.07360.
Ignatov, Andrey, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim
Hartley, and Luc Van Gool. 2018. “AI Benchmark:
Running Deep Neural Networks on Android
Smartphones,” 0–0.
Imani, Mohsen, Abbas Rahimi, and Tajana S. Rosing. 2016.
“Resistive Configurable Associative Memory for Approximate
Computing.” In Proceedings of the 2016 Design, Automation
&Amp; Test in Europe Conference &Amp; Exhibition (DATE),
1327–32. IEEE; Research Publishing Services. https://doi.org/10.3850/9783981537079_0454.
Inmon, W. H. 2005. Building the Data Warehouse. John Wiley
& Sons.
IntelLabs. 2023. “Knowledge Distillation - Neural Network
Distiller.” https://intellabs.github.io/distiller/knowledge_distillation.html.
Ioffe, Sergey, and Christian Szegedy. 2015. “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate
Shift.” International Conference on Machine Learning,
448–56.
Ippolito, Daphne, Florian Tramer, Milad Nasr, Chiyuan Zhang, Matthew
Jagielski, Katherine Lee, Christopher Choquette Choo, and Nicholas
Carlini. 2023. “Preventing Generation of Verbatim Memorization in
Language Models Gives a False Sense of Privacy.” In
Proceedings of the 16th International Natural Language Generation
Conference, 5253–70. Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.inlg-main.3.
Irimia-Vladu, Mihai. 2014.
““Green” Electronics:
Biodegradable and Biocompatible Materials and Devices for
Sustainable Future.” Chem. Soc. Rev. 43 (2): 588–610. https://doi.org/10.1039/c3cs60235d.
Isscc. 2014. “Computing’s Energy Problem (and What We Can Do about
It).” https://ieeexplore.ieee.org/document/6757323.
Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018.
“Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference.” In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2704–13.
Jaderberg, Max, Valentin Dalibard, Simon Osindero, Wojciech M.
Czarnecki, Jeff Donahue, Ali Razavi, Oriol Vinyals, et al. 2017.
“Population Based Training of Neural Networks.” arXiv
Preprint arXiv:1711.09846, November. http://arxiv.org/abs/1711.09846v2.
Janapa Reddi, Vijay, Alexander Elium, Shawn Hymel, David Tischler,
Daniel Situnayake, Carl Ward, Louis Moreau, et al. 2023. “Edge
Impulse: An MLOps Platform for Tiny Machine Learning.”
Proceedings of Machine Learning and Systems 5.
Jha, A. R. 2014. Rare Earth Materials: Properties and
Applications. CRC Press. https://doi.org/10.1201/b17045.
Jha, Saurabh, Subho Banerjee, Timothy Tsai, Siva K. S. Hari, Michael B.
Sullivan, Zbigniew T. Kalbarczyk, Stephen W. Keckler, and Ravishankar K.
Iyer. 2019. “ML-Based Fault Injection for Autonomous
Vehicles: A Case for Bayesian Fault
Injection.” In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 112–24. IEEE;
IEEE. https://doi.org/10.1109/dsn.2019.00025.
Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
“Caffe: Convolutional Architecture for Fast Feature
Embedding.” In Proceedings of the 22nd ACM International
Conference on Multimedia, 675–78. ACM. https://doi.org/10.1145/2647868.2654889.
Jia, Zhe, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza.
2018. “Dissecting the NVIDIA Volta
GPU Architecture via Microbenchmarking.” ArXiv
Preprint. https://arxiv.org/abs/1804.06826.
Jia, Zhenge, Dawei Li, Xiaowei Xu, Na Li, Feng Hong, Lichuan Ping, and
Yiyu Shi. 2023. “Life-Threatening Ventricular Arrhythmia Detection
Challenge in Implantable
Cardioverterdefibrillators.” Nature Machine
Intelligence 5 (5): 554–55. https://doi.org/10.1038/s42256-023-00659-9.
Jia, Zhihao, Matei Zaharia, and Alex Aiken. 2019. “Beyond Data and
Model Parallelism for Deep Neural Networks.” In Proceedings
of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA, USA,
March 31 - April 2, 2019, edited by Ameet Talwalkar, Virginia
Smith, and Matei Zaharia. mlsys.org. https://proceedings.mlsys.org/book/265.pdf.
Jin, Yilun, Xiguang Wei, Yang Liu, and Qiang Yang. 2020. “Towards
Utilizing Unlabeled Data in Federated Learning: A Survey and
Prospective.” arXiv Preprint arXiv:2002.11545, February.
http://arxiv.org/abs/2002.11545v2.
Johnson-Roberson, Matthew, Charles Barto, Rounak Mehta, Sharath Nittur
Sridhar, Karl Rosaen, and Ram Vasudevan. 2017. “Driving in the
Matrix: Can Virtual Worlds Replace Human-Generated Annotations for Real
World Tasks?” In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 746–53. Singapore, Singapore: IEEE.
https://doi.org/10.1109/icra.2017.7989092.
Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, et al. 2017a. “In-Datacenter
Performance Analysis of a Tensor Processing Unit.” In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 1–12. ISCA ’17. New York, NY, USA: ACM. https://doi.org/10.1145/3079856.3080246.
———, et al. 2017b. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ISCA ’17.
New York, NY, USA: ACM. https://doi.org/10.1145/3079856.3080246.
Jouppi, Norm, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng
Nai, Nishant Patil, et al. 2023. “TPU V4:
An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings.” In
Proceedings of the 50th Annual International Symposium on Computer
Architecture. ISCA ’23. New York, NY, USA: ACM. https://doi.org/10.1145/3579371.3589350.
Joye, Marc, and Michael Tunstall. 2012. Fault Analysis in
Cryptography. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29656-7.
Kairouz, Peter, Sewoong Oh, and Pramod Viswanath. 2015. “Secure
Multi-Party Differential Privacy.” In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, edited by Corinna Cortes, Neil D. Lawrence, Daniel
D. Lee, Masashi Sugiyama, and Roman Garnett, 2008–16. https://proceedings.neurips.cc/paper/2015/hash/a01610228fe998f515a72dd730294d87-Abstract.html.
Kalamkar, Dhiraj, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das,
Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, et al. 2019.
“A Study of BFLOAT16 for Deep Learning
Training.” https://arxiv.org/abs/1905.12322.
Kao, Sheng-Chun, Geonhwa Jeong, and Tushar Krishna. 2020.
“ConfuciuX: Autonomous Hardware Resource
Assignment for DNN Accelerators Using Reinforcement
Learning.” In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 622–36. IEEE; IEEE. https://doi.org/10.1109/micro50266.2020.00058.
Kao, Sheng-Chun, and Tushar Krishna. 2020. “Gamma: Automating the
HW Mapping of DNN Models on Accelerators via Genetic Algorithm.”
In Proceedings of the 39th International Conference on
Computer-Aided Design, 1–9. ACM. https://doi.org/10.1145/3400302.3415639.
Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. “Scaling Laws for Neural Language Models.”
ArXiv Preprint abs/2001.08361. https://arxiv.org/abs/2001.08361.
Karargyris, Alexandros, Renato Umeton, Micah J. Sheller, Alejandro
Aristizabal, Johnu George, Anna Wuest, Sarthak Pati, et al. 2023.
“Federated Benchmarking of Medical Artificial Intelligence with
MedPerf.” Nature Machine Intelligence 5 (7): 799–810. https://doi.org/10.1038/s42256-023-00652-2.
Kaur, Harmanpreet, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna
Wallach, and Jennifer Wortman Vaughan. 2020. “Interpreting
Interpretability: Understanding Data Scientists’ Use of
Interpretability Tools for Machine Learning.” In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems,
edited by Regina Bernhaupt, Florian ’Floyd’Mueller, David Verweij, Josh
Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, et al., 1–14.
ACM. https://doi.org/10.1145/3313831.3376219.
Kawazoe Aguilera, Marcos, Wei Chen, and Sam Toueg. 1997.
“Heartbeat: A Timeout-Free Failure Detector for
Quiescent Reliable Communication.” In Distributed Algorithms:
11th International Workshop, WDAG’97 Saarbrücken, Germany, September
2426, 1997 Proceedings 11, 126–40. Springer.
Khan, Mohammad Emtiyaz, and Siddharth Swaroop. 2021.
“Knowledge-Adaptation Priors.” In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 19757–70. https://proceedings.neurips.cc/paper/2021/hash/a4380923dd651c195b1631af7c829187-Abstract.html.
Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, et al. 2021. “Dynabench: Rethinking
Benchmarking in NLP.” In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 4110–24. Online:
Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.naacl-main.324.
Kim, Jungrae, Michael Sullivan, and Mattan Erez. 2015. “Bamboo
ECC: Strong, Safe, and Flexible Codes for
Reliable Computer Memory.” In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), 101–12.
IEEE; IEEE. https://doi.org/10.1109/hpca.2015.7056025.
Kim, Sunju, Chungsik Yoon, Seunghon Ham, Jihoon Park, Ohun Kwon, Donguk
Park, Sangjun Choi, Seungwon Kim, Kwonchul Ha, and Won Kim. 2018.
“Chemical Use in the Semiconductor Manufacturing Industry.”
Int. J. Occup. Env. Heal. 24 (3-4): 109–18. https://doi.org/10.1080/10773525.2018.1519957.
Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for
Stochastic Optimization.” Edited by Yoshua Bengio and Yann LeCun,
December. http://arxiv.org/abs/1412.6980v9.
Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, et al. 2017.
“Overcoming Catastrophic Forgetting in Neural Networks.”
Proc. Natl. Acad. Sci. 114 (13): 3521–26. https://doi.org/10.1073/pnas.1611835114.
Kleppmann, Martin. 2016. Designing Data-Intensive Applications: The
Big Ideas Behind Reliable, Scalable, and Maintainable Systems.
O’Reilly Media. http://shop.oreilly.com/product/0636920032175.do.
Ko, Yohan. 2021. “Characterizing System-Level Masking Effects
Against Soft Errors.” Electronics 10 (18): 2286. https://doi.org/10.3390/electronics10182286.
Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, et al. 2019a. “Spectre Attacks:
Exploiting Speculative Execution.” In 2019 IEEE Symposium on
Security and Privacy (SP), 1–19. IEEE. https://doi.org/10.1109/sp.2019.00002.
———, et al. 2019b. “Spectre Attacks: Exploiting Speculative
Execution.” In 2019 IEEE Symposium on Security and Privacy
(SP), 1–19. IEEE. https://doi.org/10.1109/sp.2019.00002.
Kocher, Paul, Joshua Jaffe, and Benjamin Jun. 1999. “Differential
Power Analysis.” In Advances in Cryptology — CRYPTO’ 99,
388–97. Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-48405-1\_25.
Kocher, Paul, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011.
“Introduction to Differential Power Analysis.” Journal
of Cryptographic Engineering 1 (1): 5–27. https://doi.org/10.1007/s13389-011-0006-y.
Koh, Pang Wei, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma
Pierson, Been Kim, and Percy Liang. 2020. “Concept Bottleneck
Models.” In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
119:5338–48. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v119/koh20a.html.
Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, et al. 2021. “WILDS: A
Benchmark of in-the-Wild Distribution Shifts.” In Proceedings
of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, edited by Marina Meila and Tong
Zhang, 139:5637–64. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v139/koh21a.html.
Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. “Matrix
Factorization Techniques for Recommender Systems.”
Computer 42 (8): 30–37. https://doi.org/10.1109/mc.2009.263.
Krishna, Adithya, Srikanth Rohit Nudurupati, Chandana D G, Pritesh
Dwivedi, André van Schaik, Mahesh Mehendale, and Chetan Singh Thakur.
2023. “RAMAN: A Re-Configurable and
Sparse TinyML Accelerator for Inference on Edge.” https://arxiv.org/abs/2306.06493.
Krishnamoorthi. 2018. “Quantizing Deep Convolutional Networks for
Efficient Inference: A Whitepaper.” ArXiv
Preprint. https://arxiv.org/abs/1806.08342.
Krishnan, Rayan, Pranav Rajpurkar, and Eric J. Topol. 2022.
“Self-Supervised Learning in Medicine and Healthcare.”
Nature Biomedical Engineering 6 (12): 1346–52. https://doi.org/10.1038/s41551-022-00914-1.
Krishnan, Srivatsan, Natasha Jaques, Shayegan Omidshafiei, Dan Zhang,
Izzeddin Gur, Vijay Janapa Reddi, and Aleksandra Faust. 2022.
“Multi-Agent Reinforcement Learning for Microprocessor Design
Space Exploration.” https://arxiv.org/abs/2211.16385.
Krishnan, Srivatsan, Amir Yazdanbakhsh, Shvetank Prakash, Jason Jabbour,
Ikechukwu Uchendu, Susobhan Ghosh, Behzad Boroujerdian, et al. 2023.
“ArchGym: An Open-Source Gymnasium for
Machine Learning Assisted Architecture Design.” In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, 1–16. ACM. https://doi.org/10.1145/3579371.3589049.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017b.
“ImageNet Classification with Deep Convolutional Neural
Networks.” Edited by Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger.
Communications of the ACM 60 (6): 84–90. https://doi.org/10.1145/3065386.
———. 2017a. “ImageNet Classification with Deep
Convolutional Neural Networks.” Edited by F. Pereira, C. J.
Burges, L. Bottou, and K. Q. Weinberger. Commun. ACM 60 (6):
84–90. https://doi.org/10.1145/3065386.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive
Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3.
Kung, Hsiang Tsung, and Charles E Leiserson. 1979. “Systolic
Arrays (for VLSI).” In Sparse Matrix Proceedings 1978,
1:256–82. Society for industrial; applied mathematics Philadelphia, PA,
USA.
Kurth, Thorsten, Shashank Subramanian, Peter Harrington, Jaideep Pathak,
Morteza Mardani, David Hall, Andrea Miele, Karthik Kashinath, and Anima
Anandkumar. 2023. “FourCastNet:
Accelerating Global High-Resolution Weather Forecasting
Using Adaptive Fourier Neural Operators.” In
Proceedings of the Platform for Advanced Scientific Computing
Conference, 1–11. ACM. https://doi.org/10.1145/3592979.3593412.
Kuzmin, Andrey, Mart Van Baalen, Yuwei Ren, Markus Nagel, Jorn Peters,
and Tijmen Blankevoort. 2022. “FP8 Quantization:
The Power of the Exponent.” https://arxiv.org/abs/2208.09225.
Kwon, Jisu, and Daejin Park. 2021. “Hardware/Software
Co-Design for TinyML Voice-Recognition Application on
Resource Frugal Edge Devices.” Applied Sciences 11 (22):
11073. https://doi.org/10.3390/app112211073.
Kwon, Sun Hwa, and Lin Dong. 2022. “Flexible Sensors and Machine
Learning for Heart Monitoring.” Nano Energy 102
(November): 107632. https://doi.org/10.1016/j.nanoen.2022.107632.
Kwon, Young D., Rui Li, Stylianos I. Venieris, Jagmohan Chauhan,
Nicholas D. Lane, and Cecilia Mascolo. 2023. “TinyTrain:
Resource-Aware Task-Adaptive Sparse Training of DNNs at the Data-Scarce
Edge.” ArXiv Preprint abs/2307.09988 (July). http://arxiv.org/abs/2307.09988v2.
Lai, Liangzhen, Naveen Suda, and Vikas Chandra. 2018a.
“CMSIS-NN: Efficient Neural
Network Kernels for Arm Cortex-m CPUs.” https://arxiv.org/abs/1801.06601.
———. 2018b. “CMSIS-NN: Efficient Neural Network Kernels for Arm
Cortex-m CPUs.” ArXiv Preprint abs/1801.06601 (January).
http://arxiv.org/abs/1801.06601v1.
Lakkaraju, Himabindu, and Osbert Bastani. 2020.
“”How Do i Fool You?”:
Manipulating User Trust via Misleading Black Box Explanations.”
In Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, 79–85. ACM. https://doi.org/10.1145/3375627.3375833.
Lam, Remi, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger,
Meire Fortunato, Ferran Alet, Suman Ravuri, et al. 2023. “Learning
Skillful Medium-Range Global Weather Forecasting.”
Science 382 (6677): 1416–21. https://doi.org/10.1126/science.adi2336.
Lannelongue, Loı̈c, Jason Grealey, and Michael Inouye. 2021. “Green
Algorithms: Quantifying the Carbon Footprint of
Computation.” Adv. Sci. 8 (12): 2100707. https://doi.org/10.1002/advs.202100707.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep
Learning.” Nature 521 (7553): 436–44. https://doi.org/10.1038/nature14539.
LeCun, Yann, John Denker, and Sara Solla. 1989. “Optimal Brain
Damage.” Adv Neural Inf Process Syst 2.
LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. 1989. “Backpropagation Applied to
Handwritten Zip Code Recognition.” Neural Computation 1
(4): 541–51. https://doi.org/10.1162/neco.1989.1.4.541.
Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998.
“Gradient-Based Learning Applied to Document Recognition.”
Proceedings of the IEEE 86 (11): 2278–2324. https://doi.org/10.1109/5.726791.
Lee, Minwoong, Namho Lee, Huijeong Gwon, Jongyeol Kim, Younggwan Hwang,
and Seongik Cho. 2022. “Design of Radiation-Tolerant High-Speed
Signal Processing Circuit for Detecting Prompt Gamma Rays by Nuclear
Explosion.” Electronics 11 (18): 2970. https://doi.org/10.3390/electronics11182970.
LeRoy Poff, N, MM Brinson, and JW Day. 2002. “Aquatic Ecosystems
& Global Climate Change.” Pew Center on Global Climate
Change.
Li, En, Liekang Zeng, Zhi Zhou, and Xu Chen. 2020. “Edge
AI: On-demand Accelerating Deep
Neural Network Inference via Edge Computing.” IEEE Trans.
Wireless Commun. 19 (1): 447–57. https://doi.org/10.1109/twc.2019.2946140.
Li, Guanpeng, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017.
“Understanding Error Propagation in Deep Learning Neural Network
(DNN) Accelerators and Applications.” In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 1–12. ACM. https://doi.org/10.1145/3126908.3126964.
Li, Jingzhen, Igbe Tobore, Yuhang Liu, Abhishek Kandwal, Lei Wang, and
Zedong Nie. 2021. “Non-Invasive Monitoring of Three Glucose Ranges
Based on ECG by Using DBSCAN-CNN.” IEEE Journal of Biomedical
and Health Informatics 25 (9): 3340–50. https://doi.org/10.1109/jbhi.2021.3072628.
Li, Qinbin, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu,
and Bingsheng He. 2023. “A Survey on Federated Learning Systems:
Vision, Hype and Reality for Data Privacy and
Protection.” IEEE Trans. Knowl. Data Eng. 35 (4):
3347–66. https://doi.org/10.1109/tkde.2021.3124599.
Li, Tian, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.
“Federated Learning: Challenges, Methods, and Future
Directions.” IEEE Signal Processing Magazine 37 (3):
50–60. https://doi.org/10.1109/msp.2020.2975749.
Li, Xiang, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016. “LightRNN:
Memory and Computation-Efficient Recurrent Neural Networks.” In
Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, edited by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, 4385–93. https://proceedings.neurips.cc/paper/2016/hash/c3e4035af2a1cde9f21e1ae1951ac80b-Abstract.html.
Li, Yuhang, Xin Dong, and Wei Wang. 2020. “Additive Powers-of-Two
Quantization: An Efficient Non-Uniform Discretization for
Neural Networks.” In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net. https://openreview.net/forum?id=BkgXT24tDS.
Li, Zhuohan, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin
Jin, Yanping Huang, et al. 2023. “{AlpaServe}:
Statistical Multiplexing with Model Parallelism for Deep Learning
Serving.” In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 663–79.
