References
0003, Mu Li, David G. Andersen, Alexander J. Smola, and Kai Yu. 2014.
“Communication Efficient Distributed Machine Learning with the
Parameter Server.” In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, edited by Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, 19–27. https://proceedings.neurips.cc/paper/2014/hash/1ff1de774005f8da13f42943881c655f-Abstract.html.
0003, Song Han, Jeff Pool, John Tran, and William J. Dally. 2015.
“Learning Both Weights and Connections for Efficient Neural
Networks.” CoRR. http://arxiv.org/abs/1506.02626.
Abadi, Martín, Ashish Agarwal, Paul Barham, et al. 2015.
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems.” Google Brain.
Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, et al. 2016. “TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems.” arXiv Preprint arXiv:1603.04467, March. http://arxiv.org/abs/1603.04467v2.
Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, et al. 2016. “TensorFlow: A System
for Large-Scale Machine Learning.” In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 265–83.
USENIX Association. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.
Abadi, Martin, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. 2016. “Deep Learning with
Differential Privacy.” In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 308–18. CCS
’16. New York, NY, USA: ACM. https://doi.org/10.1145/2976749.2978318.
Abdelkader, Ahmed, Michael J. Curry, Liam Fowl, Tom Goldstein, Avi
Schwarzschild, Manli Shu, Christoph Studer, and Chen Zhu. 2020.
“Headless Horseman: Adversarial Attacks on Transfer Learning
Models.” In ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 3087–91. IEEE.
https://doi.org/10.1109/icassp40776.2020.9053181.
Abdelkhalik, Hamdy, Yehia Arafa, Nandakishore Santhi, and Abdel-Hameed
A. Badawy. 2022. “Demystifying the Nvidia Ampere Architecture
Through Microbenchmarking and Instruction-Level Analysis.” In
2022 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE. https://doi.org/10.1109/hpec55821.2022.9926299.
Addepalli, Sravanti, B. S. Vivek, Arya Baburaj, Gaurang Sriramanan, and
R. Venkatesh Babu. 2020. “Towards Achieving Adversarial Robustness
by Enforcing Feature Consistency Across Bit Planes.” In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 1020–29. IEEE. https://doi.org/10.1109/cvpr42600.2020.00110.
Agarwal, Alekh, Alina Beygelzimer, Miroslav Dudík, John Langford, and
Hanna M. Wallach. 2018. “A Reductions Approach to Fair
Classification.” In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, edited by Jennifer G. Dy and Andreas
Krause, 80:60–69. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v80/agarwal18a.html.
Agrawal, Dakshi, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and
Berk Sunar. 2007. “Trojan Detection Using IC
Fingerprinting.” In 2007 IEEE Symposium on Security and
Privacy (SP ’07), 296–310. Springer; IEEE. https://doi.org/10.1109/sp.2007.36.
Ahmadilivani, Mohammad Hasan, Mahdi Taheri, Jaan Raik, Masoud
Daneshtalab, and Maksim Jenihhin. 2024. “A Systematic Literature
Review on Hardware Reliability Assessment Methods for Deep Neural
Networks.” ACM Computing Surveys 56 (6): 1–39. https://doi.org/10.1145/3638242.
Ahmed, Reyan, Greg Bodwin, Keaton Hamm, Stephen Kobourov, and Richard
Spence. 2021. “On Additive Spanners in Weighted Graphs with Local
Error.” arXiv Preprint arXiv:2103.09731 64 (12): 58–65.
https://doi.org/10.1145/3467017.
Akidau, Tyler, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael
J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, et al. 2015. “The
Dataflow Model: A Practical Approach to Balancing Correctness, Latency,
and Cost in Massive-Scale, Unbounded, Out-of-Order Data
Processing.” Proceedings of the VLDB Endowment 8 (12):
1792–1803. https://doi.org/10.14778/2824032.2824076.
Alghamdi, Wael, Hsiang Hsu, Haewon Jeong, Hao Wang 0063, Peter Michalák,
Shahab Asoodeh, and Flávio P. Calmon. 2022. “Beyond Adult and
COMPAS: Fair Multi-Class Prediction via Information Projection.”
In NeurIPS, 35:38747–60. http://papers.nips.cc/paper_files/paper/2022/hash/fd5013ea0c3f96931dec77174eaf9d80-Abstract-Conference.html.
Altayeb, Moez, Marco Zennaro, and Marcelo Rovai. 2022.
“Classifying Mosquito Wingbeat Sound Using TinyML.” In
Proceedings of the 2022 ACM Conference on Information Technology for
Social Good, 132–37. ACM. https://doi.org/10.1145/3524458.3547258.
Amershi, Saleema, Andrew Begel, Christian Bird, Robert DeLine, Harald
Gall, Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas
Zimmermann. 2019. “Software Engineering for Machine Learning: A
Case Study.” In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 291–300. IEEE. https://doi.org/10.1109/icse-seip.2019.00042.
Amiel, Frederic, Christophe Clavier, and Michael Tunstall. 2006.
“Fault Analysis of DPA-Resistant Algorithms.” In Fault
Diagnosis and Tolerance in Cryptography, 223–36. Springer; Springer
Berlin Heidelberg. https://doi.org/10.1007/11889700\_20.
Amodei, Dario, Danny Hernandez, et al. 2018. “AI and
Compute.” OpenAI Blog. https://openai.com/research/ai-and-compute.
Andrae, Anders, and Tomas Edler. 2015. “On Global Electricity
Usage of Communication Technology: Trends to 2030.”
Challenges 6 (1): 117–57. https://doi.org/10.3390/challe6010117.
Anthony, Lasse F. Wolff, Benjamin Kanding, and Raghavendra Selvan. 2020.
ICML Workshop on Challenges in Deploying and monitoring Machine Learning
Systems.
Antonakakis, Manos, Tim April, Michael Bailey, Matt Bernhard, Elie
Bursztein, Jaime Cochran, Zakir Durumeric, et al. 2017.
“Understanding the Mirai Botnet.” In 26th USENIX
Security Symposium (USENIX Security 17), 1093–1110.
Ardila, Rosana, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer,
Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and
Gregor Weber. 2020. “Common Voice: A Massively-Multilingual Speech
Corpus.” In Proceedings of the Twelfth Language Resources and
Evaluation Conference, 4218–22. Marseille, France: European
Language Resources Association. https://aclanthology.org/2020.lrec-1.520.
Arifeen, Tooba, Abdus Sami Hassan, and Jeong-A Lee. 2020.
“Approximate Triple Modular Redundancy: A Survey.” IEEE
Access 8: 139851–67. https://doi.org/10.1109/access.2020.3012673.
Asonov, D., and R. Agrawal. n.d. “Keyboard Acoustic
Emanations.” In IEEE Symposium on Security and Privacy, 2004.
Proceedings. 2004, 3–11. IEEE; IEEE. https://doi.org/10.1109/secpri.2004.1301311.
Ateniese, Giuseppe, Luigi V. Mancini, Angelo Spognardi, Antonio Villani,
Domenico Vitali, and Giovanni Felici. 2015. “Hacking Smart
Machines with Smarter Ones: How to Extract Meaningful Data from Machine
Learning Classifiers.” International Journal of Security and
Networks 10 (3): 137. https://doi.org/10.1504/ijsn.2015.071829.
Attia, Zachi I., Alan Sugrue, Samuel J. Asirvatham, Michael J. Ackerman,
Suraj Kapa, Paul A. Friedman, and Peter A. Noseworthy. 2018.
“Noninvasive Assessment of Dofetilide Plasma Concentration Using a
Deep Learning (Neural Network) Analysis of the Surface
Electrocardiogram: A Proof of Concept Study.” PLOS ONE
13 (8): e0201059. https://doi.org/10.1371/journal.pone.0201059.
Aygun, Sercan, Ece Olcay Gunes, and Christophe De Vleeschouwer. 2021.
“Efficient and Robust Bitstream Processing in Binarised Neural
Networks.” Electronics Letters 57 (5): 219–22. https://doi.org/10.1049/ell2.12045.
Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016.
“Layer Normalization.” arXiv Preprint
arXiv:1607.06450, July. http://arxiv.org/abs/1607.06450v1.
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014. “Neural
Machine Translation by Jointly Learning to Align and Translate.”
arXiv Preprint arXiv:1409.0473, September. http://arxiv.org/abs/1409.0473v7.
Bai, Tao, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. 2021.
“Recent Advances in Adversarial Training for Adversarial
Robustness.” arXiv Preprint arXiv:2102.01356, February.
http://arxiv.org/abs/2102.01356v5.
Bamoumen, Hatim, Anas Temouden, Nabil Benamar, and Yousra Chtouki. 2022.
“How TinyML Can Be Leveraged to Solve Environmental Problems: A
Survey.” In 2022 International Conference on Innovation and
Intelligence for Informatics, Computing, and Technologies (3ICT),
338–43. IEEE; IEEE. https://doi.org/10.1109/3ict56508.2022.9990661.
Banbury, Colby R., Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel,
Jeremy Holleman, Xinyuan Huang, et al. 2020. “Benchmarking TinyML
Systems: Challenges and Direction.” arXiv Preprint
arXiv:2003.04821. https://arxiv.org/abs/2003.04821.
Banbury, Colby, Emil Njor, Andrea Mattia Garavagno, Matthew Stewart,
Pete Warden, Manjunath Kudlur, Nat Jeffries, Xenofon Fafoutis, and Vijay
Janapa Reddi. 2024. “Wake Vision: A Tailored Dataset and Benchmark
Suite for TinyML Computer Vision Applications,” May. http://arxiv.org/abs/2405.00892v4.
Banbury, Colby, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat
Jeffries, Csaba Kiraly, Pietro Montino, et al. 2021. “MLPerf Tiny
Benchmark.” arXiv Preprint arXiv:2106.07597, June. http://arxiv.org/abs/2106.07597v4.
Bannon, Pete, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes.
2019. “Computer and Redundancy Solution for the Full Self-Driving
Computer.” In 2019 IEEE Hot Chips 31 Symposium (HCS),
1–22. IEEE Computer Society; IEEE. https://doi.org/10.1109/hotchips.2019.8875645.
Baraglia, David, and Hokuto Konno. 2019. “On the Bauer-Furuta and
Seiberg-Witten Invariants of Families of 4-Manifolds.” arXiv Preprint
arXiv:1903.01649, March, 8955–67. http://arxiv.org/abs/1903.01649v3.
Bardenet, Rémi, Olivier Cappé, Gersende Fort, and Balázs Kégl. 2015.
“Adaptive MCMC with Online Relabeling.” Bernoulli
21 (3). https://doi.org/10.3150/13-bej578.
Barenghi, Alessandro, Guido M. Bertoni, Luca Breveglieri, Mauro
Pellicioli, and Gerardo Pelosi. 2010. “Low Voltage Fault Attacks
to AES.” In 2010 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 7–12. IEEE; IEEE. https://doi.org/10.1109/hst.2010.5513121.
Barroso, Luiz André, Jimmy Clidaras, and Urs Hölzle. 2013. The
Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines. Springer International Publishing. https://doi.org/10.1007/978-3-031-01741-4.
Barroso, Luiz André, and Urs Hölzle. 2007a. “The Case for
Energy-Proportional Computing.” Computer 40 (12): 33–37.
https://doi.org/10.1109/mc.2007.443.
———. 2007b. “The Case for Energy-Proportional Computing.”
Computer 40 (12): 33–37. https://doi.org/10.1109/mc.2007.443.
Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. 2019.
The Datacenter as a Computer: Designing Warehouse-Scale
Machines. Springer International Publishing. https://doi.org/10.1007/978-3-031-01761-2.
Bau, David, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. “Network Dissection: Quantifying Interpretability of Deep
Visual Representations.” In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 3319–27. IEEE. https://doi.org/10.1109/cvpr.2017.354.
Baydin, Atilim Gunes, Barak A. Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. 2017a. “Automatic Differentiation in
Machine Learning: A Survey.” J. Mach. Learn. Res. 18:
153:1–43. https://jmlr.org/papers/v18/17-468.html.
———. 2017b. “Automatic Differentiation in Machine Learning: A
Survey.” J. Mach. Learn. Res. 18 (153): 153:1–43. https://jmlr.org/papers/v18/17-468.html.
Beaton, Albert E., and John W. Tukey. 1974. “The Fitting of Power
Series, Meaning Polynomials, Illustrated on Band-Spectroscopic
Data.” Technometrics 16 (2): 147. https://doi.org/10.2307/1267936.
Beck, Nathaniel, and Simon Jackman. 1998. “Beyond Linearity by
Default: Generalized Additive Models.” American Journal of
Political Science 42 (2): 596. https://doi.org/10.2307/2991772.
Bedford Taylor, Michael. 2017. “The Evolution of Bitcoin
Hardware.” Computer 50 (9): 58–66. https://doi.org/10.1109/mc.2017.3571056.
Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. “On the Dangers of Stochastic Parrots: Can
Language Models Be Too Big? 🦜.” In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency,
610–23. ACM. https://doi.org/10.1145/3442188.3445922.
Bengio, Emmanuel, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup.
2015. “Conditional Computation in Neural Networks for Faster
Models.” arXiv Preprint arXiv:1511.06297, November. http://arxiv.org/abs/1511.06297v2.
Bengio, Yoshua, Nicholas Léonard, and Aaron Courville. 2013a.
“Estimating or Propagating Gradients Through Stochastic Neurons
for Conditional Computation.” arXiv Preprint, August. http://arxiv.org/abs/1308.3432v1.
———. 2013b. “Estimating or Propagating Gradients Through
Stochastic Neurons for Conditional Computation.” arXiv
Preprint arXiv:1308.3432, August. http://arxiv.org/abs/1308.3432v1.
Ben-Nun, Tal, and Torsten Hoefler. 2019. “Demystifying Parallel
and Distributed Deep Learning: An in-Depth Concurrency Analysis.”
ACM Computing Surveys 52 (4): 1–43. https://doi.org/10.1145/3320060.
Berger, Vance W., and YanYan Zhou. 2014. “Kolmogorov–Smirnov Test:
Overview.” Wiley Statsref: Statistics Reference Online.
Wiley. https://doi.org/10.1002/9781118445112.stat06558.
Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley,
and Yoshua Bengio. 2010. “Theano: A CPU and GPU Math Compiler in
Python.” In Proceedings of the 9th Python in Science
Conference, 4:18–24. 1. SciPy. https://doi.org/10.25080/majora-92bf1922-003.
Beyer, Lucas, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and
Aäron van den Oord. 2020. “Are We Done with ImageNet?”
arXiv Preprint arXiv:2006.07159, June. http://arxiv.org/abs/2006.07159v1.
Bhagoji, Arjun Nitin, Warren He, Bo Li, and Dawn Song. 2018.
“Practical Black-Box Attacks on Deep Neural Networks Using
Efficient Query Mechanisms.” In Computer Vision – ECCV
2018, 158–74. Springer International Publishing. https://doi.org/10.1007/978-3-030-01258-8_10.
Bhamra, Ran, Adrian Small, Christian Hicks, and Olimpia Pilch. 2024.
“Impact Pathways: Geopolitics, Risk and Ethics in Critical
Minerals Supply Chains.” International Journal of Operations
&Amp; Production Management, September. https://doi.org/10.1108/ijopm-03-2024-0228.
Biega, Asia J., Peter Potash, Hal Daumé, Fernando Diaz, and Michèle
Finck. 2020. “Operationalizing the Legal Principle of Data
Minimization for Personalization.” In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, edited by Jimmy Huang, Yi Chang, Xueqi
Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, 399–408.
ACM. https://doi.org/10.1145/3397271.3401034.
Biggio, Battista, Blaine Nelson, and Pavel Laskov. 2012.
“Poisoning Attacks Against Support Vector Machines.” In
Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1,
2012. icml.cc / Omnipress. http://icml.cc/2012/papers/880.pdf.
Bishop, Christopher M. 2006. Pattern Recognition and Machine
Learning. Springer.
Blackwood, Jayden, Frances C. Wright, Nicole J. Look Hong, and Anna R.
Gagliardi. 2019. “Quality of DCIS Information on the Internet: A
Content Analysis.” Breast Cancer Research and Treatment
177 (2): 295–305. https://doi.org/10.1007/s10549-019-05315-8.
Bohr, Adam, and Kaveh Memarzadeh. 2020. “The Rise of Artificial
Intelligence in Healthcare Applications.” In Artificial
Intelligence in Healthcare, 25–60. Elsevier. https://doi.org/10.1016/b978-0-12-818438-7.00002-2.
Bolchini, Cristiana, Luca Cassano, Antonio Miele, and Alessandro Toschi.
2023. “Fast and Accurate Error Simulation for CNNs Against Soft
Errors.” IEEE Transactions on Computers 72 (4): 984–97.
https://doi.org/10.1109/tc.2022.3184274.
Bondi, Elizabeth, Ashish Kapoor, Debadeepta Dey, James Piavis, Shital
Shah, Robert Hannaford, Arvind Iyer, Lucas Joppa, and Milind Tambe.
2018. “Near Real-Time Detection of Poachers from Drones in
AirSim.” In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, edited by Jérôme Lang,
5814–16. International Joint Conferences on Artificial Intelligence
Organization. https://doi.org/10.24963/ijcai.2018/847.
Bourtoule, Lucas, Varun Chandrasekaran, Christopher A. Choquette-Choo,
Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas
Papernot. 2021. “Machine Unlearning.” In 2021 IEEE
Symposium on Security and Privacy (SP), 141–59. IEEE; IEEE. https://doi.org/10.1109/sp40001.2021.00019.
Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, et al. 2018. “JAX:
Composable Transformations of Python+NumPy Programs.” http://github.com/google/jax.
Brain, Google. 2020. “XLA: Optimizing Compiler for Machine
Learning.” TensorFlow Blog. https://tensorflow.org/xla.
———. 2022. TensorFlow Documentation. https://www.tensorflow.org/.
Breier, Jakub, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang
Liu. 2018. “DeepLaser: Practical Fault Attack on Deep Neural
Networks.” ArXiv Preprint abs/1806.05859 (June). http://arxiv.org/abs/1806.05859v2.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
and et al. 2020. “Language Models Are Few-Shot Learners.”
Advances in Neural Information Processing Systems (NeurIPS) 33:
1877–1901.
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, et al. 2020. “Language
Models Are Few-Shot Learners.” arXiv Preprint
arXiv:2005.14165, May. http://arxiv.org/abs/2005.14165v4.
Brynjolfsson, Erik, and Andrew McAfee. 2014. The Second Machine Age:
Work, Progress, and Prosperity in a Time of Brilliant Technologies, 1st
Edition. W. W. Norton Company.
Buolamwini, Joy, and Timnit Gebru. 2018a. “Gender Shades:
Intersectional Accuracy Disparities in Commercial Gender
Classification.” In Conference on Fairness, Accountability
and Transparency, 77–91. PMLR. http://proceedings.mlr.press/v81/buolamwini18a.html.
———. 2018b. “Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification.” In Conference on Fairness,
Accountability and Transparency, 77–91. PMLR. http://proceedings.mlr.press/v81/buolamwini18a.html.
Burnet, David, and Richard Thomas. 1989. “Spycatcher: The
Commodification of Truth.” Journal of Law and Society 16
(2): 210. https://doi.org/10.2307/1410360.
Bushnell, Michael L, and Vishwani D Agrawal. 2002. “Built-in
Self-Test.” Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits, 489–548.
Buyya, Rajkumar, Anton Beloglazov, and Jemal Abawajy. 2010.
“Energy-Efficient Management of Data Center Resources for Cloud
Computing: A Vision, Architectural Elements, and Open
Challenges,” June. http://arxiv.org/abs/1006.0308v1.
Cai, Carrie J., Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel
Smilkov, Martin Wattenberg, et al. 2019. “Human-Centered Tools for
Coping with Imperfect Algorithms During Medical Decision-Making.”
In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, edited by Jennifer G. Dy and Andreas Krause,
80:1–14. Proceedings of Machine Learning Research. ACM. https://doi.org/10.1145/3290605.3300234.
Cai, Han, Chuang Gan, and Song Han. 2020. “Once-for-All: Train One
Network and Specialize It for Efficient Deployment.” In
International Conference on Learning Representations.
Cai, Han, Chuang Gan, Ligeng Zhu, and Song Han 0003. 2020.
“TinyTL: Reduce Memory, Not Parameters for Efficient on-Device
Learning.” In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, Virtual, edited by Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin. https://proceedings.neurips.cc/paper/2020/hash/81f7acabd411274fcf65ce2070ed568a-Abstract.html.
Calvo, Rafael A., Dorian Peters, Karina Vold, and Richard M. Ryan. 2020.
“Supporting Human Autonomy in AI Systems: A Framework for Ethical
Enquiry.�� In Ethics of Digital Well-Being, 31–54.
Springer International Publishing. https://doi.org/10.1007/978-3-030-50585-1_2.
Carlini, Nicolas, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash
Sehwag, Florian Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace.
2023. “Extracting Training Data from Diffusion Models.” In
32nd USENIX Security Symposium (USENIX Security 23), 5253–70.
Carta, Salvatore, Alessandro Sebastian Podda, Diego Reforgiato Recupero,
and Roberto Saia. 2020. “A Local Feature Engineering Strategy to
Improve Network Anomaly Detection.” Future Internet 12
(10): 177. https://doi.org/10.3390/fi12100177.
Cavoukian, Ann. 2009. “Privacy by Design.” Office of
the Information and Privacy Commissioner.
Cenci, Marcelo Pilotto, Tatiana Scarazzato, Daniel Dotto Munchen, Paula
Cristina Dartora, Hugo Marcelo Veit, Andrea Moura Bernardes, and Pablo
R. Dias. 2021. “Eco‐friendly Electronics—a Comprehensive
Review.” Advanced Materials Technologies 7 (2): 2001263.
https://doi.org/10.1002/admt.202001263.
Chandola, Varun, Arindam Banerjee, and Vipin Kumar. 2009. “Anomaly
Detection: A Survey.” ACM Computing Surveys 41 (3):
1–58. https://doi.org/10.1145/1541880.1541882.
Chapelle, O., B. Scholkopf, and A. Zien Eds. 2009.
“Semi-Supervised Learning (Chapelle, o. Et Al., Eds.; 2006) [Book
Reviews].” IEEE Transactions on Neural Networks 20 (3):
542–42. https://doi.org/10.1109/tnn.2009.2015974.
Chen, Chaofan, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan Su. 2019. “This Looks Like That: Deep Learning for
Interpretable Image Recognition.” In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, edited by Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, 8928–39. https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html.
Chen, Emma, Shvetank Prakash, Vijay Janapa Reddi, David Kim, and Pranav
Rajpurkar. 2023. “A Framework for Integrating Artificial
Intelligence for Clinical Care with Continuous Therapeutic
Monitoring.” Nature Biomedical Engineering, November. https://doi.org/10.1038/s41551-023-01115-0.
Chen, H.-W. 2006. “Gallium, Indium, and Arsenic Pollution of
Groundwater from a Semiconductor Manufacturing Area of Taiwan.”
Bulletin of Environmental Contamination and Toxicology 77 (2):
289–96. https://doi.org/10.1007/s00128-006-1062-3.
Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, et al. 2021.
“Evaluating Large Language Models Trained on Code.”
arXiv Preprint arXiv:2107.03374, July. http://arxiv.org/abs/2107.03374v2.
Chen, Mia Xu, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang
Macherey, George Foster, Llion Jones, et al. 2018. “The Best of
Both Worlds: Combining Recent Advances in Neural Machine
Translation.” In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), 30:5998–6008. Association for Computational Linguistics.
https://doi.org/10.18653/v1/p18-1008.
Chen, Tianqi, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015.
“MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems.” arXiv Preprint
arXiv:1512.01274, December. http://arxiv.org/abs/1512.01274v1.
Chen, Tianqi, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, et al. 2018. “TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning.” In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), 578–94.
Chen, Tianqi, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016.
“Training Deep Nets with Sublinear Memory Cost.”
CoRR abs/1604.06174 (April). http://arxiv.org/abs/1604.06174v2.
Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. 2017. “Eyeriss: A
Spatial Architecture for Energy-Efficient Dataflow for Convolutional
Neural Networks.” IEEE Micro, 1–1. https://doi.org/10.1109/mm.2017.265085944.
Chen, Yu-Hsin, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2016.
“Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks.” IEEE Journal of Solid-State
Circuits 51 (1): 186–98. https://doi.org/10.1109/JSSC.2015.2488709.
Chen, Zhiyong, and Shugong Xu. 2023. “Learning
Domain-Heterogeneous Speaker Recognition Systems with Personalized
Continual Federated Learning.” EURASIP Journal on Audio,
Speech, and Music Processing 2023 (1): 33. https://doi.org/10.1186/s13636-023-00299-2.
Chen, Zitao, Guanpeng Li, Karthik Pattabiraman, and Nathan DeBardeleben.
2019. “<I>BinFI</i>: An Efficient Fault Injector for
Safety-Critical Machine Learning Systems.” In Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, 1–23. SC ’19. New York, NY, USA: ACM. https://doi.org/10.1145/3295500.3356177.
Chen, Zitao, Niranjhana Narayanan, Bo Fang, Guanpeng Li, Karthik
Pattabiraman, and Nathan DeBardeleben. 2020. “TensorFI: A Flexible
Fault Injection Framework for TensorFlow Applications.” In
2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), 426–35. IEEE; IEEE. https://doi.org/10.1109/issre5003.2020.00047.
Cheng, Eric, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher,
Hyungmin Cho, Kevin Skadron, Mircea R. Stan, et al. 2016. “CLEAR:
<U>c</u> Ross <u>-l</u> Ayer
<u>e</u> Xploration for <u>a</u> Rchitecting
<u>r</u> Esilience - Combining Hardware and Software
Techniques to Tolerate Soft Errors in Processor Cores.” In
Proceedings of the 53rd Annual Design Automation Conference,
1–6. ACM. https://doi.org/10.1145/2897937.2897996.
Cheng, Yu et al. 2022. “Memory-Efficient Deep Learning: Advances
in Model Compression and Sparsification.” ACM Computing
Surveys.
Chetlur, Sharan, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. “cuDNN:
Efficient Primitives for Deep Learning.” arXiv Preprint
arXiv:1410.0759, October. http://arxiv.org/abs/1410.0759v3.
Cho, Kyunghyun, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. 2014. “On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches.” In Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation (SSST-8),
103–11. Association for Computational Linguistics.
Choi, Jungwook, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. 2018. “PACT:
Parameterized Clipping Activation for Quantized Neural Networks.”
arXiv Preprint, May. http://arxiv.org/abs/1805.06085v2.
Chollet, François et al. 2015. “Keras.” GitHub
Repository. https://github.com/fchollet/keras.
Chollet, François. 2018. “Introduction to Keras.” March
9th.
Choudhary, Tejalal, Vipul Mishra, Anurag Goswami, and Jagannathan
Sarangapani. 2020. “A Comprehensive Survey on Model Compression
and Acceleration.” Artificial Intelligence Review 53:
5113–55. https://doi.org/10.1007/s10462-020-09816-7.
Chowdhery, Aakanksha, Anatoli Noy, Gaurav Misra, Zhuyun Dai, Quoc V. Le,
and Jeff Dean. 2021. “Edge TPU: An Edge-Optimized Inference
Accelerator for Deep Learning.” In International Symposium on
Computer Architecture.
Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg,
and Dario Amodei. 2017. “Deep Reinforcement Learning from Human
Preferences.” In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, edited by Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S.
V. N. Vishwanathan, and Roman Garnett, 4299–4307. https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.
Chu, Grace, Okan Arikan, Gabriel Bender, Weijun Wang, Achille Brighton,
Pieter-Jan Kindermans, Hanxiao Liu, Berkin Akin, Suyog Gupta, and Andrew
Howard. 2021. “Discovering Multi-Hardware Mobile Models via
Architecture Search.” In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 3016–25. IEEE. https://doi.org/10.1109/cvprw53098.2021.00337.
Chua, L. 1971. “Memristor-the Missing Circuit Element.”
IEEE Transactions on Circuit Theory 18 (5): 507–19. https://doi.org/10.1109/tct.1971.1083337.
Chung, Jae-Won, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, and
Mosharaf Chowdhury. 2023. “Reducing Energy Bloat in Large Model
Training.” ArXiv Preprint abs/2312.06902 (December). http://arxiv.org/abs/2312.06902v3.
Cohen, Maxime C., Ruben Lobel, and Georgia Perakis. 2016. “The
Impact of Demand Uncertainty on Consumer Subsidies for Green Technology
Adoption.” Management Science 62 (5): 1235–58. https://doi.org/10.1287/mnsc.2015.2173.
Coleman, Cody, Edward Chou, Julian Katz-Samuels, Sean Culatana, Peter
Bailis, Alexander C. Berg, Robert Nowak, Roshan Sumbaly, Matei Zaharia,
and I. Zeki Yalniz. 2022. “Similarity Search for Efficient Active
Learning and Search of Rare Concepts.” Proceedings of the
AAAI Conference on Artificial Intelligence 36 (6): 6402–10. https://doi.org/10.1609/aaai.v36i6.20591.
Constantinescu, Cristian. 2008. “Intermittent Faults and Effects
on Reliability of Integrated Circuits.” In 2008 Annual
Reliability and Maintainability Symposium, 370–74. IEEE; IEEE. https://doi.org/10.1109/rams.2008.4925824.
Contro, Filippo, Marco Crosara, Mariano Ceccato, and Mila Dalla Preda.
2021. “EtherSolve: Computing an Accurate Control-Flow Graph from
Ethereum Bytecode.” arXiv Preprint arXiv:2103.09113,
March. http://arxiv.org/abs/2103.09113v1.
Cooper, Tom, Suzanne Fallender, Joyann Pafumi, Jon Dettling, Sebastien
Humbert, and Lindsay Lessard. 2011. “A Semiconductor Company’s
Examination of Its Water Footprint Approach.” In Proceedings
of the 2011 IEEE International Symposium on Sustainable Systems and
Technology, 1–6. IEEE; IEEE. https://doi.org/10.1109/issst.2011.5936865.
Cope, Gord. 2009. “Pure Water, Semiconductors and the
Recession.” Global Water Intelligence 10 (10).
Corporation, Intel. 2021. oneDNN: Intel’s Deep Learning Neural
Network Library. https://github.com/oneapi-src/oneDNN.
Corporation, NVIDIA. 2017. “GPU-Accelerated Machine Learning and
Deep Learning.” Technical Report.
———. 2021. NVIDIA cuDNN: GPU Accelerated Deep Learning. https://developer.nvidia.com/cudnn.
Corporation, Thinking Machines. 1992. CM-5 Technical Summary.
Thinking Machines Corporation.
Costa, Tiago, Chen Shi, Kevin Tien, and Kenneth L. Shepard. 2019.
“A CMOS 2D Transmit Beamformer with Integrated PZT Ultrasound
Transducers for Neuromodulation.” In 2019 IEEE Custom
Integrated Circuits Conference (CICC), 1–4. IEEE. https://doi.org/10.1109/cicc.2019.8780236.
Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David. 2016.
“BinaryConnect: Training Deep Neural Networks with Binary Weights
During Propagations.” Advances in Neural Information
Processing Systems (NeurIPS) 28: 3123–31.
Courbariaux, Matthieu, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. “Binarized Neural Networks: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or
-1.” arXiv Preprint arXiv:1602.02830, February. http://arxiv.org/abs/1602.02830v3.
Crankshaw, Daniel, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E
Gonzalez, and Ion Stoica. 2017. “Clipper: A {Low-Latency} Online Prediction Serving System.”
In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), 613–27.
Cui, Hongyi, Jiajun Li, and Peng et al. Xie. 2019. “A Survey on
Machine Learning Compilers: Taxonomy, Challenges, and Future
Directions.” ACM Computing Surveys 52 (4): 1–39.
Curnow, H. J. 1976. “A Synthetic Benchmark.” The
Computer Journal 19 (1): 43–49. https://doi.org/10.1093/comjnl/19.1.43.
Cybenko, G. 1992. “Approximation by Superpositions of a Sigmoidal
Function.” Mathematics of Control, Signals, and Systems
5 (4): 455–55. https://doi.org/10.1007/bf02134016.
D’Ignazio, Catherine, and Lauren F. Klein. 2020. “Seven
Intersectional Feminist Principles for Equitable and Actionable COVID-19
Data.” Big Data &Amp; Society 7 (2):
2053951720942544. https://doi.org/10.1177/2053951720942544.
Dally, William J., Stephen W. Keckler, and David B. Kirk. 2021.
“Evolution of the Graphics Processing Unit (GPU).” IEEE
Micro 41 (6): 42–51. https://doi.org/10.1109/mm.2021.3113475.
Darvish Rouhani, Bita, Azalia Mirhoseini, and Farinaz Koushanfar. 2017.
“TinyDL: Just-in-Time Deep Learning Solution for Constrained
Embedded Systems.” In 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 1–4. IEEE. https://doi.org/10.1109/iscas.2017.8050343.
Davarzani, Samaneh, David Saucier, Purva Talegaonkar, Erin Parker, Alana
Turner, Carver Middleton, Will Carroll, et al. 2023. “Closing the
Wearable Gap: Foot–Ankle Kinematic Modeling via Deep Learning Models
Based on a Smart Sock Wearable.” Wearable Technologies
4. https://doi.org/10.1017/wtc.2023.3.
David, Robert, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat
Jeffries, Jian Li, Nick Kreeger, et al. 2021. “Tensorflow Lite
Micro: Embedded Machine Learning for Tinyml Systems.”
Proceedings of Machine Learning and Systems 3: 800–811.
Davies, Martin. 2011. “Endangered Elements: Critical
Thinking.” In Study Skills for International
Postgraduates, 111–30. Macmillan Education UK. https://doi.org/10.1007/978-0-230-34553-9\_8.
Davies, Mike et al. 2021. “Advancing Neuromorphic Computing with
Sparse Networks.” Nature Electronics.
Davis, Jacqueline, Daniel Bizo, Andy Lawrence, Owen Rogers, and Max
Smolaks. 2022. “Uptime Institute Global Data Center Survey
2022.” Uptime Institute.
Dayarathna, Miyuru, Yonggang Wen, and Rui Fan. 2016. “Data Center
Energy Consumption Modeling: A Survey.” IEEE Communications
Surveys &Amp; Tutorials 18 (1): 732–94. https://doi.org/10.1109/comst.2015.2481183.
Dean, Jeffrey, and Sanjay Ghemawat. 2008. “MapReduce: Simplified
Data Processing on Large Clusters.” Communications of the
ACM 51 (1): 107–13. https://doi.org/10.1145/1327452.1327492.
Dean, Jeffrey, David Patterson, and Cliff Young. 2018. “A New
Golden Age in Computer Architecture: Empowering the Machine-Learning
Revolution.” IEEE Micro 38 (2): 21–29.
Deng, Jia, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009.
“ImageNet: A Large-Scale Hierarchical Image Database.” In
2009 IEEE Conference on Computer Vision and Pattern
Recognition, 248–55. Ieee; IEEE. https://doi.org/10.1109/cvprw.2009.5206848.
Deng, Li. 2012. “The MNIST Database of Handwritten Digit Images
for Machine Learning Research [Best of the Web].” IEEE Signal
Processing Magazine 29 (6): 141–42. https://doi.org/10.1109/msp.2012.2211477.
Desai, Tanvi, Felix Ritchie, Richard Welpton, et al. 2016. “Five
Safes: Designing Data Access for Research.” Economics Working
Paper Series 1601: 28.
Dettmers, Tim, and Luke Zettlemoyer. 2019. “Sparse Networks from
Scratch: Faster Training Without Losing Performance.” arXiv
Preprint arXiv:1907.04840, July. http://arxiv.org/abs/1907.04840v2.
Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018.
“BERT: Pre-Training of Deep Bidirectional Transformers for
Language Understanding,” October, 4171–86. http://arxiv.org/abs/1810.04805v2.
Dhar, Sauptik, Junyao Guo, Jiayi (Jason) Liu, Samarth Tripathi, Unmesh
Kurup, and Mohak Shah. 2021. “A Survey of on-Device Machine
Learning: An Algorithms and Learning Theory Perspective.” ACM
Transactions on Internet of Things 2 (3): 1–49. https://doi.org/10.1145/3450494.
Domingos, Pedro. 2016. “The Master Algorithm: How the Quest for
the Ultimate Learning Machine Will Remake Our World.” Choice
Reviews Online 53 (07): 53–3100. https://doi.org/10.5860/choice.194685.
Dongarra, Jack J., Jeremy Du Croz, Sven Hammarling, and Richard J.
Hanson. 1988. “An Extended Set of FORTRAN Basic Linear Algebra
Subprograms.” ACM Transactions on Mathematical Software
14 (1): 1–17. https://doi.org/10.1145/42288.42291.
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al.
2020. “An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” International Conference on Learning
Representations (ICLR), October. http://arxiv.org/abs/2010.11929v2.
Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, et al.
2021. “An Image Is Worth 16x16 Words: Transformers for Image
Recognition at Scale.” International Conference on Learning
Representations.
Duarte, Javier, Nhan Tran, Ben Hawks, Christian Herwig, Jules Muhizi,
Shvetank Prakash, and Vijay Janapa Reddi. 2022b. “FastML Science
Benchmarks: Accelerating Real-Time Scientific Edge Machine
Learning,” July. http://arxiv.org/abs/2207.07958v1.
———. 2022a. “FastML Science Benchmarks: Accelerating Real-Time
Scientific Edge Machine Learning.” arXiv Preprint
arXiv:2207.07958, July. http://arxiv.org/abs/2207.07958v1.