Lin, Ji, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
2020. “MCUNet: Tiny Deep Learning on
IoT Devices.” In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
Virtual, edited by Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html.
Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. 2022. “On-Device Training Under 256kb Memory.”
Adv. Neur. In. 35: 22941–54.
Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han. 2023.
“Tiny Machine Learning: Progress and Futures [Feature].”
IEEE Circuits and Systems Magazine 23 (3): 8–34. https://doi.org/10.1109/mcas.2023.3302182.
Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014.
“Microsoft Coco: Common Objects in Context.”
In Computer VisionECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part v 13,
740–55. Springer.
Lindgren, Simon. 2023. Handbook of Critical Studies of Artificial
Intelligence. Edward Elgar Publishing.
Lindholm, Andreas, Dave Zachariah, Petre Stoica, and Thomas B. Schon.
2019. “Data Consistency Approach to Model Validation.”
#IEEE_O_ACC# 7: 59788–96. https://doi.org/10.1109/access.2019.2915109.
Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. 2008.
“NVIDIA Tesla: A Unified Graphics and
Computing Architecture.” IEEE Micro 28 (2): 39–55. https://doi.org/10.1109/mm.2008.31.
Lin, Tang Tang, Dang Yang, and Han Gan. 2023. “AWQ:
Activation-aware Weight Quantization for
LLM Compression and Acceleration.” ArXiv
Preprint. https://arxiv.org/abs/2306.00978.
Liu, Yanan, Xiaoxia Wei, Jinyu Xiao, Zhijie Liu, Yang Xu, and Yun Tian.
2020. “Energy Consumption and Emission Mitigation Prediction Based
on Data Center Traffic and PUE for Global Data
Centers.” Global Energy Interconnection 3 (3): 272–82.
https://doi.org/10.1016/j.gloei.2020.07.008.
Liu, Yingcheng, Guo Zhang, Christopher G. Tarolli, Rumen Hristov, Stella
Jensen-Roberts, Emma M. Waddell, Taylor L. Myers, et al. 2022.
“Monitoring Gait at Home with Radio Waves in Parkinson’s Disease:
A Marker of Severity, Progression, and Medication Response.”
Science Translational Medicine 14 (663): eadc9669. https://doi.org/10.1126/scitranslmed.adc9669.
Loh, Gabriel H. 2008. “3D-Stacked Memory
Architectures for Multi-Core Processors.” ACM SIGARCH
Computer Architecture News 36 (3): 453–64. https://doi.org/10.1145/1394608.1382159.
Lopez-Paz, David, and Marc’Aurelio Ranzato. 2017. “Gradient
Episodic Memory for Continual Learning.” Adv Neural Inf
Process Syst 30.
Lou, Yin, Rich Caruana, Johannes Gehrke, and Giles Hooker. 2013.
“Accurate Intelligible Models with Pairwise Interactions.”
In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, edited by Inderjit S. Dhillon,
Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh,
Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy, 623–31. ACM. https://doi.org/10.1145/2487575.2487579.
Lowy, Andrew, Rakesh Pavan, Sina Baharlouei, Meisam Razaviyayn, and
Ahmad Beirami. 2021. “Fermi: Fair Empirical Risk
Minimization via Exponential Rényi Mutual Information.”
Lubana, Ekdeep Singh, and Robert P Dick. 2020. “A Gradient Flow
Framework for Analyzing Network Pruning.” arXiv Preprint
arXiv:2009.11839.
Luebke, David. 2008. “CUDA: Scalable
Parallel Programming for High-Performance Scientific Computing.”
In 2008 5th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, 836–38. IEEE. https://doi.org/10.1109/isbi.2008.4541126.
Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to
Interpreting Model Predictions.” In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, edited by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
4765–74. https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.
Ma, Dongning, Fred Lin, Alban Desmaison, Joel Coburn, Daniel Moore,
Sriram Sankar, and Xun Jiao. 2024. “Dr.
DNA: Combating Silent Data Corruptions in Deep
Learning Using Distribution of Neuron Activations.” In
Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems,
Volume 3, 239–52. ACM. https://doi.org/10.1145/3620666.3651349.
Maas, Martin, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2024. “Combining
Machine Learning and Lifetime-Based Resource Management for Memory
Allocation and Beyond.” Commun. ACM 67 (4): 87–96. https://doi.org/10.1145/3611018.
Maass, Wolfgang. 1997. “Networks of Spiking Neurons:
The Third Generation of Neural Network Models.”
Neural Networks 10 (9): 1659–71. https://doi.org/10.1016/s0893-6080(97)00011-7.
Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. 2017. “Towards Deep Learning Models Resistant to
Adversarial Attacks.” arXiv Preprint arXiv:1706.06083.
Mahmoud, Abdulrahman, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez
Vicarte, Sarita V. Adve, Christopher W. Fletcher, Iuri Frosio, and Siva
Kumar Sastry Hari. 2020. “PyTorchFI: A
Runtime Perturbation Tool for DNNs.” In 2020
50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-w), 25–31. IEEE; IEEE. https://doi.org/10.1109/dsn-w50199.2020.00014.
Mahmoud, Abdulrahman, Siva Kumar Sastry Hari, Christopher W. Fletcher,
Sarita V. Adve, Charbel Sakr, Naresh Shanbhag, Pavlo Molchanov, Michael
B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021.
“Optimizing Selective Protection for CNN
Resilience.” In 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE), 127–38. IEEE. https://doi.org/10.1109/issre52982.2021.00025.
Mahmoud, Abdulrahman, Thierry Tambe, Tarek Aloui, David Brooks, and
Gu-Yeon Wei. 2022. “GoldenEye: A
Platform for Evaluating Emerging Numerical Data Formats in
DNN Accelerators.” In 2022 52nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
206–14. IEEE. https://doi.org/10.1109/dsn53405.2022.00031.
Marković, Danijela, Alice Mizrahi, Damien Querlioz, and Julie Grollier.
2020. “Physics for Neuromorphic Computing.” Nature
Reviews Physics 2 (9): 499–510. https://doi.org/10.1038/s42254-020-0208-2.
Martin, C. Dianne. 1993. “The Myth of the Awesome Thinking
Machine.” Commun. ACM 36 (4): 120–33. https://doi.org/10.1145/255950.153587.
Marulli, Fiammetta, Stefano Marrone, and Laura Verde. 2022.
“Sensitivity of Machine Learning Approaches to Fake and Untrusted
Data in Healthcare Domain.” Journal of Sensor and Actuator
Networks 11 (2): 21. https://doi.org/10.3390/jsan11020021.
Maslej, Nestor, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy,
Katrina Ligett, Terah Lyons, James Manyika, et al. 2023.
“Artificial Intelligence Index Report 2023.” ArXiv
Preprint abs/2310.03715. https://arxiv.org/abs/2310.03715.
Mattson, Peter, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg
Diamos, David Kanter, Paulius Micikevicius, et al. 2020a. “MLPerf:
An Industry Standard Benchmark Suite for Machine Learning
Performance.” IEEE Micro 40 (2): 8–16. https://doi.org/10.1109/mm.2020.2974843.
———, et al. 2020b. “MLPerf: An Industry
Standard Benchmark Suite for Machine Learning Performance.”
IEEE Micro 40 (2): 8–16. https://doi.org/10.1109/mm.2020.2974843.
Mazumder, Mark, Sharad Chitlangia, Colby Banbury, Yiping Kang, Juan
Manuel Ciro, Keith Achorn, Daniel Galvez, et al. 2021.
“Multilingual Spoken Words Corpus.” In Thirty-Fifth
Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).
McCarthy, John. 1981. “Epistemological Problems of Artificial
Intelligence.” In Readings in Artificial Intelligence,
459–65. Elsevier. https://doi.org/10.1016/b978-0-934613-03-3.50035-0.
McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017b. “Communication-Efficient Learning of Deep
Networks from Decentralized Data.” In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, edited by
Aarti Singh and Xiaojin (Jerry) Zhu, 54:1273–82. Proceedings of Machine
Learning Research. PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html.
———. 2017a. “Communication-Efficient Learning of Deep Networks
from Decentralized Data.” In Artificial Intelligence and
Statistics, 1273–82. PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html.
Miller, Charlie. 2019. “Lessons Learned from Hacking a
Car.” IEEE Design &Amp; Test 36 (6): 7–9. https://doi.org/10.1109/mdat.2018.2863106.
Miller, Charlie, and Chris Valasek. 2015. “Remote Exploitation of
an Unaltered Passenger Vehicle.” Black Hat USA 2015 (S
91): 1–91.
Miller, D. A. B. 2000. “Optical Interconnects to Silicon.”
#IEEE_J_JSTQE# 6 (6): 1312–17. https://doi.org/10.1109/2944.902184.
Mills, Andrew, and Stephen Le Hunte. 1997. “An Overview of
Semiconductor Photocatalysis.” J. Photochem. Photobiol.,
A 108 (1): 1–35. https://doi.org/10.1016/s1010-6030(97)00118-4.
Mirhoseini, Azalia, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang,
Ebrahim Songhori, Shen Wang, Young-Joon Lee, et al. 2021. “A Graph
Placement Methodology for Fast Chip Design.” Nature 594
(7862): 207–12. https://doi.org/10.1038/s41586-021-03544-w.
Mishra, Asit K., Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan
Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Micikevicius. 2021.
“Accelerating Sparse Deep Neural Networks.” CoRR
abs/2104.08378. https://arxiv.org/abs/2104.08378.
Mittal, Sparsh, Gaurav Verma, Brajesh Kaushik, and Farooq A. Khanday.
2021. “A Survey of SRAM-Based in-Memory Computing
Techniques and Applications.” J. Syst. Architect. 119
(October): 102276. https://doi.org/10.1016/j.sysarc.2021.102276.
Modha, Dharmendra S., Filipp Akopyan, Alexander Andreopoulos,
Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy, Pallab Datta,
et al. 2023. “Neural Inference at the Frontier of Energy, Space,
and Time.” Science 382 (6668): 329–35. https://doi.org/10.1126/science.adh1174.