Duisterhof, Bardienus P., Shushuai Li, Javier Burgues, Vijay Janapa
Reddi, and Guido C. H. E. de Croon. 2021. “Sniffy Bug: A Fully
Autonomous Swarm of Gas-Seeking Nano Quadcopters in Cluttered
Environments.” In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 9099–9106. IEEE; IEEE. https://doi.org/10.1109/iros51168.2021.9636217.
Dwork, Cynthia. n.d. “Differential Privacy: A Survey of
Results.” In Theory and Applications of Models of
Computation, 1–19. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79228-4\_1.
Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006.
“Calibrating Noise to Sensitivity in Private Data
Analysis.” In Theory of Cryptography, edited by Shai
Halevi and Tal Rabin, 265–84. Berlin, Heidelberg: Springer Berlin
Heidelberg. https://doi.org/10.1007/11681878\_14.
Dwork, Cynthia, and Aaron Roth. 2013. “The Algorithmic Foundations
of Differential Privacy.” Foundations and Trends® in
Theoretical Computer Science 9 (3-4): 211–407. https://doi.org/10.1561/0400000042.
Ebrahimi, Khosrow, Gerard F. Jones, and Amy S. Fleischer. 2014. “A
Review of Data Center Cooling Technology, Operating Conditions and the
Corresponding Low-Grade Waste Heat Recovery Opportunities.”
Renewable and Sustainable Energy Reviews 31 (March): 622–38. https://doi.org/10.1016/j.rser.2013.12.007.
Egwutuoha, Ifeanyi P., David Levy, Bran Selic, and Shiping Chen. 2013.
“A Survey of Fault Tolerance Mechanisms and Checkpoint/Restart
Implementations for High Performance Computing Systems.” The
Journal of Supercomputing 65 (3): 1302–26. https://doi.org/10.1007/s11227-013-0884-0.
Eisenman, Assaf, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and
Murali Annavaram. 2022. “Check-n-Run: A Checkpointing System for
Training Deep Learning Recommendation Models.” In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22),
929–43. https://www.usenix.org/conference/nsdi22/presentation/eisenman.
Eldan, Ronen, and Mark Russinovich. 2023. “Who’s Harry Potter?
Approximate Unlearning in LLMs.” ArXiv Preprint
abs/2310.02238 (October). http://arxiv.org/abs/2310.02238v2.
Elman, Jeffrey L. 2002. “Finding Structure in Time.” In
Cognitive Modeling, 14:257–88. 2. The MIT Press. https://doi.org/10.7551/mitpress/1888.003.0015.
Elsen, Erich, Marat Dukhan, Trevor Gale, and Karen Simonyan. 2020.
“Fast Sparse ConvNets.” In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 14617–26. IEEE. https://doi.org/10.1109/cvpr42600.2020.01464.
Elsken, Thomas, Jan Hendrik Metzen, and Frank Hutter. 2019a.
“Neural Architecture Search.” In Automated Machine
Learning, 63–77. Springer International Publishing. https://doi.org/10.1007/978-3-030-05318-5\_3.
———. 2019b. “Neural Architecture Search.” In Automated
Machine Learning, 20:63–77. 55. Springer International Publishing.
https://doi.org/10.1007/978-3-030-05318-5\_3.
Emily Denton, Rob Fergus, Soumith Chintala. 2014. “Exploiting
Linear Structure Within Convolutional Networks for Efficient
Evaluation.” In Advances in Neural Information Processing
Systems (NeurIPS), 1269–77.
Esteva, Andre, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M.
Swetter, Helen M. Blau, and Sebastian Thrun. 2017.
“Dermatologist-Level Classification of Skin Cancer with Deep
Neural Networks.” Nature 542 (7639): 115–18. https://doi.org/10.1038/nature21056.
Everingham, Mark, Luc Van Gool, Christopher K. I. Williams, John Winn,
and Andrew Zisserman. 2009. “The Pascal Visual Object Classes
(VOC) Challenge.” International Journal of Computer
Vision 88 (2): 303–38. https://doi.org/10.1007/s11263-009-0275-4.
Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2017.
“Robust Physical-World Attacks on Deep Learning Models.”
ArXiv Preprint abs/1707.08945 (July). http://arxiv.org/abs/1707.08945v5.
Farwell, James P., and Rafal Rohozinski. 2011. “Stuxnet and the
Future of Cyber War.” Survival 53 (1): 23–40. https://doi.org/10.1080/00396338.2011.555586.
Fedus, William, Barret Zoph, and Noam Shazeer. 2021. “Switch
Transformers: Scaling to Trillion Parameter Models with Simple and
Efficient Sparsity.” Journal of Machine Learning
Research.
Fei-Fei, Li, R. Fergus, and P. Perona. n.d. “Learning Generative
Visual Models from Few Training Examples: An Incremental Bayesian
Approach Tested on 101 Object Categories.” In 2004 Conference
on Computer Vision and Pattern Recognition Workshop. IEEE. https://doi.org/10.1109/cvpr.2004.383.
Feldman, Andrew, Sean Lie, Michael James, et al. 2020. “The
Cerebras Wafer-Scale Engine: Opportunities and Challenges of Building an
Accelerator at Wafer Scale.” IEEE Micro 40 (2): 20–29.
https://doi.org/10.1109/MM.2020.2975796.
Ferentinos, Konstantinos P. 2018. “Deep Learning Models for Plant
Disease Detection and Diagnosis.” Computers and Electronics
in Agriculture 145 (February): 311–18. https://doi.org/10.1016/j.compag.2018.01.009.
Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Tobias
Springenberg, Manuel Blum, and Frank Hutter. 2019. “Auto-Sklearn:
Efficient and Robust Automated Machine Learning.” In
Automated Machine Learning, 113–34. Springer International
Publishing. https://doi.org/10.1007/978-3-030-05318-5\_6.
Fisher, Lawrence D. 1981. “The 8087 Numeric Data
Processor.” IEEE Computer 14 (7): 19–29. https://doi.org/10.1109/MC.1981.1653991.
Flynn, M. J. 1966. “Very High-Speed Computing Systems.”
Proceedings of the IEEE 54 (12): 1901–9. https://doi.org/10.1109/proc.1966.5273.
Francalanza, Adrian, Luca Aceto, Antonis Achilleos, Duncan Paul Attard,
Ian Cassar, Dario Della Monica, and Anna Ingólfsdóttir. 2017. “A
Foundation for Runtime Monitoring.” In Runtime
Verification, 8–29. Springer; Springer International Publishing. https://doi.org/10.1007/978-3-319-67531-2\_2.
Friedman, Batya. 1996. “Value-Sensitive Design.”
Interactions 3 (6): 16–23. https://doi.org/10.1145/242485.242493.
Fursov, Ivan, Matvey Morozov, Nina Kaploukhaya, Elizaveta Kovtun,
Rodrigo Rivera-Castro, Gleb Gusev, Dmitry Babaev, Ivan Kireev, Alexey
Zaytsev, and Evgeny Burnaev. 2021. “Adversarial Attacks on Deep
Models for Financial Transaction Records.” In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery &Amp; Data
Mining, 2868–78. ACM. https://doi.org/10.1145/3447548.3467145.
Gale, Trevor, Erich Elsen, and Sara Hooker. 2019a. “The State of
Sparsity in Deep Neural Networks.” arXiv Preprint
arXiv:1902.09574, February. http://arxiv.org/abs/1902.09574v1.
———. 2019b. “The State of Sparsity in Deep Neural
Networks.” arXiv Preprint arXiv:1902.09574, February. http://arxiv.org/abs/1902.09574v1.
Gandolfi, Karine, Christophe Mourtel, and Francis Olivier. 2001.
“Electromagnetic Analysis: Concrete Results.” In
Cryptographic Hardware and Embedded Systems — CHES 2001,
251–61. Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44709-1\_21.
Gao, Yansong, Said F. Al-Sarawi, and Derek Abbott. 2020. “Physical
Unclonable Functions.” Nature Electronics 3 (2): 81–91.
https://doi.org/10.1038/s41928-020-0372-5.
Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021b.
“Datasheets for Datasets.” Communications of the
ACM 64 (12): 86–92. https://doi.org/10.1145/3458723.
———. 2021a. “Datasheets for Datasets.” Communications
of the ACM 64 (12): 86–92. https://doi.org/10.1145/3458723.
Geiger, Atticus, Hanson Lu, Thomas Icard, and Christopher Potts. 2021.
“Causal Abstractions of Neural Networks.” In Advances
in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 9574–86. https://proceedings.neurips.cc/paper/2021/hash/4f5c422f4d49a5a807eda27434231040-Abstract.html.
Gholami, Amir, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. 2021a. “A Survey of Quantization Methods for
Efficient Neural Network Inference.” arXiv Preprint
arXiv:2103.13630, March. http://arxiv.org/abs/2103.13630v3.
———. 2021b. “A Survey of Quantization Methods for Efficient Neural
Network Inference.” arXiv Preprint arXiv:2103.13630
abs/2103.13630 (March). http://arxiv.org/abs/2103.13630v3.
Gholami, Amir, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W.
Mahoney, and Kurt Keutzer. 2024. “AI and Memory Wall.”
IEEE Micro 44 (3): 33–39. https://doi.org/10.1109/mm.2024.3373763.
Gnad, Dennis R. E., Fabian Oboril, and Mehdi B. Tahoori. 2017.
“Voltage Drop-Based Fault Attacks on FPGAs Using Valid
Bitstreams.” In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), 1–7. IEEE; IEEE. https://doi.org/10.23919/fpl.2017.8056840.
Goldberg, David. 1991. “What Every Computer Scientist Should Know
about Floating-Point Arithmetic.” ACM Computing Surveys
23 (1): 5–48. https://doi.org/10.1145/103162.103163.
Golub, Gene H., and Charles F. Van Loan. 1996. Matrix
Computations. Johns Hopkins University Press.
Gong, Ruihao, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu,
Jiazhen Lin, Fengwei Yu, and Junjie Yan. 2019. “Differentiable
Soft Quantization: Bridging Full-Precision and Low-Bit Neural
Networks.” arXiv Preprint arXiv:1908.05033, August. http://arxiv.org/abs/1908.05033v1.
Goodfellow, Ian J., Aaron Courville, and Yoshua Bengio. 2013a.
“Scaling up Spike-and-Slab Models for Unsupervised Feature
Learning.” IEEE Transactions on Pattern Analysis and Machine
Intelligence 35 (8): 1902–14. https://doi.org/10.1109/tpami.2012.273.
———. 2013b. “Scaling up Spike-and-Slab Models for Unsupervised
Feature Learning.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 35 (8): 1902–14. https://doi.org/10.1109/tpami.2012.273.
———. 2013c. “Scaling up Spike-and-Slab Models for Unsupervised
Feature Learning.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 35 (8): 1902–14. https://doi.org/10.1109/tpami.2012.273.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020.
“Generative Adversarial Networks.” Communications of
the ACM 63 (11): 139–44. https://doi.org/10.1145/3422622.
Google. n.d. “XLA: Optimizing Compiler for Machine
Learning.” <https://www.tensorflow.org/xla>.
Gordon, Mitchell, Kevin Duh, and Nicholas Andrews. 2020.
“Compressing BERT: Studying the Effects of Weight Pruning on
Transfer Learning.” In Proceedings of the 5th Workshop on
Representation Learning for NLP. Association for Computational
Linguistics. https://doi.org/10.18653/v1/2020.repl4nlp-1.18.
Gou, Jianping, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. 2021.
“Knowledge Distillation: A Survey.” International
Journal of Computer Vision 129 (6): 1789–819. https://doi.org/10.1007/s11263-021-01453-z.
Gräfe, Ralf, Qutub Syed Sha, Florian Geissler, and Michael Paulitsch.
2023. “Large-Scale Application of Fault Injection into PyTorch
Models -an Extension to PyTorchFI for Validation Efficiency.” In
2023 53rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks - Supplemental Volume (DSN-s), 56–62. IEEE;
IEEE. https://doi.org/10.1109/dsn-s58398.2023.00025.
Graphcore. 2020. “The Colossus MK2 IPU Processor.”
Graphcore Technical Paper.
Greengard, Samuel. 2021. The Internet of Things. The MIT Press.
https://doi.org/10.7551/mitpress/13937.001.0001.
Groeneveld, Dirk, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney,
Oyvind Tafjord, Ananya Harsh Jha, et al. 2024. “OLMo: Accelerating
the Science of Language Models.” arXiv Preprint
arXiv:2402.00838, February. http://arxiv.org/abs/2402.00838v4.
Grossman, Elizabeth. 2007. High Tech Trash: Digital Devices, Hidden
Toxics, and Human Health. Island press.
Gruslys, Audrunas, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex
Graves. 2016. “Memory-Efficient Backpropagation Through
Time.” In Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, edited by Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
4125–33. https://proceedings.neurips.cc/paper/2016/hash/a501bebf79d570651ff601788ea9d16d-Abstract.html.
Gu, Ivy. 2023. “Deep Learning Model Compression (Ii) by Ivy Gu
Medium.” https://ivygdy.medium.com/deep-learning-model-compression-ii-546352ea9453.
Gudivada, Venkat N., Dhana Rao Rao, et al. 2017. “Data Quality
Considerations for Big Data and Machine Learning: Going Beyond Data
Cleaning and Transformations.” IEEE Transactions on Knowledge
and Data Engineering.
Gujarati, Arpan, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. 2020. “Serving DNNs Like
Clockwork: Performance Predictability from the Bottom Up.” In
14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), 443–62. https://www.usenix.org/conference/osdi20/presentation/gujarati.
Gulshan, Varun, Lily Peng, Marc Coram, Martin C. Stumpe, Derek Wu,
Arunachalam Narayanaswamy, Subhashini Venugopalan, et al. 2016.
“Development and Validation of a Deep Learning Algorithm for
Detection of Diabetic Retinopathy in Retinal Fundus Photographs.”
JAMA 316 (22): 2402. https://doi.org/10.1001/jama.2016.17216.
Guo, Yutao, Hao Wang, Hui Zhang, Tong Liu, Zhaoguang Liang, Yunlong Xia,
Li Yan, et al. 2019. “Mobile Photoplethysmographic Technology to
Detect Atrial Fibrillation.” Journal of the American College
of Cardiology 74 (19): 2365–75. https://doi.org/10.1016/j.jacc.2019.08.019.
Gupta, Maanak, Charankumar Akiri, Kshitiz Aryal, Eli Parker, and
Lopamudra Praharaj. 2023. “From ChatGPT to ThreatGPT: Impact of
Generative AI in Cybersecurity and Privacy.” IEEE Access
11: 80218–45. https://doi.org/10.1109/access.2023.3300381.
Gupta, Maya R., Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin
Robert Canini, Alexander Mangylov, Wojtek Moczydlowski, and Alexander
Van Esbroeck. 2016. “Monotonic Calibrated Interpolated Look-up
Tables.” J. Mach. Learn. Res. 17 (1): 109:1–47. https://jmlr.org/papers/v17/15-243.html.
Gupta, Suyog, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. 2015. “Deep Learning with Limited Numerical
Precision.” In International Conference on Machine
Learning, 1737–46. PMLR.
Gupta, Udit, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee,
David Brooks, and Carole-Jean Wu. 2022. “ACT: Designing
Sustainable Computer Systems with an Architectural Carbon Modeling
Tool.” In Proceedings of the 49th Annual International
Symposium on Computer Architecture, 784–99. ACM. https://doi.org/10.1145/3470496.3527408.
Hamming, R. W. 1950. “Error Detecting and Error Correcting
Codes.” Bell System Technical Journal 29 (2): 147–60. https://doi.org/10.1002/j.1538-7305.1950.tb00463.x.
Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. 2016. “EIE: Efficient Inference
Engine on Compressed Deep Neural Network.” In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture
(ISCA), 243–54. IEEE. https://doi.org/10.1109/isca.2016.30.
Han, Song, Huizi Mao, and William J. Dally. 2015. “Deep
Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding.” arXiv Preprint
arXiv:1510.00149, October. http://arxiv.org/abs/1510.00149v5.
———. 2016. “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding.”
International Conference on Learning Representations (ICLR).
Handlin, Oscar. 1965. “Science and Technology in Popular
Culture.” Daedalus-Us., 156–70.
Hardt, Moritz, Eric Price, and Nati Srebro. 2016. “Equality of
Opportunity in Supervised Learning.” In Advances in Neural
Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, edited by Daniel D. Lee, Masashi Sugiyama, Ulrike von
Luxburg, Isabelle Guyon, and Roman Garnett, 3315–23. https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016a.
“Deep Residual Learning for Image Recognition.” In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
770–78. IEEE. https://doi.org/10.1109/cvpr.2016.90.
———. 2016b. “Deep Residual Learning for Image Recognition.”
In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770–78. IEEE. https://doi.org/10.1109/cvpr.2016.90.
He, Xuzhen. 2023a. “Accelerated Linear Algebra Compiler for
Computationally Efficient Numerical Models: Success and Potential Area
of Improvement.” PLOS ONE 18 (2): e0282265. https://doi.org/10.1371/journal.pone.0282265.
———. 2023b. “Accelerated Linear Algebra Compiler for
Computationally Efficient Numerical Models: Success and Potential Area
of Improvement.” PLOS ONE 18 (2): e0282265. https://doi.org/10.1371/journal.pone.0282265.
He, Yi, Prasanna Balaprakash, and Yanjing Li. 2020. “FIdelity:
Efficient Resilience Analysis Framework for Deep Learning
Accelerators.” In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 270–81. IEEE; IEEE. https://doi.org/10.1109/micro50266.2020.00033.
He, Yihui, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han.
2018. “AMC: AutoML for Model Compression and Acceleration on
Mobile Devices.” In Computer Vision – ECCV 2018, 815–32.
Springer International Publishing. https://doi.org/10.1007/978-3-030-01234-2\_48.
He, Yi, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju,
Nishant Patil, and Yanjing Li. 2023. “Understanding and Mitigating
Hardware Failures in Deep Learning Training Systems.” In
Proceedings of the 50th Annual International Symposium on Computer
Architecture, 1–16. IEEE; ACM. https://doi.org/10.1145/3579371.3589105.
Hébert-Johnson, Úrsula, Michael P. Kim, Omer Reingold, and Guy N.
Rothblum. 2018. “Multicalibration: Calibration for the
(Computationally-Identifiable) Masses.” In Proceedings of the
35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, edited by
Jennifer G. Dy and Andreas Krause, 80:1944–53. Proceedings of Machine
Learning Research. PMLR. http://proceedings.mlr.press/v80/hebert-johnson18a.html.
Henderson, Peter, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky,
and Joelle Pineau. 2020. “Towards the Systematic Reporting of the
Energy and Carbon Footprints of Machine Learning.” CoRR
abs/2002.05651 (1): 10039–81. http://arxiv.org/abs/2002.05651v2.
Hendrycks, Dan, and Thomas Dietterich. 2019. “Benchmarking Neural
Network Robustness to Common Corruptions and Perturbations.”
arXiv Preprint arXiv:1903.12261, March. http://arxiv.org/abs/1903.12261v1.
Hennessy, John L., and David A. Patterson. 2019. “A New Golden Age
for Computer Architecture.” Communications of the ACM 62
(2): 48–60. https://doi.org/10.1145/3282307.
Hennessy, John L, and David A Patterson. 2003. “Computer
Architecture: A Quantitative Approach.” Morgan Kaufmann.
Hernandez, Danny, Tom B. Brown, et al. 2020. “Measuring the
Algorithmic Efficiency of Neural Networks.” OpenAI Blog.
https://openai.com/research/ai-and-efficiency.
Hernandez, Danny, and Tom B. Brown. 2020. “Measuring the
Algorithmic Efficiency of Neural Networks.” arXiv Preprint
arXiv:2007.03051, May. https://doi.org/10.48550/arxiv.2005.04305.
Heyndrickx, Wouter, Lewis Mervin, Tobias Morawietz, Noé Sturm, Lukas
Friedrich, Adam Zalewski, Anastasia Pentina, et al. 2023.
“Melloddy: Cross-Pharma Federated Learning at Unprecedented Scale
Unlocks Benefits in Qsar Without Compromising Proprietary
Information.” Journal of Chemical Information and
Modeling 64 (7): 2331–44. https://pubs.acs.org/doi/10.1021/acs.jcim.3c00799.
Himmelstein, Gracie, David Bates, and Li Zhou. 2022. “Examination
of Stigmatizing Language in the Electronic Health Record.”
JAMA Network Open 5 (1): e2144967. https://doi.org/10.1001/jamanetworkopen.2021.44967.
Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 2015a. “Distilling
the Knowledge in a Neural Network.” arXiv Preprint
arXiv:1503.02531, March. http://arxiv.org/abs/1503.02531v1.
———. 2015b. “Distilling the Knowledge in a Neural Network,”
March. https://doi.org/10.1002/0471743984.vse0673.
Hirschberg, Julia, and Christopher D. Manning. 2015. “Advances in
Natural Language Processing.” Science 349 (6245):
261–66. https://doi.org/10.1126/science.aaa8685.
Hochreiter, Sepp. 1998. “The Vanishing Gradient Problem During
Learning Recurrent Neural Nets and Problem Solutions.”
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 06 (02): 107–16. https://doi.org/10.1142/s0218488598000094.
Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term
Memory.” Neural Computation 9 (8): 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.
Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandra Peste. 2021. “Sparsity in Deep Learning: Pruning and
Growth for Efficient Inference and Training in Neural Networks.”
arXiv Preprint arXiv:2102.00554 22 (January): 1–124. http://arxiv.org/abs/2102.00554v1.
Hoefler, Torsten, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and
Alexandros Nikolaos Ziogas. 2021. “Sparsity in Deep Learning:
Pruning and Growth for Efficient Inference and Training in Neural
Networks.” Journal of Machine Learning Research 22
(241): 1–124.
Hong, Sanghyun, Nicholas Carlini, and Alexey Kurakin. 2023.
“Publishing Efficient on-Device Models Increases Adversarial
Vulnerability.” In 2023 IEEE Conference on Secure and
Trustworthy Machine Learning (SaTML), abs 1603 5279:271–90. IEEE;
IEEE. https://doi.org/10.1109/satml54575.2023.00026.
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989.
“Multilayer Feedforward Networks Are Universal
Approximators.” Neural Networks 2 (5): 359–66. https://doi.org/10.1016/0893-6080(89)90020-8.
Horowitz, Mark. 2014. “1.1 Computing’s Energy Problem (and What We
Can Do about It).” In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC). IEEE. https://doi.org/10.1109/isscc.2014.6757323.
Hosseini, Hossein, Sreeram Kannan, Baosen Zhang, and Radha Poovendran.
2017. “Deceiving Google’s Perspective API Built for Detecting
Toxic Comments.” ArXiv Preprint abs/1702.08138
(February). http://arxiv.org/abs/1702.08138v1.
Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017a.
“MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications,” April. http://arxiv.org/abs/1704.04861v1.
———. 2017b. “MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications.” ArXiv Preprint
abs/1704.04861 (April). http://arxiv.org/abs/1704.04861v1.
Howard, Jeremy, and Sylvain Gugger. 2020. “Fastai: A Layered API
for Deep Learning.” Information 11 (2): 108. https://doi.org/10.3390/info11020108.
Hsiao, Yu-Shun, Zishen Wan, Tianyu Jia, Radhika Ghosal, Abdulrahman
Mahmoud, Arijit Raychowdhury, David Brooks, Gu-Yeon Wei, and Vijay
Janapa Reddi. 2023. “MAVFI: An End-to-End Fault Analysis Framework
with Anomaly Detection and Recovery for Micro Aerial Vehicles.”
In 2023 Design, Automation &Amp; Test in Europe Conference
&Amp; Exhibition (DATE), 1–6. IEEE; IEEE. https://doi.org/10.23919/date56975.2023.10137246.
Hsu, Liang-Ching, Ching-Yi Huang, Yen-Hsun Chuang, Ho-Wen Chen, Ya-Ting
Chan, Heng Yi Teah, Tsan-Yao Chen, Chiung-Fen Chang, Yu-Ting Liu, and
Yu-Min Tzou. 2016. “Accumulation of Heavy Metals and Trace
Elements in Fluvial Sediments Received Effluents from Traditional and
Semiconductor Industries.” Scientific Reports 6 (1):
34250. https://doi.org/10.1038/srep34250.
Hu, Bowen, Zhiqiang Zhang, and Yun Fu. 2021. “Triple Wins:
Boosting Accuracy, Robustness and Efficiency Together by Enabling
Input-Adaptive Inference.” Advances in Neural Information
Processing Systems 34: 18537–50.
Huang, Wei, Jie Chen, and Lei Zhang. 2023. “Adaptive Neural
Networks for Real-Time Processing in Autonomous Systems.”
IEEE Transactions on Intelligent Transportation Systems.
Huang, Yanping et al. 2019. “GPipe: Efficient Training of Giant
Neural Networks Using Pipeline Parallelism.” In Advances in
Neural Information Processing Systems (NeurIPS).
Hubara, Itay, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2018. “Quantized Neural Networks: Training Neural
Networks with Low Precision Weights and Activations.” Journal
of Machine Learning Research (JMLR) 18: 1–30.
Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren. 2019b.
Automated Machine Learning: Methods, Systems, Challenges.
Automated Machine Learning. Springer International Publishing.
https://doi.org/10.1007/978-3-030-05318-5.
———. 2019a. Automated Machine Learning: Methods, Systems,
Challenges. Springer International Publishing. https://doi.org/10.1007/978-3-030-05318-5.
Hutter, Michael, Jorn-Marc Schmidt, and Thomas Plos. 2009.
“Contact-Based Fault Injections and Power Analysis on RFID
Tags.” In 2009 European Conference on Circuit Theory and
Design, 409–12. IEEE; IEEE. https://doi.org/10.1109/ecctd.2009.5275012.
Hwu, Wen-mei W. 2011. “Introduction.” In GPU Computing
Gems Emerald Edition, xix–xx. Elsevier. https://doi.org/10.1016/b978-0-12-384988-5.00064-4.
Iandola, Forrest N., Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. 2016. “SqueezeNet:
AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model
Size,” February. http://arxiv.org/abs/1602.07360v4.
Inc., Tesla. 2021. “Tesla AI Day: D1 Dojo Chip.” Tesla
AI Day Presentation.
Inmon, W. H. 2005. Building the Data Warehouse. John Wiley
Sons.
Ioffe, Sergey, and Christian Szegedy. 2015a. “Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate
Shift.” International Conference on Machine Learning,
448–56.
———. 2015b. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” International
Conference on Machine Learning (ICML), February, 448–56. http://arxiv.org/abs/1502.03167v3.
Ippolito, Daphne, Florian Tramer, Milad Nasr, Chiyuan Zhang, Matthew
Jagielski, Katherine Lee, Christopher Choquette Choo, and Nicholas
Carlini. 2023. “Preventing Generation of Verbatim Memorization in
Language Models Gives a False Sense of Privacy.” In
Proceedings of the 16th International Natural Language Generation
Conference, 28–53. Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.inlg-main.3.
Irimia-Vladu, Mihai. 2014. “‘Green’ Electronics:
Biodegradable and Biocompatible Materials and Devices for Sustainable
Future.” Chem. Soc. Rev. 43 (2): 588–610. https://doi.org/10.1039/c3cs60235d.
Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018b.
“Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference.” In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2704–13.
IEEE. https://doi.org/10.1109/cvpr.2018.00286.
———. 2018a. “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference.” In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2704–13. IEEE. https://doi.org/10.1109/cvpr.2018.00286.
———. 2018c. “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference.” In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2704–13. IEEE. https://doi.org/10.1109/cvpr.2018.00286.
Jacobs, David, Bas Rokers, Archisman Rudra, and Zili Liu. 2002.
“Fragment Completion in Humans and Machines.” In
Advances in Neural Information Processing Systems 14, 35:27–34.
The MIT Press. https://doi.org/10.7551/mitpress/1120.003.0008.
Jaech, Aaron, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky,
Aiden Low, Alec Helyar, et al. 2024. “OpenAI O1 System
Card.” CoRR. https://doi.org/10.48550/ARXIV.2412.16720.
Janapa Reddi, Vijay et al. 2022. “MLPerf Mobile V2. 0: An
Industry-Standard Benchmark Suite for Mobile Machine Learning.”
In Proceedings of Machine Learning and Systems, 4:806–23.
Janapa Reddi, Vijay, Alexander Elium, Shawn Hymel, David Tischler,
Daniel Situnayake, Carl Ward, Louis Moreau, et al. 2023. “Edge
Impulse: An MLOps Platform for Tiny Machine Learning.”
Proceedings of Machine Learning and Systems 5.
Jha, A. R. 2014. Rare Earth Materials: Properties and
Applications. CRC Press. https://doi.org/10.1201/b17045.
Jha, Saurabh, Subho Banerjee, Timothy Tsai, Siva K. S. Hari, Michael B.
Sullivan, Zbigniew T. Kalbarczyk, Stephen W. Keckler, and Ravishankar K.
Iyer. 2019. “ML-Based Fault Injection for Autonomous Vehicles: A
Case for Bayesian Fault Injection.” In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 112–24. IEEE; IEEE. https://doi.org/10.1109/dsn.2019.00025.
Jia, Xianyan, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu
Zhou, Liqiang Xie, et al. 2018. “Highly Scalable Deep Learning
Training System with Mixed-Precision: Training ImageNet in Four
Minutes.” arXiv Preprint arXiv:1807.11205, July. http://arxiv.org/abs/1807.11205v1.
Jia, Xu, Bert De Brabandere, Tinne Tuytelaars, and Luc Van Gool. 2016.
“Dynamic Filter Networks.” Advances in Neural
Information Processing Systems 29.
Jia, Yangqing, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
“Caffe: Convolutional Architecture for Fast Feature
Embedding.” In Proceedings of the 22nd ACM International
Conference on Multimedia, 675–78. ACM. https://doi.org/10.1145/2647868.2654889.
Jia, Zhihao, Matei Zaharia, and Alex Aiken. 2018. “Beyond Data and
Model Parallelism for Deep Neural Networks.” arXiv Preprint
arXiv:1807.05358, July. http://arxiv.org/abs/1807.05358v1.
Jia, Ziheng, Nathan Tillman, Luis Vega, Po-An Ouyang, Matei Zaharia, and
Joseph E. Gonzalez. 2019. “Optimizing DNN Computation with Relaxed
Graph Substitutions.” Conference on Machine Learning and
Systems (MLSys).
Jiao, Xiaoqi, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li,
Fang Wang, and Qun Liu. 2020. “TinyBERT: Distilling BERT for
Natural Language Understanding.” In Findings of the
Association for Computational Linguistics: EMNLP 2020. Association
for Computational Linguistics. https://doi.org/10.18653/v1/2020.findings-emnlp.372.
Jin, Yilun, Xiguang Wei, Yang Liu, and Qiang Yang. 2020. “Towards
Utilizing Unlabeled Data in Federated Learning: A Survey and
Prospective.” arXiv Preprint arXiv:2002.11545, February.
http://arxiv.org/abs/2002.11545v2.
Johnson-Roberson, Matthew, Charles Barto, Rounak Mehta, Sharath Nittur
Sridhar, Karl Rosaen, and Ram Vasudevan. 2017. “Driving in the
Matrix: Can Virtual Worlds Replace Human-Generated Annotations for Real
World Tasks?” In 2017 IEEE International Conference on
Robotics and Automation (ICRA), 746–53. Singapore, Singapore: IEEE.
https://doi.org/10.1109/icra.2017.7989092.
Jones, Gareth A. 2018. “Joining Dessins Together.”
arXiv Preprint arXiv:1810.03960, October. http://arxiv.org/abs/1810.03960v1.
Jordan, T. L. 1982. “A Guide to Parallel Computation and Some
Cray-1 Experiences.” In Parallel Computations, 1–50.
Elsevier. https://doi.org/10.1016/b978-0-12-592101-5.50006-3.
Joulin, Armand, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov.
2017. “Bag of Tricks for Efficient Text Classification.” In
Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 2, Short Papers,
18:1–42. Association for Computational Linguistics. https://doi.org/10.18653/v1/e17-2068.
Jouppi, Norman P. et al. 2017. “In-Datacenter Performance Analysis
of a Tensor Processing Unit.” Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA).
Jouppi, Norman P., Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, et al. 2021b. “Ten
Lessons from Three Generations Shaped Google’s TPUv4i : Industrial
Product.” In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 64:1–14. 5. IEEE. https://doi.org/10.1109/isca52012.2021.00010.
———, et al. 2021a. “Ten Lessons from Three Generations Shaped
Google’s TPUv4i : Industrial Product.” In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA),
1–14. IEEE. https://doi.org/10.1109/isca52012.2021.00010.
Jouppi, Norman P., Doe Hyun Yoon, George Kurian, Sheng Li, Nishant
Patil, James Laudon, Cliff Young, and David Patterson. 2020. “A
Domain-Specific Supercomputer for Training Deep Neural Networks.”
Communications of the ACM 63 (7): 67–78. https://doi.org/10.1145/3360307.
Jouppi, Norman P., Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, et al. 2017b. “In-Datacenter
Performance Analysis of a Tensor Processing Unit.” In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 1–12. ACM. https://doi.org/10.1145/3079856.3080246.
———, et al. 2017c. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ACM. https://doi.org/10.1145/3079856.3080246.
———, et al. 2017a. “In-Datacenter Performance Analysis of a Tensor
Processing Unit.” In Proceedings of the 44th Annual
International Symposium on Computer Architecture, 1–12. ACM. https://doi.org/10.1145/3079856.3080246.
Joye, Marc, and Michael Tunstall. 2012. Fault Analysis in
Cryptography. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-29656-7.
Kairouz, Peter, Sewoong Oh, and Pramod Viswanath. 2015. “Secure
Multi-Party Differential Privacy.” In Advances in Neural
Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, edited by Corinna Cortes, Neil D. Lawrence, Daniel
D. Lee, Masashi Sugiyama, and Roman Garnett, 2008–16. https://proceedings.neurips.cc/paper/2015/hash/a01610228fe998f515a72dd730294d87-Abstract.html.
Kannan, Harish, Pradeep Dubey, and Mark Horowitz. 2023.
“Chiplet-Based Architectures: The Future of AI
Accelerators.” IEEE Micro 43 (1): 46–55. https://doi.org/10.1109/MM.2022.1234567.
Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. “Scaling Laws for Neural Language Models.”
ArXiv Preprint abs/2001.08361 (January). http://arxiv.org/abs/2001.08361v1.
Karargyris, Alexandros, Renato Umeton, Micah J. Sheller, Alejandro
Aristizabal, Johnu George, Anna Wuest, Sarthak Pati, et al. 2023.
“Federated Benchmarking of Medical Artificial Intelligence with
MedPerf.” Nature Machine Intelligence 5 (7): 799–810. https://doi.org/10.1038/s42256-023-00652-2.
Kaur, Harmanpreet, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna
Wallach, and Jennifer Wortman Vaughan. 2020. “Interpreting
Interpretability: Understanding Data Scientists’ Use of Interpretability
Tools for Machine Learning.” In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, edited by Regina
Bernhaupt, Florian ’Floyd’Mueller, David Verweij, Josh Andres, Joanna
McGrenere, Andy Cockburn, Ignacio Avellino, et al., 1–14. ACM. https://doi.org/10.1145/3313831.3376219.
Kawazoe Aguilera, Marcos, Wei Chen, and Sam Toueg. 1997.
“Heartbeat: A Timeout-Free Failure Detector for Quiescent Reliable
Communication.” In Distributed Algorithms, 126–40.
Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/bfb0030680.
Khan, Mohammad Emtiyaz, and Siddharth Swaroop. 2021.
“Knowledge-Adaptation Priors.” In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 19757–70. https://proceedings.neurips.cc/paper/2021/hash/a4380923dd651c195b1631af7c829187-Abstract.html.
Kiela, Douwe, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger,
Zhengxuan Wu, Bertie Vidgen, et al. 2021. “Dynabench: Rethinking
Benchmarking in NLP.” In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 9:418–34. Online:
Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.naacl-main.324.
Kim, Jungrae, Michael Sullivan, and Mattan Erez. 2015. “Bamboo
ECC: Strong, Safe, and Flexible Codes for Reliable Computer
Memory.” In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), 101–12. IEEE; IEEE. https://doi.org/10.1109/hpca.2015.7056025.
Kim, Sunju, Chungsik Yoon, Seunghon Ham, Jihoon Park, Ohun Kwon, Donguk
Park, Sangjun Choi, Seungwon Kim, Kwonchul Ha, and Won Kim. 2018.
“Chemical Use in the Semiconductor Manufacturing Industry.”
International Journal of Occupational and Environmental Health
24 (3-4): 109–18. https://doi.org/10.1080/10773525.2018.1519957.
Kingma, Diederik P., and Jimmy Ba. 2014. “Adam: A Method for
Stochastic Optimization.” ICLR, December. http://arxiv.org/abs/1412.6980v9.
Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, et al. 2017.
“Overcoming Catastrophic Forgetting in Neural Networks.”
Proceedings of the National Academy of Sciences 114 (13):
3521–26. https://doi.org/10.1073/pnas.1611835114.
Kleppmann, Martin. 2016. Designing Data-Intensive Applications: The
Big Ideas Behind Reliable, Scalable, and Maintainable Systems.
O’Reilly Media. http://shop.oreilly.com/product/0636920032175.do.