Mohanram, K., and N. A. Touba. 2003. “Partial Error Masking to
Reduce Soft Error Failure Rate in Logic Circuits.” In
Proceedings. 16th IEEE Symposium on Computer Arithmetic,
433–40. IEEE; IEEE Comput. Soc. https://doi.org/10.1109/dftvs.2003.1250141.
Monyei, Chukwuka G., and Kirsten E. H. Jenkins. 2018. “Electrons
Have No Identity: Setting Right Misrepresentations in
Google and Apple’s Clean Energy Purchasing.”
Energy Research &Amp; Social Science 46 (December): 48–51.
https://doi.org/10.1016/j.erss.2018.06.015.
Moshawrab, Mohammad, Mehdi Adda, Abdenour Bouzouane, Hussein Ibrahim,
and Ali Raad. 2023. “Reviewing Federated Learning Aggregation
Algorithms; Strategies, Contributions, Limitations and Future
Perspectives.” Electronics 12 (10): 2287. https://doi.org/10.3390/electronics12102287.
Mukherjee, S. S., J. Emer, and S. K. Reinhardt. 2005. “The Soft
Error Problem: An Architectural Perspective.” In
11th International Symposium on High-Performance Computer
Architecture, 243–47. IEEE; IEEE. https://doi.org/10.1109/hpca.2005.37.
Munshi, Aaftab. 2009. “The OpenCL
Specification.” In 2009 IEEE Hot Chips 21 Symposium
(HCS), 1–314. IEEE. https://doi.org/10.1109/hotchips.2009.7478342.
Musk, Elon et al. 2019. “An Integrated Brain-Machine Interface
Platform with Thousands of Channels.” J. Med. Internet
Res. 21 (10): e16194. https://doi.org/10.2196/16194.
Myllyaho, Lalli, Mikko Raatikainen, Tomi Männistö, Jukka K. Nurminen,
and Tommi Mikkonen. 2022. “On Misbehaviour and Fault Tolerance in
Machine Learning Systems.” J. Syst. Software 183
(January): 111096. https://doi.org/10.1016/j.jss.2021.111096.
Nakano, Jane. 2021. The Geopolitics of Critical Minerals Supply
Chains. JSTOR.
Narayanan, Arvind, and Vitaly Shmatikov. 2006. “How to Break
Anonymity of the Netflix Prize Dataset.” CoRR. http://arxiv.org/abs/cs/0610105.
Ng, Davy Tsz Kit, Jac Ka Lok Leung, Kai Wah Samuel Chu, and Maggie Shen
Qiao. 2021. “AI Literacy: Definition,
Teaching, Evaluation and Ethical Issues.” Proceedings of the
Association for Information Science and Technology 58 (1): 504–9.
Ngo, Richard, Lawrence Chan, and Sören Mindermann. 2022. “The
Alignment Problem from a Deep Learning Perspective.” ArXiv
Preprint abs/2209.00626. https://arxiv.org/abs/2209.00626.
Nguyen, Ngoc-Bao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and
Ngai-Man Cheung. 2023. “Re-Thinking Model Inversion Attacks
Against Deep Neural Networks.” In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 16384–93. IEEE. https://doi.org/10.1109/cvpr52729.2023.01572.
Norrie, Thomas, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li,
James Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021.
“The Design Process for Google’s Training Chips:
Tpuv2 and TPUv3.” IEEE Micro
41 (2): 56–63. https://doi.org/10.1109/mm.2021.3058217.
Northcutt, Curtis G, Anish Athalye, and Jonas Mueller. 2021.
“Pervasive Label Errors in Test Sets Destabilize Machine Learning
Benchmarks.” arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2103.14749
arXiv-issued DOI via DataCite.
Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil
Mullainathan. 2019. “Dissecting Racial Bias in an Algorithm Used
to Manage the Health of Populations.” Science 366
(6464): 447–53. https://doi.org/10.1126/science.aax2342.
Oecd. 2023. “A Blueprint for Building National Compute Capacity
for Artificial Intelligence.” 350. Organisation for Economic
Co-Operation; Development (OECD). https://doi.org/10.1787/876367e3-en.
Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael
Petrov, and Shan Carter. 2020. “Zoom in: An
Introduction to Circuits.” Distill 5 (3): e00024–001. https://doi.org/10.23915/distill.00024.001.
Oliynyk, Daryna, Rudolf Mayer, and Andreas Rauber. 2023. “I Know
What You Trained Last Summer: A Survey on Stealing Machine Learning
Models and Defences.” ACM Computing Surveys 55 (14s):
1–41. https://doi.org/10.1145/3595292.
Ooko, Samson Otieno, Marvin Muyonga Ogore, Jimmy Nsenga, and Marco
Zennaro. 2021. “TinyML in Africa:
Opportunities and Challenges.” In 2021 IEEE
Globecom Workshops (GC Wkshps), 1–6. IEEE; IEEE. https://doi.org/10.1109/gcwkshps52748.2021.9682107.
Oprea, Alina, Anoop Singhal, and Apostol Vassilev. 2022.
“Poisoning Attacks Against Machine Learning: Can
Machine Learning Be Trustworthy?” Computer 55 (11):
94–99. https://doi.org/10.1109/mc.2022.3190787.
Pan, Sinno Jialin, and Qiang Yang. 2010. “A Survey on Transfer
Learning.” IEEE Transactions on Knowledge and Data
Engineering 22 (10): 1345–59. https://doi.org/10.1109/tkde.2009.191.
Panda, Priyadarshini, Indranil Chakraborty, and Kaushik Roy. 2019.
“Discretization Based Solutions for Secure Machine Learning
Against Adversarial Attacks.” #IEEE_O_ACC# 7: 70157–68.
https://doi.org/10.1109/access.2019.2919463.
Papadimitriou, George, and Dimitris Gizopoulos. 2021.
“Demystifying the System Vulnerability Stack:
Transient Fault Effects Across the Layers.” In
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 902–15. IEEE; IEEE. https://doi.org/10.1109/isca52012.2021.00075.
Papernot, Nicolas, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. 2016. “Distillation as a Defense to Adversarial
Perturbations Against Deep Neural Networks.” In 2016 IEEE
Symposium on Security and Privacy (SP), 582–97. IEEE; IEEE. https://doi.org/10.1109/sp.2016.41.
Parrish, Alicia, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max
Bartolo, Oana Inel, Juan Ciro, et al. 2023. “Adversarial Nibbler:
A Data-Centric Challenge for Improving the Safety of
Text-to-Image Models.” ArXiv Preprint abs/2305.14384. https://arxiv.org/abs/2305.14384.
Patterson, David A, and John L Hennessy. 2016. Computer Organization
and Design ARM Edition: The Hardware Software
Interface. Morgan kaufmann.
Patterson, David, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and
Jeff Dean. 2022. “The Carbon Footprint of Machine Learning
Training Will Plateau, Then Shrink.” Computer 55 (7):
18–28. https://doi.org/10.1109/mc.2022.3148714.
Peters, Dorian, Rafael A. Calvo, and Richard M. Ryan. 2018.
“Designing for Motivation, Engagement and Wellbeing in Digital
Experience.” Front. Psychol. 9 (May): 797. https://doi.org/10.3389/fpsyg.2018.00797.
Phillips, P Jonathon, Carina A Hahn, Peter C Fontana, David A
Broniatowski, and Mark A Przybocki. 2020. “Four Principles of
Explainable Artificial Intelligence.” Gaithersburg,
Maryland 18.
Pineau, Joelle, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent
Larivière, Alina Beygelzimer, Florence d’Alché-Buc, Emily Fox, and Hugo
Larochelle. 2021. “Improving Reproducibility in Machine Learning
Research (a Report from the Neurips 2019 Reproducibility
Program).” Journal of Machine Learning Research 22
(164): 1–20.
Plank, James S. 1997. “A Tutorial on
ReedSolomon Coding for Fault-Tolerance in
RAID-Like Systems.” Software: Practice and
Experience 27 (9): 995–1012.
Pont, Michael J, and Royan HL Ong. 2002. “Using Watchdog Timers to
Improve the Reliability of Single-Processor Embedded Systems:
Seven New Patterns and a Case Study.” In
Proceedings of the First Nordic Conference on Pattern Languages of
Programs, 159–200. Citeseer.
Prakash, Shvetank, Tim Callahan, Joseph Bushagour, Colby Banbury, Alan
V. Green, Pete Warden, Tim Ansell, and Vijay Janapa Reddi. 2023.
“CFU Playground: Full-stack Open-Source Framework for Tiny Machine
Learning (TinyML) Acceleration on
FPGAs.” In 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). Vol.
abs/2201.01863. IEEE. https://doi.org/10.1109/ispass57527.2023.00024.
Prakash, Shvetank, Matthew Stewart, Colby Banbury, Mark Mazumder, Pete
Warden, Brian Plancher, and Vijay Janapa Reddi. 2023. “Is
TinyML Sustainable? Assessing the Environmental Impacts of
Machine Learning on Microcontrollers.” ArXiv Preprint.
https://arxiv.org/abs/2301.11899.
Psoma, Sotiria D., and Chryso Kanthou. 2023. “Wearable Insulin
Biosensors for Diabetes Management: Advances and Challenges.”
Biosensors 13 (7): 719. https://doi.org/10.3390/bios13070719.
Pushkarna, Mahima, Andrew Zaldivar, and Oddur Kjartansson. 2022.
“Data Cards: Purposeful and Transparent Dataset Documentation for
Responsible AI.” In 2022 ACM Conference on Fairness,
Accountability, and Transparency, 1776–826. ACM. https://doi.org/10.1145/3531146.3533231.
Putnam, Andrew, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, et al. 2014. “A
Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services.” ACM SIGARCH Computer Architecture News 42
(3): 13–24. https://doi.org/10.1145/2678373.2665678.
Qi, Chen, Shibo Shen, Rongpeng Li, Zhifeng Zhao, Qing Liu, Jing Liang,
and Honggang Zhang. 2021. “An Efficient Pruning Scheme of Deep
Neural Networks for Internet of Things Applications.” EURASIP
Journal on Advances in Signal Processing 2021 (1): 31. https://doi.org/10.1186/s13634-021-00744-4.