Ko, Yohan. 2021. “Characterizing System-Level Masking Effects
Against Soft Errors.” Electronics 10 (18): 2286. https://doi.org/10.3390/electronics10182286.
Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, et al. 2019a. “Spectre Attacks:
Exploiting Speculative Execution.” In 2019 IEEE Symposium on
Security and Privacy (SP), 1–19. IEEE. https://doi.org/10.1109/sp.2019.00002.
———, et al. 2019b. “Spectre Attacks: Exploiting Speculative
Execution.” In 2019 IEEE Symposium on Security and Privacy
(SP), 1–19. IEEE. https://doi.org/10.1109/sp.2019.00002.
Kocher, Paul, Joshua Jaffe, and Benjamin Jun. 1999. “Differential
Power Analysis.” In Advances in Cryptology — CRYPTO’ 99,
388–97. Springer; Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-48405-1\_25.
Kocher, Paul, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. 2011.
“Introduction to Differential Power Analysis.” Journal
of Cryptographic Engineering 1 (1): 5–27. https://doi.org/10.1007/s13389-011-0006-y.
Koh, Pang Wei, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma
Pierson, Been Kim, and Percy Liang. 2020. “Concept Bottleneck
Models.” In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
119:5338–48. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v119/koh20a.html.
Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, et al. 2021. “WILDS: A
Benchmark of in-the-Wild Distribution Shifts.” In Proceedings
of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, edited by Marina Meila and Tong
Zhang, 139:5637–64. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v139/koh21a.html.
Koizumi, Yuma, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and
Keisuke Imoto. 2019. “ToyADMOS: A Dataset of Miniature-Machine
Operating Sounds for Anomalous Sound Detection.” In 2019 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 313–17. IEEE; IEEE. https://doi.org/10.1109/waspaa.2019.8937164.
Krishnamoorthi, Raghuraman. 2018. “Quantizing Deep Convolutional
Networks for Efficient Inference: A Whitepaper.” arXiv
Preprint arXiv:1806.08342, June. http://arxiv.org/abs/1806.08342v1.
Krishnan, Rayan, Pranav Rajpurkar, and Eric J. Topol. 2022.
“Self-Supervised Learning in Medicine and Healthcare.”
Nature Biomedical Engineering 6 (12): 1346–52. https://doi.org/10.1038/s41551-022-00914-1.
Krizhevsky, Alex. 2009. “Learning Multiple Layers of Features from
Tiny Images.”
Krizhevsky, Alex, Geoffrey Hinton, et al. 2009. “Learning Multiple
Layers of Features from Tiny Images.”
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017a.
“ImageNet Classification with Deep Convolutional Neural
Networks.” Communications of the ACM 60 (6): 84–90. https://doi.org/10.1145/3065386.
———. 2017b. “ImageNet Classification with Deep Convolutional
Neural Networks.” Edited by F. Pereira, C. J. Burges, L. Bottou,
and K. Q. Weinberger. Communications of the ACM 60 (6): 84–90.
https://doi.org/10.1145/3065386.
———. 2017c. “ImageNet Classification with Deep Convolutional
Neural Networks.” Communications of the ACM 60 (6):
84–90. https://doi.org/10.1145/3065386.
Kuchaiev, Oleksii, Boris Ginsburg, Igor Gitman, Vitaly Lavrukhin, Carl
Case, and Paulius Micikevicius. 2018. “OpenSeq2Seq: Extensible
Toolkit for Distributed and Mixed Precision Training of
Sequence-to-Sequence Models.” In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), 41–46. Association for
Computational Linguistics. https://doi.org/10.18653/v1/w18-2507.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive
Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3.
Kung, H. T. 1982. “Why Systolic Architectures?” IEEE
Computer 15 (1): 37–46. https://doi.org/10.1109/MC.1982.1653825.
Kung, Hsiang Tsung, and Charles E Leiserson. 1979. “Systolic
Arrays (for VLSI).” In Sparse Matrix Proceedings 1978,
1:256–82. Society for industrial; applied mathematics Philadelphia, PA,
USA.
Kurth, Thorsten, Shashank Subramanian, Peter Harrington, Jaideep Pathak,
Morteza Mardani, David Hall, Andrea Miele, Karthik Kashinath, and Anima
Anandkumar. 2023. “FourCastNet: Accelerating Global
High-Resolution Weather Forecasting Using Adaptive Fourier Neural
Operators.” In Proceedings of the Platform for Advanced
Scientific Computing Conference, 1–11. ACM. https://doi.org/10.1145/3592979.3593412.
Kwon, Young D., Rui Li, Stylianos I. Venieris, Jagmohan Chauhan,
Nicholas D. Lane, and Cecilia Mascolo. 2023. “TinyTrain:
Resource-Aware Task-Adaptive Sparse Training of DNNs at the Data-Scarce
Edge.” ArXiv Preprint abs/2307.09988 (July). http://arxiv.org/abs/2307.09988v2.
Labarge, Isaac E. n.d. “Neural Network Pruning for ECG Arrhythmia
Classification.” Proceedings of Machine Learning and Systems
(MLSys). PhD thesis, California Polytechnic State University. https://doi.org/10.15368/theses.2020.76.
Lai, Liangzhen, Naveen Suda, and Vikas Chandra. 2018. “CMSIS-NN:
Efficient Neural Network Kernels for Arm Cortex-m CPUs.”
ArXiv Preprint abs/1801.06601 (January). http://arxiv.org/abs/1801.06601v1.
Lakkaraju, Himabindu, and Osbert Bastani. 2020. “"How Do i Fool
You?": Manipulating User Trust via Misleading Black Box
Explanations.” In Proceedings of the AAAI/ACM Conference on
AI, Ethics, and Society, 79–85. ACM. https://doi.org/10.1145/3375627.3375833.
Lam, Monica D., Edward E. Rothberg, and Michael E. Wolf. 1991.
“The Cache Performance and Optimizations of Blocked
Algorithms.” In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems - ASPLOS-IV, 63–74. ACM Press. https://doi.org/10.1145/106972.106981.
Lam, Remi, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger,
Meire Fortunato, Ferran Alet, Suman Ravuri, et al. 2023. “Learning
Skillful Medium-Range Global Weather Forecasting.”
Science 382 (6677): 1416–21. https://doi.org/10.1126/science.adi2336.
Lange, Klaus-Dieter. 2009. “Identifying Shades of Green: The
SPECpower Benchmarks.” Computer 42 (3): 95–97. https://doi.org/10.1109/mc.2009.84.
Lannelongue, Loïc, Jason Grealey, and Michael Inouye. 2021. “Green
Algorithms: Quantifying the Carbon Footprint of Computation.”
Advanced Science 8 (12): 2100707. https://doi.org/10.1002/advs.202100707.
Lattner, Chris, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. 2020. “MLIR: A Compiler Infrastructure for the
End of Moore’s Law.” arXiv Preprint arXiv:2002.11054,
February. http://arxiv.org/abs/2002.11054v2.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015a. “Deep
Learning.” Nature 521 (7553): 436–44. https://doi.org/10.1038/nature14539.
———. 2015b. “Deep Learning.” Nature 521 (7553):
436–44. https://doi.org/10.1038/nature14539.
LeCun, Yann, Leon Bottou, Genevieve B. Orr, and Klaus -Robert Müller.
1998. “Efficient BackProp.” In Neural Networks: Tricks
of the Trade, 1524:9–50. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-49430-8\_2.
LeCun, Yann, John S. Denker, and Sara A. Solla. 1989. “Optimal
Brain Damage.” In Advances in Neural Information Processing
Systems, 2:598–605. Morgan-Kaufmann. http://papers.nips.cc/paper/250-optimal-brain-damage.
LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. 1989. “Backpropagation Applied to
Handwritten Zip Code Recognition.” Neural Computation 1
(4): 541–51. https://doi.org/10.1162/neco.1989.1.4.541.
Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998.
“Gradient-Based Learning Applied to Document Recognition.”
Proceedings of the IEEE 86 (11): 2278–2324. https://doi.org/10.1109/5.726791.
Lee, Minwoong, Namho Lee, Huijeong Gwon, Jongyeol Kim, Younggwan Hwang,
and Seongik Cho. 2022. “Design of Radiation-Tolerant High-Speed
Signal Processing Circuit for Detecting Prompt Gamma Rays by Nuclear
Explosion.” Electronics 11 (18): 2970. https://doi.org/10.3390/electronics11182970.
Lepikhin, Dmitry et al. 2020. “GShard: Scaling Giant Models with
Conditional Computation.” In Proceedings of the International
Conference on Learning Representations.
LeRoy Poff, N, MM Brinson, and JW Day. 2002. “Aquatic Ecosystems
& Global Climate Change.” Pew Center on Global Climate
Change.
Li, Fengfu, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. 2016.
“Ternary Weight Networks.” arXiv Preprint, May. http://arxiv.org/abs/1605.04711v3.
Li, Guanpeng, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai,
Karthik Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017.
“Understanding Error Propagation in Deep Learning Neural Network
(DNN) Accelerators and Applications.” In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 1–12. ACM. https://doi.org/10.1145/3126908.3126964.
Li, Jingzhen, Igbe Tobore, Yuhang Liu, Abhishek Kandwal, Lei Wang, and
Zedong Nie. 2021. “Non-Invasive Monitoring of Three Glucose Ranges
Based on ECG by Using DBSCAN-CNN.” IEEE Journal of Biomedical
and Health Informatics 25 (9): 3340–50. https://doi.org/10.1109/jbhi.2021.3072628.
Li, Lisha, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2017. “Hyperband: A Novel Bandit-Based Approach
to Hyperparameter Optimization.” J. Mach. Learn. Res.
18: 185:1–52. https://jmlr.org/papers/v18/16-558.html.
Li, Qinbin, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu,
and Bingsheng He. 2023. “A Survey on Federated Learning Systems:
Vision, Hype and Reality for Data Privacy and Protection.”
IEEE Transactions on Knowledge and Data Engineering 35 (4):
3347–66. https://doi.org/10.1109/tkde.2021.3124599.
Li, Tian, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020.
“Federated Learning: Challenges, Methods, and Future
Directions.” IEEE Signal Processing Magazine 37 (3):
50–60. https://doi.org/10.1109/msp.2020.2975749.
Li, Xiang, Tao Qin, Jian Yang, and Tie-Yan Liu. 2016. “LightRNN:
Memory and Computation-Efficient Recurrent Neural Networks.” In
Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, edited by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, 4385–93. https://proceedings.neurips.cc/paper/2016/hash/c3e4035af2a1cde9f21e1ae1951ac80b-Abstract.html.
Li, Zhuohan, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin
Jin, Yanping Huang, et al. 2023. “{AlpaServe}:
Statistical Multiplexing with Model Parallelism for Deep Learning
Serving.” In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 663–79.
Liang, Percy, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu,
Michihiro Yasunaga, Yian Zhang, et al. 2022. “Holistic Evaluation
of Language Models.” arXiv Preprint arXiv:2211.09110,
November. http://arxiv.org/abs/2211.09110v2.
Lin, Ji, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.
2020. “MCUNet: Tiny Deep Learning on IoT Devices.” In
Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, Virtual, edited by Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin. https://proceedings.neurips.cc/paper/2020/hash/86c51678350f656dcc7f490a43946ee5-Abstract.html.
Lin, Jiong, Qing Gao, Yungui Gong, Yizhou Lu, Chao Zhang, and Fengge
Zhang. 2020. “Primordial Black Holes and Secondary Gravitational
Waves from k/g Inflation.” arXiv Preprint
arXiv:2001.05909, January. http://arxiv.org/abs/2001.05909v2.
Lin, Ji, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen
Wang, Guangxuan Xiao, Xingyu Dang, Chuang Gan, and Song Han. 2023.
“AWQ: Activation-Aware Weight Quantization for LLM Compression and
Acceleration.” arXiv Preprint arXiv:2306.00978
abs/2306.00978 (June). http://arxiv.org/abs/2306.00978v5.
Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song
Han. 2022. “On-Device Training Under 256kb Memory.”
Adv. Neur. In. 35: 22941–54.
Lin, Ji, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, and Song Han. 2023.
“Tiny Machine Learning: Progress and Futures [Feature].”
IEEE Circuits and Systems Magazine 23 (3): 8–34. https://doi.org/10.1109/mcas.2023.3302182.
Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014.
“Microsoft COCO: Common Objects in Context.” In
Computer Vision – ECCV 2014, 740–55. Springer; Springer
International Publishing. https://doi.org/10.1007/978-3-319-10602-1\_48.
Lindgren, Simon. 2023. Handbook of Critical Studies of Artificial
Intelligence. Edward Elgar Publishing.
Lindholm, Andreas, Dave Zachariah, Petre Stoica, and Thomas B. Schon.
2019. “Data Consistency Approach to Model Validation.”
IEEE Access 7: 59788–96. https://doi.org/10.1109/access.2019.2915109.
Lindholm, Erik, John Nickolls, Stuart Oberman, and John Montrym. 2008.
“NVIDIA Tesla: A Unified Graphics and Computing
Architecture.” IEEE Micro 28 (2): 39–55. https://doi.org/10.1109/mm.2008.31.
Liu, C, G Bellec, B Vogginger, D Kappel, J Partzsch, F Neumärker, S
Höppner, et al. 2018. “Memory-Efficient Deep Learning on a
SpiNNaker 2 Prototype.” Frontiers in Neuroscience 12:
840. https://doi.org/10.3389/fnins.2018.00840.
Liu, Yanan, Xiaoxia Wei, Jinyu Xiao, Zhijie Liu, Yang Xu, and Yun Tian.
2020. “Energy Consumption and Emission Mitigation Prediction Based
on Data Center Traffic and PUE for Global Data Centers.”
Global Energy Interconnection 3 (3): 272–82. https://doi.org/10.1016/j.gloei.2020.07.008.
Liu, Yingcheng, Guo Zhang, Christopher G. Tarolli, Rumen Hristov, Stella
Jensen-Roberts, Emma M. Waddell, Taylor L. Myers, et al. 2022.
“Monitoring Gait at Home with Radio Waves in Parkinson’s Disease:
A Marker of Severity, Progression, and Medication Response.”
Science Translational Medicine 14 (663): eadc9669. https://doi.org/10.1126/scitranslmed.adc9669.
Lopez-Paz, David, and Marc’Aurelio Ranzato. 2017. “Gradient
Episodic Memory for Continual Learning.” In NIPS,
30:6467–76. https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html.
Lou, Yin, Rich Caruana, Johannes Gehrke, and Giles Hooker. 2013.
“Accurate Intelligible Models with Pairwise Interactions.”
In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, edited by Inderjit S. Dhillon,
Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh,
Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy, 623–31. ACM. https://doi.org/10.1145/2487575.2487579.
Lowy, Andrew, Sina Baharlouei, Rakesh Pavan, Meisam Razaviyayn, and
Ahmad Beirami. 2021. “A Stochastic Optimization Framework for Fair
Risk Minimization.” CoRR abs/2102.12586 (February). http://arxiv.org/abs/2102.12586v5.
Lundberg, Scott M., and Su-In Lee. 2017. “A Unified Approach to
Interpreting Model Predictions.” In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, edited by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
4765–74. https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.
Lyons, Richard G. 2011. Understanding Digital Signal
Processing. 3rd ed. Prentice Hall.
Ma, Dongning, Fred Lin, Alban Desmaison, Joel Coburn, Daniel Moore,
Sriram Sankar, and Xun Jiao. 2024. “Dr. DNA: Combating Silent Data
Corruptions in Deep Learning Using Distribution of Neuron
Activations.” In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, 239–52. ACM. https://doi.org/10.1145/3620666.3651349.
Maas, Martin, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2024. “Combining
Machine Learning and Lifetime-Based Resource Management for Memory
Allocation and Beyond.” Communications of the ACM 67
(4): 87–96. https://doi.org/10.1145/3611018.
Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. 2017. “Towards Deep Learning Models Resistant to
Adversarial Attacks.” arXiv Preprint arXiv:1706.06083,
June. http://arxiv.org/abs/1706.06083v4.
Mahmoud, Abdulrahman, Neeraj Aggarwal, Alex Nobbe, Jose Rodrigo Sanchez
Vicarte, Sarita V. Adve, Christopher W. Fletcher, Iuri Frosio, and Siva
Kumar Sastry Hari. 2020. “PyTorchFI: A Runtime Perturbation Tool
for DNNs.” In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-w),
25–31. IEEE; IEEE. https://doi.org/10.1109/dsn-w50199.2020.00014.
Mahmoud, Abdulrahman, Siva Kumar Sastry Hari, Christopher W. Fletcher,
Sarita V. Adve, Charbel Sakr, Naresh Shanbhag, Pavlo Molchanov, Michael
B. Sullivan, Timothy Tsai, and Stephen W. Keckler. 2021.
“Optimizing Selective Protection for CNN Resilience.” In
2021 IEEE 32nd International Symposium on Software Reliability
Engineering (ISSRE), 127–38. IEEE. https://doi.org/10.1109/issre52982.2021.00025.
Mahmoud, Abdulrahman, Thierry Tambe, Tarek Aloui, David Brooks, and
Gu-Yeon Wei. 2022. “GoldenEye: A Platform for Evaluating Emerging
Numerical Data Formats in DNN Accelerators.” In 2022 52nd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 206–14. IEEE. https://doi.org/10.1109/dsn53405.2022.00031.
Martin, C. Dianne. 1993. “The Myth of the Awesome Thinking
Machine.” Communications of the ACM 36 (4): 120–33. https://doi.org/10.1145/255950.153587.
Marulli, Fiammetta, Stefano Marrone, and Laura Verde. 2022.
“Sensitivity of Machine Learning Approaches to Fake and Untrusted
Data in Healthcare Domain.” Journal of Sensor and Actuator
Networks 11 (2): 21. https://doi.org/10.3390/jsan11020021.
Maslej, Nestor, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy,
Katrina Ligett, Terah Lyons, James Manyika, et al. 2023.
“Artificial Intelligence Index Report 2023.” ArXiv
Preprint abs/2310.03715 (October). http://arxiv.org/abs/2310.03715v1.
Maslej, Nestor, Loredana Fattorini, C. Raymond Perrault, Vanessa Parli,
Anka Reuel, Erik Brynjolfsson, John Etchemendy, et al. 2024.
“Artificial Intelligence Index Report 2024.” CoRR.
https://doi.org/10.48550/ARXIV.2405.19522.
Mattson, Peter, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg
Diamos, David Kanter, Paulius Micikevicius, et al. 2020. “MLPerf:
An Industry Standard Benchmark Suite for Machine Learning
Performance.” IEEE Micro 40 (2): 8–16. https://doi.org/10.1109/mm.2020.2974843.
Mazumder, Mark, Sharad Chitlangia, Colby Banbury, Yiping Kang, Juan
Manuel Ciro, Keith Achorn, Daniel Galvez, et al. 2021.
“Multilingual Spoken Words Corpus.” In Thirty-Fifth
Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).
McAuliffe, Michael, Michaela Socolof, Sarah Mihuc, Michael Wagner, and
Morgan Sonderegger. 2017. “Montreal Forced Aligner: Trainable
Text-Speech Alignment Using Kaldi.” In Interspeech 2017,
498–502. ISCA. https://doi.org/10.21437/interspeech.2017-1386.
McCarthy, John. 1981. “EPISTEMOLOGICAL PROBLEMS OF ARTIFICIAL
INTELLIGENCE.” In Readings in Artificial Intelligence,
459–65. Elsevier. https://doi.org/10.1016/b978-0-934613-03-3.50035-0.
McMahan, Brendan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agüera y Arcas. 2017b. “Communication-Efficient Learning of Deep
Networks from Decentralized Data.” In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, edited by
Aarti Singh and Xiaojin (Jerry) Zhu, 54:1273–82. Proceedings of Machine
Learning Research. PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html.
———. 2017a. “Communication-Efficient Learning of Deep Networks
from Decentralized Data.” In Artificial Intelligence and
Statistics, 1273–82. PMLR. http://proceedings.mlr.press/v54/mcmahan17a.html.
Mellempudi, Naveen, Sudarshan Srinivasan, Dipankar Das, and Bharat Kaul.
2019. “Mixed Precision Training with 8-Bit Floating Point.”
arXiv Preprint arXiv:1905.12334.
Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher.
2016. “Pointer Sentinel Mixture Models.” arXiv Preprint
arXiv:1609.07843, September. http://arxiv.org/abs/1609.07843v1.
Micikevicius, Paulius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, et al. 2017b. “Mixed
Precision Training.” arXiv Preprint arXiv:1710.03740,
October. http://arxiv.org/abs/1710.03740v3.
———, et al. 2017a. “Mixed Precision Training.” arXiv
Preprint arXiv:1710.03740, October. http://arxiv.org/abs/1710.03740v3.
Micikevicius, Paulius, Dusan Stosic, Neil Burgess, Marius Cornea,
Pradeep Dubey, Richard Grisenthwaite, Sangwon Ha, et al. 2022.
“FP8 Formats for Deep Learning.” arXiv Preprint
arXiv:2209.05433. https://arxiv.org/abs/2209.05433.
Miller, Charlie. 2019. “Lessons Learned from Hacking a
Car.” IEEE Design &Amp; Test 36 (6): 7–9. https://doi.org/10.1109/mdat.2018.2863106.
Miller, Charlie, and Chris Valasek. 2015. “Remote Exploitation of
an Unaltered Passenger Vehicle.” Black Hat USA 2015 (S
91): 1–91.
Mills, Andrew, and Stephen Le Hunte. 1997. “An Overview of
Semiconductor Photocatalysis.” Journal of Photochemistry and
Photobiology A: Chemistry 108 (1): 1–35. https://doi.org/10.1016/s1010-6030(97)00118-4.
Mirhoseini, Azalia et al. 2017. “Device Placement Optimization
with Reinforcement Learning.” International Conference on
Machine Learning (ICML).
Mohanram, K., and N. A. Touba. n.d. “Partial Error Masking to
Reduce Soft Error Failure Rate in Logic Circuits.” In
Proceedings. 16th IEEE Symposium on Computer Arithmetic,
433–40. IEEE; IEEE Comput. Soc. https://doi.org/10.1109/dftvs.2003.1250141.
Monyei, Chukwuka G., and Kirsten E. H. Jenkins. 2018. “Electrons
Have No Identity: Setting Right Misrepresentations in Google and Apple’s
Clean Energy Purchasing.” Energy Research &Amp; Social
Science 46 (December): 48–51. https://doi.org/10.1016/j.erss.2018.06.015.
Moore, Gordon. 2021. “Cramming More Components onto Integrated
Circuits (1965).” In Ideas That Created the Future,
261–66. The MIT Press. https://doi.org/10.7551/mitpress/12274.003.0027.
Moore, Sean S., Kevin J. O’Sullivan, and Francesco Verdecchia. 2015.
“Shrinking the Supply Chain for Implantable Coronary Stent
Devices.” Annals of Biomedical Engineering 44 (2):
497–507. https://doi.org/10.1007/s10439-015-1471-8.
Moshawrab, Mohammad, Mehdi Adda, Abdenour Bouzouane, Hussein Ibrahim,
and Ali Raad. 2023. “Reviewing Federated Learning Aggregation
Algorithms; Strategies, Contributions, Limitations and Future
Perspectives.” Electronics 12 (10): 2287. https://doi.org/10.3390/electronics12102287.
Mukherjee, S. S., J. Emer, and S. K. Reinhardt. n.d. “The Soft
Error Problem: An Architectural Perspective.” In 11th
International Symposium on High-Performance Computer Architecture,
243–47. IEEE; IEEE. https://doi.org/10.1109/hpca.2005.37.
Myllyaho, Lalli, Mikko Raatikainen, Tomi Männistö, Jukka K. Nurminen,
and Tommi Mikkonen. 2022. “On Misbehaviour and Fault Tolerance in
Machine Learning Systems.” Journal of Systems and
Software 183 (January): 111096. https://doi.org/10.1016/j.jss.2021.111096.
Nagel, Markus, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. 2021a. “A White Paper on
Neural Network Quantization.” arXiv Preprint
arXiv:2106.08295, June. http://arxiv.org/abs/2106.08295v1.
———. 2021b. “A White Paper on Neural Network Quantization.”
arXiv Preprint arXiv:2106.08295, June. http://arxiv.org/abs/2106.08295v1.
Narayanan, Arvind, and Vitaly Shmatikov. 2006. “How to Break
Anonymity of the Netflix Prize Dataset.” CoRR. http://arxiv.org/abs/cs/0610105.
Narayanan, Deepak, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, et al.
2021a. “Efficient Large-Scale Language Model Training on GPU
Clusters Using Megatron-LM.” NeurIPS, April. http://arxiv.org/abs/2104.04473v5.
Narayanan, Deepak, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, et al. 2021b.
“Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM.” In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 1–15. ACM. https://doi.org/10.1145/3458817.3476209.
Nayak, Prateeth, Takuya Higuchi, Anmol Gupta, Shivesh Ranjan, Stephen
Shum, Siddharth Sigtia, Erik Marchi, et al. 2022. “Improving Voice
Trigger Detection with Metric Learning.” arXiv Preprint
arXiv:2204.02455, April. http://arxiv.org/abs/2204.02455v2.
Ng, Davy Tsz Kit, Jac Ka Lok Leung, Kai Wah Samuel Chu, and Maggie Shen
Qiao. 2021. “<Scp>AI</Scp> Literacy: Definition,
Teaching, Evaluation and Ethical Issues.” Proceedings of the
Association for Information Science and Technology 58 (1): 504–9.
https://doi.org/10.1002/pra2.487.
Ngo, Richard, Lawrence Chan, and Sören Mindermann. 2022. “The
Alignment Problem from a Deep Learning Perspective.” ArXiv
Preprint abs/2209.00626 (August). http://arxiv.org/abs/2209.00626v6.
Nguyen, Ngoc-Bao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and
Ngai-Man Cheung. 2023. “Re-Thinking Model Inversion Attacks
Against Deep Neural Networks.” In 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 16384–93. IEEE. https://doi.org/10.1109/cvpr52729.2023.01572.
Nishigaki, Shinsuke. 2024. “Eigenphase Distributions of Unimodular
Circular Ensembles.” arXiv Preprint arXiv:2401.09045 36
(January). http://arxiv.org/abs/2401.09045v2.
Norrie, Thomas, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li,
James Laudon, Cliff Young, Norman Jouppi, and David Patterson. 2021.
“The Design Process for Google’s Training Chips: TPUv2 and
TPUv3.” IEEE Micro 41 (2): 56–63. https://doi.org/10.1109/mm.2021.3058217.
Northcutt, Curtis G, Anish Athalye, and Jonas Mueller. 2021.
“Pervasive Label Errors in Test Sets Destabilize Machine Learning
Benchmarks.” arXiv. https://doi.org/https://doi.org/10.48550/arXiv.2103.14749
arXiv-issued DOI via DataCite.
NVIDIA. 2021. “TensorRT: High-Performance Deep Learning Inference
Library.” NVIDIA Developer Blog. https://developer.nvidia.com/tensorrt.
Obermeyer, Ziad, Brian Powers, Christine Vogeli, and Sendhil
Mullainathan. 2019. “Dissecting Racial Bias in an Algorithm Used
to Manage the Health of Populations.” Science 366
(6464): 447–53. https://doi.org/10.1126/science.aax2342.
Oecd. 2023. “A Blueprint for Building National Compute Capacity
for Artificial Intelligence.” 350. Organisation for Economic
Co-Operation; Development (OECD). https://doi.org/10.1787/876367e3-en.
OECD.AI. 2021. “Measuring the Geographic Distribution of AI
Computing Capacity.”
<https://oecd.ai/en/policy-circle/computing-capacity>.
Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael
Petrov, and Shan Carter. 2020. “Zoom in: An Introduction to
Circuits.” Distill 5 (3): e00024–001. https://doi.org/10.23915/distill.00024.001.
Oliynyk, Daryna, Rudolf Mayer, and Andreas Rauber. 2023. “I Know
What You Trained Last Summer: A Survey on Stealing Machine Learning
Models and Defences.” ACM Computing Surveys 55 (14s):
1–41. https://doi.org/10.1145/3595292.
Oprea, Alina, Anoop Singhal, and Apostol Vassilev. 2022.
“Poisoning Attacks Against Machine Learning: Can Machine Learning
Be Trustworthy?” Computer 55 (11): 94–99. https://doi.org/10.1109/mc.2022.3190787.
Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. 2008. “GPU Computing.” Proceedings of the
IEEE 96 (5): 879–99. https://doi.org/10.1109/jproc.2008.917757.
Palmer, John F. 1980. “The INTEL® 8087 Numeric Data
Processor.” In Proceedings of the May 19-22, 1980, National
Computer Conference on - AFIPS ’80, 887. ACM Press. https://doi.org/10.1145/1500518.1500674.
Pan, Sinno Jialin, and Qiang Yang. 2010. “A Survey on Transfer
Learning.” IEEE Transactions on Knowledge and Data
Engineering 22 (10): 1345–59. https://doi.org/10.1109/tkde.2009.191.
Panda, Priyadarshini, Indranil Chakraborty, and Kaushik Roy. 2019.
“Discretization Based Solutions for Secure Machine Learning
Against Adversarial Attacks.” IEEE Access 7: 70157–68.
https://doi.org/10.1109/access.2019.2919463.
Papadimitriou, George, and Dimitris Gizopoulos. 2021.
“Demystifying the System Vulnerability Stack: Transient Fault
Effects Across the Layers.” In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 902–15.
IEEE; IEEE. https://doi.org/10.1109/isca52012.2021.00075.
Papernot, Nicolas, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. 2016. “Distillation as a Defense to Adversarial
Perturbations Against Deep Neural Networks.” In 2016 IEEE
Symposium on Security and Privacy (SP), 582–97. IEEE; IEEE. https://doi.org/10.1109/sp.2016.41.
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001.
“BLEU: A Method for Automatic Evaluation of Machine
Translation.” In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics - ACL ’02, 311.
Association for Computational Linguistics. https://doi.org/10.3115/1073083.1073135.
Park, Daniel S., William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D. Cubuk, and Quoc V. Le. 2019. “SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recognition.” arXiv
Preprint arXiv:1904.08779, April. http://arxiv.org/abs/1904.08779v3.
Parrish, Alicia, Hannah Rose Kirk, Jessica Quaye, Charvi Rastogi, Max
Bartolo, Oana Inel, Juan Ciro, et al. 2023. “Adversarial Nibbler:
A Data-Centric Challenge for Improving the Safety of Text-to-Image
Models.” ArXiv Preprint abs/2305.14384 (May). http://arxiv.org/abs/2305.14384v1.
Paszke, Adam, Sam Gross, Francisco Massa, and et al. 2019.
“PyTorch: An Imperative Style, High-Performance Deep Learning
Library.” Advances in Neural Information Processing Systems
(NeurIPS) 32: 8026–37.
Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, et al. 2019. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.” In
Advances in Neural Information Processing Systems, 8026–37.
Patel, Jay M. 2020. “Introduction to Common Crawl
Datasets.” In Getting Structured Data from the Internet,
277–324. Apress. https://doi.org/10.1007/978-1-4842-6576-5\_6.
Patterson, David A., and John L. Hennessy. 2021a. Computer
Architecture: A Quantitative Approach. 6th ed. Morgan Kaufmann.
———. 2021b. Computer Organization and Design RISC-v Edition: The
Hardware Software Interface. 2nd ed. San Francisco, CA: Morgan
Kaufmann.
———. 2021c. Computer Organization and Design: The Hardware/Software
Interface. 5th ed. Morgan Kaufmann.
Patterson, David, Joseph Gonzalez, Urs Holzle, Quoc Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier, and
Jeff Dean. 2022. “The Carbon Footprint of Machine Learning
Training Will Plateau, Then Shrink.” Computer 55 (7):
18–28. https://doi.org/10.1109/mc.2022.3148714.
Patterson, David, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel
Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021a.
“Carbon Emissions and Large Neural Network Training.”
arXiv Preprint arXiv:2104.10350.
———. 2021b. “Carbon Emissions and Large Neural Network
Training.” arXiv Preprint arXiv:2104.10350, April. http://arxiv.org/abs/2104.10350v3.
Penedo, Guilherme, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov,
Margaret Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf.
2024. “The FineWeb Datasets: Decanting the Web for the Finest Text
Data at Scale.” arXiv Preprint arXiv:2406.17557, June.
http://arxiv.org/abs/2406.17557v2.
Peters, Dorian, Rafael A. Calvo, and Richard M. Ryan. 2018.
“Designing for Motivation, Engagement and Wellbeing in Digital
Experience.” Frontiers in Psychology 9 (May): 797. https://doi.org/10.3389/fpsyg.2018.00797.
Phillips, P. Jonathon, Carina A. Hahn, Peter C. Fontana, David A.
Broniatowski, and Mark A. Przybocki. 2020. “Four Principles of
Explainable Artificial Intelligence.” Gaithersburg,
Maryland. National Institute of Standards; Technology (NIST). https://doi.org/10.6028/nist.ir.8312-draft.
Pineau, Joelle, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent
Larivière, Alina Beygelzimer, Florence d’Alché-Buc, Emily Fox, and Hugo
Larochelle. 2021. “Improving Reproducibility in Machine Learning
Research (a Report from the Neurips 2019 Reproducibility
Program).” Journal of Machine Learning Research 22
(164): 1–20.
Plank, James S. 1997. “A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-Like Systems.” Software: Practice and
Experience 27 (9): 995–1012. https://doi.org/10.1002/(sici)1097-024x(199709)27:9<995::aid-spe111>3.0.co;2-6.
Pont, Michael J, and Royan HL Ong. 2002. “Using Watchdog Timers to
Improve the Reliability of Single-Processor Embedded Systems: Seven New
Patterns and a Case Study.” In Proceedings of the First
Nordic Conference on Pattern Languages of Programs, 159–200.
Citeseer.
Prakash, Shvetank, Tim Callahan, Joseph Bushagour, Colby Banbury, Alan
V. Green, Pete Warden, Tim Ansell, and Vijay Janapa Reddi. 2023.
“CFU Playground: Full-Stack Open-Source Framework for Tiny Machine
Learning (TinyML) Acceleration on FPGAs.” In 2023 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS), abs/2201.01863:157–67. IEEE. https://doi.org/10.1109/ispass57527.2023.00024.
Prakash, Shvetank, Matthew Stewart, Colby Banbury, Mark Mazumder, Pete
Warden, Brian Plancher, and Vijay Janapa Reddi. 2023. “Is TinyML
Sustainable? Assessing the Environmental Impacts of Machine Learning on
Microcontrollers.” ArXiv Preprint abs/2301.11899
(January). http://arxiv.org/abs/2301.11899v3.
Psoma, Sotiria D., and Chryso Kanthou. 2023. “Wearable Insulin
Biosensors for Diabetes Management: Advances and Challenges.”
Biosensors 13 (7): 719. https://doi.org/10.3390/bios13070719.
Pushkarna, Mahima, Andrew Zaldivar, and Oddur Kjartansson. 2022.
“Data Cards: Purposeful and Transparent Dataset Documentation for
Responsible AI.” In 2022 ACM Conference on Fairness,
Accountability, and Transparency, 1776–826. ACM. https://doi.org/10.1145/3531146.3533231.
Putnam, Andrew, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, et al. 2014. “A
Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services.” ACM SIGARCH Computer Architecture News 42
(3): 13–24. https://doi.org/10.1145/2678373.2665678.
Qi, Chen, Shibo Shen, Rongpeng Li, Zhifeng Zhao, Qing Liu, Jing Liang,
and Honggang Zhang. 2021. “An Efficient Pruning Scheme of Deep
Neural Networks for Internet of Things Applications.” EURASIP
Journal on Advances in Signal Processing 2021 (1): 31. https://doi.org/10.1186/s13634-021-00744-4.
Qi, Xuan, Burak Kantarci, and Chen Liu. 2017. “GPU-Based
Acceleration of SDN Controllers.” In Network as a Service for
Next Generation Internet, 339–56. Institution of Engineering;
Technology. https://doi.org/10.1049/pbte073e\_ch14.
R. V., Rashmi, and Karthikeyan A. 2018. “Secure Boot of Embedded
Applications - a Review.” In 2018 Second International
Conference on Electronics, Communication and Aerospace Technology
(ICECA), 291–98. IEEE. https://doi.org/10.1109/iceca.2018.8474730.
Radosavovic, Ilija, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and
Piotr Dollar. 2020. “Designing Network Design Spaces.” In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 10428–36. IEEE. https://doi.org/10.1109/cvpr42600.2020.01044.
Rajbhandari, Samyam, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020.
“ZeRO: Memory Optimization Towards Training Trillion Parameter
Models.” Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). https://doi.org/10.5555/3433701.3433721.
Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
2016. “SQuAD: 100,000+ Questions for Machine Comprehension of
Text.” arXiv Preprint arXiv:1606.05250, June, 2383–92.
https://doi.org/10.18653/v1/d16-1264.
Ramaswamy, Vikram V., Sunnie S. Y. Kim, Ruth Fong, and Olga Russakovsky.
2023a. “UFO: A Unified Method for Controlling Understandability
and Faithfulness Objectives in Concept-Based Explanations for
CNNs.” ArXiv Preprint abs/2303.15632 (March). http://arxiv.org/abs/2303.15632v1.
———. 2023b. “Overlooked Factors in Concept-Based Explanations:
Dataset Choice, Concept Learnability, and Human Capability.” In
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 10932–41. IEEE. https://doi.org/10.1109/cvpr52729.2023.01052.