Qian, Yu, Xuegong Zhou, Hao Zhou, and Lingli Wang. 2024. “An
Efficient Reinforcement Learning Based Framework for Exploring Logic
Synthesis.” ACM Trans. Des. Autom. Electron. Syst. 29
(2): 1–33. https://doi.org/10.1145/3632174.
R. V., Rashmi, and Karthikeyan A. 2018. “Secure Boot of Embedded
Applications - a Review.” In 2018 Second International
Conference on Electronics, Communication and Aerospace Technology
(ICECA), 291–98. IEEE. https://doi.org/10.1109/iceca.2018.8474730.
Rachwan, John, Daniel Zügner, Bertrand Charpentier, Simon Geisler,
Morgane Ayle, and Stephan Günnemann. 2022. “Winning the Lottery
Ahead of Time: Efficient Early Network Pruning.” In
International Conference on Machine Learning, 18293–309. PMLR.
Raina, Rajat, Anand Madhavan, and Andrew Y. Ng. 2009. “Large-Scale
Deep Unsupervised Learning Using Graphics Processors.” In
Proceedings of the 26th Annual International Conference on Machine
Learning, edited by Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman, 382:873–80. ACM International Conference Proceeding
Series. ACM. https://doi.org/10.1145/1553374.1553486.
Ramaswamy, Vikram V., Sunnie S. Y. Kim, Ruth Fong, and Olga Russakovsky.
2023a. “Overlooked Factors in Concept-Based Explanations:
Dataset Choice, Concept Learnability, and Human
Capability.” In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 10932–41. IEEE. https://doi.org/10.1109/cvpr52729.2023.01052.
Ramaswamy, Vikram V, Sunnie SY Kim, Ruth Fong, and Olga Russakovsky.
2023b. “UFO: A Unified Method for
Controlling Understandability and Faithfulness Objectives in
Concept-Based Explanations for CNNs.” ArXiv
Preprint abs/2303.15632. https://arxiv.org/abs/2303.15632.
Ramcharan, Amanda, Kelsee Baranowski, Peter McCloskey, Babuali Ahmed,
James Legg, and David P. Hughes. 2017. “Deep Learning for
Image-Based Cassava Disease Detection.” Front. Plant
Sci. 8 (October): 1852. https://doi.org/10.3389/fpls.2017.01852.
Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. 2021. “Zero-Shot
Text-to-Image Generation.” In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, edited by Marina Meila and Tong Zhang,
139:8821–31. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v139/ramesh21a.html.
Ranganathan, Parthasarathy. 2011. “From Microprocessors to
Nanostores: Rethinking Data-Centric Systems.”
Computer 44 (1): 39–48. https://doi.org/10.1109/mc.2011.18.
Rao, Ravi. 2021. “TinyML Unlocks New Possibilities
for Sustainable Development Technologies.”
Www.wevolver.com. https://www.wevolver.com/article/tinyml-unlocks-new-possibilities-for-sustainable-development-technologies.
Rashid, Layali, Karthik Pattabiraman, and Sathish Gopalakrishnan. 2012.
“Intermittent Hardware Errors Recovery: Modeling and
Evaluation.” In 2012 Ninth International Conference on
Quantitative Evaluation of Systems, 220–29. IEEE; IEEE. https://doi.org/10.1109/qest.2012.37.
———. 2015. “Characterizing the Impact of Intermittent Hardware
Faults on Programs.” IEEE Trans. Reliab. 64 (1):
297–310. https://doi.org/10.1109/tr.2014.2363152.
Ratner, Alex, Braden Hancock, Jared Dunnmon, Roger Goldman, and
Christopher Ré. 2018. “Snorkel MeTaL: Weak Supervision for
Multi-Task Learning.” In Proceedings of the Second Workshop
on Data Management for End-to-End Machine Learning. ACM. https://doi.org/10.1145/3209889.3209898.
Reagen, Brandon, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David
Brooks. 2017. Deep Learning for Computer Architects. Springer
International Publishing. https://doi.org/10.1007/978-3-031-01756-8.
Reagen, Brandon, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu
Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. 2018. “Ares:
A Framework for Quantifying the Resilience of Deep Neural
Networks.” In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 1–6. IEEE. https://doi.org/10.1109/dac.2018.8465834.
Reagen, Brandon, Jose Miguel Hernandez-Lobato, Robert Adolf, Michael
Gelbart, Paul Whatmough, Gu-Yeon Wei, and David Brooks. 2017. “A
Case for Efficient Accelerator Design Space Exploration via
Bayesian Optimization.” In 2017 IEEE/ACM
International Symposium on Low Power Electronics and Design
(ISLPED), 1–6. IEEE; IEEE. https://doi.org/10.1109/islped.2017.8009208.
Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar. 2019. “On the
Convergence of Adam and Beyond.” arXiv Preprint
arXiv:1904.09237, April. http://arxiv.org/abs/1904.09237v1.
Reddi, Vijay Janapa, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, et al. 2020.
“MLPerf Inference Benchmark.” In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), 446–59. IEEE; IEEE. https://doi.org/10.1109/isca45697.2020.00045.
Reddi, Vijay Janapa, and Meeta Sharma Gupta. 2013. Resilient
Architecture Design for Voltage Variation. Springer International
Publishing. https://doi.org/10.1007/978-3-031-01739-1.
Reis, G. A., J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
2005. “SWIFT: Software Implemented Fault
Tolerance.” In International Symposium on Code Generation and
Optimization, 243–54. IEEE; IEEE. https://doi.org/10.1109/cgo.2005.34.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016.
“” Why Should i Trust You?” Explaining
the Predictions of Any Classifier.” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1135–44.
Robbins, Herbert, and Sutton Monro. 1951. “A Stochastic
Approximation Method.” The Annals of Mathematical
Statistics 22 (3): 400–407. https://doi.org/10.1214/aoms/1177729586.
Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Bjorn Ommer. 2022. “High-Resolution Image Synthesis with Latent
Diffusion Models.” In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE. https://doi.org/10.1109/cvpr52688.2022.01042.
Romero, Francisco, Qian Li 0027, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. “INFaaS: Automated Model-Less Inference
Serving.” In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 397–411. https://www.usenix.org/conference/atc21/presentation/romero.
Rosenblatt, F. 1958. “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain.”
Psychological Review 65 (6): 386–408. https://doi.org/10.1037/h0042519.
Roskies, Adina. 2002. “Neuroethics for the New Millenium.”
Neuron 35 (1): 21–23. https://doi.org/10.1016/s0896-6273(02)00763-8.
Ruder, Sebastian. 2016. “An Overview of Gradient Descent
Optimization Algorithms.” ArXiv Preprint abs/1609.04747
(September). http://arxiv.org/abs/1609.04747v2.
Rudin, Cynthia. 2019. “Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models
Instead.” Nature Machine Intelligence 1 (5): 206–15. https://doi.org/10.1038/s42256-019-0048-x.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986.
“Learning Representations by Back-Propagating Errors.”
Nature 323 (6088): 533–36. https://doi.org/10.1038/323533a0.
Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, et al. 2015. “ImageNet Large
Scale Visual Recognition Challenge.” Int. J. Comput.
Vision 115 (3): 211–52. https://doi.org/10.1007/s11263-015-0816-y.
Russell, Stuart. 2021. “Human-Compatible Artificial
Intelligence.” Human-Like Machine Intelligence, 3–23.
Ryan, Richard M., and Edward L. Deci. 2000. “Self-Determination
Theory and the Facilitation of Intrinsic Motivation, Social Development,
and Well-Being.” Am. Psychol. 55 (1): 68–78. https://doi.org/10.1037/0003-066x.55.1.68.
Samajdar, Ananda, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and Tushar
Krishna. 2018. “Scale-Sim: Systolic Cnn Accelerator
Simulator.” ArXiv Preprint abs/1811.02883. https://arxiv.org/abs/1811.02883.
Sambasivan, Nithya, Shivani Kapania, Hannah Highfill, Diana Akrong,
Praveen Paritosh, and Lora M Aroyo. 2021. “‘Everyone Wants
to Do the Model Work, Not the Data Work’: Data Cascades in
High-Stakes AI.” In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 1–15. ACM. https://doi.org/10.1145/3411764.3445518.
Sangchoolie, Behrooz, Karthik Pattabiraman, and Johan Karlsson. 2017.
“One Bit Is (Not) Enough: An Empirical
Study of the Impact of Single and Multiple Bit-Flip Errors.” In
2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 97–108. IEEE; IEEE. https://doi.org/10.1109/dsn.2017.30.
Schäfer, Mike S. 2023. “The Notorious GPT:
Science Communication in the Age of Artificial
Intelligence.” Journal of Science Communication 22 (02):
Y02. https://doi.org/10.22323/2.22020402.
Schizas, Nikolaos, Aristeidis Karras, Christos Karras, and Spyros
Sioutas. 2022. “TinyML for Ultra-Low Power
AI and Large Scale IoT Deployments:
A Systematic Review.” Future Internet 14
(12): 363. https://doi.org/10.3390/fi14120363.
Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker
Mitchell, Prasanna Date, and Bill Kay. 2022. “Opportunities for
Neuromorphic Computing Algorithms and Applications.” Nature
Computational Science 2 (1): 10–19. https://doi.org/10.1038/s43588-021-00184-y.
Schwartz, Daniel, Jonathan Michael Gomes Selman, Peter Wrege, and
Andreas Paepcke. 2021. “Deployment of Embedded
Edge-AI for Wildlife Monitoring in Remote Regions.”
In 2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA), 1035–42. IEEE; IEEE. https://doi.org/10.1109/icmla52953.2021.00170.
Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020.
“Green AI.” Commun. ACM 63 (12):
54–63. https://doi.org/10.1145/3381831.
Segal, Mark, and Kurt Akeley. 1999. “The OpenGL
Graphics System: A Specification (Version 1.1).”
Segura Anaya, L. H., Abeer Alsadoon, N. Costadopoulos, and P. W. C.
Prasad. 2017. “Ethical Implications of User Perceptions of
Wearable Devices.” Sci. Eng. Ethics 24 (1): 1–28. https://doi.org/10.1007/s11948-017-9872-8.
Seide, Frank, and Amit Agarwal. 2016. “CNTK: Microsoft’s
Open-Source Deep-Learning Toolkit.” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2135–35. ACM. https://doi.org/10.1145/2939672.2945397.
Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017.
“Grad-CAM: Visual Explanations from Deep
Networks via Gradient-Based Localization.” In 2017 IEEE
International Conference on Computer Vision (ICCV), 618–26. IEEE.
https://doi.org/10.1109/iccv.2017.74.
Seong, Nak Hee, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A. Rivers,
and Hsien-Hsin S. Lee. 2010. “SAFER: Stuck-at-fault Error Recovery for
Memories.” In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 115–24. IEEE; IEEE. https://doi.org/10.1109/micro.2010.46.
Seyedzadeh, Saleh, Farzad Pour Rahimian, Ivan Glesk, and Marc Roper.
2018. “Machine Learning for Estimation of Building Energy
Consumption and Performance: A Review.”
Visualization in Engineering 6 (1): 1–20. https://doi.org/10.1186/s40327-018-0064-7.
Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2017. “On
a Formal Model of Safe and Scalable Self-Driving Cars.” ArXiv
Preprint abs/1708.06374. https://arxiv.org/abs/1708.06374.
Shan, Shawn, Wenxin Ding, Josephine Passananti, Haitao Zheng, and Ben Y
Zhao. 2023. “Prompt-Specific Poisoning Attacks on Text-to-Image
Generative Models.” ArXiv Preprint abs/2310.13828. https://arxiv.org/abs/2310.13828.
Shastri, Bhavin J., Alexander N. Tait, T. Ferreira de Lima, Wolfram H.
P. Pernice, Harish Bhaskaran, C. D. Wright, and Paul R. Prucnal. 2021.
“Photonics for Artificial Intelligence and Neuromorphic
Computing.” Nat. Photonics 15 (2): 102–14. https://doi.org/10.1038/s41566-020-00754-y.
Sheaffer, Jeremy W, David P Luebke, and Kevin Skadron. 2007. “A
Hardware Redundancy and Recovery Mechanism for Reliable Scientific
Computation on Graphics Processors.” In Graphics
Hardware, 2007:55–64. Citeseer.
Shehabi, Arman, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and
William Lintner. 2016. “United States Data Center Energy Usage
Report.”
Shen, Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. 2020. “Q-BERT:
Hessian Based Ultra Low Precision Quantization of
BERT.” Proceedings of the AAAI Conference on
Artificial Intelligence 34 (05): 8815–21. https://doi.org/10.1609/aaai.v34i05.6409.
Sheng, Victor S., and Jing Zhang. 2019. “Machine Learning with
Crowdsourcing: A Brief Summary of the Past Research and Future
Directions.” Proceedings of the AAAI Conference on Artificial
Intelligence 33 (01): 9837–43. https://doi.org/10.1609/aaai.v33i01.33019837.
Shi, Hongrui, and Valentin Radu. 2022. “Data Selection for
Efficient Model Update in Federated Learning.” In Proceedings
of the 2nd European Workshop on Machine Learning and Systems,
72–78. ACM. https://doi.org/10.1145/3517207.3526980.
Shneiderman, Ben. 2020. “Bridging the Gap Between Ethics and
Practice: Guidelines for Reliable, Safe, and Trustworthy Human-Centered
AI Systems.” ACM Trans. Interact. Intell. Syst. 10 (4):
1–31. https://doi.org/10.1145/3419764.
———. 2022. Human-Centered AI. Oxford University
Press.
Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
2017. “Membership Inference Attacks Against Machine Learning
Models.” In 2017 IEEE Symposium on Security and Privacy
(SP), 3–18. IEEE; IEEE. https://doi.org/10.1109/sp.2017.41.
Siddik, Md Abu Bakar, Arman Shehabi, and Landon Marston. 2021.
“The Environmental Footprint of Data Centers in the United
States.” Environ. Res. Lett. 16 (6): 064017. https://doi.org/10.1088/1748-9326/abfba1.
Silvestro, Daniele, Stefano Goria, Thomas Sterner, and Alexandre
Antonelli. 2022. “Improving Biodiversity Protection Through
Artificial Intelligence.” Nature Sustainability 5 (5):
415–24. https://doi.org/10.1038/s41893-022-00851-6.
Singh, Narendra, and Oladele A. Ogunseitan. 2022. “Disentangling
the Worldwide Web of e-Waste and Climate Change Co-Benefits.”
Circular Economy 1 (2): 100011. https://doi.org/10.1016/j.cec.2022.100011.
Skorobogatov, Sergei. 2009. “Local Heating Attacks on Flash Memory
Devices.” In 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust, 1–6. IEEE; IEEE. https://doi.org/10.1109/hst.2009.5225028.
Skorobogatov, Sergei P., and Ross J. Anderson. 2002. “Optical
Fault Induction Attacks.” In Cryptographic Hardware and
Embedded Systems-CHES 2002: 4th International Workshop Redwood Shores,
CA, USA, August 13–15, 2002 Revised Papers 4, 2–12. Springer. https://doi.org/10.1007/3-540-36400-5\_2.
Smilkov, Daniel, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. 2017. “Smoothgrad: Removing Noise by
Adding Noise.” ArXiv Preprint abs/1706.03825. https://arxiv.org/abs/1706.03825.
Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams. 2012.
“Practical Bayesian Optimization of Machine Learning
Algorithms.” In Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a Meeting Held December 3-6, 2012, Lake
Tahoe, Nevada, United States, edited by Peter L. Bartlett, Fernando
C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, 2960–68. https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html.
Srivastava, Nitish, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. “Dropout: A Simple Way to Prevent
Neural Networks from Overfitting.” J. Mach. Learn. Res.
15 (1): 1929–58. https://doi.org/10.5555/2627435.2670313.
Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2019. “Energy
and Policy Considerations for Deep Learning in NLP.”
In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 3645–50. Florence, Italy: Association
for Computational Linguistics. https://doi.org/10.18653/v1/p19-1355.
Suda, Naveen, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma,
Sarma Vrudhula, Jae-sun Seo, and Yu Cao. 2016.
“Throughput-Optimized OpenCL-Based FPGA
Accelerator for Large-Scale Convolutional Neural Networks.” In
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 16–25. ACM. https://doi.org/10.1145/2847263.2847276.
Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. 2023. “Data
Centers on Wheels: Emissions from Computing Onboard
Autonomous Vehicles.” IEEE Micro 43 (1): 29–39. https://doi.org/10.1109/mm.2022.3219803.
Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017.
“Efficient Processing of Deep Neural Networks: A
Tutorial and Survey.” Proc. IEEE 105 (12): 2295–2329. https://doi.org/10.1109/jproc.2017.2761740.
Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. 2014.
“Intriguing Properties of Neural Networks.” In 2nd
International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Proceedings, edited
by Yoshua Bengio and Yann LeCun. http://arxiv.org/abs/1312.6199.
Tambe, Thierry, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa
Reddi, Alexander Rush, David Brooks, and Gu-Yeon Wei. 2020.
“Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings
for Resilient Deep Learning Inference.” In 2020 57th ACM/IEEE
Design Automation Conference (DAC), 1–6. IEEE; IEEE. https://doi.org/10.1109/dac18072.2020.9218516.
Tan, Mingxing, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V. Le. 2019. “MnasNet: Platform-aware Neural Architecture Search for
Mobile.” In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2820–28. IEEE. https://doi.org/10.1109/cvpr.2019.00293.
Tan, Mingxing, and Quoc V. Le. 2023. “Demystifying Deep
Learning.” Wiley. https://doi.org/10.1002/9781394205639.ch6.
Tang, Xin, Yichun He, and Jia Liu. 2022. “Soft Bioelectronics for
Cardiac Interfaces.” Biophysics Reviews 3 (1). https://doi.org/10.1063/5.0069516.
Tang, Xin, Hao Shen, Siyuan Zhao, Na Li, and Jia Liu. 2023.
“Flexible Braincomputer Interfaces.”
Nature Electronics 6 (2): 109–18. https://doi.org/10.1038/s41928-022-00913-9.
Tarun, Ayush K, Vikram S Chundawat, Murari Mandal, and Mohan
Kankanhalli. 2022. “Deep Regression Unlearning.” ArXiv
Preprint abs/2210.08196 (October). http://arxiv.org/abs/2210.08196v2.
Team, The Theano Development, Rami Al-Rfou, Guillaume Alain, Amjad
Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, et
al. 2016. “Theano: A Python Framework for Fast Computation of
Mathematical Expressions,” May. http://arxiv.org/abs/1605.02688v1.
“The Ultimate Guide to Deep Learning Model Quantization and
Quantization-Aware Training.” n.d. https://deci.ai/quantization-and-quantization-aware-training/.
Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F.
Manso. 2021. “Deep Learning’s Diminishing Returns:
The Cost of Improvement Is Becoming Unsustainable.”
IEEE Spectr. 58 (10): 50–55. https://doi.org/10.1109/mspec.2021.9563954.
Till, Aaron, Andrew L. Rypel, Andrew Bray, and Samuel B. Fey. 2019.
“Fish Die-Offs Are Concurrent with Thermal Extremes in North
Temperate Lakes.” Nat. Clim. Change 9 (8): 637–41. https://doi.org/10.1038/s41558-019-0520-y.
Tirtalistyani, Rose, Murtiningrum Murtiningrum, and Rameshwar S. Kanwar.
2022. “Indonesia Rice Irrigation System:
Time for Innovation.” Sustainability 14
(19): 12477. https://doi.org/10.3390/su141912477.
Tramèr, Florian, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan
Boneh. 2019. “AdVersarial: Perceptual Ad Blocking
Meets Adversarial Machine Learning.” In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security,
2005–21. ACM. https://doi.org/10.1145/3319535.3354222.