Ramcharan, Amanda, Kelsee Baranowski, Peter McCloskey, Babuali Ahmed,
James Legg, and David P. Hughes. 2017. “Deep Learning for
Image-Based Cassava Disease Detection.” Frontiers in Plant
Science 8 (October): 1852. https://doi.org/10.3389/fpls.2017.01852.
Ramesh, Aditya, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. 2021. “Zero-Shot
Text-to-Image Generation.” In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, edited by Marina Meila and Tong Zhang,
139:8821–31. Proceedings of Machine Learning Research. PMLR. http://proceedings.mlr.press/v139/ramesh21a.html.
Ranganathan, Parthasarathy, and Urs Hölzle. 2024. “Twenty Five
Years of Warehouse-Scale Computing.” IEEE Micro 44 (5):
11–22. https://doi.org/10.1109/mm.2024.3409469.
Rashid, Layali, Karthik Pattabiraman, and Sathish Gopalakrishnan. 2012.
“Intermittent Hardware Errors Recovery: Modeling and
Evaluation.” In 2012 Ninth International Conference on
Quantitative Evaluation of Systems, 220–29. IEEE; IEEE. https://doi.org/10.1109/qest.2012.37.
———. 2015. “Characterizing the Impact of Intermittent Hardware
Faults on Programs.” IEEE Transactions on Reliability 64
(1): 297–310. https://doi.org/10.1109/tr.2014.2363152.
Rastegari, Mohammad, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
2016. “XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks.” In Computer Vision – ECCV
2016, 525–42. Springer International Publishing. https://doi.org/10.1007/978-3-319-46493-0\_32.
Ratner, Alex, Braden Hancock, Jared Dunnmon, Roger Goldman, and
Christopher Ré. 2018. “Snorkel MeTaL: Weak Supervision for
Multi-Task Learning.” In Proceedings of the Second Workshop
on Data Management for End-to-End Machine Learning. ACM. https://doi.org/10.1145/3209889.3209898.
Reagen, Brandon, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David
Brooks. 2017. Deep Learning for Computer Architects. Springer
International Publishing. https://doi.org/10.1007/978-3-031-01756-8.
Reagen, Brandon, Udit Gupta, Lillian Pentecost, Paul Whatmough, Sae Kyu
Lee, Niamh Mulholland, David Brooks, and Gu-Yeon Wei. 2018. “Ares:
A Framework for Quantifying the Resilience of Deep Neural
Networks.” In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 1–6. IEEE. https://doi.org/10.1109/dac.2018.8465834.
Real, Esteban, Alok Aggarwal, Yanping Huang, and Quoc V. Le. 2019a.
“Regularized Evolution for Image Classifier Architecture
Search.” Proceedings of the AAAI Conference on Artificial
Intelligence 33 (01): 4780–89. https://doi.org/10.1609/aaai.v33i01.33014780.
———. 2019b. “Regularized Evolution for Image Classifier
Architecture Search.” Proceedings of the AAAI Conference on
Artificial Intelligence 33 (01): 4780–89. https://doi.org/10.1609/aaai.v33i01.33014780.
Reddi, Vijay Janapa, Christine Cheng, David Kanter, Peter Mattson,
Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, et al. 2019.
“MLPerf Inference Benchmark.” arXiv Preprint
arXiv:1911.02549, November, 446–59. https://doi.org/10.1109/isca45697.2020.00045.
Reddi, Vijay Janapa, and Meeta Sharma Gupta. 2013. Resilient
Architecture Design for Voltage Variation. Springer International
Publishing. https://doi.org/10.1007/978-3-031-01739-1.
Reis, G. A., J. Chang, N. Vachharajani, R. Rangan, and D. I. August.
n.d. “SWIFT: Software Implemented Fault Tolerance.” In
International Symposium on Code Generation and Optimization,
243–54. IEEE; IEEE. https://doi.org/10.1109/cgo.2005.34.
Research, Microsoft. 2021. DeepSpeed: Extreme-Scale Model Training
for Everyone.
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “”
Why Should i Trust You?” Explaining the Predictions of Any
Classifier.” In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
1135–44.
Richter, Joel D., and Xinyu Zhao. 2021. “The Molecular Biology of
FMRP: New Insights into Fragile x Syndrome.” Nature Reviews
Neuroscience 22 (4): 209–22. https://doi.org/10.1038/s41583-021-00432-0.
Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Bjorn Ommer. 2022. “High-Resolution Image Synthesis with Latent
Diffusion Models.” In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 10674–85. IEEE. https://doi.org/10.1109/cvpr52688.2022.01042.
Romero, Francisco, Qian Li 0027, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. “INFaaS: Automated Model-Less Inference
Serving.” In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), 397–411. https://www.usenix.org/conference/atc21/presentation/romero.
Rosenblatt, F. 1958. “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain.”
Psychological Review 65 (6): 386���408. https://doi.org/10.1037/h0042519.
Rudin, Cynthia. 2019. “Stop Explaining Black Box Machine Learning
Models for High Stakes Decisions and Use Interpretable Models
Instead.” Nature Machine Intelligence 1 (5): 206–15. https://doi.org/10.1038/s42256-019-0048-x.
Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986.
“Learning Representations by Back-Propagating Errors.”
Nature 323 (6088): 533–36. https://doi.org/10.1038/323533a0.
Russell, Stuart. 2021. “Human-Compatible Artificial
Intelligence.” In Human-Like Machine Intelligence, 3–23.
Oxford University Press. https://doi.org/10.1093/oso/9780198862536.003.0001.
Ryan, Richard M., and Edward L. Deci. 2000. “Self-Determination
Theory and the Facilitation of Intrinsic Motivation, Social Development,
and Well-Being.” American Psychologist 55 (1): 68–78. https://doi.org/10.1037/0003-066x.55.1.68.
Sabour, Sara, Nicholas Frosst, and Geoffrey E Hinton. 2017.
“Dynamic Routing Between Capsules.” In Advances in
Neural Information Processing Systems. Vol. 30.
———. 2021b. “‘Everyone Wants to Do the Model Work, Not the
Data Work’: Data Cascades in High-Stakes AI.” In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 1–15. ACM. https://doi.org/10.1145/3411764.3445518.
Sangchoolie, Behrooz, Karthik Pattabiraman, and Johan Karlsson. 2017.
“One Bit Is (Not) Enough: An Empirical Study of the Impact of
Single and Multiple Bit-Flip Errors.” In 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 97���108. IEEE; IEEE. https://doi.org/10.1109/dsn.2017.30.
Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019.
“DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper
and Lighter.” arXiv Preprint arXiv:1910.01108, October.
http://arxiv.org/abs/1910.01108v4.
Scardapane, Simone, Ye Wang, and Massimo Panella. 2020. “Why
Should i Trust You? A Survey of Explainability of Machine Learning for
Healthcare.” Pattern Recognition Letters 140: 47–57.
Schäfer, Mike S. 2023. “The Notorious GPT: Science Communication
in the Age of Artificial Intelligence.” Journal of Science
Communication 22 (02): Y02. https://doi.org/10.22323/2.22020402.
Schwartz, Daniel, Jonathan Michael Gomes Selman, Peter Wrege, and
Andreas Paepcke. 2021. “Deployment of Embedded Edge-AI for
Wildlife Monitoring in Remote Regions.” In 2021 20th IEEE
International Conference on Machine Learning and Applications
(ICMLA), 1035–42. IEEE; IEEE. https://doi.org/10.1109/icmla52953.2021.00170.
Schwartz, Roy, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2020.
“Green AI.” Communications of the ACM 63 (12):
54–63. https://doi.org/10.1145/3381831.
Seide, Frank, and Amit Agarwal. 2016. “CNTK: Microsoft’s
Open-Source Deep-Learning Toolkit.” In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2135–35. ACM. https://doi.org/10.1145/2939672.2945397.
Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2017. “Grad-CAM: Visual
Explanations from Deep Networks via Gradient-Based Localization.”
In 2017 IEEE International Conference on Computer Vision
(ICCV), 618–26. IEEE. https://doi.org/10.1109/iccv.2017.74.
Seong, Nak Hee, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A. Rivers,
and Hsien-Hsin S. Lee. 2010. “SAFER: Stuck-at-Fault Error Recovery
for Memories.” In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 115–24. IEEE; IEEE. https://doi.org/10.1109/micro.2010.46.
Settles, Burr. 2012b. Active Learning. University of
Wisconsin-Madison Department of Computer Sciences. Vol. 1648.
Springer International Publishing. https://doi.org/10.1007/978-3-031-01560-1.
———. 2012a. Active Learning. Computer Sciences Technical
Report. University of Wisconsin–Madison; Springer International
Publishing. https://doi.org/10.1007/978-3-031-01560-1.
Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2017. “On
a Formal Model of Safe and Scalable Self-Driving Cars.” ArXiv
Preprint abs/1708.06374 (August). http://arxiv.org/abs/1708.06374v6.
Shallue, Christopher J., Jaehoon Lee, et al. 2019. “Measuring the
Effects of Data Parallelism on Neural Network Training.”
Journal of Machine Learning Research 20: 1–49. http://jmlr.org/papers/v20/18-789.html.
Shan, Shawn, Wenxin Ding, Josephine Passananti, Stanley Wu, Haitao
Zheng, and Ben Y. Zhao. 2023. “Nightshade: Prompt-Specific
Poisoning Attacks on Text-to-Image Generative Models.” ArXiv
Preprint abs/2310.13828 (October). http://arxiv.org/abs/2310.13828v3.
Shang, J., G. Wang, and Y. Liu. 2018. “Accelerating Genomic Data
Analysis with Domain-Specific Architectures.” IEEE
Transactions on Computers 67 (7): 965–78. https://doi.org/10.1109/TC.2018.2799212.
Shazeer, Noam, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani,
Penporn Koanantakool, Peter Hawkins, et al. 2018.
“Mesh-TensorFlow: Deep Learning for Supercomputers.”
arXiv Preprint arXiv:1811.02084, November. http://arxiv.org/abs/1811.02084v1.
Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc
Le, Geoffrey Hinton, and Jeff Dean. 2017. “Outrageously Large
Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.”
arXiv Preprint arXiv:1701.06538, January. http://arxiv.org/abs/1701.06538v1.
Shazeer, Noam, Azalia Mirhoseini, Piotr Maziarz, et al. 2017.
“Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer.” In International Conference on
Learning Representations.
Sheaffer, Jeremy W., David P. Luebke, and Kevin Skadron. 2007. “A
Hardware Redundancy and Recovery Mechanism for Reliable Scientific
Computation on Graphics Processors.” In Graphics
Hardware, 2007:55–64. Citeseer. https://doi.org/10.2312/EGGH/EGGH07/055-064.
Shehabi, Arman, Sarah Smith, Dale Sartor, Richard Brown, Magnus Herrlin,
Jonathan Koomey, Eric Masanet, Nathaniel Horner, Inês Azevedo, and
William Lintner. 2016. “United States Data Center Energy Usage
Report.” Office of Scientific; Technical Information (OSTI). https://doi.org/10.2172/1372902.
Shen, Sheng, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. 2019. “Q-BERT: Hessian Based
Ultra Low Precision Quantization of BERT.” Proceedings of the
AAAI Conference on Artificial Intelligence 34 (05): 8815–21. https://doi.org/10.1609/aaai.v34i05.6409.
Sheng, Victor S., and Jing Zhang. 2019. “Machine Learning with
Crowdsourcing: A Brief Summary of the Past Research and Future
Directions.” Proceedings of the AAAI Conference on Artificial
Intelligence 33 (01): 9837–43. https://doi.org/10.1609/aaai.v33i01.33019837.
Shi, Hongrui, and Valentin Radu. 2022. “Data Selection for
Efficient Model Update in Federated Learning.” In Proceedings
of the 2nd European Workshop on Machine Learning and Systems,
72–78. ACM. https://doi.org/10.1145/3517207.3526980.
Shneiderman, Ben. 2020. “Bridging the Gap Between Ethics and
Practice: Guidelines for Reliable, Safe, and Trustworthy Human-Centered
AI Systems.” ACM Transactions on Interactive Intelligent
Systems 10 (4): 1–31. https://doi.org/10.1145/3419764.
———. 2022. Human-Centered AI. Oxford University Press.
Shoeybi, Mohammad, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. 2019b. “Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.”
arXiv Preprint arXiv:1909.08053, September. http://arxiv.org/abs/1909.08053v4.
———. 2019a. “Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism.” arXiv Preprint
arXiv:1909.08053, September. http://arxiv.org/abs/1909.08053v4.
Shokri, Reza, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
2017. “Membership Inference Attacks Against Machine Learning
Models.” In 2017 IEEE Symposium on Security and Privacy
(SP), 3–18. IEEE; IEEE. https://doi.org/10.1109/sp.2017.41.
Siddik, Md Abu Bakar, Arman Shehabi, and Landon Marston. 2021.
“The Environmental Footprint of Data Centers in the United
States.” Environmental Research Letters 16 (6): 064017.
https://doi.org/10.1088/1748-9326/abfba1.
Silvestro, Daniele, Stefano Goria, Thomas Sterner, and Alexandre
Antonelli. 2022. “Improving Biodiversity Protection Through
Artificial Intelligence.” Nature Sustainability 5 (5):
415–24. https://doi.org/10.1038/s41893-022-00851-6.
Singh, Narendra, and Oladele A. Ogunseitan. 2022. “Disentangling
the Worldwide Web of e-Waste and Climate Change Co-Benefits.”
Circular Economy 1 (2): 100011. https://doi.org/10.1016/j.cec.2022.100011.
Skorobogatov, Sergei. 2009. “Local Heating Attacks on Flash Memory
Devices.” In 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust, 1–6. IEEE; IEEE. https://doi.org/10.1109/hst.2009.5225028.
Skorobogatov, Sergei P., and Ross J. Anderson. 2003. “Optical
Fault Induction Attacks.” In Cryptographic Hardware and
Embedded Systems - CHES 2002, 2–12. Springer; Springer Berlin
Heidelberg. https://doi.org/10.1007/3-540-36400-5\_2.
Smilkov, Daniel, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. 2017. “SmoothGrad: Removing Noise by Adding
Noise.” ArXiv Preprint abs/1706.03825 (June). http://arxiv.org/abs/1706.03825v1.
Smith, Steven W. 1997. The Scientist and Engineer’s Guide to Digital
Signal Processing. California Technical Publishing. https://www.dspguide.com/.
Sodani, Avinash. 2015. “Knights Landing (KNL): 2nd Generation
Intel® Xeon Phi Processor.” In 2015 IEEE Hot Chips 27
Symposium (HCS), 1–24. IEEE. https://doi.org/10.1109/hotchips.2015.7477467.
Sokolova, Marina, and Guy Lapalme. 2009. “A Systematic Analysis of
Performance Measures for Classification Tasks.” Information
Processing &Amp; Management 45 (4): 427–37. https://doi.org/10.1016/j.ipm.2009.03.002.
Stephens, Nigel, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, et al. 2017. “The ARM
Scalable Vector Extension.” IEEE Micro 37 (2): 26–39. https://doi.org/10.1109/mm.2017.35.
Strassen, Volker. 1969. “Gaussian Elimination Is Not
Optimal.” Numerische Mathematik 13 (4): 354–56. https://doi.org/10.1007/bf02165411.
Strickland, Eliza. 2019. “IBM Watson, Heal Thyself: How IBM
Overpromised and Underdelivered on AI Health Care.” IEEE
Spectrum 56 (4): 24–31. https://doi.org/10.1109/mspec.2019.8678513.
Strubell, Emma, Ananya Ganesh, and Andrew McCallum. 2019. “Energy
and Policy Considerations for Deep Learning in NLP.” In
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 3645–50. Florence, Italy: Association
for Computational Linguistics. https://doi.org/10.18653/v1/p19-1355.
Sudhakar, Soumya, Vivienne Sze, and Sertac Karaman. 2023. “Data
Centers on Wheels: Emissions from Computing Onboard Autonomous
Vehicles.” IEEE Micro 43 (1): 29–39. https://doi.org/10.1109/mm.2022.3219803.
Sullivan, Gary J., Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
2012. “Overview of the High Efficiency Video Coding (HEVC)
Standard.” IEEE Transactions on Circuits and Systems for
Video Technology 22 (12): 1649–68. https://doi.org/10.1109/tcsvt.2012.2221191.
Sun, Siqi, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. “Patient
Knowledge Distillation for BERT Model Compression.” In
Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Association for
Computational Linguistics. https://doi.org/10.18653/v1/d19-1441.
Systems, Cerebras. 2021a. “The Wafer-Scale Engine 2: Scaling AI
Compute Beyond GPUs.” Cerebras White Paper. https://cerebras.ai/product-chip/.
———. 2021b. “Wafer-Scale Deep Learning Acceleration with the
Cerebras CS-2.” Cerebras Technical Paper.
Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. 2017a.
“Efficient Processing of Deep Neural Networks: A Tutorial and
Survey.” Proceedings of the IEEE 105 (12): 2295–2329. https://doi.org/10.1109/jproc.2017.2761740.
Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. 2017b.
“Efficient Processing of Deep Neural Networks: A Tutorial and
Survey.” Proceedings of the IEEE 105 (12): 2295–2329. https://doi.org/10.1109/jproc.2017.2761740.
Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. “Intriguing
Properties of Neural Networks.” Edited by Yoshua Bengio and Yann
LeCun, December. http://arxiv.org/abs/1312.6199v4.
Tambe, Thierry, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa
Reddi, Alexander Rush, David Brooks, and Gu-Yeon Wei. 2020.
“Algorithm-Hardware Co-Design of Adaptive Floating-Point Encodings
for Resilient Deep Learning Inference.” In 2020 57th ACM/IEEE
Design Automation Conference (DAC), 1–6. IEEE; IEEE. https://doi.org/10.1109/dac18072.2020.9218516.
Tan, Mingxing, and Quoc V Le. 2019a. “EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.” In
International Conference on Machine Learning (ICML), 6105–14.
Tan, Mingxing, and Quoc V. Le. 2019c. “EfficientNet: Rethinking
Model Scaling for Convolutional Neural Networks.” In
Proceedings of the International Conference on Machine Learning
(ICML), 6105–14.
———. 2019b. “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks.” In International Conference
on Machine Learning.
Tarun, Ayush K, Vikram S Chundawat, Murari Mandal, and Mohan
Kankanhalli. 2022. “Deep Regression Unlearning.” ArXiv
Preprint abs/2210.08196 (October). http://arxiv.org/abs/2210.08196v2.
Team, The Theano Development, Rami Al-Rfou, Guillaume Alain, Amjad
Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, et
al. 2016. “Theano: A Python Framework for Fast Computation of
Mathematical Expressions,” May. http://arxiv.org/abs/1605.02688v1.
Teerapittayanon, Surat, Bradley McDanel, and H. T. Kung. 2017.
“BranchyNet: Fast Inference via Early Exiting from Deep Neural
Networks.” arXiv Preprint arXiv:1709.01686, September.
http://arxiv.org/abs/1709.01686v1.