Tran, Cuong, Ferdinando Fioretto, Jung-Eun Kim, and Rakshit Naidu. 2022.
“Pruning Has a Disparate Impact on Model Accuracy.” Adv
Neural Inf Process Syst 35: 17652–64.
Tsai, Min-Jen, Ping-Yi Lin, and Ming-En Lee. 2023. “Adversarial
Attacks on Medical Image Classification.” Cancers 15
(17): 4228. https://doi.org/10.3390/cancers15174228.
Tsai, Timothy, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa,
and Stephen W. Keckler. 2021. “NVBitFI:
Dynamic Fault Injection for GPUs.” In
2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 284–91. IEEE; IEEE. https://doi.org/10.1109/dsn48987.2021.00041.
Tschand, Arya, Arun Tejusve Raghunath Rajan, Sachin Idgunji, Anirban
Ghosh, Jeremy Holleman, Csaba Kiraly, Pawan Ambalkar, et al. 2024.
“MLPerf Power: Benchmarking the Energy Efficiency of Machine
Learning Systems from Microwatts to Megawatts for Sustainable
AI.” arXiv Preprint arXiv:2410.12032, October. http://arxiv.org/abs/2410.12032v1.
Uddin, Mueen, and Azizah Abdul Rahman. 2012. “Energy Efficiency
and Low Carbon Enabler Green IT Framework for Data Centers
Considering Green Metrics.” Renewable Sustainable Energy
Rev. 16 (6): 4078–94. https://doi.org/10.1016/j.rser.2012.03.014.
Un, and World Economic Forum. 2019. A New Circular Vision for
Electronics, Time for a Global Reboot. PACE - Platform for
Accelerating the Circular Economy. https://www3.weforum.org/docs/WEF\_A\_New\_Circular\_Vision\_for\_Electronics.pdf.
Valenzuela, Christine L, and Pearl Y Wang. 2000. “A Genetic
Algorithm for VLSI Floorplanning.” In Parallel
Problem Solving from Nature PPSN VI: 6th International Conference Paris,
France, September 1820, 2000 Proceedings 6, 671–80.
Springer.
Van Noorden, Richard. 2016. “ArXiv Preprint Server
Plans Multimillion-Dollar Overhaul.” Nature 534 (7609):
602–2. https://doi.org/10.1038/534602a.
Vangal, Sriram, Somnath Paul, Steven Hsu, Amit Agarwal, Saurabh Kumar,
Ram Krishnamurthy, Harish Krishnamurthy, James Tschanz, Vivek De, and
Chris H. Kim. 2021. “Wide-Range Many-Core SoC Design
in Scaled CMOS: Challenges and
Opportunities.” IEEE Trans. Very Large Scale Integr. VLSI
Syst. 29 (5): 843–56. https://doi.org/10.1109/tvlsi.2021.3061649.
Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
“Attention Is All You Need.” Adv Neural Inf Process
Syst 30.
“Vector-Borne Diseases.” n.d.
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.
Velazco, Raoul, Gilles Foucard, and Paul Peronnard. 2010.
“Combining Results of Accelerated Radiation Tests and Fault
Injections to Predict the Error Rate of an Application Implemented in
SRAM-Based FPGAs.” IEEE Trans.
Nucl. Sci. 57 (6): 3500–3505. https://doi.org/10.1109/tns.2010.2087355.
Verma, Naveen, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay,
Lung-Yen Chen, Bonan Zhang, and Peter Deaville. 2019. “In-Memory
Computing: Advances and Prospects.” IEEE
Solid-State Circuits Mag. 11 (3): 43–55. https://doi.org/10.1109/mssc.2019.2922889.
Verma, Team Dual_Boot: Swapnil. 2022. “Elephant
AI.” Hackster.io. https://www.hackster.io/dual\_boot/elephant-ai-ba71e9.
Vinuesa, Ricardo, Hossein Azizpour, Iolanda Leite, Madeline Balaam,
Virginia Dignum, Sami Domisch, Anna Felländer, Simone Daniela Langhans,
Max Tegmark, and Francesco Fuso Nerini. 2020. “The Role of
Artificial Intelligence in Achieving the Sustainable Development
Goals.” Nat. Commun. 11 (1): 1–10. https://doi.org/10.1038/s41467-019-14108-y.
Vivet, Pascal, Eric Guthmuller, Yvain Thonnart, Gael Pillonnet, Cesar
Fuguet, Ivan Miro-Panades, Guillaume Moritz, et al. 2021.
“IntAct: A 96-Core Processor with Six
Chiplets 3D-Stacked on an Active Interposer with
Distributed Interconnects and Integrated Power Management.”
IEEE J. Solid-State Circuits 56 (1): 79–97. https://doi.org/10.1109/jssc.2020.3036341.
Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR.”
SSRN Electronic Journal 31: 841. https://doi.org/10.2139/ssrn.3063289.
Wald, Peter H., and Jeffrey R. Jones. 1987. “Semiconductor
Manufacturing: An Introduction to Processes and
Hazards.” Am. J. Ind. Med. 11 (2): 203–21. https://doi.org/10.1002/ajim.4700110209.
Wan, Zishen, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia, Vijay Janapa Reddi,
and Arijit Raychowdhury. 2021. “Analyzing and Improving Fault
Tolerance of Learning-Based Navigation Systems.” In 2021 58th
ACM/IEEE Design Automation Conference (DAC), 841–46. IEEE; IEEE. https://doi.org/10.1109/dac18074.2021.9586116.
Wan, Zishen, Yiming Gan, Bo Yu, S Liu, A Raychowdhury, and Y Zhu. 2023.
“Vpp: The Vulnerability-Proportional Protection
Paradigm Towards Reliable Autonomous Machines.” In
Proceedings of the 5th International Workshop on Domain Specific
System Architecture (DOSSA), 1–6.
Wang, LingFeng, and YaQing Zhan. 2019a. “A Conceptual Peer Review
Model for arXiv and Other Preprint
Databases.” Learn. Publ. 32 (3): 213–19. https://doi.org/10.1002/leap.1229.
———. 2019b. “A Conceptual Peer Review Model for arXiv and Other Preprint Databases.”
Learn. Publ. 32 (3): 213–19. https://doi.org/10.1002/leap.1229.
Wang, Tianlu, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente
Ordonez. 2019. “Balanced Datasets Are Not Enough: Estimating and
Mitigating Gender Bias in Deep Image Representations.” In
2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 5309–18. IEEE. https://doi.org/10.1109/iccv.2019.00541.
Wang, Tianzhe, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang,
Yujun Lin, and Song Han. 2020. “APQ:
Joint Search for Network Architecture, Pruning and
Quantization Policy.” In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2075–84. IEEE. https://doi.org/10.1109/cvpr42600.2020.00215.
Warden, Pete. 2018. “Speech Commands: A Dataset for
Limited-Vocabulary Speech Recognition.” arXiv Preprint
arXiv:1804.03209.
Warden, Pete, and Daniel Situnayake. 2019. Tinyml:
Machine Learning with Tensorflow Lite on Arduino and
Ultra-Low-Power Microcontrollers. O’Reilly Media.
Weik, Martin H. 1955. A Survey of Domestic Electronic Digital
Computing Systems. Ballistic Research Laboratories.
Wess, Matthias, Matvey Ivanov, Christoph Unger, and Anvesh Nookala.
2020. “ANNETTE: Accurate Neural Network
Execution Time Estimation with Stacked Models.” IEEE. https://doi.org/10.1109/ACCESS.2020.3047259.
Wiener, Norbert. 1960. “Some Moral and Technical Consequences of
Automation: As Machines Learn They May Develop Unforeseen Strategies at
Rates That Baffle Their Programmers.” Science 131
(3410): 1355–58. https://doi.org/10.1126/science.131.3410.1355.
Wilkening, Mark, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva
Gurumurthi, and David R. Kaeli. 2014. “Calculating Architectural
Vulnerability Factors for Spatial Multi-Bit Transient Faults.” In
2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 293–305. IEEE; IEEE. https://doi.org/10.1109/micro.2014.15.
Winkler, Harald, Franck Lecocq, Hans Lofgren, Maria Virginia Vilariño,
Sivan Kartha, and Joana Portugal-Pereira. 2022. “Examples of
Shifting Development Pathways: Lessons on How to Enable
Broader, Deeper, and Faster Climate Action.” Climate
Action 1 (1). https://doi.org/10.1007/s44168-022-00026-1.
Witten, Ian H., and Eibe Frank. 2002. “Data Mining: Practical
Machine Learning Tools and Techniques with Java Implementations.”
ACM SIGMOD Record 31 (1): 76–77. https://doi.org/10.1145/507338.507355.
Wong, H.-S. Philip, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu,
Pang-Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn Tsai.
2012. “MetalOxide
RRAM.” Proc. IEEE 100 (6): 1951–70. https://doi.org/10.1109/jproc.2012.2190369.
Wu, Bichen, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, and Yangqing Jia. 2019.
“FBNet: Hardware-aware
Efficient ConvNet Design via Differentiable Neural
Architecture Search.” In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 10734–42. IEEE. https://doi.org/10.1109/cvpr.2019.01099.
Wu, Carole-Jean, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury,
Marat Dukhan, Kim Hazelwood, et al. 2019. “Machine Learning at
Facebook: Understanding Inference at the Edge.” In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 331–44. IEEE; IEEE. https://doi.org/10.1109/hpca.2019.00048.
Wu, Carole-Jean, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha
Ardalani, Kiwan Maeng, Gloria Chang, et al. 2022. “Sustainable Ai:
Environmental Implications, Challenges and
Opportunities.” Proceedings of Machine Learning and
Systems 4: 795–813.
Wu, Zhang Judd, and Micikevicius Isaev. 2020. “Integer
Quantization for Deep Learning Inference: Principles and
Empirical Evaluation).” ArXiv Preprint. https://arxiv.org/abs/2004.09602.