The Sustainable Development Goals Report 2018. 2018. New York:
United Nations. https://doi.org/10.18356/7d014b41-en.
Thompson, Neil C., Kristjan Greenewald, Keeheon Lee, and Gabriel F.
Manso. 2021. “Deep Learning’s Diminishing Returns: The Cost of
Improvement Is Becoming Unsustainable.” IEEE Spectrum 58
(10): 50–55. https://doi.org/10.1109/mspec.2021.9563954.
Thornton, James E. 1965. “Design of a Computer: The Control Data
6600.” Communications of the ACM 8 (6): 330��35.
Tianqi, Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, et al. 2018a. “TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning.” In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), 578–94. https://www.usenix.org/conference/osdi18/presentation/chen.
———, et al. 2018b. “TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning.” In OSDI, 578–94. https://www.usenix.org/conference/osdi18/presentation/chen.
Till, Aaron, Andrew L. Rypel, Andrew Bray, and Samuel B. Fey. 2019.
“Fish Die-Offs Are Concurrent with Thermal Extremes in North
Temperate Lakes.” Nature Climate Change 9 (8): 637–41.
https://doi.org/10.1038/s41558-019-0520-y.
Tirtalistyani, Rose, Murtiningrum Murtiningrum, and Rameshwar S. Kanwar.
2022. “Indonesia Rice Irrigation System: Time for
Innovation.” Sustainability 14 (19): 12477. https://doi.org/10.3390/su141912477.
Tramèr, Florian, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan
Boneh. 2019. “AdVersarial: Perceptual Ad Blocking Meets
Adversarial Machine Learning.” In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2005–21.
ACM. https://doi.org/10.1145/3319535.3354222.
Tsai, Min-Jen, Ping-Yi Lin, and Ming-En Lee. 2023. “Adversarial
Attacks on Medical Image Classification.” Cancers 15
(17): 4228. https://doi.org/10.3390/cancers15174228.
Tsai, Timothy, Siva Kumar Sastry Hari, Michael Sullivan, Oreste Villa,
and Stephen W. Keckler. 2021. “NVBitFI: Dynamic Fault Injection
for GPUs.” In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 284–91. IEEE;
IEEE. https://doi.org/10.1109/dsn48987.2021.00041.
Tschand, Arya, Arun Tejusve Raghunath Rajan, Sachin Idgunji, Anirban
Ghosh, Jeremy Holleman, Csaba Kiraly, Pawan Ambalkar, et al. 2024.
“MLPerf Power: Benchmarking the Energy Efficiency of Machine
Learning Systems from Microwatts to Megawatts for Sustainable
AI.” arXiv Preprint arXiv:2410.12032, October. http://arxiv.org/abs/2410.12032v2.
Uddin, Mueen, and Azizah Abdul Rahman. 2012. “Energy Efficiency
and Low Carbon Enabler Green IT Framework for Data Centers Considering
Green Metrics.” Renewable and Sustainable Energy Reviews
16 (6): 4078–94. https://doi.org/10.1016/j.rser.2012.03.014.
Umuroglu, Yaman, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott,
Philip Leong, Magnus Jahre, and Kees Vissers. 2017. “FINN: A
Framework for Fast, Scalable Binarized Neural Network Inference.”
In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 65–74. ACM. https://doi.org/10.1145/3020078.3021744.
Un, and World Economic Forum. 2019. A New Circular Vision for
Electronics, Time for a Global Reboot. PACE - Platform for
Accelerating the Circular Economy. https://www3.weforum.org/docs/WEF\_A\_New\_Circular\_Vision\_for\_Electronics.pdf.
Van Noorden, Richard. 2016. “ArXiv Preprint Server Plans
Multimillion-Dollar Overhaul.” Nature 534 (7609): 602–2.
https://doi.org/10.1038/534602a.
Vangal, Sriram, Somnath Paul, Steven Hsu, Amit Agarwal, Saurabh Kumar,
Ram Krishnamurthy, Harish Krishnamurthy, James Tschanz, Vivek De, and
Chris H. Kim. 2021. “Wide-Range Many-Core SoC Design in Scaled
CMOS: Challenges and Opportunities.” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 29 (5): 843–56. https://doi.org/10.1109/tvlsi.2021.3061649.
Vanschoren, Joaquin. 2018. “Meta-Learning: A Survey.”
ArXiv Preprint arXiv:1810.03548, October. http://arxiv.org/abs/1810.03548v1.
Velazco, Raoul, Gilles Foucard, and Paul Peronnard. 2010.
“Combining Results of Accelerated Radiation Tests and Fault
Injections to Predict the Error Rate of an Application Implemented in
SRAM-Based FPGAs.” IEEE Transactions on Nuclear Science
57 (6): 3500–3505. https://doi.org/10.1109/tns.2010.2087355.
Verma, Team Dual_Boot: Swapnil. 2022. “Elephant AI.”
Hackster.io. https://www.hackster.io/dual\_boot/elephant-ai-ba71e9.
Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR.” SSRN Electronic
Journal 31: 841. https://doi.org/10.2139/ssrn.3063289.
Wald, Peter H., and Jeffrey R. Jones. 1987. “Semiconductor
Manufacturing: An Introduction to Processes and Hazards.”
American Journal of Industrial Medicine 11 (2): 203–21. https://doi.org/10.1002/ajim.4700110209.
Wan, Zishen, Aqeel Anwar, Yu-Shun Hsiao, Tianyu Jia, Vijay Janapa Reddi,
and Arijit Raychowdhury. 2021. “Analyzing and Improving Fault
Tolerance of Learning-Based Navigation Systems.” In 2021 58th
ACM/IEEE Design Automation Conference (DAC), 841–46. IEEE; IEEE. https://doi.org/10.1109/dac18074.2021.9586116.
Wan, Zishen, Yiming Gan, Bo Yu, S Liu, A Raychowdhury, and Y Zhu. 2023.
“Vpp: The Vulnerability-Proportional Protection Paradigm Towards
Reliable Autonomous Machines.” In Proceedings of the 5th
International Workshop on Domain Specific System Architecture
(DOSSA), 1–6.
Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019.
“SuperGLUE: A Stickier Benchmark for General-Purpose Language
Understanding Systems.” arXiv Preprint arXiv:1905.00537,
May. http://arxiv.org/abs/1905.00537v3.
Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. 2018. “GLUE: A Multi-Task Benchmark and Analysis
Platform for Natural Language Understanding.” arXiv Preprint
arXiv:1804.07461, April. http://arxiv.org/abs/1804.07461v3.
Wang, LingFeng, and YaQing Zhan. 2019. “A Conceptual Peer Review
Model for arXiv and Other Preprint Databases.” Learned
Publishing 32 (3): 213–19. https://doi.org/10.1002/leap.1229.
Wang, Tianlu, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente
Ordonez. 2019. “Balanced Datasets Are Not Enough: Estimating and
Mitigating Gender Bias in Deep Image Representations.” In
2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 5309–18. IEEE. https://doi.org/10.1109/iccv.2019.00541.
Wang, Xin, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez.
2018. “SkipNet: Learning Dynamic Routing in Convolutional
Networks.” In Computer Vision – ECCV 2018, 420–36.
Springer; Springer International Publishing. https://doi.org/10.1007/978-3-030-01261-8\_25.
Wang, Y., and P. Kanwar. 2019. “BFloat16: The Secret to High
Performance on Cloud TPUs.” Google Cloud Blog.
Wang, Yu Emma, Gu-Yeon Wei, and David Brooks. 2019. “Benchmarking
TPU, GPU, and CPU Platforms for Deep Learning.” arXiv
Preprint arXiv:1907.10701.
Warden, Pete. 2018. “Speech Commands: A Dataset for
Limited-Vocabulary Speech Recognition.” arXiv Preprint
arXiv:1804.03209, April. http://arxiv.org/abs/1804.03209v1.
Weicker, Reinhold P. 1984. “Dhrystone: A Synthetic Systems
Programming Benchmark.” Communications of the ACM 27
(10): 1013–30. https://doi.org/10.1145/358274.358283.
Werchniak, Andrew, Roberto Barra Chicote, Yuriy Mishchenko, Jasha
Droppo, Jeff Condal, Peng Liu, and Anish Shah. 2021. “Exploring
the Application of Synthetic Audio in Training Keyword Spotters.”
In ICASSP 2021 - 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 7993–96. IEEE; IEEE. https://doi.org/10.1109/icassp39728.2021.9413448.
Wiener, Norbert. 1960. “Some Moral and Technical Consequences of
Automation: As Machines Learn They May Develop Unforeseen Strategies at
Rates That Baffle Their Programmers.” Science 131
(3410): 1355–58. https://doi.org/10.1126/science.131.3410.1355.
Wilkening, Mark, Vilas Sridharan, Si Li, Fritz Previlon, Sudhanva
Gurumurthi, and David R. Kaeli. 2014. “Calculating Architectural
Vulnerability Factors for Spatial Multi-Bit Transient Faults.” In
2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 293–305. IEEE; IEEE. https://doi.org/10.1109/micro.2014.15.
Winkler, Harald, Franck Lecocq, Hans Lofgren, Maria Virginia Vilariño,
Sivan Kartha, and Joana Portugal-Pereira. 2022. “Examples of
Shifting Development Pathways: Lessons on How to Enable Broader, Deeper,
and Faster Climate Action.” Climate Action 1 (1). https://doi.org/10.1007/s44168-022-00026-1.
Witten, Ian H., and Eibe Frank. 2002. “Data Mining: Practical
Machine Learning Tools and Techniques with Java Implementations.”
ACM SIGMOD Record 31 (1): 76–77. https://doi.org/10.1145/507338.507355.
Wolpert, D. H., and W. G. Macready. 1997. “No Free Lunch Theorems
for Optimization.” IEEE Transactions on Evolutionary
Computation 1 (1): 67–82. https://doi.org/10.1109/4235.585893.
Wu, Bichen, Kurt Keutzer, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, and Yangqing Jia. 2019.
“FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search.” In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 10726–34. IEEE. https://doi.org/10.1109/cvpr.2019.01099.
Wu, Carole-Jean, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury,
Marat Dukhan, Kim Hazelwood, et al. 2019. “Machine Learning at
Facebook: Understanding Inference at the Edge.” In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 331–44. IEEE; IEEE. https://doi.org/10.1109/hpca.2019.00048.
Wu, Carole-Jean, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha
Ardalani, Kiwan Maeng, Gloria Chang, et al. 2022. “Sustainable Ai:
Environmental Implications, Challenges and Opportunities.”
Proceedings of Machine Learning and Systems 4: 795–813.
Wu, Hao, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius
Micikevicius. 2020. “Integer Quantization for Deep Learning
Inference: Principles and Empirical Evaluation.” arXiv
Preprint arXiv:2004.09602 abs/2004.09602 (April). http://arxiv.org/abs/2004.09602v1.
Wu, Jian, Hao Cheng, and Yifan Zhang. 2019. “Fast Neural Networks:
Efficient and Adaptive Computation for Inference.” In
Advances in Neural Information Processing Systems.
Wu, Jiaxiang, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. 2016.
“Quantized Convolutional Neural Networks for Mobile
Devices.” In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 4820–28. IEEE. https://doi.org/10.1109/cvpr.2016.521.
Xingyu, Huang et al. 2019. “Addressing the Memory Bottleneck in AI
Accelerators.” IEEE Micro.
Xu, Ruijie, Zengzhi Wang, Run-Ze Fan, and Pengfei Liu. 2024.
“Benchmarking Benchmark Leakage in Large Language Models.”
arXiv Preprint arXiv:2404.18824, April. http://arxiv.org/abs/2404.18824v1.
Xu, Zheng, Yanxiang Zhang, Galen Andrew, Christopher A. Choquette-Choo,
Peter Kairouz, H. Brendan McMahan, Jesse Rosenstock, and Yuanbo Zhang.
2023. “Federated Learning of Gboard Language Models with
Differential Privacy.” ArXiv Preprint abs/2305.18465
(May). http://arxiv.org/abs/2305.18465v2.
Yang, Le, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang.
2020. “Resolution Adaptive Networks for Efficient
Inference.” In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2366–75. IEEE. https://doi.org/10.1109/cvpr42600.2020.00244.
Yang, Tien-Ju, Yonghui Xiao, Giovanni Motta, Françoise Beaufays, Rajiv
Mathews, and Mingqing Chen. 2023. “Online Model Compression for
Federated Learning with Large Models.” In ICASSP 2023 - 2023
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 1–5. IEEE; IEEE. https://doi.org/10.1109/icassp49357.2023.10097124.
Yao, Zhewei, Amir Gholami, Sheng Shen, Kurt Keutzer, and Michael W.
Mahoney. 2021. “HAWQ-V3: Dyadic Neural Network
Quantization.” In Proceedings of the 38th International
Conference on Machine Learning (ICML), 11875–86. PMLR.
Yeh, Y. C. n.d. “Triple-Triple Redundant 777 Primary Flight
Computer.” In 1996 IEEE Aerospace Applications Conference.
Proceedings, 1:293–307. IEEE; IEEE. https://doi.org/10.1109/aero.1996.495891.
Yosinski, Jason, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014.
“How Transferable Are Features in Deep Neural Networks?”
Advances in Neural Information Processing Systems 27.
You, Jie, Jae-Won Chung, and Mosharaf Chowdhury. 2023. “Zeus:
Understanding and Optimizing GPU Energy Consumption of DNN
Training.” In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 119–39. Boston, MA: USENIX
Association. https://www.usenix.org/conference/nsdi23/presentation/you.
Yu, Jun, Peng Li, and Zhenhua Wang. 2023. “Efficient Early Exiting
Strategies for Neural Network Acceleration.” IEEE
Transactions on Neural Networks and Learning Systems.
Zafrir, Ofir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019.
“Q8BERT: Quantized 8Bit BERT.” In 2019 Fifth Workshop
on Energy Efficient Machine Learning and Cognitive Computing - NeurIPS
Edition (EMC2-NIPS), 36–39. IEEE; IEEE. https://doi.org/10.1109/emc2-nips53020.2019.00016.
Zeghidour, Neil, Olivier Teboul, Félix de Chaumont Quitry, and Marco
Tagliasacchi. 2021. “LEAF: A Learnable Frontend for Audio
Classification.” arXiv Preprint arXiv:2101.08596,
January. http://arxiv.org/abs/2101.08596v1.
Zhang, Chengliang, Minchen Yu, Wei Wang 0030, and Feng Yan 0001. 2019.
“MArk: Exploiting Cloud Services for Cost-Effective, SLO-Aware
Machine Learning Inference Serving.” In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 1049–62. https://www.usenix.org/conference/atc19/presentation/zhang-chengliang.
Zhang, Dongxia and, Xiaoqing Han, and Chunyu and and Deng. 2018.
“Review on the Research and Practice of Deep Learning and
Reinforcement Learning in Smart Grids.” CSEE Journal of Power
and Energy Systems 4 (3): 362–70. https://doi.org/10.17775/cseejpes.2018.00520.
Zhang, Hongyu. 2008. “On the Distribution of Software
Faults.” IEEE Transactions on Software Engineering 34
(2): 301–2. https://doi.org/10.1109/tse.2007.70771.
Zhang, Jeff Jun, Tianyu Gu, Kanad Basu, and Siddharth Garg. 2018.
“Analyzing and Mitigating the Impact of Permanent Faults on a
Systolic Array Based Neural Network Accelerator.” In 2018
IEEE 36th VLSI Test Symposium (VTS), 1–6. IEEE; IEEE. https://doi.org/10.1109/vts.2018.8368656.
Zhang, Jeff, Kartheek Rangineni, Zahra Ghodsi, and Siddharth Garg. 2018.
“ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing
Error Resilience for Energy Efficient Deep Learning
Accelerators.” In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 1–6. IEEE. https://doi.org/10.1109/dac.2018.8465918.
Zhang, Qingxue, Dian Zhou, and Xuan Zeng. 2017. “Highly Wearable
Cuff-Less Blood Pressure and Heart Rate Monitoring with Single-Arm
Electrocardiogram and Photoplethysmogram Signals.” BioMedical
Engineering OnLine 16 (1): 23. https://doi.org/10.1186/s12938-017-0317-z.
Zhang, Yi, Jianlei Yang, Linghao Song, Yiyu Shi, Yu Wang, and Yuan Xie.
2021. “Learning-Based Efficient Sparsity and Quantization for
Neural Network Compression.” IEEE Transactions on Neural
Networks and Learning Systems 32 (9): 3980–94.
Zhang, Y., J. Li, and H. Ouyang. 2020. “Optimizing Memory Access
for Deep Learning Workloads.” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 39 (11):
2345–58.
Zhao, Jiawei, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima
Anandkumar, and Yuandong Tian. 2024. “GaLore: Memory-Efficient LLM
Training by Gradient Low-Rank Projection,” March. http://arxiv.org/abs/2403.03507v2.
Zhao, Mark, and G. Edward Suh. 2018. “FPGA-Based Remote Power
Side-Channel Attacks.” In 2018 IEEE Symposium on Security and
Privacy (SP), 229–44. IEEE; IEEE. https://doi.org/10.1109/sp.2018.00049.
Zhao, Yue, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas
Chandra. 2018. “Federated Learning with Non-IID Data.”
ArXiv Preprint abs/1806.00582 (June). http://arxiv.org/abs/1806.00582v2.
Zheng, Lianmin, Ziheng Jia, Yida Gao, Jiacheng Lin, Song Han, Xuehai
Geng, Eric Zhao, and Tianqi Wu. 2020. “Ansor: Generating
High-Performance Tensor Programs for Deep Learning.” USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
863–79.
Zhou, Bolei, Yiyou Sun, David Bau, and Antonio Torralba. 2018.
“Interpretable Basis Decomposition for Visual Explanation.”
In Computer Vision – ECCV 2018, 122–38. Springer International
Publishing. https://doi.org/10.1007/978-3-030-01237-3_8.
Zhou, Peng, Xintong Han, Vlad I. Morariu, and Larry S. Davis. 2018.
“Learning Rich Features for Image Manipulation Detection.”
In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 1053–61. IEEE. https://doi.org/10.1109/cvpr.2018.00116.
Zhu, Chenzhuo, Song Han, Huizi Mao, and William J. Dally. 2017.
“Trained Ternary Quantization.” International
Conference on Learning Representations (ICLR).
Zhuang, Fuzhen, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2021. “A Comprehensive Survey on
Transfer Learning.” Proceedings of the IEEE 109 (1):
43–76. https://doi.org/10.1109/jproc.2020.3004555.
Zoph, Barret, and Quoc V Le. 2017a. “Neural Architecture Search
with Reinforcement Learning.” In International Conference on
Learning Representations (ICLR).
Zoph, Barret, and Quoc V. Le. 2017b. “Neural Architecture Search
with Reinforcement Learning.” In International Conference on
Learning Representations.