Xiao, Seznec Lin, Demouth Wu, and Han. 2022.
“SmoothQuant: Accurate and Efficient
Post-Training Quantization for Large Language Models.” ArXiv
Preprint. https://arxiv.org/abs/2211.10438.
Xie, Cihang, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and
Quoc V. Le. 2020. “Adversarial Examples Improve Image
Recognition.” In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 816–25. IEEE. https://doi.org/10.1109/cvpr42600.2020.00090.
Xie, Saining, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He.
2017. “Aggregated Residual Transformations for Deep Neural
Networks.” In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 1492–1500. IEEE. https://doi.org/10.1109/cvpr.2017.634.
Xinyu, Chen. n.d.
Xiong, Siyu, Guoqing Wu, Xitian Fan, Xuan Feng, Zhongcheng Huang, Wei
Cao, Xuegong Zhou, et al. 2021. “MRI-Based Brain
Tumor Segmentation Using FPGA-Accelerated Neural
Network.” BMC Bioinf. 22 (1): 421. https://doi.org/10.1186/s12859-021-04347-6.
Xiu, Liming. 2019. “Time Moore: Exploiting Moore’s Law from the Perspective of Time.”
IEEE Solid-State Circuits Mag. 11 (1): 39–55. https://doi.org/10.1109/mssc.2018.2882285.
Xu, Chen, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong
Wang, and Hongbin Zha. 2018. “Alternating Multi-Bit Quantization
for Recurrent Neural Networks.” In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=S19dR9x0b.
Xu, Hu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes,
Vasu Sharma, Shang-Wen Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph
Feichtenhofer. 2023. “Demystifying CLIP Data.” ArXiv
Preprint abs/2309.16671 (September). http://arxiv.org/abs/2309.16671v4.
Xu, Zheng, Yanxiang Zhang, Galen Andrew, Christopher A. Choquette-Choo,
Peter Kairouz, H. Brendan McMahan, Jesse Rosenstock, and Yuanbo Zhang.
2023. “Federated Learning of Gboard Language Models with
Differential Privacy.” ArXiv Preprint abs/2305.18465
(May). http://arxiv.org/abs/2305.18465v2.
Yang, Tien-Ju, Yonghui Xiao, Giovanni Motta, Françoise Beaufays, Rajiv
Mathews, and Mingqing Chen. 2023. “Online Model Compression for
Federated Learning with Large Models.” In ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 1–5. IEEE; IEEE. https://doi.org/10.1109/icassp49357.2023.10097124.
Yao, Zhewei, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric
Tan, Leyuan Wang, et al. 2021. “Hawq-V3: Dyadic
Neural Network Quantization.” In International Conference on
Machine Learning, 11875–86. PMLR.
Yeh, Y. C. 1996. “Triple-Triple Redundant 777 Primary Flight
Computer.” In 1996 IEEE Aerospace Applications Conference.
Proceedings, 1:293–307. IEEE; IEEE. https://doi.org/10.1109/aero.1996.495891.
Yik, Jason, Korneel Van den Berghe, Douwe den Blanken, Younes Bouhadjar,
Maxime Fabre, Paul Hueber, Denis Kleyko, et al. 2023. “NeuroBench:
A Framework for Benchmarking Neuromorphic Computing Algorithms and
Systems,” April. http://arxiv.org/abs/2304.04640v3.
You, Jie, Jae-Won Chung, and Mosharaf Chowdhury. 2023. “Zeus:
Understanding and Optimizing GPU Energy
Consumption of DNN Training.” In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23),
119–39. Boston, MA: USENIX Association. https://www.usenix.org/conference/nsdi23/presentation/you.
You, Yang, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer.
2017. “ImageNet Training in Minutes,” September. http://arxiv.org/abs/1709.05011v10.
Young, Tom, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
“Recent Trends in Deep Learning Based Natural Language Processing
[Review Article].” IEEE Comput. Intell.
Mag. 13 (3): 55–75. https://doi.org/10.1109/mci.2018.2840738.
Zafrir, Ofir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019.
“Q8BERT: Quantized 8Bit
BERT.” In 2019 Fifth Workshop on Energy
Efficient Machine Learning and Cognitive Computing - NeurIPS Edition
(EMC2-NIPS), 36–39. IEEE; IEEE. https://doi.org/10.1109/emc2-nips53020.2019.00016.
Zeiler, Matthew D. 2012. “ADADELTA: An Adaptive Learning Rate
Method,” December, 119–49. https://doi.org/10.1002/9781118266502.ch6.
Zennaro, Marco, Brian Plancher, and V Janapa Reddi. 2022.
“TinyML: Applied AI for
Development.” In The UN 7th Multi-Stakeholder Forum on
Science, Technology and Innovation for the Sustainable Development
Goals, 2022–05.
Zhang, Chengliang, Minchen Yu, Wei Wang 0030, and Feng Yan 0001. 2019.
“MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware
Machine Learning Inference Serving.” In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 1049–62. https://www.usenix.org/conference/atc19/presentation/zhang-chengliang.
Zhang, Chen, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Optimizing Cong. 2015. “FPGA-Based Accelerator Design
for Deep Convolutional Neural Networks Proceedings of the 2015
ACM.” In SIGDA International Symposium on
Field-Programmable Gate Arrays-FPGA, 15:161–70.
Zhang, Dan, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna
Goldie, and Azalia Mirhoseini. 2022. “A Full-Stack Search
Technique for Domain Optimized Deep Learning Accelerators.” In
Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, 27–42. ASPLOS ’22. New York, NY, USA: ACM. https://doi.org/10.1145/3503222.3507767.
Zhang, Dongxia, Xiaoqing Han, and Chunyu Deng. 2018. “Review on
the Research and Practice of Deep Learning and Reinforcement Learning in
Smart Grids.” CSEE Journal of Power and Energy Systems 4
(3): 362–70. https://doi.org/10.17775/cseejpes.2018.00520.
Zhang, Hongyu. 2008. “On the Distribution of Software
Faults.” IEEE Trans. Software Eng. 34 (2): 301–2. https://doi.org/10.1109/tse.2007.70771.
Zhang, Jeff Jun, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018.
“Analyzing and Mitigating the Impact of Permanent Faults on a
Systolic Array Based Neural Network Accelerator.” In 2018
IEEE 36th VLSI Test Symposium (VTS), 1–6. IEEE; IEEE. https://doi.org/10.1109/vts.2018.8368656.
Zhang, Jeff, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg. 2018.
“ThUnderVolt: Enabling Aggressive
Voltage Underscaling and Timing Error Resilience for Energy Efficient
Deep Learning Accelerators.” In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 1–6. IEEE. https://doi.org/10.1109/dac.2018.8465918.
Zhang, Li Lyna, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu.
2020. “Fast Hardware-Aware Neural Architecture Search.” In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW). IEEE. https://doi.org/10.1109/cvprw50498.2020.00354.
Zhang, Qingxue, Dian Zhou, and Xuan Zeng. 2017. “Highly Wearable
Cuff-Less Blood Pressure and Heart Rate Monitoring with Single-Arm
Electrocardiogram and Photoplethysmogram Signals.” BioMedical
Engineering OnLine 16 (1): 23. https://doi.org/10.1186/s12938-017-0317-z.
Zhang, Tunhou, Hsin-Pai Cheng, Zhenwen Li, Feng Yan, Chengyu Huang, Hai
Helen Li, and Yiran Chen. 2020. “AutoShrink:
A Topology-Aware NAS for Discovering Efficient
Neural Architecture.” In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, the Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, the Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, 6829–36. AAAI Press.
https://aaai.org/ojs/index.php/AAAI/article/view/6163.
Zhao, Mark, and G. Edward Suh. 2018. “FPGA-Based Remote Power
Side-Channel Attacks.” In 2018 IEEE Symposium on Security and
Privacy (SP), 229–44. IEEE; IEEE. https://doi.org/10.1109/sp.2018.00049.
Zhao, Yue, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. 2018. “Federated Learning with Non-IID Data.”
ArXiv Preprint abs/1806.00582 (June). http://arxiv.org/abs/1806.00582v2.
Zhou, Bolei, Yiyou Sun, David Bau, and Antonio Torralba. 2018.
“Interpretable Basis Decomposition for Visual Explanation.”
In Proceedings of the European Conference on Computer Vision
(ECCV), 119–34.
Zhou, Chuteng, Fernando Garcia Redondo, Julian Büchel, Irem Boybat,
Xavier Timoneda Comas, S. R. Nandakumar, Shidhartha Das, Abu Sebastian,
Manuel Le Gallo, and Paul N. Whatmough. 2021.
“AnalogNets: Ml-hw
Co-Design of Noise-Robust TinyML Models and Always-on
Analog Compute-in-Memory Accelerator.” https://arxiv.org/abs/2111.06503.
Zhou, Peng, Xintong Han, Vlad I. Morariu, and Larry S. Davis. 2018.
“Learning Rich Features for Image Manipulation Detection.”
In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1053–61. IEEE. https://doi.org/10.1109/cvpr.2018.00116.
Zhu, Hongyu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand
Jayarajan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko.
2018. “Benchmarking and Analyzing Deep Neural Network
Training.” In 2018 IEEE International Symposium on Workload
Characterization (IISWC), 88–100. IEEE; IEEE. https://doi.org/10.1109/iiswc.2018.8573476.
Zhu, Ligeng, Lanxiang Hu, Ji Lin, Wei-Ming Chen, Wei-Chen Wang, Chuang
Gan, and Song Han. 2023. “PockEngine:
Sparse and Efficient Fine-Tuning in a Pocket.” In
56th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM. https://doi.org/10.1145/3613424.3614307.
Zhuang, Fuzhen, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2021. “A Comprehensive Survey on
Transfer Learning.” Proceedings of the IEEE 109 (1):
43–76. https://doi.org/10.1109/jproc.2020.3004555.
Zoph, Barret, and Quoc V. Le. 2016. “Neural Architecture Search
with Reinforcement Learning,” November, 367–92. https://doi.org/10.1002/9781394217519.ch17.